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Resumen

El objetivo de este proyecto es permitir el uso de un prototipo multi­FPGA como

plataforma de cálculo en la que se puedan ejecutar simultáneamente núcleos FPGA

codificados en síntesis de alto nivel. El proyecto se divide en dos pasos:

En el primer paso, se desarrolla el soporte para compilar un kernel HLS desnudo

para un prototipo FPGA, generando un núcleo IP. A continuación, se añade el núcleo

IP generado con bloques lógicos de comunicación y memoria (DDR, AXI) en un diseño

desarrollado para un dispositivo FPGA. Todos los dispositivos incluidos en la FPGA serán

accesibles a través de las direcciones de memoria. En el lado del host, éste utiliza el

protocolo MMI para lanzar el flujo de bits, escribir en la memoria, lanzar el kernel, leer la

memoria y comprobar la corrección. El acceso a la memoria, la sincronización del kernel y

el paso de argumentos se realizará a través de direcciones AXI mapeadas en memoria. Por

último, se realiza la validación de los pasos anterioresmediante una ejecución satisfactoria.

En el segundo paso, el diseño a nivel de sistema se adapta a una arquitectura multi­

FPGA interconectada. Cada FPGA será accesible individual y simultáneamente desde el

mismo host, utilizando el protocolo MMI.

Este proyecto permitirá utilizar el prototipo como demostrador de sus capacidades

computacionales.
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Abstract

This project aims to enable the use of a multi­FPGA prototype as a to compute platform

where FPGA kernels coded in High Level Synthesis can be run concurrently. The project

is divided into two steps:

In the first step, develop support to compile a bareHLS kernel for one FPGAprototype,

generating an IP core. Next, the generated IP core is added with communication and

memory logic blocks (DDR, AXI) in a design developed for an FPGA device. All the

devices included in the FPGA will be accessible through memory addresses. On the host

side, the host uses the MMI protocol to launch the bitstream, write memory, launch the

kernel, read memory and check correctness. Memory access, kernel synchronization and

argument passing will be performed through memory­mapped AXI addresses. Finally, the

validation of the previous steps is performed by mean of a successful run.

In the second step, the system­level design is adapted for an interconnected multi­

FPGA architecture. Each FPGA will be individually and simultaneously accessible from

the same host, using the MMI protocol.

This project will allow the prototype to be used as a demonstrator of its computational

capabilities.

2



CHAPTER 1

Introduction

High Performance Computing (HPC) is always pushing technology for the quest of

higher performance. However, the end of the era of transistor scaling and frequency

increasing makes difficult to provide sufficient performance for emerging large­scale

dataset applications, within a reasonable energy budget with current HPC architectures.

To overcome this situation, and to keep increasing performance in an energy

efficient manner, heterogeneity has been adopted as key factor to design and implement

performance and energy efficient HPC systems. Reconfigurable devices such as Graphics

Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAs) have found their

niche in these systems. Both GPUs and FPGAs have been proved to provide significant

performance gains for HPC applications. In particular, FPGAs have been shown to

provide high energy efficiency as well.

In last recent years, new European Projects have been founded by the European

Commission with the focus on HPC architectures. Among them, the Group of Parallel

Architectures (GAP) of the Technical University of Valencia (UPV) has been granted with

the FET­HPC MANGO project [1], which end up in May 2019. The goal of this project

consisted of developing and exploring new heterogeneous architectures for future HPC

systems. In order to achieve such a goal, a large prototype infrastructure made of FPGAs

was deployed and different HPC architectures were proposed, built into a prototype and

emulated via the FPGAs of the MANGO infrastructure.

3
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Although MANGO encompasses mainly the exploration of unconventional

architectures, the MANGO prototype described in Section 1.1, has been conceived

to play a twofold role. This situation is captured by Figure 1.1, highlighting that the

same hardware platform can support both a physical compute platform and an emulation

platform.

Figure 1.1: MANGO perspectives: I) computation and II) emulation. As a computation platform

the focus is on bulk performance. As an emulation platform the focus lays on exploration and

hardware solution prototyping.

As an emulation platform the focus is on architecture exploration, both at system and

compute unit level, and validation of functional aspects. Here, performance numbers are

inferred from suitable performance counters and evaluated in relative terms. Unlike, as

a compute platform the focus is on bulk performance, thus the goal is to maximize the

performance at system level in absolute terms, while keeping energy consumption in a

manageable budget. For that reason, this latter type of platforms is being adopted and

used massively in new HPC heterogeneous systems.

Enabling a reconfigurable compute platform made of multiple FPGAs involves two

main challenges. The first one consists of reducing the programming complexity of

these devices, which it can be done by means of programming models like OpenCL [2]

or High Level Synthesis (HLS). The second one corresponds to the development of
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software/hardware co­design support for managing the hardware, which includes support

for efficient communication between the host and the different FPGA devices and tools to

transform application kernels into hardware functions that can be uploaded to an FPGA.

1.1 MANGO prototype

Figure 1.2 shows a complete view of the MANGO prototype with its hardware

components. Among them, the most relevant ones for this project are the General purpose

Node (GN) and the Heterogeneous Node (HN).

Figure 1.2: MANGO prototype with its components: I) General Purpose Node (GN), II) cluster

of FPGAs, as known as Heterogeneous Node (HN), III) Ethernet interconnect and IV) Innovative

cooling and monitoring subsystem.

The GN consists of a blade made of a high­end Intel Xeon E5 V3, 64 GB of DDR4

memory, 1 TB SSD hard disk and PCI Express (PCIe) connectivity. In this project the GN

runs the low­level runtime system to support the managing of the FPGAs.

The HN, also as known as MANGO cluster, consists of 12 FPGAs and 22 GB of

DDR3 and DDR4 memory. The cluster is also heterogeneous, since it is composed of

different types of FPGAs: Xilinx Kintex Ultrascale (KU115) [3], Xilinx Virtex 7 Series

(V2000T) [4], Xilinx Zynq 7000 SoC (Z100) [5] and Intel Stratix 10 (SG280) [6]. Every

GN can access two different clusters through PCIe Gen3 x8 lanes, that is a total of 24



1.2 Goals and Motivations of this Work 6

FPGAs and 44 GB DDR3/DDR4 memory. The Figure 1.3 shows a photo of how it looks

currently. In that Figure, it can be seen the FPGAs and blue cables connecting FPGAs

among them.

Figure 1.3: Photo of an HN in the MANGO prototype.

The whole MANGO prototype consisted of a total of 8 GNs and 16 HNs. However,

the prototype has been split in different parts and each part has been delivered to a different

partner of the MANGO consortium. UPV has received a half of the prototype, that is, 4

GNs and 8 HNs, which means a total of 96 FPGAs and 176 GB of device memory.

Initially, the MANGO prototype has been used completely as an emulation platform,

however, there is an effort to adapt this huge system to a compute platform currently.

Therefore, it motivates the development of this work as we show in Section 1.2.

1.2 Goals and Motivations of this Work

This master thesis project aims to enable the use of a multi FPGA prototype as a

to compute platform where FPGA kernels coded in High Level Synthesis can be

run concurrently. This goal fits clearly with the research interests of the GAP group,

since it has been granted recently with two new projects where the MANGO prototype

is targeted as a computation system. This is the case of the FET­HPC RECIPE [7]
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and the ICT DeepHealth project [8]. Thus, as part of the activities of both projects,

the MANGO prototype is being adapted from a strictly emulation platform to an actual

compute platform.

As mentioned earlier, using a multi­FPGA system as a computational platform

involves two challenges. This thesis work contributes to solving one of these challenges.

A hardware design has been developed, which allows an optimized kernel to be loaded

via the HLS. Moreover, software design to be able to make a host communicate with a set

of FPGAs.

1.3 Structure of the Document

This thesis is structured in a logical and chronological order with respect to how it was

approached in practice.

In Chapter 2 an overview of the technologies and concepts used are given in order to

make the reading of the following Chapters clearer. Specifically, it will be explained what

an FPGA is and the motivation for choosing this technology. Subsequently, what is High

Level Synthesis and convolution (Section 2.2 and 2.3) is explained. This is because, in

the design that was modelled in the following chapters, a convolutional IP core optimised

through HLS was used. The IP core specifically was developed by the Group of Parallel

Architectures (GAP) of UPV. Finally, there is a description of the tools used (Section 2.4).

The actual contribution of this thesis work is described in Chapters 3 and 4.

Specifically, in Chapter 3, the various components of the hardware design developed (3.1)

using a single FPGA are described in detail. In Section 3.2, the described design is tested

using both a hardware approach and using screen printing. Chapter 4, is structured like

the previous one but with the difference of using a multi­FPGA system.

Finally, the Chapter 5 presents the final considerations.



CHAPTER 2

Background and Tools

This chapter briefly discusses the fundamentals of the technologies and concepts that were

applied in this Project. Section 2.1 describes what an FPGA is, illustrating the architecture

and the essential components of which it is constituted (Subsection 2.1.1). It will describe

the areas in which FPGAs can be used and the motivation for using them. Specifically, it

will be shown the specific FPGA used in this Project (Subsection 2.1.2 and 2.4.2). Section

2.2 describes what HLS is and what the positive aspects of its use might be. In addition,

the subsection 2.2.1 shows the HLS execution flow as well as some tricks to pay attention

to in order to make the best use of the language and the optimisations that can be done with

it (Subsection 2.2.2 and 2.2.3). Finally, a small example will be explained to understand

better its working (Subsection 2.4.3). Section 2.3 describes what convolution is and how it

works. Specifically, 1­dimensional and 2­dimensional convolution are illustrated. Finally,

Section 2.4 discusses what tools were used in this Project.

2.1 FPGA

In industry, one of the key aspects is to reduce development and production time and

introduce new products by reducing time­to­market. Also, there must be the lowest

financial risk when a new product is introduced to propose and develop new ideas. FPGAs

(Field­Programmable Gate Arrays) are a great solution to these time­to­market and risk

issues because they provide instant production and prototyping at a meagre cost [9].

8
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The use of FPGAs brings multiple advantages. The programmable nature of an FPGA

allows manufacturers to correct errors and send patches or updates after the product has

been purchased. Manufacturers also take advantage of this by creating their prototypes

in an FPGA to be thoroughly tested and reviewed in the real world before sending the

design to the IC foundry for ASIC production. This is because an ASIC can no longer be

modified after it comes off the production line. They can also be used to implement causal

logic and consequently as a replacement for SSI chips. Finally, a further advantage is the

possibility to compile a program not via software but hardware.

2.1.1. FPGA Architecture

FPGAs are semiconductor devices based on an array of configurable logic blocks (CLBs)

connected via programmable interconnects, which routes signals between the CLBs.

Input/output (I/O) blocks interface between the FPGA and external devices.

Figure 2.1: FPGA Architecture
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Configurable Logic Block CLBs are the main components of an FPGA. They are the

components that are programmed so that the FPGA can execute any program.

The CLB consists of a Look UP Table (LUT), a MUX (Multiplexer) and D flip flops.

• The LUT implements the combinational logic functions;

• the MUX is used for selection logic,

• moreover, the D flip flop stores the output of the LUT.

Interconnects The interconnection is a routing matrix comprising programmable

switches and wires. The routing elements connect Input/Output blocks, logic blocks and

between one CLB and another CLB.

Input/Output (I/O) Blocks Input/output blocks transfer data in and out of the FPGA.

The I/O blocks can be configured according to the user’s needs, depending on what they

want to transmit and receive. They are similar to transceivers but operate at lower speeds

and can maintain greater functional flexibility.

2.1.2. Applications

FPGAs can be used in many fields, including:

Prototyping The primary use of FPGAs is for prototyping applications. This is because

FPGAs have a low cost, both in terms of implementation and time, and therefore provide

significant advantages over other more traditional methods of prototyping hardware.

Thus, the prototype version can be quickly implemented, and easy modifications can be

made when needed.

Random logic implementation Random logic implementations are usually

implemented with PALs, but if the speed of the circuit is not a problem with the

speed of the circuit, it could be very advantageous to use FPGAs.
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Replacing SSI chips for random logic FPGAs can also replace the SSI chips found in

many commercial products, reducing the area used by these chips on circuit boards.

On­site hardware reconfiguration Advantageous use of FPGAs is when it is necessary

to replace components in a machine already in operation. A system that contains a certain

number of FPGAs connected via programmable interconnection provides a high degree

of flexibility in increasing the functional behaviour of the circuits supplied by the board.

The type of FPGA most suitable for this type of use contains re­programmable switches.

FPGA­based computing engines The exciting use of FPGAs is programming them so

that a program is not compiled in software but hardware. This has two advantages:

The first one means that there is no need for instruction fetching as in traditional

microprocessors; this is possible because the hardware incorporates the instructions.

The second advantage is due to the high levels of parallelism and consequent increase

in speed.

In this Project, FPGAs are used according to the latter application type. Next, this type

of application is discussed in more detail in Subsection 2.1.3.

2.1.3. FPGA­based computing engines

In this work, the FPGA has been used in the context of computing engines. An FPGA­

based computing engine can be seen as a platform that includes a hardware element and

can fully implement a software algorithm in part or whole. A programmable platform can

consist of a single FPGA or several FPGAs.

On the one hand, FPGA­based computing engines act as a bridge between

programmable software systems mounted on traditional microprocessors and customised

hardware function­based application­specific platforms. On the other hand, progress in

the design tools and technology for FPGA­based platforms permits the quick generation

of hardware­accelerated algorithms.
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The design for FPGAs can be seen as the design of embedded processors. Simulation

tools can be used to debug and verify the functionality of an application before

programming the physical device, and there are currently several tools that allow this.

Although the tools may be more complex and may take longer to develop, the design

can be seen as simple software development rather than hardware development with its

respective advantages.

Indeed, in cases where optimisations are required to handle higher resolutions or higher

bandwidth signals, these performance gains may be computational or may require entirely

new approaches. Implementing a system directly into an FPGA removes or minimises the

need for an instruction­based processor. This results in increased performance at a reduced

cost compared to using DSP chips and ASICs.

Typically, hardware description languages such as Verilog or VHDL are used to

program FPGAs. As will be shown in section 2.2, design tools have been developed that

support high­level languages such as C/C++. These tools provide a process whereby an

application can be transformed from its high­level description into an optimised low­level

representation, which can be adapted according to the platform used. Using the C/C++

language, a software­based approach is a significant advantage because it quickly tries

out different solutions. Also, making low­level changes can be very complex, and FPGAs

help solves this problem because they can support such applications.

There are advantages and disadvantages to using various types of system processors.

For example, although DSPs have low initial use in tools, they need a specific design

and programming techniques at the assembly level. On the other hand, FPGAs need

more design time and tool skills, mainly if hardware design languages are used as the

primary design input method. However, compared to using ASICs, they are a lower­

cost, lower­risk solution. Furthermore, if C­based design tools are used with FPGAs, the

disadvantages listed above can be significantly reduced.

In conclusion, using FPGAs as a computing engine allows engineers to implement

applications, or prototype applications, more quickly without the need to understand all

the intricate details of the target, and to perform optimisations, while at the same time

providing low­level features in order to extract the highest possible performance[10].
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2.2 High Level Synthesis

As the complexity of applications has increased, the search has begun for new tools to

work at a high level, improving performance over register transfer level (RTL). High­Level

Synthesis (HLS) comes to the rescue in this regard. HLS makes it possible to synthesise

high­level specifications and transform them into low­level RTL specifications; it also

makes it possible to optimise the Synthesis, considering the performance, power, and cost

requirements of a particular system [11].

HLS allows designers to specify design functionality in a high­level programming

language and then generate a system­specific IP core. Unlike RTL IP, which has a static

microarchitecture, behavioural IP can be adapted to different deployment technologies

or system requirements. This reduces the time spent searching for the best compromise

between area, power, and performance. Modern FPGAs incorporate many IP components,

such as arithmetic function units, memories, processors, and system buses. These

predefined blocks can be modelled in advance for each FPGA platform. In addition,

FPGAs are often used for systems where time­to­market is critical. Thus, designers accept

an increase in performance, power, or cost to reduce design time. With modern HLS

tools, the designer makes this trade­off, allowing a significant reduction in design time.

Finally, FPGAs are being used in reconfigurable computing platforms to accelerate High­

Performance Computing (HPC) applications. However, most developers are not familiar

with RTL programming in VHDL or Verilog, so providing a highly automated C/C++ to

FPGA compile/synthesise flow is essential. [12].

2.2.1. Flow

The figure 2.2, shows the creation flow of an RTL. The development is divided into 5

phases, starting with specifications written in a high­level language and finally generating

a module written in a low­level language and ready to be imported into the desired

platform. The phases are explained below.
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Figure 2.2: HLS steps

Compilation The first step is to transform the specification into a formal representation.

In this phase, optimisations can be made, such as eliminating dead­code or eliminating

false dependencies. The output of the compilation shows the dependencies of the data.

This formal representation consists of creating a DFG in which nodes represent operations

and arcs represent input, output, and temporary variables. The DFG model can be

extended with a CDFG, in which nodes represent basic blocks. A CDFG looks at the

data dependencies within the basic blocks. The positive side of using CDFGs is that they

can represent cycles with unlimited iterations. The problem is that only parallelism within

basic blocks is considered. In order to consider the parallelism between the basic blocks,

further analysis must be performed.

Allocation The allocation defines the type and number of hardware resources (e.g.,

functional units or connectivity components) required to meet design constraints. Some
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components may be added during scheduling and binding activities. The components are

selected from the component library RTL.

Scheduling The specifications’ operations may terminate within one clock cycle or

multiple clock cycles, depending on the functional units to which they have been mapped.

Operations can be concatenated so that the output of one operation goes into the input of

the next operation. Operations can also be executed in parallel, but only if they have no

data dependencies.

Binding All operations in the specificationmodelmust be associatedwith one functional

unit; the binding algorithm must optimise the choice when associated with more than

one functional unit. Storage and functional unit binding depend on connectivity binding,

which requires that the transfer from one component to another is done with a bus or

multiplexer. Ideally, high­level Synthesis considers delays due to connections so that

subsequent phases can best optimise the design. An alternative way to proceed is to specify

the entire architecture during the allocation phase to use initial optimisations in the binding

and scheduling phase.

Generation The last step is to generate a model RTL by considering the design choices

made in the previous allocation, scheduling, and critical steps.

2.2.2. Coding

As already mentioned (section 2.2), the HLS allows the programmer to use C/C++ to

generate components written in a low­level language. Various precautions need to be

taken to ensure that there are no errors or malfunctions.

System Calls System­calls are tasks executed in the contest of the operating system that

hosts the C/C++ program, as a consequence they cannot be synthetized.
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Dynamic Memory Usage Memory allocation dedicated system­calls, such as malloc(),

use resources held by the operating system’s memory and are created and released at run­

time. Thus, to perform Synthesis, the Project must be completely autonomous, specifying

all the resources required.

Pointer Limitations In the High Level Synthesis workflow general pointers (i.e.

function pointers) casting is not supported, however native C/C++ types can always be

cast between each other. Furthermore, arrays of pointers are also supported, given that

each pointer points to a scalar or array of scalars. However, arrays of pointers cannot

point to other pointers.

Recursive Functions Synthesis of functions that form unlimited recursion is not

permitted. Moreover, queued recursion is not supported, in case of countless function

calls. Templates adopted in C++ programming language tail recursion is often used, these

templates can be synthetized in tail recursion designs.

2.2.3. Optimization

With HLS, optimizations can be made and used to produce a microarchitecture that can

obtain desirable results in terms of area and performance goals. Optimisation directives

can be added directly into the source code as compiler pragmas using variousHLS pragmas

or using the TCL set_directive commands to apply the optimisation directives in a TCL

script by a solution during compilation.

Several optimisation directives can be applied to the Project:

Throughput Presents the main optimisations in the order in which they are typically

used: pipelining tasks to improve performance, improving the flow of data between, and

optimising structures to improve problems that may limit performance.
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Latency Uses latency constraint techniques and removal of transitions to reduce the

number of clock cycles required for completion. To reduce the number of clock cycles

required for completion.

Area Focuses on how operations are implemented ­ controlling the number of operations

and how these operations are implemented in the hardware is the primary technique for

improving the area.

Logic Discusses optimisations concerning the implementation of RTL.

2.2.3.1. Optimization pragma example

A design can be optimised by reducing the clock numbers of an operation, thus optimising

the latency. The HLS provides many pragmas for this purpose. An example of this type

of optimisation is loop merging. The type of pragma that is useful for this application is

the pragma HLS loop_merge.

Information about other pragmas can be found in the official Xilinx documentation

[13], the pragmas are constantly evolving, so it is essential to use the proper documentation

according to the tool used.

pragma HLS loop_merge

#pragma HLS loop_merge force

Merge consecutive loops into a single loop to reduce overall latency, increase sharing, and

improve logic optimisation. Loop Merge:

• Reduces the number of clock cycles required in the RTL to transition between loop­

body

• Allows loops to be implemented in parallel (if possible).

The LOOP_MERGE pragma will attempt to merge all loops within the scope in which

it is placed. For example, if a pragma LOOP_MERGE is applied in the loop’s body, the
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Xilinx HLS tool will apply the pragma to any sub­loop within the loop but not to the loop

itself. All loops inside, but not themselves, are merged by using the force option. The

rules for joining loops are:

• If the loop bounds are variables, they must have the same value (number of

iterations).

• If the loop bounds are constant, the maximum value of the constant is used as the

boundary of the merged loop.

• Loops with variable limits and constant limits cannot be merged.

• Code between loops to be merged cannot have side effects. Multiple executions of

this code should generate the same results (a=b is allowed, a=a+1 is not).

• Loops cannot be merged when they contain FIFO reads. Merging changes the order

of the reads. Reads from a FIFO or FIFO interface must always be in sequence.

An example of the use of this pragma is illustrated in the following listing 2.1.

1 vo id foo ( num_samples , . . . ) {

2 #pragma HLS loop_merge

3 i n t i ;

4 . . .

5 l oop_1 : f o r ( i =0 ; i < num_samples ; i ++) {

6 . . .

7

8 l oop_2 : f o r ( i =0 ; i < num_samples ; i ++) {

9 #pragma HLS loop_merge f o r c e

10 . . .

Listing 2.1: pragma HLS loop_merge example

In the example, the two loops will be merged into a single loop. Moreover, all the engaged

loops are merged in the second loop because the force option was used.

2.3 Convolution

Convolution is a technique widely used in signal processing, image processing and other

fields of engineering/science. In image processing, convolution can be used to apply a
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filter to an image. Convolution allows various types of filters to be used to extract different

aspects and characteristics from an image. Similarly, in Convolutional Neural Network,

different features are extracted using filters whose weights are learned automatically

during training.

There are some advantages to doing convolution, such as sharing weights and invariant

translation. Convolution also takes into account the spatial relationship of pixels. These

could be very useful, especially inmany computer vision tasks, as these tasks often involve

identifying objects in which specific components have a specific spatial relation to other

components.

The following Section shows an example to understand better how convolution works.

2.3.0.1. Convolution 1D

Convolution is executed by multiplying and accumulating the instantaneous values of

superimposed samples corresponding to two input signals, inverted.

To better understand the convolution, below is an example. Given two signals, X1[n] and

X2[n], where X1[n] is called the kernel and X2[n] are the inputs, what you want to do is

convolve a kernel with information.

X1 3 2 1 X1 3 2 1

X2 1 2 3 4 X2 4 3 2 1

X1 3 2 1 X1 3 2 1

X2 4 3 2 1 X2 4 3 2 1

3 = 3 6 2 = 8

X1 3 2 1 X1 3 2 1

X2 4 3 2 1 X2 4 3 2 1

X2 X 9 4 1 . X X X X 12 6 3 X X X X X
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[ 3 2 1 ] * [ 1 2 3 4 ] = [ 3 8 14 20 ]

1. The first step of the convolution is to flip and translate the vector X2[n] to the left;

2. The second step is to multiply the columns and sum the products;

3. The third step and translate the vector X2 and repeat the second step;

4. Finally, the convolution will be given by the vector containing the previous sums­

products.

2.3.1. Convolution 2D

The definition of 1D convolution is also applicable for 2D convolution save that one of

the inputs is inverted twice.

This type of operation is widely used in digital image processing, where the 2D matrix

representing the image will be convolved with a relatively more minor matrix called the

2D kernel.

0 1 2 0 1 19 25

3 4 5 * 2 3 = 37 43

6 7 8

2.3.1.1. Padding

One problem that can arise when performing convolution is losing pixels at the perimeter

of the image. Considering that small kernels are used, this can lead to the loss of a

few pixels, but when many convolutional layers are applied, the loss of pixels is more

significant. One solution to this problem is padding, i.e. adding extra pixels around the

perimeter of the image to enlarge the image. Usually, the extra pixels have a value of zero.

In some cases, it wants to have the same height and width in the output as in the input, and

padding makes this more accessible because it has more control over the construction of

the mesh.

An example of padding is shown below:
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0 0 0 0 0 0 3 8 4

0 0 1 2 0 0 1 9 19 25 10

0 3 4 5 0 * 2 3 = 21 37 43 16

0 6 7 8 0 6 7 8 0

0 0 0 0 0

2.3.1.2. Stride

When calculating the convolution, the starting point is the first matrix in the top left­hand

corner and is translated, to the right and down, one step at a time. For example, in some

cases, to improve computational efficiency, the translation is not done one step at a time

but n steps. This jump is called Stride. Stride can reduce the resolution of the output, for

example, by reducing the height and width of the output to only 1
n (with n > 1) of the

height and width of the input.

0 0 0 0 0

0 0 1 2 0 0 1 0 8

0 3 4 5 0 * 2 3 = 6 8

0 6 7 8 0

0 0 0 0 0

Stride along with padding can be used to adjust the dimension of the data effectively.

2.4 Tools

2.4.1. Xilinx Vivado Design Suite

Vivado Design Suite is a software suite produced by Xilinx for HDL design synthesis

and analysis, includes electronic system level (ESL) design tools for synthesising and

verifying C­based algorithmic IP, standards­based packaging of both algorithmic IP and

RTL for re­use, standards­based IP stitching and system integration of all types of system

building blocks, and block and system verification.

Vivado IDE offer [14]:
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• Register transfer level (RTL) design in VHDL, Verilog, and SystemVerilog

• Intellectual property (IP) integration for cores

• Behavioral, functional, and timing simulation with Vivado simulator

• Vivado synthesis

• Vivado implementation for place and route

• Vivado serial I/O and logic analyzer for debugging

• Vivado power analysis

• SDC­based Xilinx design constraints (XDC) for timing constraints entry

• Static timing analysis

• High­level floorplanning

• Detailed placement and routing modification

• Bitstream generation

2.4.1.1. Vivado High­Level Synthesis

Xilinx Vivado HLS belongs to the tools available in the Xilinx Vivado Design Suite. The

tool synthesizes functions written in C/C++ into an IP core that can be integrated into a

hardware system [15].
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Figure 2.3: Vivado HLS Design Flow

The Vivado HLS Design flow is illustrated in the figure 2.3.

When creating a new project, the tool allows 4 types of files to be added to the project:

• C function written in C, C++, SystemC, or an OpenCL API C kernel.

These files contain the functions that are to be synthesised. These are the files that

contain the code written at a high level that will later be converted.

• Constraints: Contain information about the clocks, such as period and uncertainty.

They also have information about the target.

If not specified, the clock has an uncertainty of 12.5%.

• Directives: Directives are optional and direct the synthesis process to implement a

specific behaviour or optimization.

• C test bench:To verify the output of RTL, Vivado uses the C/RTL Cosimulation.

This step is performed before synthesis.

The C Simulation is made for the validation of the C algorithm that is an important part

of the High­Level Synthesis (HLS) process. To ensure that the C algorithm performs the

correct operation, a C test bench is used to confirm that the results are correct.
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The Vivado simulator is a Hardware Description Language (HDL) event­driven simulator

that supports functional and timing simulations for VHDL, Verilog, SystemVerilog (SV),

and mixed VHDL/Verilog or VHDL/SV designs.

TheVivado simulator saves the simulation results of the objects (VHDL signals, or Verilog

reg or wire) being traced to the Waveform Database (WDB) file.

Synthesis is the process of transforming an RTL­specified design into a gate­level

representation. Vivado synthesis is timing­driven and optimised for memory usage and

performance.

Interface synthesis is the process of adding RTL ports to the C design. In addition to

adding the physical ports to the RTL design, interface synthesis includes an associated I/O

protocol, allowing the data transfer through the port to be synchronised automatically and

optimally with the internal logic.

When Synthesis completes, Vivado HLS generates a Synthesis Summary report for the

top­level function. In this file, it is possible to find information on the resources used,

times, latency.

A crucial part of creating high­quality RTL designs using High­Level Synthesis has the

ability to apply optimisations to the C code. High­Level Synthesis always tries tominimise

the latency of loops and functions. To achieve this, within the loops and functions, it tries

to execute as many operations as possible in parallel. At the level of functions, High­

Level Synthesis always tries to execute functions in parallel. However, after analysis, it is

possible to change C/C++ code to optimise the performance of the function. Optimisations

can be made by adding optimisation directives directly into the source code as compiler

pragmas, using various HLS PRAGMAS.

This is often an iterative process, requiring multiple steps and multiple optimisations to

achieve the desired results. Solutions offer a convenient way to configure the tool, add

directives to the function to improve the results, and preserve those results to compare

with other solutions.

The Vivado synthesis also generates a RTL implementation file in HDL (Hardware

Description Language) format. The RTL is available in two industry­standard formats:

VHDL and Verilog.
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The High­Level Synthesis tool automates the process of C/RTL CoSimulation. To

perform RTL verification, the tool uses both the RTL output from High­Level Synthesis

(Verilog or VHDL) and the C test bench.

As described before, the test bench verifies output from the top­level function for Synthesis

and returns zero to the primary () function of the test bench if the output is correct.

The RTL simulation in Vivado uses the same inputs as in the C simulation and synthesis

to check the correctness of the results. If the simulation ends with a non­zero value, then

the results are not correct.

The C/RTL verification process consists of three phases:

• The C simulation is executed, and the inputs to the top­level function, or the Design­

Under­Test (DUT), are saved as “input vectors.”

• The “input vectors” are used in an RTL simulation using the RTL created by Vivado

HLS inVivado simulator. The outputs from the RTL, or simulation results, are saved

as “output vectors.”

• The “output vectors” from the RTL simulation is returned to the C test bench’s

primary () function to verify the results are correct. The C test bench verifies the

results, in some cases, by comparing them to known good results.

After the end of the co­simulation, the report showing the latency values is displayed.

The final step in the Vivado HLS flow is to export the RTLL project in so that it can be

imported on other platforms. The RTL component can be packaged in various formats:

• Vivado IP: The IP is exported as a ZIP file added to the Vivado IP catalogue.

• Vivado Kernel: The XO file output can be used for linking by the Vivado compiler

in the application acceleration development flow.

• Synthesised Checkpoint: This option creates Vivado checkpoint files which can be

added directly into a design in the Vivado Design Suite.

• Vivado IP for System Generator: This option creates IP for use with the Vivado

edition of System Generator for DSP.



2.4 Tools 26

2.4.2. proFPGA

The proFPGA product family meets the highest requirements in the areas of FPGA

boards and FPGA­based prototyping. With proFPGA products, it is possible to get

maximum flexibility in building any hardware configuration, reconfigurable and adaptable

to multiple applications. In this work was used the Kintex UltraScale FPGA (section

2.4.2.4).

PRO DESIGNs FPGA prototyping systems offer scalable, high­performance Single and

Multi­FPGA solutions, which can be easily adapted and expanded by additional proFPGA

modules with the latest FPGAs and extension boards equipped with interconnects,

interfaces, or memories. The ProFPGA prototyping system is a set of modular blocks,

which allows users of this system to customise the various solutions to best suit the project

specifications [16].

The hardware and software layers of the proFPGA prototyping system are explained

below.

2.4.2.1. Hardware Level

The hardware level of the proFPGA prototyping system is divided into several modular

units, the main ones being (figure 2.4):

Figure 2.4: Modular hardware
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Motherboards Motherboards are the heart of FPGA; they provide clock infrastructure,

power supply, MMI­64 communication for multiple FPGA modules, I2C­based system

management, and mechanical fixation. Motherboards have two types of connectors, one

for the extension boards (carrying user I/O, power) on the bottom side and the other for

the FPGA modules (carrying user I/O, power, service) on the top side. It also provides

a transparent connection between the extension boards on the bottom side and the FPGA

module on the top side; this is due to the direct link of the user I/O pins of the connectors

on the top and bottom sides.

FPGA Modules The FPGA modules offer eight connectors connected to the extension

sites and have 4 FPGA module connectors (user I/O, power, service) and 4 extension

board connectors (user I/O, power). Each module can access the MMI­64 communication

through the motherboard. Moreover, since the motherboard provides a transparent

connection between the extension board and the FPGA module, each FPGA module can

access up to 8 extension boards.

ExtensionBoards Extension boards provide hardware functions within FPGAmodules,

such as debug access, SDRAM memory, and user PCIe connection. In order to have

exclusive access to the extension board, an extension board occupies one or more of the

connectors of an FPGA module, and other extension boards can be added by mapping the

non­used I/O pins of the FPGA module to a connector on the top side.

Interconnects Interconnects are used to connect the I/O pins of several FPGA modules

and are unique extension boards. Interconnects are to be found in cables and boards and

connect two or more extension sites. Finally, they can be point­to­point (e.g., all 2­way

interconnection boards and cables) or broadcast (e.g., the 4­way interconnection board).

System Extension Boards System functionality can be expanded by special hardware,

like the motherboard’s PCIe adapter board or a motherboard­to­motherboard connector

cable. This hardware uses designated connectors on the motherboard.
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2.4.2.2. Software Level

The Software layer of proFPGA provides various tools:

• profpga_run: a command­line tool to turn on turn off and configure the system

• profpga_builder: GUI to create configuration setups of the board and to execute

run­time accesses the system

• profpga_brdgen: a command­line tool to generate various VHDL/Verilog top­level

files, constraint files, board description files, and a project­based self­test to test

FPGA interconnects at speed

• profpga_selftest2: a command­line tool that performs the project­based self­test on

the hardware

• profpga_freq: a command­line tool to determine proFPGA clock settings to

generate a specific clock frequency or achieve the desired data rate with mux/demux

proFPGA modules.

Figure 2.5: ProFPGA software and libraries
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There are two parts to communicate with the system:

• MMI is a transport mechanism between the proFPGA system and a Host­PC. It is

used for user project communication and system control and consists of extracting

the different communication modes such as PCIe, Ethernet, and USB.

• libprofpga provides the tools to configure and control the system and to observe

status information. libprofpga uses MMI to communicate with the hardware.

Both parts together form the proFPGA communication package, which is called DMBI.

2.4.2.3. MMI64

Communication between the proFPGA system and a Host­PC is achieved through a series

of components [17].

Host Application The host application controls the communication. It will sendMMI64

messages downstream and request MMI64 messages upstream.

Software Libraries Software libraries are pre­compiled libraries from Pro Design that

implement API functions. They are used to communicate with the proFPGA system.

proFPGA Motherboard In order to communicate with the user application, the

proFPGA motherboard provides four paths:

• PCIe

• Ethernet

• USB cable

• previous motherboard (for systems with multiple motherboards)

proFPGA User FPGA Control Unit Pro Design provides the proFPGA control unit,

”profpga_ctrl”, to have MMI64 communication.

The control unit has the following functions:

• decode the communication pins into MMI64 signals
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• translate the clock/sync from the LVDS pins to the internal clock and reset

• configuration access for Advanced Clock Management (ACM) on clock/sync #1 to

7

• MMI64 communication interface for the user project inside the FPGA.

The control unit also provides a routing structure for MMI64 messages:

• MMI64 communication to user project

• Service

MMI64 PCIe PHY Pro Design provides another module, ”mmi64_p_pcie”, which

allows, through an additional extension and by instantiating MMI64 PCIe PHY, not to

use the motherboard. Usually, it is chosen to use this method when more data throughput

is necessary than the motherboard can provide.

Figure 2.6: MMI64 communication channels

2.4.2.4. FPGA Kintex UltraScale

The XCKU115 proFPGA FPGA module is the logical heart of the scalable and modular

multi FPGA proFPGA solution. This module is used by those who need a scalable
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and more flexible high­performance ASIC Prototyping solution for initial software

development and real­time system testing. The XCKU115 proFPGA FPGA module,

which works only in combination with a proFPGA one, duo, or quad motherboard.

Offers its latest Kintex UltraScale FPGA technology a maximum capacity of up to 7.9

M ASIC ports and 5520 DSP slices in a single FPGA. It is designed to achieve maximum

performance in combination with its high­speed connectors. The module offers six

extension sites up to 585 user I/Os for daughter cards (e.g., memory cards, interface cards),

interconnect cables, or customer­specific application cards. In addition to the standard

I/Os, the module also provides 52 high­speed serial transceivers (56 x GTH) operating at

up to 16.375 Gbps for high­speed interfaces such as PCIe Gen4. All six extension sites

offer individually adjustable and stepped voltage regions from 1.2V up to 1.8V.

Capacity Up to 7.9 M ASIC gates

FPGA­internal memory 75 Mbit

DSP Slices 5520

Extension sites Up to 6 Extension sites with high speed connectors

I/O resources

Overall up to 585 signals for I/O and inter FPGA connection

585 free I/Os per FPGA Module (Virtex® XCVU7P FPGA)

3x153 I/Os and 1x76 I/Os to top side connectors

2x25 I/Os to bottom side connectors

Single­ended or differential

High Speed I/O transceivers 56 high speed transceivers (GTH) running up to 12.5/16.375 (speedgrade 1/2/3) Gbps

FPGAs interconnections Flexible via high­speed interconnection boards or cables

Voltage regions

6 individually adjustable voltage regions per FPGA Module

Stepless from 1.0V up to 1.8V on 6 extension sites

Automated detection of daughter card and adjustment of right voltage

Configuration With proFPGA uno, duo or quad Motherboard via Ethernet, USB, PCIe

Table 2.1: XCKU115 proFPGA Characteristics

2.4.3. HLS application

This section explains and demonstrates all steps in transforming C/C++ code to an RTL

implementation using High­Level Synthesis. The Section shows how to create an initial

RTL implementation and then transform it using optimisation directives without changing

the C code.

In the Xilinx application acceleration flow, the Vivado HLS tool automates most of the

code changes required to implement and optimise C/C++ code in programmable logic and
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achieve low latency and high throughput. Inference of the pragmas needed to produce

the correct interface to function arguments and pipeline loops and functions within the

code is the foundation of Vivado HLS in the application acceleration flow. Vivado HLS

also supports code customisation to implement different interface standards or specific

optimisations to achieve design goals.

The following is the vivado HLS design flow:

1. Compile, simulate and debug the C/C++ algorithm.

2. Synthesise the C algorithm and view reports to analyse and optimise the design.

3. Verify the RTL implementation using RTL co­simulation.

4. Export the RTL implementation to an RTL IP.

2.4.3.1. Compile, simulate, and debug

The following listing 2.2 is represented as a simple example written in C/C++ and

optimised using the HLS INTERFACE pragma.

1 vo id sum_value ( v o l a t i l e i n t *a ) {
2 #pragma HLS INTERFACE s _ a x i l i t e p o r t = r e t u r n bund l e= c o n t r o l

3 #pragma HLS INTERFACE m_axi dep th =50 p o r t =a o f f s e t = s l a v e

4 #pragma HLS INTERFACE s _ a x i l i t e p o r t =a bund l e= c o n t r o l

5

6 i n t i ;

7 i n t b u f f [ 5 0 ] ;

8

9 memcpy ( bu f f , ( c o n s t i n t *) a ,50* s i z e o f ( i n t ) ) ;

10

11 f o r ( i =0 ; i < 50 ; i ++) {

12 bu f f [ i ] = b u f f [ i ] + 100 ;

13 }

14

15 memcpy ( ( i n t *) a , bu f f ,50* s i z e o f ( i n t ) ) ;

16 }

Listing 2.2: HLS example

This example takes a pointer (a) as input; the pointer points to a vector with a maximum

size of 50 integers. The vector is copied via the memcpy function into a local vector

(buff[i]). Thememcpy requires a local buffer to store the results of thememory transaction
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and creates burst access to memory. Sequentially is added a constant to all the values in

the vector, and finally, the modified buffer is reassigned to the pointer used as input. In

this case, multiple calls of memcpy cannot be pipelined and will be scheduled.

In order to specify the I/O ports as master/slave axi buses, the HLS INTERFACE pragma

was used.

HLS INTERFACE pragma specifies how RTL ports are created from the function

definition during interface synthesis. The ports in the RTL implementation are derived

from the following:

• Block­level I/O protocols: Provide signals to control when the function starts

operation and indicate when function operation ends, is idle and ready for new

inputs.

• Function arguments: Each function argument can be specified to have its port­level

(I/O) interface protocol, such as a valid handshake, or acknowledge handshake.

Port­level interface protocols are created for each argument in the top­level function,

and the function return if the function returns a value. The default I/O protocol

created depends on the type of C argument. After the block­level protocol has been

used to initiate block operation, port­level I/O protocols will be used to route data

input and output from the block.

• Global variables accessed by the top­level function, and defined outside its scope: If

a global variable is accessed, all read and write operations are local to the function,

the resource is created in the RTL design. The RTL requires no I/O port. If the

global variable is supposed to be an external origin or destination, simply define the

interface in a way analogous to the arguments of standard functions.

Sintax

#pragma HLS interface <mode> port=<name> bundle=<string> depth=<int>

offset=<string>

Where:
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• <mode>: Specifies the interface protocol mode for function arguments, global

variables used by the function, or the block­level control protocols. The mode that

can be specified is:

– s_axilite: Implements all ports as an AXI­Lite interface. the HLS facility

generates a set of C driver files as part of the RTL export process.

– m_axi: Ports are implemented as AXI interfaces. To specify 32­bit (default) or

64­bit address ports and control any address offsets, use the config_interface

command.

• port=<name>: Specifies the name of the function argument, function return, or

global variable to which the INTERFACE pragma applies.

• bundle=<string>: Groups function arguments into AXI interface ports. The HLS

tool groups all function arguments specified as an AXI­Lite (s_axilite) interface

into a single AXI­Lite port. Similarly, all function arguments specified as an AXI

(m_axi) interface are grouped into a single AXI port. This option explicitly groups

all interface ports with the same bundle=<string> into the same AXI interface port

and names the RTL port’s value specified by <string>.

• depth=<int>: This setting specifies the highest number of samples that the test

bench must elaborate on. This set­up specifies the maximum dimension of the FIFO

required in the verification adapter the HLS tool creates for RTL co­simulation.

• offset=<string>: Controls the address offset in AXI­Lite (s_axilite) and AXI

(m_axi) interfaces.

– For the s_axilite interface, <string> provides the registration map address.

– For the m_axi interface, <string> one of the following values is specified:

* direct: Generate a scalar input offset port.

* slave: Generate an offset port and automatically map it to an AXI­Lite

slave interface.

* off: Do not generate an offset port.
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C Simulation The first step in an HLS project is to confirm that the C code is correct.

This process is called C Validation or C Simulation. This can be done with: Project >

Run C Simulation, to compile and execute the C design.

The test bench 2.3 includes a main() top­level function. The main instantiates two vectors,

one of which is used as input to the function that needs to be synthesised and another to

execute the software version of the hardware function. At the end of the program, the two

vectors are compared to validate the function.

1 vo id sum_value ( v o l a t i l e i n t *a ) ;
2

3 i n t main ( )

4 {

5 i n t i ;

6 i n t A[ 5 0 ] ;

7 i n t B [ 5 0 ] ;

8

9 p r i n t f ( ”HLS AXI−Stream no s i de − channe l d a t a example \ n” ) ;

10 / / Pu t d a t a i n t o A

11 f o r ( i =0 ; i < 50 ; i ++) {

12 A[ i ] = i ;

13 }

14

15 / / C a l l t h e ha rdware f u n c t i o n

16 sum_value (A) ;

17

18 / / Run a s o f tw a r e v e r s i o n o f t h e ha rdware f u n c t i o n t o v a l i d a t e r e s u l t s

19 f o r ( i =0 ; i < 50 ; i ++) {

20 B[ i ] = i + 100 ;

21 }

22

23 / / Compare r e s u l t s

24 f o r ( i =0 ; i < 50 ; i ++) {

25 i f (B[ i ] != A[ i ] ) {

26 p r i n t f ( ” i = %d A = %d B= %d \ n” , i ,A[ i ] ,B[ i ] ) ;

27 p r i n t f ( ”ERROR HW and SW r e s u l t s mismatch \ n” ) ;

28 r e t u r n 1 ;

29 }

30 }

31 p r i n t f ( ” Succe s s HW and SW r e s u l t s match \ n” ) ;

32 r e t u r n 0 ;

33 }

Listing 2.3: Test bench



2.4 Tools 36

2.4.3.2. Synthesize

The second step consists of synthesising the C design into an RTL design and reviewing

the synthesis report to see the program’s performance. Solution > Run C Synthesis

> Active Solution. When Synthesis completes, the Xilinx tool generates a Synthesis

Summary report (figure 2.7) for the top­level function.

Figure 2.7: Synthesis Summary Report

In the Performance Estimates pane, shown in Figure 2.7, it is possible to see the clock

period is set to 13.33 ns. Xilinx tool targets a clock period of Clock Target minus Clock

Uncertainty (13.33­1.67 = 11.66 ns in this case). The clock uncertainty ensures there is

some timing margin available for them (at this stage) unknown net delays due to place and

routing. The estimated clock period (worst­case delay) is 11.666 ns, meeting the 11.66 ns

timing requirement.
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Another parameter seen in the summary is that the design has a latency of 128 cycles; it

takes 128 clocks to output the results, and the next set of inputs is read after 128 clocks.

The design is not pipelined. The subsequent execution of this function (or next transaction)

can only start when the current transaction completes.

The Utilisation Estimates shows that the design uses 3 BRAM_18K, 780 flip­flops and

1071 LUTs. At this stage, the device resource numbers are estimates because RTL

synthesis might perform additional optimisations, and these figures might change after

RTL synthesis.

2.4.3.3. Verify the RTL implementation

High­Level Synthesis can re­use the C test bench to verify the RTL using simulation.

Solution > Run C/RTL CoSimulation.

If the C test bench returns a non­zero value, the Xilinx tool reports that the simulation

failed. After simulation, the Cosimulation Report shows the pass or fail status and the

measured statistics on latency (figure 2.8).

Figure 2.8: Co­somilation report

2.4.3.4. Export the RTL implementation

The final step in the High­Level Synthesis flow is to package the design as an IP block

with other tools like the Vivado Design Suite. Solution > Export RTL.
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Figure 2.9: Export RTL panel

The RTL design can be packaged into different output formats. In this case, as shown in

Figure 2.9, The IP is exported as a ZIP file that can be added to the Vivado IP catalogue.

In addition to selecting the IP format on the Export RTL dialogue box, it is also possible to

change the IP configuration. One important thing in the configuration options is to choose

the IP name shown when adding the IP to the Vivado catalogue.



CHAPTER 3

Single-FPGA

The goal of this thesis work is to verify the possibility of using multiFPGA prototypes as

a computing platform, discussed in the Section 2.1.3, where the FPGA kernels are coded

in HLS (Section 2.2). In order to simplify the work, the project has been divided into

two parts, the first part where only one FPGA is used and a second part, which will be

addressed in the next chapter, where the project will be expanded to more FPGAs.

In this chapter, the design (Section 3.1) of the project using a single FPGA is explained,

going into detail about the components of which it is composed. Once an overview of the

design is done, Section 3.2 explains how the design was tested and what techniques were

used.

3.1 Design

Figure 3.1 shows the design developed for the single FPGA case. The most important

components of the design are as follows:

• mmi64_host_interface module;

• convolution IP core;

• SDRAM;

• System ILA core.

39
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Figure 3.1: Vivado design

Using the different interfaces illustrated in 2.6, the host can communicate with the System

through DMBI (Device Message Box Interface). In this case, the interface used is the

proFPGA PCIe. So the user, thanks to this interface, communicates the desired inputs

to the MMI64 host interface module, designed precisely with the function of acting

as a bridge between the host and the FPGA. In essence, the host, through the module

MMI64 host interface, can pass input values to the IP core of the convolution to perform

the convolution and can communicate directly with the memory (DDR4) to make the

appropriate settings, such as enable/disable interrupts or read the data saved by the IP

core. In the design, there is also another module, system ILA, used to debug the System.

In the following sections, the design will be explained in more detail.

3.1.1. MMI64 host interface

The mmi64_host_interface module is a module developed to implement the

communication between a host and an FPGA.

The module consists of three main blocks:

• Profpga_ctrl;

• MMI64_axi_master;

• Profpga_clocksync.
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Figure 3.2: Vivado mmi64 host interface module design

The profpga_ctrl module is instantiated, which includes the MMI64 PHY. This module is

directly driven by CLK/SYNC[0] and connects to the DMBI pins. It creates the MMI64

interface with the downstream and upstream data interface and the mmi64 clock and

reset. This MMI64 interface is directly connected to the mmi64_axi_master module. A

profpga_clocksync module creates the AXI clock and resets signals. The AXI clock is

running on 125MHz, and the MMI64 clock is running on 100MHz.

3.1.1.1. Profpga_ctrl

The proFPGA control unit is the core interface of user FPGA designs to the infrastructure

provided by the proFPGA motherboard and host software.
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Figure 3.3: Profpga_ctrl module

This module contains the DMBI signals that allow the host to be able to communicate with

the System. The proFPGA PCIe DMBI Interface offers a high rate of data exchange. The

user can benefit from remote system configuration from using this high­speed interface

more efficiently for debugging purposes such as streaming data or sending and receiving

test patterns, and so on.

The MMI64 interface signals implement the MMI64 protocol. This interface allows

communication with another module of the System, MMI64_axi_master, which will be

discussed in more detail in the section 3.1.1.2.

When the MMI64 is used, the signals must be connected to the host­side interface of

the connected module, and mmi64_present_i must be driven to ’1’. The MMI64 clock

is a free­running 100 MHz clock. The MMI64 reset is lowered during the final system

initialization stage. The user may provide clocks to the motherboard using the source

clock interface. The clock configuration interface must be connected to the corresponding

profpga_clksync.

setup Various parameters of the component can be set, including:
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• Device: in this module the type of FPGA used is chosen, in this case a Kintex

UltraScale Section 2.4.2.4 ­ ”XVUS”.

• ENABLE_DEBUG: set to ”FALSE” when not instructed by ProDesign

• PIN_TRAINING_SPEED: choose real pin training for synthesis or fast

pin training for simulation ­ ”auto” (synthesis tool must support ”synthesis

translate_off”)

• ENABLE_DISCO: Enable MMI64 DisCo instance inside ­ ”FALSE”

• USE_CLK_INPUT_BUFG: Use BUFG before PLL for UltraScale

implementation ­ ”0”

3.1.1.2. MMI64_axi_master

The MMI64 AXI Master module is intended to perform AXI4 bus transactions inside the

user FPGA design. A host application controls it.

Figure 3.4: MMI64_axi_master module

The MMI64_axi_master module, on the one hand, is connected to the profpga_ctrl

module via the MMI64 interface. On the other hand, the AXI master signals allow

the comunication with the memory and the convolution IP core. This module has two

clock types, one at 100 MHz like the profpga_ctrl module and the other at 125 MHZ, to

synchronize the AXI communication.
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setup An important parameter of this module is ”MODULE_ID”. This unique ID will

be used to distinguish the various mmi64 AXI masters when multiple FPGAs are present.

• MODULE_ID: unique id of the module instance

• AXI_ID_WIDTH: ID width

• AXI_ADDR_WIDTH: AXI address width

• AXI_USER_WIDTH: AXI User signal width

• AXI_DATA_WIDTH: AXI Data signal width

3.1.1.3. Profpga_clocksync

A profpga_clocksync module creates the AXI clock and resets signals. The AXI clock is

running on 125MHz, and the MMI64 clock is on 100MHz. The clock generated at 125

MHz is also output to the MMI64_host_interface module so that the slave is connected to

the AXI master of the MMI64_axi_master (Section 3.1.1.2) module can run at the same

speed.

Figure 3.5: Profpga_clocksync module

To reduce synthesis timing issues, the clock is not used directly for the processing of the

associated SYNC signal. Instead, the user design must provide clock feedback:

1. If the design uses a PLL or MMCM, it is recommended to provide a 1:1 output with

no phase shift to clk_i and the PLL “locked” signal as clk_locked_i.
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2. If the clock is used directly, the output of the clock buffer must be provided as

feedback. In this case, the clk_locked_i signal should be tied to ‘1’.

setup

• CLK_CORE_COMPENSATION

– ”DELAYED”: clk_core is delayed against clock from motherboard to be used

for all XILINX 7­Series and ZYNQ­7000 FPGAs,

– ”ZHOLD”: clk_core is compensated to negative phase offset,

– ”DELAYED_XVUS”: clk_core is delayed against clock from motherboard to

be used for all XILINX Ultrascale FPGAs.

3.1.2. Convolution IP core

In this work, HLS code was used to perform the convolution, developed by the Group of

Parallel Architectures (GAP) of UPV.

Figure 3.6: Convolution IP core

The IP core is connected to the MMI64_host_interface via AXI slave signals and to the

memory via AXI master signals. The changes made to the HLS code to fit the System

involve just the addition of the HLS INTERFACE pragmas s_axilite and m_axi, so that

upon generation of the IP core, the core would create the AXI interface.

1 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t = p t r _ d a t a

2 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t = p t r _ o u t

3 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t = p t r _ b i a s

4 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t = p t r _ k e r n e l

5 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t = p t r _ dw_ke r n e l
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6 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t = p t r _ pw_ke r n e l

7 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t = p o s _ s h i f t

8 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t = d i r _ s h i f t

9 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t =max_c l ip

10 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t =m in_c l i p

11 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t = e n a b l e _ s h i f t

12 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t = e n a b l e _ c l i p p i n g

13 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t = e n a b l e _ a vgpoo l i n g

14 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t = enab l e_maxpoo l i ng

15 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t = en ab l e _ l owe r_padd i ng

16 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t = en ab l e _uppe r _p add i ng

17 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t = g l o b a l _ o f f s e t

18 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t = e n a b l e _ r e l u

19 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t = o _ i t e r _ l a s t

20 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t = o _ i t e r _ f i r s t

21 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t =I_ITER

22 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t = I

23 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t =O

24 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t = I

25 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t =W

26 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t =H

27 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t =rows

28 #pragma HLS INTERFACE s _ a x i l i t e bund l e= c o n t r o l p o r t = r e t u r n

29

30 # i f d e f i n e d (DIRECT_CONV) | | d e f i n e d (WINOGRAD_CONV)

31 DO_PRAGMA(HLS INTERFACE m_axi p o r t = p t r _ k e r n e l dep th=KERNEL_PORT_DEPTH o f f s e t =

s l a v e bund l e=gmem1)

32 # e n d i f

33 # i f d e f DWS_CONV

34 DO_PRAGMA(HLS INTERFACE m_axi p o r t = p t r _ dw_ke r n e l dep th=DW_KERNEL_PORT_DEPTH

num_re ad_ou t s t a nd i ng=CPI o f f s e t = s l a v e bund l e=gmem1)

35 DO_PRAGMA(HLS INTERFACE m_axi p o r t = p t r _ pw_ke r n e l dep th=PW_KERNEL_PORT_DEPTH

num_re ad_ou t s t a nd i ng=CPI o f f s e t = s l a v e bund l e=gmem4)

36 # e n d i f

37 DO_PRAGMA(HLS INTERFACE m_axi p o r t = p t r _ d a t a dep th=DATA_IN_PORT_DEPTH

num_re ad_ou t s t a nd i ng=CPI o f f s e t = s l a v e bund l e=gmem)

38 DO_PRAGMA(HLS INTERFACE m_axi p o r t = p t r _ b i a s dep th=BIAS_PORT_DEPTH

o f f s e t = s l a v e bund l e=gmem2)

39 DO_PRAGMA(HLS INTERFACE m_axi p o r t = p t r _ o u t dep th=DATA_OUT_PORT_DEPTH

num_wr i t e _ou t s t a nd i n g =CPO o f f s e t = s l a v e bund l e=gmem3)

Listing 3.1: Convolution pragmas to create AXI interface

In the listing 3.1 the reader can see the same type of pragma but with two different modes.

The pragma is of type INTERFACE then to create the input and output ports of the IP

core. As for the mode, all data that must be input to the IP core are mapped as AXI4­Lite
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interface, then with a mode ”s_axilite”. All data have the same ”bundle”, so they will be

grouped in the same port, connected to the MMI64_host_interface module so that the host

through the AXI bus can pass the parameters to the IP core.

The other mode used concerns the ports that are output to the IP core, mapped as AXI4

interface, therefore with a ”m_axi” mode. The output of the IP core is connected to

memory.

After modifying the code, the IP core was generated following the flow described in

Section 2.4.3.

The clock feeding the IP core is a clock generated through a clock wizard at a frequency

of 100MHz.

3.1.3. Memory

Figure 3.7 shows the IP Core controller of the DDR4memory attached to the single FPGA

prototype. The memory has a capacity to store 2GB of data and it is accessible from both

the host and the FPGA convolution kernel. For that purpose an AXI interconnect is used.

Then, the AXImaster signals of the convolution kernel and the AXImaster signals coming

form the host are connected to a X:1 AXI interconnect.

Next, the most important configuration options of the DDR4 IP core are described.

Figure 3.7: DDR4

setup

• Basic

– Memory Device interface Speed = 1000

– Reference input Clock Speed = 8000
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– Memory Part = EDY4016AABG­DR­F

• AXI Options

– Data = 512.

– Address = 31

The Memory Device Interface Speed is used to set the interface speed. This is related

to Reference Input Clock Speeds because it adjusts the speed. In addition, the Reference

Input Clock Speed is greater than the Memory Device Interface Speed.

In this case, the Reference input Clock Speed is set to 8000 ps or 125MHz, which

corresponds to the input clock frequency of the component.

In the configuration, the ID corresponding to the physical memory in the FPGA and the

data and address size are also selected.

3.1.3.1. Address Memory

An important thing to do is to choose how to map the memory addresses. Memory can be

accessed via AXI signals by two components: the host and the convolutional IP core.

In order to ensure that there is communication between host and kernel, host and memory,

and kernel and memory, a mechanism based on address mapping is used.

In this case, the host can communicate with the kernel through addresses ranging

from 0x44A0_0000 to 0x44A0_FFFF and can communicate with the memory through

addresses ranging from 0x8000_0000 to 0xFFFF_FFFF.

The kernel also uses the same range of addresses the host uses to communicate with the

memory (0x8000_0000 to 0xFFFF_FFFF) to exchange information with the memory.
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Figure 3.8: Address editor

3.2 Test

In this section, the system testing process will be explained. First, in the Section 3.2.1, we

will explain what the System ILA core is and how it was used in the design. then we will

show how to program the FPGA (Section 3.2.2) and the test bench used to test the system

(Section 3.2.3). Finally, through the hardware manager, we will perform validation of the

results obtained from running the System (Section 3.2.5).

3.2.1. System ILA

The customizable IP core System Integrated Logic Analyzer (System ILA) is a logic

analyzer that can be used to monitor the internal signals and interfaces of a hardware

design. The core also offers to interface debug andmonitoring capability alongwithAXI4­

MM and AXI4­Stream protocol checking. Because the System ILA core is synchronous

to the design being monitored, all design clock constraints applied to the design are also

applied to the components of the System ILA core. As we can see in figure 3.9, two ILA

cores have been used in this project because they are connected to two different modules

with two different clock frequencies.

In this case, the ILA cores were connected to the AXI bus to monitor the correct reading

and writing in the various blocks.
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Figure 3.9: Ila core

3.2.2. Programming the FPGA

Prodesign tools were used to program the FPGA. In particular, the following commands

were used:

• profpga_builder GUI to create board configuration setups and to perform runtime

accesses to the system.

1 p r o f p g a _ b u i l d e r −− c o n f i g −on ly −− scan = 1 6 9 . 2 5 4 . 0 . 2

This command scan a system, create the configuration file only.

• profpga_run

1 p r o f pg a_ r un < c o n f i g u r a t i o n _ f i l e > <mode> <[ o p t i o n s ] >

2 p r o f pg a_ r un –ge t −exe − v e r s i o n

profpga_run is the command­line tool to access the FPGA system. It will be called

with a mandatory mode switch, optional parameters and switches, and a path to a

configuration file that contains a section for MMI configuration and a section for

proFPGA system configuration.
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1 p r o f pg a_ r un IP_169 . 2 5 4 . 0 . 2 . c f g −−up

This command initializes and configures the system based on the contents of the

configuration file.

• profpga_brdgen

1 p ro fpga_b rdgen < c f g f i l e > <mode> <[ o p t i o n s ] >

profpga_brdgen is a command line tool to generate various VHDL/Verilog toplevel

files, constraint files, board description files and a design based self­test to test

FPGA interconnections at speed.

1 p ro fpga_b rdgen IP_169 . 2 5 4 . 0 . 2 . c f g −−xdc

This command generates for each FPGA an XDC constraints file.

3.2.3. Testbench

In this section, we will show how to initialize the FPGA (Section 3.2.3.1). In addition, the

complete operation of the system will be explained through the code description (Section

3.2.3.2). Finally, there will be a brief demonstration of the execution and how it was

debugged through the hardware manager (Section 3.2.4).

3.2.3.1. Inizialize FPGA

Before running the actual program, it is necessary to initialize the FPGA so that the various

components in the project are recognized. In particular, the first step is to analyze the

configuration file. As can be seen in the code is present, the bitstream is loaded in the

FPGA. Clocks are described. In this case, there are two clocks, one with a local 100 MHz

source and one with a 125 MHz source. Also, all the synchronization configuration is

specified, and finally, what kind of memory is in the FPGA is specified.

1 mothe rboa rd_1 :

2 {

3 t y p e = ”MB−4M−R2” ;

4 f pga_modu le_ t a3 :

5 {
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6 t y p e = ”FM−XCKU115−R1” ;

7 b i t s t r e am = ” de s i gn_1_wrappe r . b i t ” ;

8 sp eed_g r ade = 2 ;

9 v_ io_ba1 = ”AUTO” ;

10 } ;

11 c l o c k _ c o n f i g u r a t i o n :

12 {

13 c l k_0 :

14 {

15 s ou r c e = ”LOCAL” ;

16 } ;

17 c l k_2 :

18 {

19 s ou r c e = ” 125MHz” ;

20 mu l t i p l y = 5 ;

21 d i v i d e = 5 ;

22 } ;

23 } ;

24 s y n c _ c o n f i g u r a t i o n :

25 {

26 sync_0 :

27 {

28 s ou r c e = ”GENERATOR” ;

29 } ;

30 sync_2 :

31 {

32 s ou r c e = ”GENERATOR” ;

33 } ;

34 } ;

35 } ;

36

37 s y n c_ ev en t s = ( ( ” mothe rboa rd_1 . sync_2 ” , ”RESET_0” ) , # low a c t i v e r e s e t s i g n a l

38 ( ” s l e e p ” , 100 ) , # wa i t f o r 1000 ms

39 ( ” mothe rboa rd_1 . sync_2 ” , ”RESET_1” ) # r e l e a s e r e s e t

40 ) ;

41

42 x _ b o a r d _ l i s t = ( ” t a1_eb1 ” , ” i c c _1 ” , ” i c c _2 ” , ” bb2_eb1 ” , ” t c1_eb1 ” , ” i c c _3 ” , ” bd2_eb1 ”

, ” t a3_eb1 ” , ” i c c _4 ” , ” t c3_eb1 ” ) ;

43 t a3_eb1 :

44 {

45 t y p e = ”BOARD” ;

46 vendor = ” ProDes ign ” ;

47 name = ”EB−PDS−DDR4−R3” ;

48 s i z e = ”A1A1” ;

49 p o s i t i o n s = ( ” mothe rboa rd_1 . TA3” ) ;

50 t o p _ c o n n e c t o r s = ( ) ;

51 v_ io_ba1 = ”AUTO” ;
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52 s i 5 3 3 8 _ r e g i s t e rm a p _ f i l e = ”RegisterMap_125MHz . t x t ” ;

53 s i 5 3 3 8 _ v a l i d a t e _ i n p u t _ c l o c k s _ 1 _ 2 _ 3 = ” yes ” ;

54 s i 5 3 3 8 _ v a l i d a t e _ i n p u t _ c l o c k s _ 4 _ 5 _ 6 = ”no ” ;

55 } ;

56 i c c _4 :

57 {

58 t y p e = ”CABLE” ;

59 vendor = ” ProDes ign ” ;

60 name = ” IC−PDS−CABLE−R1” ;

61 s i z e = ”A1A1” ;

62 p o s i t i o n s = ( ” mothe rboa rd_1 . TC4” , ” mothe rboa rd_1 . TA4” ) ;

63 v_ io = ”AUTO” ;

64 } ;

65 } ;

Listing 3.2: Configuration file

When the test bench is run, the first thing that is done is to read the configuration file,

and a connection to the ProFPGA system is opened, using functions provided by PRO

DESIGN. The function ”profpga_open” (listing 3.3) opens a connection to a proFPGA

system based on a given configuration file. This allows us to scan the System and check

that all the components involved in the design are physically present.

1 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 / / Open MMI64 conn e c t i o n

3 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4 p r i n t f (NOW( ”INFO : Loading c o n f i g f i l e %s \ n” ) , mmi64_con f i g_ f i l e ) ;

5 s t a t u s = p ro fpga_open (&pro fpga , mmi64_con f i g_ f i l e ) ;

6 i f ( s t a t u s !=E_PROFPGA_OK) {

7 p r i n t f ( ”ERROR: F a i l e d connec t t o PROFPGA sys tem (%s ) \ n” , p r o f p g a _ s t r e r r o r ( s t a t u s ) ) ;

8 r e t u r n s t a t u s ;

Listing 3.3: Loading configuration file

In the listing 3.4 the function ”mmi64_identify_scan” get information about connected

mmi64 domain: type, addr and data width of each available modules must be called by

the user prior to call of ”mmi64_identify_by_.()” functions (listing 3.5).

1 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 / / Scan MMI64 connec t ed d ev i c e

3 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4 mmi64_s t a tu s = mmi64_ i d en t i f y_ s c an ( p ro fpga −>mmi64_domain ) ;
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5 i f ( mmi64_not_ok ( mmi64_s t a tu s ) ) {

6 p r i n t f (NOW( ”ERROR ( main ) : F a i l e d t o scan \ g l s {MMI}64 domain − mmi64_s t a tu s : %d \ n” ) ,

mmi64_s t a tu s ) ;

7 r e t u r n mmi64_s t a tu s ;

8 }

9 / / p r i n t s can r e s u l t s

10 mmi64_s t a tu s = mmi64_ in f o_p r i n t ( p ro fpga −>mmi64_domain ) ;

Listing 3.4: Components scanning

Scanning the System gives as output the figure 3.10, which shows information about

identified MMI64 domain. The critical thing to check is the presence of the AXI_master,

without which the host would not be able to communicate with the System.

Figure 3.10: Scan MMI64 connected device

After the scanning, the function ”mmi64_identify_by_type” identify all modules of a

given module type and returns a list of all matching modules. Moreover, it checks

the parameter ”identified_modules_count”, which represents the number of matching

modules detected during identity run; In order to identify the module AXI_master (listing

3.5).

1 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 / / Get a l l modules wi th MMI64_TID_M_AXIM ID

3 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4 mmi64_s t a tu s = mmi64_ iden t i f y_by_ type ( p ro fpga −>mmi64_domain , MMI64_TID_M_AXIM , &

i d e n t i f i e d _modu l e s , &i d e n t i f i e d _mod u l e s _ c o u n t ) ;

5 i f ( mmi64_not_ok ( mmi64_s t a tu s ) ) {
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6 p r i n t f (NOW( ”ERROR ( main ) : F a i l e d t o i d e n t i f y mmi64 r e g i f module − mmi64_s t a tu s : %d \ n

” ) , mmi64_s t a tu s ) ;

7 r e t u r n E_MMI64_INTERNAL_ERROR ;

8 }

9

10 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

11 / / S e l e c t one MMI64 Mas te r d e v i c e

12 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 i f ( i d e n t i f i e d _mod u l e s _ c o u n t == 0) {

14 p r i n t f (NOW( ”ERROR ( main ) : F a i l e d t o i d e n t i f y mmi64 AXI mas t e r module \ n” ) ) ;

15 r e t u r n mmi64_s t a tu s ;

16 }

17

18 t e s t _modu l e = i d e n t i f i e d _mo d u l e s [ 0 ] ;

Listing 3.5: Modules identification

The last thing to do to finish configuring the FPGA is to open a connection to the AXI

Master module domain, with the function ”axim_open” (listing 3.6). This must be the first

function called before any Read or Write access on the AXI interface. The function reads

out AXI access parameters which are used for AXI read and write access.

1 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 / / Open communica t ion

3 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4 t e s t _ a x i _m a s t e r = axim_open ( t e s t _modu l e ) ;

5 i f ( t e s t _ a x i _m a s t e r == NULL) {

6 p r i n t f (NOW( ”ERROR ( main ) : Connect p r o c e s s t o AXI mas t e r f a i l e d \ n” ) ) ;

7 r e t u r n E_MMI64_INTERNAL_ERROR ;

8 }

9

10 u i n t 3 2 _ t nu l l o , R e g i s t e r , Mask , Data ;

11 s i z e _ t s i z e = s i z e o f ( u i n t 3 2 _ t ) ;

12

13 / / d i s a b l e a u t o r e s t a r t

14 Data = 0 ;

15 a x i _ s t a t u s = ax im_wr i t e_32 ( t e s t _ a x i _m a s t e r , 0x1 , s i z e , ADDR_AP_CTRL, &Data ) ;

16 i f ( a x i _ s t a t u s != E_AXI_OK) {

17 p r i n t f ( ”ERROR ( main ) : Wr i t e a u t o r e s t a r t %d \ n” , a x i _ s t a t u s ) ;

18 r e t u r n E_MMI64_INTERNAL_ERROR ;

19 }

Listing 3.6: Open a connection to AXI Master module domain
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Furthermore, finally, the program uses interrupts, so they must be enabled before starting

actual execution.

1 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 / / Enab le i n t e r r u p t

3 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4

5 / / I n t e r r u p t G l o b a l E n a b l e

6 Data = 1 ;

7 a x i _ s t a t u s = ax im_wr i t e_32 ( t e s t _ a x i _m a s t e r , 0x1 , s i z e , ADDR_GIE , &Data ) ;

8 i f ( a x i _ s t a t u s != E_AXI_OK) {

9 p r i n t f ( ”ERROR ( main ) : Wr i t e D i s a b l e g l o b a l i n t e r r u p t %d \ n” , a x i _ s t a t u s ) ;

10 r e t u r n E_MMI64_INTERNAL_ERROR ;

11 }

12

13 / / I n t e r r u p t E n a b l e

14 Data = 1 ;

15 a x i _ s t a t u s = ax im_wr i t e_32 ( t e s t _ a x i _m a s t e r , 0x1 , s i z e , ADDR_IER , &Data ) ;

16 i f ( a x i _ s t a t u s != E_AXI_OK) {

17 p r i n t f ( ”ERROR ( main ) : Wr i t e D i s a b l e i n t e r r u p t %d \ n” , a x i _ s t a t u s ) ;

18 r e t u r n E_MMI64_INTERNAL_ERROR ;

19 }

20

21 / / no i d l e

22 do{

23 a x i _ s t a t u s = ax im_read_32 ( t e s t _ a x i _m a s t e r , 0x1 , s i z e , ADDR_AP_CTRL, &Data ) ;

24 i f ( a x i _ s t a t u s != E_AXI_OK) {

25 p r i n t f ( ”ERROR ( main ) : Read R e g i s t e r a d d r e s s : %d \ n” , a x i _ s t a t u s ) ;

26 r e t u r n E_MMI64_INTERNAL_ERROR ;

27 }

28 } wh i l e ( ! ( ( Data >> 2) & 0x1 ) ) ;

29

30 r e t u r n a x i _ s t a t u s ;

31 }

Listing 3.7: Enable interrupts

3.2.3.2. Test bench

The test bench is structured in two parts, the first part is for the execution of the convolution

by the CPU, and the second part is for the execution of the convolution in the FPGA.

The execution of the convolution through the CPU is carried out to test the execution in

the FPGA. The final part of the test bench compares the results of the two executions.
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The listing 3.8 contains the most significant functions, helpful in describing the general

flow of the System’s operation.

The program’s first thing is to allocate buffers in the CPU’s memory (allocate_buffers()).

These buffers will contain the inputs passed to the application via an ”input.data” file,

which are parameters used to configure the convolution, and the data to be convolved,

generated randomly using the ”init_data()” function.

1 vo id compute ( i n t *enab l e , i n t *cpu , i n t * r e t v a l ) {

2 . . .

3

4 a l l o c a t e _ b u f f e r s ( ) ;

5 i n i t _ d a t a ( ) ;

6

7 r u n _ k e r n e l ( ) ;

8

9 cpu_conv2D ( ) ;

10

11 c h e c k _ r e s u l t (&max_d i f f e r ence , &num_d i f f e r e n c e s ) ;

12

13 d e a l l o c a t e _ b u f f e r s ( ) ;

14 }

Listing 3.8: Application flow

In addition to random data generation, the ”init_data()” function calls another function,

”init_data_fpga()” (listing 3.9), which is used to copy the data from the CPU memory to

the memory of the FPGA. This ensures data consistency. When writing data to memory,

special attention must be paid to the memory area in which the data is being written. The

listing 3.9 shows that the addresses used to write the host to memory are from address

0x8000_0000 to 0xFFFF_0000.

1 i n t i n i t _ d a t a _ f p g a ( ) {

2

3 i n t temp = 0 ;

4

5 / / w r i t e d a t a i n i n p u t d a t a b u f f e r − p t r _ d a t a

6 s i z e _ t s i z e _ d a t a _ i n _ b y t e s = I _ i n p u t * W * H * s i z e o f ( d a t a _ t y p e ) ;

7 addr_mem_in = 0x80000000 ;

8 i f ( s i z e _ d a t a _ i n _ b y t e s > 1023) {

9 temp = s i z e _ d a t a _ i n _ b y t e s / 1 0 2 4 ;
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10 } e l s e {

11 temp = 1 ;

12 }

13 a x i _ s t a t u s = ax im_wr i t e _b l o ck ( t e s t _ a x i _m a s t e r , 8 ,AXI4_BURST_INCR , s i z e _ d a t a _ i n _ b y t e s /

temp , addr_mem_in , s i z e _ d a t a _ i n _ b y t e s / temp , temp , d a t a _ i n , mmi64_true ) ;

14 i f ( a x i _ s t a t u s != E_AXI_OK) {

15 p r i n t f ( ”ERROR ( main ) : Wr i t e AXI d a t a %d \ n” , a x i _ s t a t u s ) ;

16 r e t u r n E_MMI64_INTERNAL_ERROR ;

17 }

18

19 . . .

20 r e t u r n a x i _ s t a t u s ;

21 }

Listing 3.9: Function used to copy data from CPU memory to FPGA memory.

After the data has been stored in memory, the host can tell the convolution IP core

which pointers contain the data addresses to apply the convolution to and does so using

the ”copy_in_fpga” function (listing 3.10). This time the addresses used by the host to

communicate with the IP core are 0x44A0_0000 to 0x44A0_FFFF.

1 i n t copy_ in_ fpga ( i n t o _ i t e r _ f i r s t , i n t o _ i t e r _ l a s t , i n t o _ i t e r _ p e r _ k e r n e l ) {

2

3 / / p t r _ d a t a _ i n

4 addr_mem = 0x0000000080000000 ;

5 Data = ( u i n t 3 2 _ t ) addr_mem ;

6 Data2 = ( u i n t 3 2 _ t ) ( addr_mem >> 32) ;

7 a x i _ s t a t u s = ax im_wr i t e_32 ( t e s t _ a x i _m a s t e r , 0x1 , s i z e o f ( u i n t 3 2 _ t ) , ADDR_PTR_DATA_DATA,

&Data ) ;

8 i f ( a x i _ s t a t u s != E_AXI_OK) {

9 p r i n t f ( ”ERROR ( main ) : Wr i t e \ g l s {AXI} mu l t i , s t a t u s : %d \ n” , a x i _ s t a t u s ) ;

10 r e t u r n E_MMI64_INTERNAL_ERROR ;

11 }

12 a x i _ s t a t u s = ax im_wr i t e_32 ( t e s t _ a x i _m a s t e r , 0x1 , s i z e o f ( u i n t 3 2 _ t ) , ADDR_PTR_DATA_DATA

+ 4 , &Data2 ) ;

13 i f ( a x i _ s t a t u s != E_AXI_OK) {

14 p r i n t f ( ”ERROR ( main ) : Wr i t e AXI mul t i , s t a t u s : %d \ n” , a x i _ s t a t u s ) ;

15 r e t u r n E_MMI64_INTERNAL_ERROR ;

16 }

17

18 . . .

19

20 / / ADDR_H_DATA

21 Data = ( u i n t 3 2 _ t ) H;
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22 a x i _ s t a t u s = ax im_wr i t e_32 ( t e s t _ a x i _m a s t e r , 0x1 , s i z e o f ( u i n t 3 2 _ t ) , ADDR_H_DATA, &Data )

;

23 i f ( a x i _ s t a t u s != E_AXI_OK) { . . .

24

25 . . .

26

27 r e t u r n a x i _ s t a t u s ;

28 }

Listing 3.10: Function to input the necessary data to the convolution IP core

The FPGA needs to be enabled in order to perform convolution. The host then sets the

”start” bit in the control register to one. In addition, in order to calculate the execution

time, it is necessary to wait for the FPGA to finish, and this is done by reading the ”done”

bit in the control register (listing 3.11). When it is high, the FPGA will have finished

execution, and the program can continue. The execution time is to be calculated so the

efficiency can be evaluated.

After the execution of the convolution in the FPGA is finished, the convolution in the CPU

can be started.

1 i n t r un_ fpga ( ) {

2

3 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4 / / Enab le a c c e l e r a t o r

5 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6

7 / / s t a r t t h e a c c e l e r a t o r

8 a x i _ s t a t u s = ax im_read_32 ( t e s t _ a x i _m a s t e r , 0x1 , s i z e o f ( u i n t 3 2 _ t ) , ADDR_AP_CTRL, &

tempData ) ;

9 Data = tempData & 0x80 ;

10 i f ( a x i _ s t a t u s != E_AXI_OK) {

11 p r i n t f ( ”ERROR ( main ) : Wr i t e AXI mul t i , s t a t u s : %d \ n” , a x i _ s t a t u s ) ;

12 r e t u r n E_MMI64_INTERNAL_ERROR ;

13 }

14 Data2 = Data | 0x01 ;

15 a x i _ s t a t u s = ax im_wr i t e_32 ( t e s t _ a x i _m a s t e r , 0x1 , s i z e o f ( u i n t 3 2 _ t ) , ADDR_AP_CTRL, &

Data2 ) ;

16 i f ( a x i _ s t a t u s != E_AXI_OK) {

17 p r i n t f ( ”ERROR ( main ) : Wr i t e AXI mu l t i , s t a t u s : %d \ n” , a x i _ s t a t u s ) ;

18 r e t u r n E_MMI64_INTERNAL_ERROR ;

19 }

20
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21 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

22 / / Wait w r i t i n g

23 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

24 Data = 0 ;

25

26 do{

27 ax im_read_32 ( t e s t _ a x i _m a s t e r , 0x1 , s i z e o f ( u i n t 3 2 _ t ) , ADDR_AP_CTRL, &Data ) ;

28 } wh i l e ( ! ( ( Data >> 1) & 0x1 ) ) ;

29

30 }

Listing 3.11: Start FPGA execution

When both CPU and FPGA executions have finished, the results can be compared to verify

that the FPGA execution is correct. In order to do this, the output data saved in memory

by the IP core after memory execution must be copied to the CPU memory (listing 3.12).

1 i n t copy_ou t_ fpga ( ) {

2 s i z e _ t s i z e _ o u t p u t _ i n _ b y t e s ;

3 i f ( ( enab l e_maxpoo l i ng ) | | ( e n a b l e _ a vgpoo l i n g ) ) {

4 s i z e _ o u t p u t _ i n _ b y t e s = O_outpu t * (W/ 2 ) * (H/ 2 ) * s i z e o f ( d a t a _ t y p e ) ;

5 } e l s e {

6 s i z e _ o u t p u t _ i n _ b y t e s = O_outpu t * W * H * s i z e o f ( d a t a _ t y p e ) ;

7 }

8 i n t temp = 0 ;

9 i f ( s i z e _ o u t p u t _ i n _ b y t e s > 1023) {

10 temp = s i z e _ o u t p u t _ i n _ b y t e s / 1 0 2 4 ;

11 } e l s e {

12 temp = 1 ;

13 }

14 addr_mem_out = 0x84000000 ;

15 a x i _ s t a t u s = ax im_read_b lock ( t e s t _ a x i _m a s t e r , 8 ,AXI4_BURST_INCR , s i z e _ o u t p u t _ i n _ b y t e s /

temp , addr_mem_out , s i z e _ o u t p u t _ i n _ b y t e s / temp , temp , ou t ) ;

16 i f ( a x i _ s t a t u s != E_AXI_OK) {

17 p r i n t f ( ”ERROR ( main ) : Wr i t e AXI d a t a %d \ n” , a x i _ s t a t u s ) ;

18 r e t u r n E_MMI64_INTERNAL_ERROR ;

19 }

20 r e t u r n a x i _ s t a t u s ;

21 }

Listing 3.12: Copy data from FPGA memory to CPU memory

Finally, the initially allocated buffers can be deallocated, and the connection to theMMI64

domain can be closed (listing 3.13).
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1 i n t c lose_mmi64_backend ( ) {

2 / / c l o s e mmi64 backend

3 mmi64_s t a tu s = mmi64_close (&pro fpga −>mmi64_domain ) ;

4 i f ( mmi64_not_ok ( mmi64_s t a tu s ) ) {

5 p r i n t f (NOW( ”ERROR ( main ) : F a i l e d t o c l o s e MMI64 domain − mmi64_s t a tu s %d \ n” ) ,

mmi64_s t a tu s ) ;

6 r e t u r n mmi64_s t a tu s ;

7 }

8 r e t u r n mmi64_s t a tu s ;

9 }

Listing 3.13: Close connection to a MMI64 domain

3.2.4. Run test

Before running the application, the bitstream needs to be loaded into the FPGA. The

command to do this is as follows:

1 p r o f pg a_ r un IP_169 . 2 5 4 . 0 . 2 . c f g −−up

In the Section 2.4.2.2 this command and all the others related to the software part of

ProDesign are explained in detail.

Program execution is started with the following command:

1 . / main i n p u t . d a t a IP_169 . 2 5 4 . 0 . 2 . c f g

Where ”input.data” are the parameters present in the table 3.1 and are used to configure the

convolution. Instead ”IP_169.254.0.2.cfg” is the configuration file described in 3.2.3.1.

As input parameters (table 3.1), there are matrices of different sizes that require different

resources and affect execution times.
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id H x W x I x O EUP ELP RELU MAXPOOL AVGPOOL SHIFT
DIRECTION

SHIFT

POS

SHIFT
CLIP MINCLIP MAXCLIP

1 4x4x1x1 1 1 1 0 1 0 0 0 0 0 0

2 8x8x5x1 1 1 0 0 1 0 0 0 0 0 0

3 8x8x5x1 1 1 0 0 1 0 0 0 0 0 0

4 8x8x3x4 1 1 1 0 0 0 0 0 0 0 0

5 32x32x1x1 1 1 1 1 0 1 0 3 0 0 0

6 32x32x1x1 1 1 1 0 0 0 0 0 0 0 0

7 8x8x1x16 1 1 1 0 0 0 0 0 0 0 0

8 8x8x3x8 1 1 1 0 0 0 0 0 0 0 0

9 32x64x1x1 1 1 1 1 0 1 1 2 1 ­2 2

10 32x64x1x1 1 1 1 1 0 0 0 0 0 0 0

11 32x64x1x1 1 1 1 0 1 0 0 0 0 0 0

12 8x8x3x16 1 1 1 0 0 0 0 0 0 0 0

13 8x8x3x16 1 1 0 0 0 0 0 0 0 0 0

14 8x8x3x16 1 1 0 0 0 0 0 0 0 0 0

15 64x64x1x1 1 1 1 0 0 0 0 0 0 0 0

16 8x16x3x16 1 1 1 0 0 0 0 0 0 0 0

17 8x32x3x16 1 1 1 0 0 0 0 0 0 0 0

18 16x32x3x16 1 1 1 0 0 0 0 0 0 0 0

19 64x64x4x4 1 1 0 0 0 0 0 0 0 ­3 5

20 32x64x3x16 1 1 1 0 0 0 0 0 0 0 0

21 32x64x12x8 1 1 1 0 0 0 0 0 0 0 0

22 32x64x6x16 1 1 1 0 0 0 0 0 0 0 0

23 32x64x12x16 1 1 0 0 0 0 0 0 0 0 0

24 256x256x4x4 1 1 1 1 0 0 0 0 0 0 0

25 32x64x12x128 1 1 1 0 0 0 0 0 0 0 0

26 256x256x8x8 1 1 1 0 0 0 0 0 0 0 0

27 256x256x16x16 1 1 1 0 1 0 0 0 0 0 0

28 256x256x35x27 1 1 1 0 0 0 0 0 0 0 0

Table 3.1: Input data test

In the figure 3.11 the execution of the application is shown, which ends with a

”SUCCESS”; in addition to this check, another check was made using the Xilinx tool,

which will be discussed in the Section 3.2.5.
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Figure 3.11: Application execution

3.2.4.1. Timing

Another thing we notice in the figure 3.11, is the presence of some times:

• Time: is the execution time of the program in microseconds;

• Time per iteration: is the time for each iteration;

• Expected time: estimated time of execution;

• Efficiency: the ability to use as few resources as possible during its execution.

1 g e t t im eo f d a y (& p ro f _ t 1 , NULL) ;

2

3 r u n _ k e r n e l ( ) ;

4

5 g e t t im eo f d a y (& p ro f _ t 2 , NULL) ;

6

7 p r o f _ t ime = ( ( p r o f _ t 2 . t v _ s e c − p r o f _ t 1 . t v _ s e c ) * 1000000) + ( p r o f _ t 2 . t v _ u s e c − p r o f _ t 1 .

t v _ u s e c ) ;

8 uns i gned long long t ime = p r o f _ t ime ;
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9 uns i gned long long t i m e _ p e r _ i t e r a t i o n = p r o f _ t ime / i _ i t e r / o _ i t e r ;

10 uns i gned long long e x p e c t e d _ t im e _ o n e _ i t e r a t i o n = W * H * 1000 ;

11 uns i gned long long exp e c t e d_ t ime = ( e x p e c t e d _ t im e _ o n e _ i t e r a t i o n * i _ i t e r * o _ i t e r ) /

100000;

12 f l o a t e f f i c i e n c y = ( ( f l o a t ) e xp e c t e d_ t ime / ( f l o a t ) t ime ) ;

Listing 3.14: Execution time

In this work, a studywas also carried out on execution times. Using the expected execution

time and the actual time, the efficiency of execution was calculated.

The figure 3.12 shows the relationship between configuration and efficiency. This is by

communication overhead. There is more time spent in communication than in execution

for small input sizes.

So, when the input size increases, the communication is still constant, but the execution

time is longer, minimizing the communication overhead andmaking efficiency approaches

1.

Figure 3.12: Relation between the configuration and the efficiency
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3.2.5. Hardware manager

In addition to a check carried out using the on­screen printout of the successful execution

termination, a graphical check can be made by seeing the correct reading and writing data

in the registers. Vivado allows this type of check to be made via the hardware manager.

The hardwaremanager uses the system ILA core (described in 3.2.1) tomonitor the various

signals.

The figure 3.13 shows the ILA system configuration to set the trigger mode to trigger on

various events in hardware [18].

• BASIC_ONLY: The ILA Basic Trigger Mode can be used to trigger the ILA core

when a basic AND/OR functionality of debug probe comparison result is satisfied.

• Use ALWAYS and BASIC capture modes to control filtering of data to be captured.

• The number of ILA capture windows.

• The data depth of the ILA capture window.

• The trigger position to any sample within the capture window.

Figure 3.13: Ila settings

Another thing to set is when to trigger. In this case, figure 3.14, the System is triggered

when there is a 0− >1 change of state of the ”WVALID” signal, meaning when the host

performs a valid write to memory.

Figure 3.14: Trigget setup
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The figure 3.15, shows at which points the System was triggered. As it is possible to

see, a ”1” has been written to address ”0x04”, this address corresponds to ADDR_GIE

(Global Interrupt Enable) and concerns the global enablement of interrupts. Thewaveform

perfectlymirrors the 3.7 code, which implies that the writer was correct. This step has been

iterated for each reading and writing in the FPGA.

Figure 3.15: Waveform



CHAPTER 4

Multi-FPGA

As introduced in the introduction of Chapter 3, the goal of this project is to use a multi­

FPGA prototype as a computational platform. In the previous Chapter, the system was

described using a single FPGA; in this one, however, the discussion will be expanded

using a multi­FPGA system. Specifically, the design of the system will be explained,

going on to outline the differences with the single­FPGA design (Section 4.1). Moreover,

finally, how to program the individual FPGAs to work concurrently will be described

(Section 4.2).

4.1 Design

For the realization of this final part of the project, the configuration of theMANGO project

described in Section 1.1 was used. Specifically, 4 FPGAs were used, independent of each

other, connected to a host via PCIe (figure 4.1).

Figure 4.1: design multi­FPGA

67
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The design for communication with individual FPGAs is the same as described

in Section 3.1. The only thing that needs to be changed is the configuration of

the MMI64_host_interface module (Section 3.1.1). As shown in the figure, the

MMI64_host_interface module has a parameter named ”Id Module”, this parameter is

mandatory to set and is unique for each FPGA. The identifier must be unique because it

is used by the host to distinguish and recognize the different devices.

Figure 4.2: Configuration mmi64_host_interface multi­FPGA

4.2 Test

This Section will describe how the bitstream is loaded into the different FPGAs (Section

4.2.1), how the host can communicate with the different devices. And the algorithm used

to make the host send inputs to the different FPGAs (Section 4.2.2).

4.2.1. Inizialize FPGA

As the initialization was performed in the single­FPGA case (Section 3.2.3.1), it must also

be done for the multi­FPGA case.
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Considering that the design of the single FPGAs of the multi­FPGA system is identical

to the single­FPGA case, the configuration parameters are the same that were described

in Section 3.2.3.1. So for each design, a bitstream was generated that will be loaded into

the FPGA via the configuration file. In the configuration file, each FPGA module was

associated with its respective bitstream (listing 4.1).

1 mothe rboa rd_1 :

2 {

3 t y p e = ”MB−4M−R2” ;

4 f pga_modu le_ t a1 :

5 {

6 t y p e = ”FM−XCKU115−R1” ;

7 b i t s t r e am = ” des ign_1_wrappe r_1 . b i t ” ;

8 } ;

9 f pga_modu le_ t c1 :

10 {

11 t y p e = ”FM−XCKU115−R1” ;

12 b i t s t r e am = ” des ign_1_wrappe r_2 . b i t ” ;

13 } ;

14 f pga_modu le_ t a3 :

15 {

16 t y p e = ”FM−XCKU115−R1” ;

17 b i t s t r e am = ” des ign_1_wrappe r_3 . b i t ” ;

18 } ;

19 f pga_modu le_ t c3 :

20 {

21 t y p e = ”FM−XCKU115−R1” ;

22 b i t s t r e am = ” des ign_1_wrappe r_4 . b i t ” ;

23 } ;

Listing 4.1: Configuration file multi_fpga

4.2.2. Test bench

As mentioned in Section 4.1, each MMI64_host_interface module, has its own identifier.

This can also be seen in the test bench. The figure 4.3, shows that after scanning the

system, 4 AXI_masters are recognized. With the identifiers of the AXI_masters the

FPGAs are initialized and are associated with variables, which are used as reference to

be able to read/write in the different devices (listing 4.2).
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1 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 / / S e l e c t one MMI64 Mas te r d e v i c e

3 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4 i f ( i d e n t i f i e d _mod u l e s _ c o u n t == 0) {

5 p r i n t f (NOW( ”ERROR ( main ) : F a i l e d t o i d e n t i f y mmi64 AXI mas t e r module \ n” ) ) ;

6 r e t u r n mmi64_s t a tu s ;

7 }

8

9 i n i t _ f p g a _ 1 ( i d e n t i f i e d _mo d u l e s [ 0 ] ) ;

10 i n i t _ f p g a _ 2 ( i d e n t i f i e d _mo d u l e s [ 1 ] ) ;

11 i n i t _ f p g a _ 3 ( i d e n t i f i e d _mo d u l e s [ 2 ] ) ;

12 i n i t _ f p g a _ 4 ( i d e n t i f i e d _mo d u l e s [ 3 ] ) ;

13

14 ID_1 = t e s t _ a x i _m a s t e r _ 1 ;

15 ID_2 = t e s t _ a x i _m a s t e r _ 2 ;

16 ID_3 = t e s t _ a x i _m a s t e r _ 3 ;

17 ID_4 = t e s t _ a x i _m a s t e r _ 4 ;

Listing 4.2: Identify AXI_master module

As in Section 3.2.3.1, here too, it is necessary to check that the AXI_masters are present.

In the figure 4.3, the four AXI_masters that are available and have been assigned a unique

ID, discussed in Section 4.1, are highlighted.
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Figure 4.3: Scan MMI connected device

4.2.2.1. Test bench

The critical part of this part of the project is to find a way to send the configuration inputs

so that the FPGAs can work simultaneously. Taking into consideration that the host works

sequentially.

The basic idea is based on the concept of a pipeline, i.e. inputs are sent sequentially one

at a time without waiting for the execution of the previous configuration to finish.

So, as the figure 4.4 shows, the next FPGA can start executing before the previous one

has finished. In this way, even comparing with the single­FPGA system, the execution

time of the single configuration remains unchanged. However, if the total time of all

configurations is considered, the multi­FPGA model is more efficient. Of course, the

more configurations that need to be executed, the more efficient the multi­FPGA system

will be.

Figure 4.4: Pipelined execution

The basic idea is to use a buffer to insert the available FPGA, which can be used to perform

the convolution. Initially, the buffer has already been filled with the IDs of the four FPGA,

as they are all ready to be used (listing 4.3).

1 i n t b u f f e r [ 4 ] ;

2

3 b u f f e r [ 0 ] = 1 ;

4 b u f f e r [ 1 ] = 2 ;

5 b u f f e r [ 2 ] = 3 ;

6 b u f f e r [ 3 ] = 4 ;

Listing 4.3: Buffer FPGA available

Considering that we do not wait for an execution to end, a ”count_read” counter is

used to keep track of the running configurations. This counter is incremented when the

configuration is input to a device and is decremented when the execution is finished.
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After that, the ”read_interrupt” function is used to retrieve the ID of the FPGA ready to

be used.

Once the available FPGA has been extracted, all the parameters needed to execute the

convolution are passed, and the accelerator is started (listing 4.4).

1

2 whi l e ( ! r e a d _ t e s t _ f i l e (& enab l e , &cpu ) ) {

3

4 coun t _ r e a d ++;

5

6 i n t i n t e r r =0 ;

7

8 i n t e r r = r e a d _ i n t e r r u p t ( ) ;

9

10

11 i f ( i n t e r r == 1) {

12 H_1 = H; W_1 = W; I_1 = I ; O_1 = O; enab l e_uppe r_padd i ng_1 = enab l e _uppe r _p add i ng ;

enab l e_ l owe r_padd i ng_1 = enab l e _ l owe r_padd i ng ; e n a b l e _ r e l u _ 1 = e n a b l e _ r e l u ;

13 enab l e_maxpoo l i ng_1 = enab l e_maxpoo l i ng ; e n ab l e _ avgpoo l i n g_1 = en ab l e _ a vgpoo l i n g ;

e n a b l e _ s h i f t _ 1 = e n a b l e _ s h i f t ; d i r _ s h i f t _ 1 = d i r _ s h i f t ; p o s _ s h i f t _ 1 =

p o s _ s h i f t ;

14 e n a b l e _ c l i p p i n g _ 1 = e n a b l e _ c l i p p i n g ; m in_c l i p_1 = min_c l i p ; max_c l ip_1 = max_c l ip ;

15

16 / / d e r i v e d a rgumen t s

17 rows_1 = H;

18 I _ k e r n e l _ 1 = ( ( I + ( CPI − 1) ) / CPI ) * CPI ;

19 O_kerne l_1 = ( (O + (CPO − 1) ) / CPO) * CPO;

20 i _ i t e r _ 1 = ( I + ( CPI − 1) ) / CPI ;

21 o _ i t e r _ 1 = (O + (CPO − 1) ) / CPO;

22 g l o b a l _ o f f s e t _ 1 = 0 ;

23 GI_1 = I _ k e r n e l / CPI ;

24 GO_1 = O_kerne l / CPO;

25 i f ( enab l e_maxpoo l i ng | | e n a b l e _ a vgpoo l i n g ) {HO_1 = H / 2 ; WO_1 = W / 2 ; } e l s e {

HO_1 = H; WO_1 = W;}

26

27 # i f d e f IHW_DATA_FORMAT

28 I _ i n p u t _ 1 = I ;

29 O_output_1 = O;

30 # e n d i f

31 # i f d e f GIHWCPI_DATA_FORMAT

32 I _ i n p u t _ 1 = ( ( I + ( CPI − 1) ) / CPI ) * CPI ;

33 O_output_1 = ( (O + (CPO − 1) ) / CPO) * CPO;

34 # e n d i f

35 compute_fpga_1 (&enab le , &cpu , &r e t v a l ) ;

36 }

37 e l s e i f ( i n t e r r == 2) {
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38 . . .

39 }

40 e l s e i f ( i n t e r r == 3) {

41 . . .

42 }

43 e l s e i f ( i n t e r r == 4) {

44 . . .

45 }

46 }

Listing 4.4: Assign configuration to FPGA

The ”read_interrupt” function (listing 4.5) first reads the control register to check if any

execution in the FPGA has terminated. If so, it also starts CPU execution to perform a

correctness check. After CPU execution, the FPGA ID can be put back into the buffer for

the next execution.

Finally, it checks that the buffer is not empty and picks up the value at the head of the

queue.

1 i n t r e a d _ i n t e r r u p t ( ) {

2 do{

3

4 D1 = 0 , D2 = 0 , D3 = 0 , D4 = 0 ;

5

6 ax im_read_32 ( ID_1 , 0x1 , s i z e o f ( u i n t 3 2 _ t ) , ADDR_AP_CTRL, &D1) ;

7 ax im_read_32 ( ID_2 , 0x1 , s i z e o f ( u i n t 3 2 _ t ) , ADDR_AP_CTRL, &D2) ;

8 ax im_read_32 ( ID_3 , 0x1 , s i z e o f ( u i n t 3 2 _ t ) , ADDR_AP_CTRL, &D3) ;

9 ax im_read_32 ( ID_4 , 0x1 , s i z e o f ( u i n t 3 2 _ t ) , ADDR_AP_CTRL, &D4) ;

10

11 i f ( ( D1 >> 1) & 0x1 ) {

12 compile_CPU_1(& r e t v a l _ c h e c k ) ;

13 push ( 1 ) ;

14 }

15 i f ( ( D2 >> 1) & 0x1 ) {

16 compile_CPU_2(& r e t v a l _ c h e c k ) ;

17 push ( 2 ) ;

18 }

19 i f ( ( D3 >> 1) & 0x1 ) {

20 compile_CPU_3(& r e t v a l _ c h e c k ) ;

21 push ( 3 ) ;

22 }

23 i f ( ( D4 >> 1) & 0x1 ) {

24 compile_CPU_4(& r e t v a l _ c h e c k ) ;
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25 push ( 4 ) ;

26 }

27

28 } wh i l e ( b u f f e r [ 0 ]==0 ) ;

29

30 r = p u l l ( ) ;

31

32 r e t u r n r ;

33 }

Listing 4.5: Read interrupt and CPU compiling

When a FPGA has completed its execution, its ID can be inserted back into the buffer using

the ’push’ function (listing 4.6). This function inserts the ID in the queue, increments the

index to insert a new ID and decrements the execution counter.

1 vo id push ( i n t i d ) {

2 b u f f e r [ f p g a _ a v a i l a b l e ] = i d ;

3 f p g a _ a v a i l a b l e ++;

4 coun t_ r e ad −−;

5 }

Listing 4.6: Push in the FPGA buffer

The queue used in this algorithm is a FIFO (First In First Out) queue, i.e. the first value

entered will be the first to leave. For this reason, when a value is taken from the buffer, the

value at the head is pulled. Subsequently, all other IDs will be shifted, and the available

FPGA will be decreased (listing 4.7).

1 i n t p u l l ( ) {

2

3 D = b u f f e r [ 0 ] ;

4

5 f o r ( i n t i =1 ; i < f p g a _ a v a i l a b l e ; i ++)

6 b u f f e r [ i −1] = b u f f e r [ i ] ;

7 f o r ( i n t i = f p g a _ a v a i l a b l e ; i <50; i ++)

8 b u f f e r [ i ] = 0 ;

9

10 f p g a _ a v a i l a b l e −−;

11

12 r e t u r n D;

13 }



4.2 Test 75

Listing 4.7: Push from the FPGA buffer

Before we can consider the execution of all convolutions complete, we must check that

the FPGA’s are all free and that there are no configurations still running (listing 4.8).

1 p r i n t f ( ”−−−−− f i n i s h c o n f i g u r a t i o n s −−−−−\n” ) ;

2

3 whi l e ( c oun t _ r e a d != 0 ) {

4 r e a d _ i n t e r r u p t ( ) ;

5 }

6

7 c l o s e _ t e s t _ f i l e ( ) ;

8 }

Listing 4.8: Checking that all executions have finished

4.2.3. Run test

To execute the program, the same methodology as for the single­FPGA design was

followed, using the same inputs (Section 3.2.4).

The figure 4.5, shows the output of the test bench execution, where it is shown that all

FPGAs are running.
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Figure 4.5: Multi­FPGA execution



CHAPTER 5

Conclusions

In this thesis, a co­design hardware and software was developed by using a multi­FPGA

prototype as a computational platform.

This project allowed me to understand the potential of High­Level Synthesis and generate

an IP core starting from a high­level language. It also allowed me to work with new

technologies made available by ProDesign. To understand how a host communicates with

an FPGA and how to best test it in hardware using the ILA core. Finally, it was very

instructive to design and develop a multi­FPGA system. In addition, I had the opportunity

to see the system that performs the 2D convolution in operation, making considerations

about the system’s efficiency. I obtained an efficiency of 90%, considering a theoretical

expected time compared to the real execution time.

As future developments of this project, there is the intention to extend the support of this

system to the other types of FPGAs in the cluster.
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