
Bachelor’s Degree in Aerospace Engineering

Use of the genetic algorithm for the

multi-objective optimisation of direct

impulsive trajectories between the Earth

and Mars

Final Bachelor’s Degree Project

AUTHOR: Bastida Pertegaz, Esther

TUTORS: Moll López, Santiago

Tatay Sangüesa, José

Universitat Politècnica de València
Escuela Técnica Superior de Ingenierı́a del Diseño

July, 2021

2021 Final Bachelor’s Degree Project

Contents

Abstract 1

Resumen 2

Resum 3

Acknowledgements 4

List of Figures 5

List of Tables 6

List of Symbols 7

List of Abbreviations 9

1 Introduction 10

1.1 Motivation . 10

2 Theoretical background 11

2.1 Orbital mechanics . 11

2.1.1 Heliocentric ecliptic coordinates . 11

2.1.2 Simplifying hypotheses . 12

2.1.3 The orbital equation . 13

2.1.4 Three-dimensional orbits . 14

2.1.5 Orbital manoeuvres . 19

2.1.6 Orbit transfer optimisation . 19

2.1.7 Synodic period . 22

2.2 The genetic algorithm . 23

2.2.1 Multi-objective optimisation . 25

i

2021 Final Bachelor’s Degree Project

3 Methodology 26

3.1 Orbital transfer problem . 26

3.2 Genetic algorithm settings . 28

4 Presentation of results 30

4.1 Comparison with Hohmann transfer . 30

4.2 Optimal transfer orbits . 33

4.2.1 Time of Flight = 100 days . 35

4.2.2 Time of Flight = 250 days . 37

4.2.3 Time of Flight = 205 days . 38

4.2.4 Results validation . 40

5 Budget 41

5.1 Labour costs . 41

5.2 Energy consumption costs . 41

5.3 Hardware costs . 42

5.4 Software costs . 42

5.5 Total costs . 42

6 Solicitations 43

6.1 Technical aspects . 45

7 Conclusions 46

8 Future work 46

9 APPENDIX 48

9.1 MATLAB code . 48

References 71

ii

2021 Final Bachelor’s Degree Project

Abstract
This project employs the multi-objective genetic algorithm to optimize direct impulsive

trajectories between the Earth and Mars.

In order to do so, a two-body problem modelled with impulsive manoeuvres will be as-
sumed. Also, two and three-impulse trajectories will be assessed for each mission duration,
selecting the one that minimises ∆v. As for solving the transfer problem, Lambert arcs will be
employed. The Lambert problem aims to determine an orbit from two position vectors and the
Time Of Flight (TOF). The main objective of this choice of method is to reduce the number of
parameters as much as possible, and therefore the computational cost. Also, an in-depth study
will be carried out to select the most suitable genetic algorithm settings.

From a series of input parameters that include the launch date and the time of flight, the
algorithm will optimise the manoeuvre in terms of minimum ∆v budget. After that, the program
will render all necessary information about the transfer orbit and the trajectory will be plotted,
so that the solution can be graphically seen. Moreover, for validating the goodness of the results,
they will be compared to an ideal, two-impulse Hohmann transfer, and to real missions to Mars.

Finally, for this method to be able to target more than one objective at the same time, that is,
∆v and the time of flight, a Pareto frontier will be built. This plot offers a representation of each
mission duration and its corresponding ∆v, allowing the engineer to visually find a compromise
between both variables, depending on the mission specifications.

Keywords: genetic algorithm, multi-objective optimisation, orbit transfer, ∆v, time of
flight, Lambert’s problem.

1

2021 Final Bachelor’s Degree Project

Resumen
Este proyecto emplea el algoritmo genético para realizar una optimización multiobjetivo de

trayectorias impulsivas directas entre la Tierra y Marte.

Para lograr este propósito, se asumirá un problema de los dos cuerpos modelado con man-
iobras impulsivas. Además, para cada tiempo de vuelo, se calcularán las transferencias de dos y
tres impulsos que minimicen ∆v. Estas órbitas serán obtenidas empleando el problema de Lam-
bert, el cual permite calcular una trayectoria partiendo de dos vectores posición. El objetivo de
aplicar este método es reducir al mı́nimo el número de parámetros empleados, disminuyendo
ası́ también el coste computacional. Adicionalmente, se realizará un estudio exhaustivo con el
fin de definir el valor más adecuado para los parámetros del algoritmo genético.

Partiendo de un conjunto de variables iniciales, entre las que se encuentran la fecha de
salida y el tiempo de vuelo, el algoritmo optimizará la maniobra en términos de ∆v mı́nimo.
Ası́, el programa proporcionará la información necesaria acerca de la órbita de transferencia, y
se representará esta trayectoria con el fin de ofrecer una visión gráfica de la solución obtenida.
Además, con el fin de validar los resultados, se compararán con la maniobra ideal bi-impulsiva
de Hohmann, ası́ como con misiones reales a Marte.

Finalmente, para que este método permita optimizar más de un parámetro al mismo tiempo,
es decir, ∆v y el tiempo de vuelo, se elaborará un frente de Pareto. Este gráfico permite rep-
resentar cada tiempo de vuelo con su correspondiente ∆v, lo cual hace posible al ingeniero
encontrar visualmente un compromiso entre ambas variables, dependiendo de las especifica-
ciones de la misión.

Palabras clave: algoritmo genético, optimización multiobjetivo, transferencia orbital, ∆v,
tiempo de vuelo, problema de Lambert.

2

2021 Final Bachelor’s Degree Project

Resum
Este projecte utilitza l’algoritme genètic per a realitzar una optimització multiobjectiu de

trajectòries impulsives directes entre la Terra i Mart.

Amb aquest propòsit, s’assumirà un problema dels dos cossos amb maniobres impulsives.
A més, per a cada temps de vol, es calcularan les transferències de dos i tres impulsos que
minimitzen ∆v. Estes òrbites seran obtingudes emprant el problema de Lambert, el qual per-
met calcular trajectòries partint de dos vectors posició. L’objectiu d’aplicar este mètode és dis-
minuir al mı́nim el nombre de paràmetres empleats, reduint aixı́ també el cost computacional.
Addicionalment, es realitzarà un estudi exhaustiu a fi de definir el valor més adequat per als
paràmetres de l’algoritme genètic.

Partint d’una sèrie de variables inicials, entre les que es troben la data d’eixida i el temps
de vol, l’algoritme optimitzarà la maniobra en termes de ∆v mı́nim. Aixı́, el programa propor-
cionarà la informació necessària sobre l’òrbita de transferència, i es representarà la trajectòria
a fi d’oferir una visió gràfica de la solució obtinguda. A més, a fi de validar els resultats, es
compararan amb la maniobra ideal bi-impulsiva d’Hohmann, i amb missions reals a Mart.

Finalment, perquè este mètode permeta optimitzar més d’un paràmetre al mateix temps, és
a dir, ∆v i el temps de vol, s’elaborarà un front de Pareto. Este gràfic permet representar cada
temps de vol amb el seu corresponent ∆v, la qual cosa fa possible a l’enginyer trobar visualment
un compromı́s entre ambdós variables, depenent de les especificacions de la missió.

Paraules clau: algoritme genètic, optimització multiobjectiu, transferència orbital, ∆v,
temps de vol, problema de Lambert.

3

2021 Final Bachelor’s Degree Project

Acknowledgements
I would like to give a special thanks to my project supervisors, Santiago Emmanuel Moll

López and Pepe Tatay Sangüesa, for furthering my love for space and guiding me throughout
this whole project.

Also, thanks to the Universitat Politècnica de València, for being the institution that has
made my studies and this thesis possible.

My sincere gratitude to my family, for always supporting my goals and helping me become
who I am. Also, to my friends Joan, Jorge, Marı́a, Javi and Antonio, who have accompanied
me along this four-year journey.

Valencia, July 2021

Esther Bastida Pertegaz

4

2021 Final Bachelor’s Degree Project

List of Figures
1 Solar Ecliptic Coordinate System [3] . 11

2 Motion in an inertial coordinate system [3] . 13

3 Orbital equation parameters [3], [4] . 14

4 Conic sections [6] . 14

5 Perifocal frame of reference [3] . 15

6 Keplerian orbital elements [7] . 16

7 Angular momentum vector [3] . 17

8 Flight path angle [3] . 18

9 Hohmann orbit transfer [3] . 20

10 Bi-elliptic Hohmann orbit transfer [3] . 21

11 Optimal transfer between co-planar, circular orbits [3] 22

12 Planets in circular orbits around the Sun [3] 22

13 Uniform crossover example [14] . 24

14 Mutation operation [11] . 24

15 Pareto frontier example [16] . 25

16 Spherical coordinates [24] . 27

17 Orbit transfer calculation . 27

18 Two-impulse trajectory for ε = 259 days . 32

19 Three-impulse trajectory for ε = 259 days . 33

20 Pareto frontier plot . 34

21 Zoom-in on the non-optimal region of the Pareto frontier plot 35

22 Two-impulse trajectory for ε = 100 days . 36

23 Three-impulse trajectory for ε = 250 days . 37

24 Two-impulse trajectory for ε = 205 days . 39

5

2021 Final Bachelor’s Degree Project

List of Tables
1 Genetic Algorithm variable encoding . 29

2 Initial and final orbit parameters . 30

3 Hohmann transfer orbit parameters . 31

4 Two-impulse genetic algorithm results for ε = 259 days 31

5 Three-impulse genetic algorithm results for ε = 259 days 32

6 Minimum ∆v manoeuvres for different ε-constraint values 34

7 Optimal transfer orbit parameters for ε = 100 days 36

8 Impulse locations for ε = 100 days . 37

9 Optimal transfer orbit parameters for ε = 250 days 38

10 Impulse locations for ε = 250 days . 38

11 Optimal transfer orbit parameters for ε = 205 days 39

12 Impulse locations for ε = 205 days . 40

13 Missions to Mars from 2020 to 2022 . 40

14 Labour costs associated to the engineering student 41

15 Labour costs associated to both tutors . 41

16 Hardware costs . 42

17 Software costs . 42

18 Total costs . 43

6

2021 Final Bachelor’s Degree Project

List of Symbols
∆v Velocity change, measure of the total propellant

γ Flight path angle

T Orbital period

µ Orbital constant

Ω Right Ascension of the Ascending Node (RAAN)

ω Argument of periapsis

−→
FD Drag force

−→
FG Gravitational force

−→
R Position vector from the origin to a point

−→r Position vector

−→v Velocity vector

φ Phase angle

θ True anomaly

ε Total energy of the orbit

a Semi-major axis

b Elevation in spherical coordinates

bi Number of bits allocated to a variable

CP Power cost

e Eccentricity

G Gravitational constant = 6.67408 · 10−11m3kg−1s−1

g0 Gravitational acceleration at sea level

Gi Constraint normalized to the unit

gi Constraint

h Specific angular momentum

7

2021 Final Bachelor’s Degree Project

i Inclination

Isp Specific impulse

l Azimuth in spherical coordinates

m Mass

mSun Sun’s mass

ms Spacecraft’s mass

n Angular velocity

Nbits Total number of bits

p Semi-latus rectum

Pc Power consumption

Pm Mutation probability

Ps Population size

r Distance

ra Radius of the apoapsis

Ri Resolution of a variable

rp Radius of the periapsis

Rx,y,z Rotation matrices

t Time instant

Tsyn Synodic period

v Velocity

w Effective velocity

xLi Lower bound

xUi Upper bound

8

2021 Final Bachelor’s Degree Project

List of Abbreviations
BSA Bit String Affinity.

PC Personal Computer.

RAAN Right Ascension of the Ascending Node.

SE Solar Ecliptic Coordinate System.

TOF Time Of Flight.

9

2021 Final Bachelor’s Degree Project

1 Introduction

1.1 Motivation
Space exploration has become an increasingly relevant field during the last few years. From

telecommunications to purely investigative reasons, the scope covered by the objective of space
missions is astonishingly wide. Particularly, the interest in sending probes to Mars grows ev-
eryday, especially as its colonization could be possible in the future [1].

However, sending a spacecraft past the Earth’s atmosphere costs companies and space agen-
cies a great amount of money each year. Therefore, it makes sense that optimising all possible
parameters is of the utmost importance to the space engineering field.

As the optimisation discipline can be applied to a wide range of operations, it is interesting
to follow a spacecraft’s life along its mission in order to identify possible improvement areas.
After the launch phase, which takes the satellite from the Earth’s surface to a desired orbit, the
following processes occur:

1. Orbit transfer
It is the process by which the spacecraft leaves its orbit and manoeuvres until reaching a
target orbit.

2. Orbit maintenance
Perturbations can cause a satellite to progressively abandon its orbit. Orbit maintenance
is the process of making corrections so that the spacecraft stays in its desired path.

3. Attitude control
Consists in orienting the spacecraft a certain way according to its mission objectives.
Nowadays, this operation is carried out by means of additional actuators and generally
does not require the use of propellant.

4. De-orbiting
Once a satellite’s life ends, it cannot continue orbiting, as it would become space debris.
This is avoided by the spacecraft exiting its current orbit or being destroyed.

From these operations, orbit transfers consume up to a 70% of the total ∆v of a mission [2].
Therefore, optimising these manoeuvres would undoubtedly benefit space travel. This would
allow, for example, to make the satellite smaller, thus reducing the total cost of the mission. Or
the remaining ∆v could be employed in orbit maintenance, extending the spacecraft’s life.

However, propellant use is not the only parameter that is worth taking into account. Multi-
objective algorithms are able to target several variables at the same time, which would allow
simultaneously optimising another important parameter: the time of flight.

Because there are an infinite number of possible trajectories between two states, the use
of algorithms is generally the solution. This is why, in this work, a multi-objective genetic
algorithm will be employed, so that an optimal transfer between the Earth and Mars can be
successfully found.

10

2021 Final Bachelor’s Degree Project

2 Theoretical background
Throughout this section, two different points will be addressed. The first one will be de-

voted to the theoretical background related to orbital mechanics that has been needed for de-
veloping the project. In the second one, the working principle of the genetic algorithm and its
specifications regarding this work will be explained.

2.1 Orbital mechanics
It is known that all celestial bodies move through orbits across space, affected by the spheres

of influence of other celestial objects. The aim of this section is to introduce the formula that
describes this orbital motion.

Once the motion of the Sun, planets and spacecraft are known, it is important to define the
orbits that they follow, which represent their trajectories. Knowing these trajectories will allow
finding a solution for our problem and calculating all necessary parameters, such as the fuel
consumption or the time of flight.

2.1.1 Heliocentric ecliptic coordinates

Designating a reference system will be the first step for successfully describing the orbital
motion of the spacecraft. The Solar Ecliptic Coordinate System (SE) has been chosen as the
best option, as it allows expressing orbital parameters in a simple and approachable way. This
reference system is broadly used for interplanetary missions in which the spacecraft escapes the
spheres of influence of the planets, which is the case of this project.

The origin of this coordinate system is located at the centre of the Sun, and its fundamental
plane will be the ecliptic, which is the plane of the Earth’s orbit around the Sun. Its primary
direction points towards the vernal equinox, which determines the OX axis in the Cartesian
reference frame. The OZ axis, which is perpendicular to the ecliptic, and the OY axis are taken
following the right-hand convention. Figure 1 shows the outline of this reference system.

Figure 1: Solar Ecliptic Coordinate System [3]

11

2021 Final Bachelor’s Degree Project

It is interesting to mention that this coordinate system allows expressing the position of
the planets and spacecraft with respect to the Sun both in rectangular and spherical form. In
this work, the spherical form has been very useful for reasons that will be further explained in
subsequent sections.

2.1.2 Simplifying hypotheses

Before defining the equations that will govern the orbital motion of the spacecraft, it is
important to make certain simplifying assumptions. This way, the solution can be reached in a
simpler and faster manner, as the computational cost is significantly reduced. It is important to
mention that these assumptions have been selected in such a way that they do not compromise
the reliability of the solutions to a high extent. They are the following:

1. The SE, which has been described in the previous section, will be considered inertial.

2. The two-body problem will be considered at all times. That is, only the Sun and the
spacecraft will be taken into account for calculations. However, the Earth and Mars will
play an essential role for defining the spacecraft launching and landing positions.

3. The spacecraft mass can be neglected if compared to that of the Sun. This relationship
between both masses is indicated by expression (1).

ms << mSun (1)

4. The spacecraft mass does not change, which can be expressed by means of equation (2).

∆ms = 0 (2)

5. The Sun can be considered a perfectly spherical body with uniform density. This allows
labeling it as a point mass, and therefore the Newton’s law of gravitation (3) applies.

−→
FG = G

m1m2

r3
−→r (3)

6. Manoeuvres will be considered impulsive, that is, they are carried out by means of an
instantaneous change in the spacecraft velocity while its position remains the same. This
allows neglecting the thrust force term when solving the equations of motion. As it will
be commented in further sections, this assumption is able to accurately model reality
provided that some conditions apply.

7. The spacecraft will be located at all times at a height over the atmosphere of the planets
so that the drag force can be considered null, as indicated by equation (4).

FD ≈ 0 (4)

8. The only force acting on the spacecraft will be the gravity force
−→
FG. Therefore, other

forces caused by, for example, solar radiation or electromagnetic fields are not taken into
account.

All these assumptions allow for a simplification of the equation of motion, which will be
developed in the following section.

12

2021 Final Bachelor’s Degree Project

2.1.3 The orbital equation

In order to obtain the equation that governs the spacecraft motion, the two-body problem
needs to be solved. These two bodies will be the Sun and the spacecraft travelling from the
Earth to Mars. For doing this, a few steps need to be followed [4]. First, from equation (3) and
using the second Newton law, the equation of motion of each of the bodies can be obtained, as
it is shown by expressions (5) and (6).

−̈→
R1 = G

m2

r3
−→r (5)

−̈→
R2 = −Gm1

r3
−→r (6)

Figure 2 shows bodies 1 and 2 in an inertial reference system. For the present problem,
these two bodies would be the Sun and the spacecraft, and the inertial frame of reference would
be the SE, as it has been previously explained. It is important to mention that, in this work, the
Sun will be located exactly at the origin of the inertial coordinate system.

Figure 2: Motion in an inertial coordinate system [3]

The next step will be to find the equation that governs the relative motion between both
bodies. The starting point is expression (7), which renders the position vector of body m2 (the
spacecraft) with respect to m1 (the Sun).

−→r =
−→
R2 −

−→
R1 (7)

Deriving this equation twice with respect to time and substituting expressions (5) and (6),
equation (8) is obtained.

−̈→r = − µ
r3
−→r (8)

with:
µ = G(m1 +m2) (9)

13

2021 Final Bachelor’s Degree Project

The solution of equation (8) can be found in several references such as [5], and it is known
as the equation of orbital motion:

r =
p

1 + e cos θ
(10)

The parameters involved in equation (10) can be seen in a graphical way in Figures 3a and
3b.

(a) (b)

Figure 3: Orbital equation parameters [3], [4]

The variable θ denotes the true anomaly, and it represents the counterclockwise angle be-
tween the apse line in the direction of the periapsis and the spacecraft position vector −→r .

Equation (10) is also known as the conic equation, as it describes one of the four possible
conic sections, depending on the value of the eccentricity e. These conic sections are the circle
(e = 0), the ellipse (0 < e < 1), the parabola (e = 1) and the hyperbola (e > 1), and they can
be seen in Figure 4.

Figure 4: Conic sections [6]

2.1.4 Three-dimensional orbits

Once the motion of the spacecraft with respect to the Sun has been expressed by means
of equation (10), the next step will be to characterize the trajectory it will follow. This path is

14

2021 Final Bachelor’s Degree Project

called an orbit, and it can be described by using different sets of parameters.

For example, a spacecraft’s position in space (and therefore its orbit) can be completely
defined by stating its three position and velocity vector components. This can be done, for in-
stance, in the SE (rx, ry, rz, vx, vy, vz), which has been previously explained and will be the main
reference system employed in this project. For performing certain calculations, it could also be
interesting to express the satellite’s trajectory in the perifocal frame (rp, rq, rw, vp, vq, vw), which
is the orbital reference frame. Its origin is located at the primary focus of the orbit, its funda-
mental plane is the orbit’s one and its principal direction is pointing to the periapsis. A graphical
description of the perifocal frame can be observed in Figures 5a and 5b.

(a)
(b)

Figure 5: Perifocal frame of reference [3]

Both the heliocentric ecliptic and the perifocal frames are useful in terms of simplicity of
the calculations. However, they fail to offer a clear view of the orbit’s shape, size and orientation
in space. To overcome this issue, it is helpful to define the orbit by means of a set of parameters
known as Keplerian orbital elements. Before introducing these parameters, it is necessary to
define the node line, which is the intersection between the orbital plane and the fundamental
one (in our case, the ecliptic). The point on this node line where the spacecraft would pass
above the ecliptic from below is called the ascending node. The node line vector −→n points
outward from the centre of the Sun through the ascending node. The opposite end of the node
line, where the satellite would start travelling below the ecliptic, is called the descending node.
These parameters can be observed in Figure 6. Once these terms have been clarified, the six
Keplerian orbital elements are defined as follows:

• a: semi-major axis
It represents the length of half the major axis of the conic.

• e: eccentricity
This parameter describes the shape of the orbit. It indicates the type of conic being rep-
resented, as it has already been explained. It is defined as the quotient between the focal
distance and the semi-major axis. It can also be defined as the norm of the eccentricity
vector −→e , which goes from the focus to the periapsis of the orbit and is inside the orbital
plane. It is one of the constants of the Keplerian orbit, since it does not change without
external perturbations.

15

2021 Final Bachelor’s Degree Project

• i: inclination
It is the angle between the ecliptic and the orbital plane, measured counterclockwise from
the node line. Its value can go from 0◦ to 180◦.

• Ω: Right Ascension of the Ascending Node
It is the angle formed between the principal direction, which points to the vernal equinox,
and the node line vector −→n . This angle can take values from 0◦ to 360◦.

• ω: argument of periapsis
It is the angle formed by vectors −→n and −→e , measured over the orbital plane in the direc-
tion followed by the spacecraft. Its value can vary from 0◦ to 360◦.

• θ: true anomaly
As it has been previously explained, it is the angle comprised between vectors −→e and −→r
in the direction of the satellite’s motion. It takes values from 0◦ to 360◦.

It is important to mention that angles i, Ω and ω are called the orbital Euler angles, and
they are essential for locating a three-dimensional orbit in space. The semi-major axis and
eccentricity allow defining the shape of the orbit, and θ indicates the position of the spacecraft
along the trajectory. All these parameters can be seen in Figure 6.

Figure 6: Keplerian orbital elements [7]

Apart from the Keplerian elements, there are other important parameters that can character-
ize an orbit. They are indicated below, as well as the expressions that allow calculating them.

• rp: periapsis radius
It is the distance from the principal focus to the orbit’s closest point to the centre of
attraction, which, in this case, will be the Sun.

rp = a(1− e) (11)

• ra: apoapsis radius
It is the distance from the principal focus to the orbit’s farthest point to the centre of

16

2021 Final Bachelor’s Degree Project

attraction.
ra = a(1 + e) (12)

• p: semi-latus rectum
It is the distance from the focus to the spacecraft when θ = 90◦. It can be observed in
Figure 3b.

p = a(1− e2) (13)

• ε: mechanical energy
Total energy of the orbit, that is, sum of the potential and kinetic energies. This is one of
the keplerian orbit constants, since it is conserved along an orbit.

ε = − µ

2a
(14)

• h: specific angular momentum modulus
It is the modulus of the vector perpendicular to both the spacecraft’s position and velocity
vectors, which can be seen in Figure 7. It is constant throughout the orbit, which after
some math [3], [8], validates Kepler’s second law: “The radius vector drawn from the sun
to the planet sweeps out equal areas in equal intervals of time”.

h = |−→r ×−→v | (15)

Figure 7: Angular momentum vector [3]

• T: orbital period
It is the time it takes the spacecraft to travel along a full orbit.

T = 2π

√
a3

µ
(16)

Finally, the expressions for the spacecraft’s velocity (17) and flight path angle (18) are also
relevant. This last magnitude is the angle formed between the velocity vector and its tangential
component, and can be seen in Figure 8.

v =

√
µ
(2

r
− 1

a

)
(17)

17

2021 Final Bachelor’s Degree Project

Figure 8: Flight path angle [3]

γ = arccos
h

rv
(18)

Once all these parameters have been introduced, it is important to know how to change
between the heliocentric ecliptic coordinates, perifocal coordinates and Keplerian elements.
For example, knowing the true anomaly θ allows calculating the perifocal coordinates as shown
by expressions (19) and (20).

−→r perifocal =

rp

rq

rw

 =

r cos θ

r sin θ

0

 (19)

−→v perifocal =

ṙp

ṙq

ṙw

 =

−µ
h

sin θ

µ
h
(e+ cos θ)

0

 (20)

Now, changing from perifocal coordinates to heliocentric ecliptic ones requires the 3-1-3
rotation indicated by equation (21).

rx

ry

rz

 = Rz(−Ω) ·Rx(−i) ·Rz(−ω) ·

rp

rq

rw

 (21)

where Rx, Ry and Rz denote the rotation matrices with respect to the OX, OY and OZ axes,
respectively.

18

2021 Final Bachelor’s Degree Project

2.1.5 Orbital manoeuvres

For a spacecraft to arrive to a desired target orbit, it is necessary that it undergoes an orbital
manoeuvring process. Said process can be performed either by applying impulsive or continu-
ous thrust. As it has been stated in section 2.1.2, impulsive manoeuvres will be assumed in this
work. When applying this idealized model, results are satisfactory if the position of the space-
craft changes only slightly during the impulse. This is satisfied for high-thrust rockets which
burn times are short compared with the orbital period of the spacecraft [3]. Therefore, if this is
achieved, considering impulsive thrust offers reliable results while simplifying the calculations
to a high extent, and reducing significantly the computational cost.

As it has been mentioned before, impulsive manoeuvres mean an instantaneous change
in the velocity magnitude of the spacecraft without altering its position, as expression (22)
portrays.

−→r (t+0) = −→r (t−0), −→v (t+0) = −→v (t−0) + ∆−→v (22)

Regarding the number of impulses that the satellite needs to perform, it has to be taken
into account that any orbit transfer between two orbits that do not intersect requires at least two
impulses. Also, it has been proved that no more than four burns are required for any optimal
impulsive manoeuvre, as stated by reference [5]. As a consequence, two and three-impulse
manoeuvres will be employed in this work in order to find orbital transfers between the Earth
and Mars. Four impulse burns will not be assessed, as references such as [9] and [10] disregard
them as a better option than two or three-impulse manoeuvres for similar case studies.

Regarding the manoeuvre itself in terms of computations, it is interesting to mention that
the initial and final orbits have been expressed in Keplerian elements, while the transfer orbit
or orbits are represented in rectangular coordinates for convenience. This evidences once again
the importance of changing from one reference frame to another, as it has been stated before.

2.1.6 Orbit transfer optimisation

The orbit transfer optimisation problem aims to calculate the best transfer trajectory be-
tween an initial and a target orbit in terms of minimising some quantities. These quantities
are generally the ∆v budget, which is an indicator of the propellant used, and the time of flight.
The expression that relates ∆v with the propellant consumption is called the Tsiolkowsky rocket
equation (23).

∆v = w ln
minitial

mfinal

(23)

w = Isp · g0 (24)

being:

w: effective velocity at which the rocket propellants are expelled
m: mass of the spacecraft
Isp: specific impulse
g0: gravitational acceleration at sea level

19

2021 Final Bachelor’s Degree Project

This optimisation problem only has an analytical solution for very specific cases, which
means that it usually needs to be solved by employing algorithms such as the one used in the
present work. One of the most well-known cases for which an analytical solution exists is the
Hohmann transfer between co-planar, circular orbits. It consists in a two-impulse manoeuvre
that results in an elliptical transfer orbit which is tangent to the initial and target orbits on their
apse line, as shown in Figure 9.

Figure 9: Hohmann orbit transfer [3]

The ∆v budget for this mission can be calculated by means of expression (27).

∆v1 = v2 − v1 =
hH
r1
− h1
r1

(25)

∆v2 = v3 − v2 =
h2
r2
− hH

r2
(26)

∆vT = |∆v1|+|∆v2| =
√
µ

r1

(√
1

r2/r1
−

√
2

(r2/r1)[1 + (r2/r1)]
+

√
2(r2/r1)

1 + (r2/r1)
−1

)
(27)

where the subscript 1 refers to the initial orbit, 2 to the final orbit, and H to the Hohmann
transfer orbit.

As for the transfer time, it could be calculated as half the orbital period of the transfer orbit
(28).

TOF =
TH
2

= π

√
a3H
µ

(28)

Another case with an optimal analytical solution would be the bi-elliptic Hohmann trans-
fer, which performs a three-impulse manoeuvre between co-planar, circular orbits. A scheme
of this transfer can be seen in Figure 10.

20

2021 Final Bachelor’s Degree Project

Figure 10: Bi-elliptic Hohmann orbit transfer [3]

As Figure 10 illustrates, a bi-elliptic Hohmann transfer from an inner orbit to an outer one
would start at point A. After a semi-ellipse has been travelled by the satellite, a second impulse
takes place at point B. The spacecraft moves then along a second elliptical orbit, and finally a
third impulse occurs at point C in order to remain in the target orbit. It is important to mention
that points A, B and C at which these three impulses occur are all located in the orbits’ apse
line.

Calculating the ∆v budget for this case can be done in a simple way by applying equations
(29) to (32).

∆vA =

√
µ

rA

(√
2rB

rA + rB
− 1

)
(29)

∆vB =

√
µ

rB

(√
2rC

rB + rC
−
√

2rA
rA + rB

)
(30)

∆vC =

√
µ

rC

(√
2rB

rB + rC
− 1

)
(31)

∆vT = |∆vA|+ |∆vB|+ |∆vC | (32)

It is important to mention that ∆vB will be smaller as rB increases. In fact, when rB tends
to infinity, ∆vB tends to 0 [3]. However, it needs to be taken into account that the time of flight
is a limiting factor for the value of rB.

Moreover, for the case of co-planar, circular orbits, the Hohmann transfer is more efficient
than the bi-elliptic transfer when rC/rA is less than 11.94 [3]. If this ratio is higher than 15.58,
then the bi-elliptic transfer is more efficient. In between these two values, the optimal transfer
depends on the ratio rB/rA as seen in Figure 11.

21

2021 Final Bachelor’s Degree Project

Figure 11: Optimal transfer between co-planar, circular orbits [3]

2.1.7 Synodic period

In order to correctly solve the optimisation problem for trajectories between the Earth and
Mars, it is important to be familiar with the concept of synodic period. This value is the time it
takes two objects to repeat a certain relative angular position between them.

This can be seen by looking at Figure 12, where φ is called the phase angle and can be
calculated by means of expression (33), where n represents the angular velocity of the planets.
Stating that φ0 is the phase angle at a time t = 0, the synodic period is the time it will take
the phase angle to become φ0 again. From equation (33), a short mathematical development [3]
will lead to the final expression for calculating the synodic period (34).

φ = θ2 − θ1 = φ0 + (n2 − n1)t (33)

Tsyn =
2π

|n1 − n2|
=

T1T2
|T1 − T2|

(34)

Figure 12: Planets in circular orbits around the Sun [3]

22

2021 Final Bachelor’s Degree Project

Equation (34) allows calculating the synodic period between the Earth and Mars, which
will be employed for solving the orbital transfer optimisation problem.

TEarth = 365.26 days (1 year)

TMars = 1 year 321.73 days = 687.99 days

Tsyn = 777.9 days

2.2 The genetic algorithm
As the real optimisation problem for orbital trajectories between the Earth and Mars does

not have an analytical solution, an algorithm needs to be used for its approach. In this work,
the genetic algorithm will be employed, which is a powerful global optimisation method. This
algorithm is a model of biological evolution based on Charles Darwin’s theory of natural selec-
tion. It searches for the best possible variable combination by finding the ”fittest” individuals
within a certain population, and generating better solutions by reproduction amongst them. Ge-
netic algorithms offer numerous advantages over traditional algorithms, such as their ability for
solving complex problems and the parallelism they offer for manipulating different parameters
at the same time [11].

However, care needs to be taken with genetic algorithms when selecting important param-
eters such as the initial population size, the mutation probability or the selection criteria for the
new population. The choice of these parameters will strongly influence the level of accuracy of
the results, and therefore it is essential to be thorough during the process.

As it has been previously mentioned, the genetic algorithm is a global search optimisation
method, which is also called a zero-order method. This is due to the fact that no additional
information about the objective function is needed.

Now, the working process of the algorithm will be explained. Generally, the following steps
are carried out:

1. Encoding the solutions
The algorithm will search for the optimal parameter combination inside a predefined
closed space. This space is obtained by encoding the variables using binary strings. The
accuracy of the search will depend on the number of bits selected, so a compromise needs
to be found between the variable resolution and the computational cost. A string formed
by n bits that encodes a variable is called a chromosome, which is composed of genes.
All chromosomes form a population, which changes every new generation in order to
produce fitter solutions.

2. Defining a fitness function or selection criterion
This consists in setting a function which value allows recognizing the fittest individuals.

3. Creating an initial population of individuals
This population is randomly generated, and its size is selected by the programmer. In-
creasing the population size will improve the chances of finding an optimal solution, but
it also means a higher computational cost.

23

2021 Final Bachelor’s Degree Project

4. Performing the evolution cycle
This is done by evaluating the fitness of all individuals inside the population, and then
carrying out the three following processes:

• Selection
All individuals are paired and a tournament process takes place. On the one hand,
the best individuals according to the fitness function previously described survive in
order to be parents for the next generation. On the other hand, the worst individ-
ual from each pair is discarded. Other selection procedures include ranking or the
roulette wheel [12].

• Crossover
It represents the reproduction of individuals so that each pair generates two children,
therefore the total population size remains the same. In this work, uniform crossover
will be employed due to its effectiveness and efficiency according to sources such
as [13]. However, different methods like the single-point crossover exist. In uniform
crossover, the first child receives each of its bits from one of the parents with equal
probability. The second child’s bits will be the ones not selected for the first one.
Figure 13 illustrates this method.

Figure 13: Uniform crossover example [14]

• Mutation
This operation is carried out by flipping randomly selected bits as shown in Figure
14. The assigned probability to this procedure is very low, and it can occur simulta-
neously at multiple chromosome locations. The objective of this step is to search in
the neighbourhood of the current individual.

Figure 14: Mutation operation [11]

Once these three operations have been carried out, a new population arises and the process
starts again until the stopping criteria is satisfied. For selecting these criteria, several
approaches could be followed. Even though the algorithm allows setting a maximum
number of generations, the programmer could choose to end the process when the fittest
individual has not changed for several iterations. Another option is to stop iterating when
the population is concentrated in a sufficiently small portion of the solution space, that is,
chromosomes are very similar among them. For this project, this last method has been

24

2021 Final Bachelor’s Degree Project

chosen, as recommended by literature [15]. For doing so, a Bit String Affinity (BSA)
value needs to be provided to the algorithm, as it will be explained in further sections.

5. Decoding the solution in order to obtain the optimal orbit transfer
The last step will consist in decoding the obtained result, which is expressed in binary
notation, to decimal notation.

2.2.1 Multi-objective optimisation

A multi-objective optimisation algorithm is one that simultaneously optimizes more than
one parameter. Usually, there is not a single design solution that is optimal for every objective
function, but rather this solution is formed by a set of designs. These designs are called non-
dominated points, and improving one objective will always mean degrading another. In order
to simplify the process of finding a trade-off between all objective functions, a Pareto frontier
can be built. It consists in a graph formed by all non-dominated design points, which allows
graphically finding a compromise between different objective function values. Figure 15 shows
a generic example of a Pareto frontier plot.

Figure 15: Pareto frontier example [16]

There are different ways of computationally solving a multi-objective optimisation prob-
lem. Two of the most widely used techniques are the ε-constraint and the weighting methods.
In this work, the ε-constraint approach will be used, as it offers many advantages with respect
to the weighting one [17], and has allowed obtaining effective results in numerous works such
as [17, 18].

This method optimises one of the objectives (in our case, the ∆v budget), whilst the others
(in the present work, the time of flight) are seen as constraints. This is achieved by adding
inequality constraints to the model and establishing certain limits (εi) for these objectives. By
changing said limits, new solutions are obtained and the Pareto frontier can be built.

25

2021 Final Bachelor’s Degree Project

3 Methodology

3.1 Orbital transfer problem
In this section, the approach followed for finding the optimal orbit transfer between the

Earth and Mars will be explained. The employed software will be MATLAB, and it will be
used for finding the orbital trajectories that minimise both ∆v and the time of flight. First of all,
the initial orbit will be defined by its Keplerian elements (a0, e0, i0, Ω0, ω0), and the same will
be done for the final orbit (af , ef , if , Ωf , ωf). The ε-constraint approach will be used and, as
it has been explained in the previous section, ∆v is the main objective, whilst the time of flight
will be the constrained one. Additionally, a constraint has been added to the program so that
the satellite is always at least at 1 AU from the Sun.

The next step is to compute how the program will look for possible optimal solutions.
The main objective of this work is to reduce the computational cost as much as possible, and
therefore the number of variables needs to be minimum. For this reason, Lambert’s problem
will be employed for solving the different possible trajectories, as the efficiency of this method
has been widely proved [19–21]. This approach allows to find a transfer arc when the initial and
final positions, as well as the time of flight, are known. This is done by means of an iterative
method, and it guarantees that the initial and final positions of the spacecraft will be correct, as
they are an input. In order to implement this procedure, a robust and reliable algorithm found
in literature will be used [22].

The next step will be to apply Lambert’s problem to two and three-impulse manoeuvres. As
it has already been stated, several references have not found four-impulse solutions to improve
two and three-impulse ones [9,10], so four-impulse trajectories will be disregarded in this work.

For two-impulse trajectories, the problem has been solved by introducing the launch date
and the time of flight as input variables. This way, the number of parameters that the genetic
algorithm needs to solve has been reduced to the minimum. From these two variables, it is
possible to obtain the initial and final true anomalies (θ0 and θf , respectively), and use them to
solve the single Lambert arc. These two angles are calculated by knowing the Earth and Mars’
true anomalies at a reference chosen instant, J2000. For defining this concept, first the term
julian date needs to be clarified. The julian date of a certain instant is the number of days that
have passed since 1 January 4713 BC 12:00. J2000 is the instant corresponding to the julian
date 2451545.0, and it is a widely used reference date. The true anomalies of both planets at
this instant can be easily obtained from the Horizons NASA web interface [23]. Now, suppose
that θJ2000 is the true anomaly of a planet at the instant J2000. Then, the true anomaly of that
same planet some time later will be:

θ = θJ2000 + tJ2000 · n (35)

being:

• tJ2000: time from J2000 to the date at which the true anomaly wants to be calculated

• n: angular velocity of the planet

As for three-impulse trajectories, two transfer orbits will be needed. Therefore, Lambert’s
problem needs to be solved twice. In this case, the input parameters (that is, the ones that need

26

2021 Final Bachelor’s Degree Project

to be searched by the genetic algorithm), will be the launch date, the times of flight for both
arcs, and the spherical coordinates of the second impulse in the SE. These spherical coordinates
are the modulus of the distance from the Sun (r) and two angles (l and b). The use of spherical
coordinates instead of rectangular ones is due to the fact that less bits need to be used for
encoding the former, and therefore the algorithm will be faster. Figure 16 shows a scheme of
these spherical coordinates, where φ would be l, and π/2− θ would be b.

Figure 16: Spherical coordinates [24]

Once the launch date and the time of flight are known, it is easy to translate them into
initial and final true anomalies, as it was done for the two-impulse case. Using these data, if
the spherical coordinates of the intermediate impulse are translated into rectangular ones, it is
possible to solve Lambert’s problem twice and calculate both transfer arcs.

The following flow diagram shows the step-by-step solving of the orbit transfer problem for
two and three-impulse trajectories. The red part of the chart only corresponds to three-impulse
manoeuvres.

Figure 17: Orbit transfer calculation

27

2021 Final Bachelor’s Degree Project

3.2 Genetic algorithm settings
As it has been previously commented, correctly defining the genetic algorithm parameters

will be key in obtaining accurate and fast results. In this work, the raw code for the genetic
algorithm was obtained from literature [25], and an exhaustive analysis for properly defining its
parameters was then carried out.

It should be taken into account that the genetic algorithm is not a calculus-based method
but a searcher, as it iteratively calculates different solutions until the optimal one is found. This
decision depends on the stopping criteria which, as it has already been mentioned, is based
on the BSA value. This value has been selected so that the program stops the process when
individual chromosomes present over a 90% of coincidence. Moreover, a maximum number of
generations has been introduced as insurance, and its value is 200.

As for encoding the solution space, it has been stated that using more bits would increase
the accuracy but also the computational cost. Therefore, a compromise between the two needs
to be achieved. Since variables are coded in binary, the number of bits allocated to each variable
can be calculated as:

bi =

⌈
log2

(xUi − xLi
Ri

+ 1
)⌉

(36)

where:

xUi : upper bound
xLi : lower bound
Ri: resolution of variable xi
d−e: ceil operator, which rounds the result to the nearest integer higher or equal than the ele-
ment

Rewriting expression (36), the resolution can be isolated as follows:

Ri =
xUi − xLi
2bi − 1

(37)

As for the bounds associated to each variable, they can be seen in Table 1, as well as the
number of bits and resolution. The results shown in this table refer to an ε-constraint value of
250 days, so as to offer an example of possible values.

It is interesting to comment the upper bound for parameter r, which is the modulus of
the distance to the second impulse in the case of three-impulse transfers. In order to establish
this value, it has been considered that the farthest the spacecraft could travel would be along
a very eccentric orbit (close to a straight line), which period was the TOF ε-constraint value.
Therefore, the maximum distance from the Earth would be twice the semi-major axis of this
orbit:

TOFmax = ε = T = 2π

√
a3

µS
→ r = 2(1 + 10%) · a = 2.2 · (4π2ε2µS)1/3 (38)

Additionally, a 10% margin has been added to this value for ensuring a sufficiently large
solution space for r. Also, in order to calculate the maximum distance from the Sun instead of
the Earth, 1 AU should be added to the result of equation (38).

28

2021 Final Bachelor’s Degree Project

Variable Bounds Bits Resolution

Launch date 2458850 days ≤ d0 ≤ 2458850+778 days 15 1 h

Time of Flight 0 h ≤ TOF ≤ ε-constraint h 13 1 h

r 1 AU ≤ r ≤ 3.1078 · 109 km 25 100 km

l 0◦ ≤ l ≤ 180◦ 8 0.7059◦

b 0◦ ≤ b ≤ 360◦ 9 0.7045◦

Table 1: Genetic Algorithm variable encoding

As it can be seen in Table 1, the launch date bounds are expressed in Julian days, as they are
easier to operate with. The lower bound corresponds to the 1 January 2020, so that a comparison
with the latest launches to Mars could be made. Also, the interval defined by these bounds is
778 days. As it has been previously calculated, the synodic time between the Earth and Mars
is 777.9 days. Therefore, in order to search for the optimal trajectory for all relative positions
between both planets, the range of the launch date was set to be this synodic time.

Regarding the population size, it was set to 4 times the total number of bits, as recom-
mended by literature [25]. It is important to remind that the initial population is randomly
generated by the algorithm. As for the mutation probability, it can be calculated by means of
the following expression:

Pm =
Nbits + 1

2 · Ps ·Nbits

=
Nbits + 1

8N2
bits

(39)

where Ps is the population size.

Now, on the topic of how does the program handle constraints on any variable, they need
to be introduced by means of penalty functions. This way, if a constraint is not met, a quantity
proportional to the constraint violation is added by the program to ∆v. Therefore, the result can
no longer be optimal and the algorithm discards these solutions. In order to successfully imple-
ment this method, the penalty needs to be of the same order of magnitude than the originally
calculated ∆v, so that the result when violating a constraint is sufficiently increased.

The following steps need to be carried out in order to implement this approach. To begin
with, all constraints have to be normalised to the unit as shown by equation (40). Then, the
penalty has to be calculated by achieving that the constraint has the same order of magnitude
as the objective function result. This can be done by multiplying the normalised constraint by a
certain function, as shown by expression (41). In order to accomplish its purpose, this function
needs to include a log10 expression, as well as the ceil operator d−e. As the penalty function
will only activate when the constraint is positive, which means there is a violation, and the log10
operator includes an absolute value, the penalty will always be a positive quantity.

gi(x) ≤ ci → Gi =
gi(x)

ci
− 1 ≤ 0 (40)

Penaltyi = 10dlog10 |f |e+1 ·Gi (41)

29

2021 Final Bachelor’s Degree Project

Finally, as it has been said, the initial population is randomly generated, and the final results
will depend on this random selection. In order to ensure that a real optimal solution has been
found, several iterations have been run for each case. This way, 25 iterations were selected for
the two-impulse case, and 15 for the three-impulse one, so as not to increase the computational
cost excessively. Also, as an additional verification, the whole code was run at least 5 times for
each case.

It is important to highlight that, even though the final algorithm settings are the ones shown
in this section, several trials were run before achieving satisfactory results. Therefore, an in-
depth study has been carried out regarding the genetic algorithm specifically applied to the
present case study. This is precisely what confers a research character to this project.

4 Presentation of results
In this section, the results obtained by following the previous methodology will be laid out.

To begin with, a comparison with the two-impulse Hohmann transfer will be carried out in order
to verify the goodness of the solutions. After that, the values for the optimal ∆v will be assessed
for different mission durations. Finally, in order to accomplish a multi-objective optimization,
a Pareto frontier including all results will be built. This way, engineering judgement can be
applied depending on the mission objectives so as to decide the optimal ∆v and TOF altogether.

First, the Keplerian parameters of the initial and final orbits will be shown. They character-
ize the Earth and Mars’ orbits, respectively, and are summed up in Table 2.

Initial Orbit Final Orbit

Parameter Value Parameter Value

a0 [km] 149 562 903 af [km] 227 938 631

e0 [−] 0.0165 ef [−] 0.0935

i0 [◦] 0.0180 if [◦] 1.8494

Ω0 [◦] 264.8051 Ωf [◦] 49.5409

ω0 [◦] 199.4599 ωf [◦] 286.5163

Table 2: Initial and final orbit parameters

4.1 Comparison with Hohmann transfer
The first step for comparing the obtained solutions with the Hohmann transfer will be to

apply expressions (25) to (28) in order to calculate the Hohmann orbital manoeuvre. Results
are presented in Table 3.

30

2021 Final Bachelor’s Degree Project

Parameter Value

at [km] 188 792 513

et [−] 0.2076

it [◦] 0

Ωt [◦] −

ωt [◦] −

θf − θ0 [◦] 180

∆v [km/s] 5.5960

TOF [days] 258.9152

Table 3: Hohmann transfer orbit parameters

It is important to point out that a Hohmann manoeuvre takes place between co-planar,
circular orbits by definition. Therefore, the inclination it of the transfer orbit will be zero. As
a consequence, the ascending node does not exist and Ωt and ωt cannot be defined. Also, the
calculated values are almost identical to those obtained from different references [26, 27], thus
they can be considered valid.

As the obtained transfer time for the Hohmann manoeuvre has been 258.9 days, in order
to compare these results with the ones provided by the optimiser, an ε-constraint value of 259
days is introduced to the algorithm. Table 4 shows the optimal transfer arc in terms of ∆v for
two-impulse manoeuvres.

Parameter Value Error

at [km] 194 651 242 3.1032%

et [−] 0.2192 5.5855%

it [◦] 1.4140 [−]

θf − θ0 [◦] 147.1025 18.2764%

∆v [km/s] 6.0356 7.8560%

TOF [days] 202.2104 21.9024%

Table 4: Two-impulse genetic algorithm results for ε = 259 days

A graphical representation of this trajectory is shown in Figure 18. From the table above,
it can be deduced that a mission duration of approximately 202 days has been selected by the
algorithm as the one that renders the minimum ∆v. This means that, for the real case of elliptic
orbits in different planes, the Hohmann time of flight of 259 days is not the optimal one. The
errors on the parameters of the transfer orbit are due to this reduction in the optimal time of

31

2021 Final Bachelor’s Degree Project

flight, as well as to the inclination and eccentricity of the initial and final orbits, which are not
0 as for the Hohmann transfer case.

Figure 18: Two-impulse trajectory for ε = 259 days

As for the three-impulse trajectory, the obtained data for the transfer arcs has been collected
in Table 5.

Transfer arc 1 Transfer arc 2

Value Value

at [km] 186 201 208 203 841 632

et [−] 0.1836 0.1936 Total

it [◦] 0.3633 1.5612 Value Error

θf − θ0 [◦] 103.7626 77.0493 180.8119 0.4510%

∆v [km/s] [−] [−] 5.7710 3.1266%

TOF [days] 117.3421 141.2469 258.5889 0.1279%

Table 5: Three-impulse genetic algorithm results for ε = 259 days

For the three-impulse orbital transfer, it can be seen how the genetic algorithm has selected
a mission duration of 258.59 days as the one that minimizes the ∆v consumption. This value is
very close to the Hohmann transfer TOF, being the relative error of only 0.1279%. Moreover,
the errors for the phase angle (θf − θ0) and for ∆v are also fairly low.

It is helpful to take a look at the orbital transfer plot, which is represented by Figure 19.

32

2021 Final Bachelor’s Degree Project

Figure 19: Three-impulse trajectory for ε = 259 days

However, the Hohmann transfer is a two-impulse one, while we are analyzing a three-
impulse manoeuvre. From this statement, an important deduction can be made. The two-
impulse Hohmann transfer is calculated between circular, co-planar orbits, as it has already
been stated. Nevertheless, the real Earth and Mars orbits are neither circular nor co-planar.
Therefore, in order to correct the small eccentricities and inclinations of both orbits, the real
optimal trajectory for a TOF of approximately 259 days would not be a two-impulse, but a three-
impulse one. In this trajectory, both transfer arcs present slight inclinations and eccentricities
very similar to one another, so that they highly resemble a single transfer arc, as it can be seen
in Figure 19. The relatively small errors that appear between the ideal, two-impulse Hohmann
transfer and the real, three-impulse one, are precisely due to the eccentricity and different planes
of the orbits. It makes sense that the variable presenting a higher error, while still being a low
value, is ∆v, as plane changes are a very influencing factor for its calculation.

In conclusion, as the obtained results in comparison with an ideal Hohmann transfer can
be considered satisfactory, the validity of the genetic algorithm parameter settings has been
verified.

4.2 Optimal transfer orbits
In this section, the results for a wide range of ε-constraint values will be presented in order

to show the capabilities of the optimiser. TOF boundaries have been selected so that a broad
scope of mission durations can be assessed, from short periods to large ones. After carrying
out the process described in section 3, the trajectories that minimise ∆v are the ones shown in
Table 6.

33

2021 Final Bachelor’s Degree Project

TOFlimit [days] Impulses Launch date TOF [days] ∆v [km/s]

100 2 12 August 2020 23:17 100 12.4172

150 2 24 July 2020 4:36 150 7.5979

205 2 11 July 2020 11:10 202.2104 6.0356

215 2 11 July 2020 11:10 202.2104 6.0356

220 3 30 June 2020 0:30 219.8926 5.9574

225 3 30 June 2020 5:38 225 5.9103

250 3 29 June 2020 21:05 249.5422 5.7905

300 3 6 July 2020 18:54 292.4551 5.7450

350 3 9 July 2020 13:00 310.3491 5.7350

400 3 17 July 2020 14:45 383.8613 5.7261

Table 6: Minimum ∆v manoeuvres for different ε-constraint values

For each ε-constraint value, which is the limit TOF, the genetic algorithm calculates the two
and three-impulse optimal manoeuvres, and the assembled code selects the one that minimizes
∆v among the two of them. Also, it was decided that a TOF of 400 days would be the highest
value studied, as ∆v decreases at a very low rate from 250 days on, which does not compensate
the increase in the mission duration.

Now, in order to offer a clearer view of these results, a Pareto frontier will be built from Ta-
ble 6. This will also allow performing a multi-objective optimisation, as it helps the engineer
find a compromise between ∆v and the TOF, depending on the mission.

Figure 20: Pareto frontier plot

34

2021 Final Bachelor’s Degree Project

In this figure, three regions can be distinguished. The first one of them goes from a TOF
of 100 days to 215 days, and it is the one at which two-impulse manoeuvres are optimal. The
second region starts at 220 days until 400 days, and it is the three-impulse optimal region. It is
interesting to point out that a non-optimal area appears between 215 and 220 days, which can
be better seen in Figure 21. This occurs due to the fact that the maximum TOF for which two-
impulse trajectories are optimal is around 202 days, which can also be checked by looking at
Table 6. After this point, the two-impulse manoeuvre starts offering worse ∆v results, but three-
impulse transfer orbits are still not optimal until a TOF of approximately 220 days. Finally, the
black dotted line represents the smallest ∆v value encountered during the analysis.

Figure 21: Zoom-in on the non-optimal region of the Pareto frontier plot

The next step will be to apply engineering judgement in order to select the optimal trajectory
in terms of both ∆v budget and TOF. This analysis is what makes the optimization multi-
objective, and is therefore an essential part of this work.

Depending on the mission requirements and specifications, the design job will point to a
certain direction. This is why three different situations will be analysed: one where the TOF is
prioritised, a second one in which both ∆v and the TOF want to be minimised, and a third one
where achieving a minimum ∆v is the primary concern.

4.2.1 Time of Flight = 100 days

The first case that will be studied is the one for which the ε-constraint value for the TOF,
that is, the limit inputted to the genetic algorithm, is 100 days. As it can be seen in both Table 6
and Figure 20, the ∆v value is 12.42 km/s, while the TOF is of 100 days. Therefore, this would
be a mission where the ∆v value would not be important, as it is substantially high, whilst the
TOF needs to be as small as possible.

The optimal trajectory for this mission duration is the two-impulse one shown in Figure 22.
As expected, a relatively short transfer arc appears. By looking at the second impulse, given at
the outer martian orbit, it seems logical that ∆v presents such a high value.

35

2021 Final Bachelor’s Degree Project

Figure 22: Two-impulse trajectory for ε = 100 days

The information about this manoeuvre is shown in Tables 7 and 8, which respectively sum
up the Keplerian elements of the transfer orbit and the impulse specifications.

Parameter Value

at [km] 216 212 350

et [−] 0.3222

it [◦] 0.3928

Ωt [◦] 139.1682

ωt [◦] 149.5187

θt1 [◦] 30.2685

θt2 [◦] 108.8526

Table 7: Optimal transfer orbit parameters for ε = 100 days

36

2021 Final Bachelor’s Degree Project

Impulse Coordinates

Rectangular Spherical

x [km] y [km] z [km] r [km] b [◦] l [◦]

1 114 321 277 -99 534 616 3860 151 579 993 0.0015 -41.0444

2 171 495 157 131 779 410 -1 452 121 216 283 404 -0.3847 37.5392

Table 8: Impulse locations for ε = 100 days

4.2.2 Time of Flight = 250 days

This mission duration limit has been selected as the optimal one for the case where the time
of flight is not a priority, but as much ∆v as possible needs to be saved. A constraint value
of 250 days has been chosen instead of higher values because, as it can be seen in Table 6,
the required propellant does not diminish significantly past this value. Therefore, the total ∆v
would be of 5.79 km/s, and the TOF has a value of 249.54 days.

For this new case, the optimal trajectory is the three-impulsive one shown in Figure 23.
Again, the transfer details have been summed up in Tables 9 and 10.

Figure 23: Three-impulse trajectory for ε = 250 days

37

2021 Final Bachelor’s Degree Project

Parameter Value

Transfer arc 1 Transfer arc 2

at [km] 185 874 388 202 667 112

et [−] 0.1822 0.1964

it [◦] 0.3569 1.4416

Ωt [◦] 95.5814 28.2589

ωt [◦] -179.4163 -87.2804

θt1 [◦] -0.6376 73.1072

θt2 [◦] 97.9247 154.5096

Table 9: Optimal transfer orbit parameters for ε = 250 days

Impulse Coordinates

Rectangular Spherical

x [km] y [km] z [km] r [km] b [◦] l [◦]

1 14 641 629 -151 295 917 889 152 002 736 0.0003 -84.4724

2 178 783 764 44 874 272 -1 135 481 184 332 916 -0.3529 14.0900

3 -22 617 500 235 686 056 5 493 797 236 832 536 1.3292 95.4816

Table 10: Impulse locations for ε = 250 days

4.2.3 Time of Flight = 205 days

To finalise, the most challenging case will be addressed. This is the situation where a true
compromise wants to be found between propellant use and mission duration. By thoroughly
analysing all data collected in Table 6 and in the Pareto frontier plot (Figure 20), it has been
decided that introducing a limit TOF of 205 days renders the optimal results. Before this point,
even though the TOF values are fairly low, ∆v has still got a considerable magnitude. Past this
point, the increase in the TOF does not compensate the decrease in ∆v, which is objectively low.
However, the solution for a limit TOF of 205 days maintains the mission duration at a reasonable
value (202.21 days), whilst offering a satisfactory result for ∆v (6.04 km/s). Also, as this
transfer is a two-impulse one, it reduces the number of necessary parameters, thus increasing
the mission reliability.

It is interesting to point out that the optimal solution the genetic algorithm offers for this
case is the same as the two-impulse trajectory that was studied when comparing with the
Hohmann case. This is due to the fact that, from a limit TOF of approximately 202 days,
the optimal two-impulse trajectory does never change. From this value, the resultant ∆v keeps
increasing, and three-impulse trajectories start being more optimal.

38

2021 Final Bachelor’s Degree Project

As it has been said, for the present case, the two-impulse manoeuvre is the optimal one.
Even though this graph has already been shown in section 4.1, it will be presented again for
clarity as Figure 24.

Figure 24: Two-impulse trajectory for ε = 205 days

As for the transfer orbit, even though some of its Keplerian parameters were already shown
in Table 4, all of them are now summed up in Table 9. The coordinates of both impulses are
included in Table 12.

Parameter Value

at [km] 194 651 242

et [−] 0.2192

it [◦] 1.4140

Ωt [◦] -73.0876

ωt [◦] -3.2615

θt1 [◦] 3.2889

θt2 [◦] 150.3914

Table 11: Optimal transfer orbit parameters for ε = 205 days

39

2021 Final Bachelor’s Degree Project

Impulse Coordinates

Rectangular Spherical

x [km] y [km] z [km] r [km] b [◦] l [◦]

1 44 296 681 -145 433 126 1800 152 029 570 0.0007 -73.0601

2 62 901 480 220 093 514 3 066 119 228 926 084 0.7674 74.0504

Table 12: Impulse locations for ε = 205 days

4.2.4 Results validation

In order to verify the obtained results, the case for a limit TOF of 205 days will be employed.
It is reminded that this was selected as the option that optimized both the ∆v budget and the
mission duration at the same time.

For validating this selection, it is enough to search for real Mars launches in the time period
from the 1 January 2020 to 778 days later, which is the span covered by the genetic algorithm
in this work. The search offers three relevant results [28], which are summed up in Table 13.
The last row on said table corresponds to the optimal solution reached in this project.

Mission Launch date TOF [days]

Emirates Mars 19 July 2020 205

Tianwen-1 23 July 2020 202

Mars 2020 30 July 2020 203

Genetic algorithm optimal 11 July 2020 202.2104

Table 13: Missions to Mars from 2020 to 2022

It is easy to see that the result obtained by the genetic algorithm is highly similar to the
three real Mars launches that took place in the year 2020. So much so, that the option selected
as optimal in terms of both ∆v and TOF can be considered successfully validated. Moreover,
another interesting conclusion can be extracted from Table 13. It can be deduced that, in the
interval between 2020 and 2022, from mid to late July, there existed an optimal launch window
to Mars. This is confirmed by both the results obtained in this project and summed up in Table
6, and the three real launches indicated in the table above.

40

2021 Final Bachelor’s Degree Project

5 Budget
This section aims to break down the total expense of the project, which can be divided into

labour, energy, hardware and software costs.

5.1 Labour costs
These expenses include the ones associated to the hours that the student and both tutors

have been working on the project, which are summed up in Tables 14 and 15. The second one
of these tables already includes the joint information for both supervisors.

Concept Hours cost/h [e] Subtotal [e]

Documentation and research 50 15 750

Programming 60 15 900

Acquisition of results 115 15 1725

Memory writing 80 15 1200

Total 305 [−] 4575

Table 14: Labour costs associated to the engineering student

Concept Hours cost/h [e] Subtotal [e]

Meetings 30 40 1200

Project revising 40 40 1600

Total 70 [−] 2800

Table 15: Labour costs associated to both tutors

5.2 Energy consumption costs
During this work, a Personal Computer (PC) has been the main tool used by the student. A

substantial amount of hours has been spent assembling code, as well as running it and writing
the project. Therefore, the total costs should include the energetic expense of this hardware.
Said PC is an Acer Swift SF314-52, and manufacturer data [29] states that its power consump-
tion has a value of 45 W. As the total number of hours this computer has been used equals the
total time the student has spent working on this project, this period would be 305 hours as stated
in Table 14. Therefore, the total power consumption will be:

Pc = 45 W · 305 h = 13725 W · h = 13.725 kW · h (42)

Now, even though the cost of power in Spain changes depending on the day and hour [30],
an average of 0.1694 e/(kW · h) has been estimated. This way, the total cost of the power

41

2021 Final Bachelor’s Degree Project

consumed by the computer can be calculated as follows:

CP = 13.725 · 0.1694 = 2.33 e (43)

5.3 Hardware costs
Once the expense associated to the power consumed has been estimated, the cost related to

the use of said computer needs to be calculated. As the student employed her personal computer
for a limited amount of time, only the depreciation cost will be taken into account. For this
purpose, the depreciation coefficient will be obtained from the Spanish Tax Agency [31].

Hardware Cost [e] Period [years] Depreciation coeff. [%] Total [e]

Acer Swift SF314-52 313.77 0.5 0.25 39.22

Table 16: Hardware costs

It is pointed out that the computer was bought in 2017 for approximately 850 e. The cost
represented in Table 16 is its price after applying the depreciation coefficient of 0.25 % for three
and a half years of use, which corresponds to the time instant when the student started working
in this project.

5.4 Software costs
Finally, for the completion of this academic work, several software licenses were used. The

total cost of these programs is shown in Table 17.

Software Hours License cost [e/year] cost/h [e] Subtotal [e]

MATLAB R2020b 175 800 0.44 77

Microsoft Office 40 126 0.07 2.8

Overleaf 80 0 0 0

Total 79.8

Table 17: Software costs

It is important to mention that, in order to calculate the hourly cost of a license, it was taken
into account that one academic year comprises 60 ECTS, which translate to 1800 h.

5.5 Total costs
The following table sums up the total costs by taking into account the results obtained in

previous sections.

42

2021 Final Bachelor’s Degree Project

Concept Amount [e]

Labour costs 7375

Electrical consumption costs 2.33

Hardware costs 39.22

Software costs 79.8

Raw total 7496.35

Industrial benefit (5%) 374.82

Total with industrial benefit 7871.17

VAT (21%) 1652.95

Tender budget 9524.12

Table 18: Total costs

Therefore, the total raw cost is of:

SEVEN THOUSAND, FOUR HUNDRED AND NINETY-SIX EUROS WITH THIRTY-FIVE CENTS

And the total cost with industrial benefit is:

SEVEN THOUSAND, EIGHT HUNDRED AND SEVENTY-ONE EUROS WITH SEVENTEEN CENTS

Finally, the tender budget of this project is of:

NINE THOUSAND, FIVE HUNDRED AND TWENTY-FOUR EUROS WITH TWELVE CENTS

6 Solicitations
In this section, the most important regulations regarding the completion of a Bachelor’s

Degree Thesis will be presented.

As the academic institution at which the student has developed her Bachelor’s Degree is the
Universitat Politècnica de València, this organisation’s regulations have been revised. Below,
the most relevant ones are shown. It is pointed out that the original language in which these
norms are written is in Spanish, and therefore they will be presented this way. The following
text has been directly extracted from said regulations document [32].

Artı́culo 1. Objeto
La presente normativa tiene por objeto establecer el marco general regulatorio de las condi-
ciones por la que se regirá en la Universidad Politècnica de València (en adelante, UPV) la
matriculación, asignación, evaluación y otros aspectos de la tramitación académica y adminis-
trativa de los Trabajos Fin de Grado (TFG) y Trabajos Fin de Máster (TFM).

43

2021 Final Bachelor’s Degree Project

Artı́culo 2. Ámbito de aplicación

1. La presente normativa será de aplicación a las enseñanzas impartidas por la UPV condu-
centes a la obtención de los tı́tulos de Grado y Máster Universitario de carácter oficial y
validez en todo el territorio nacional (en adelante tı́tulos oficiales).

2. Los TFG y TFM de los tı́tulos oficiales que habiliten para el ejercicio de las profesiones
reguladas se regirán por lo dispuesto en la correspondiente Orden Ministerial que es-
tablece los requisitos para la verificación del tı́tulo, sin perjuicio de la aplicación, con
carácter complementario, de lo que se indique en la presente Normativa Marco.

Artı́culo 3. Naturaleza de los TFG y TFM

1. Los TFG y TFM deberán estar orientados a la aplicación y evaluación de competencias
asociadas al tı́tulo.

2. En el caso de los TFG y en el de los TFM de tı́tulos que habiliten para el ejercicio de
profesiones reguladas deberán tener una orientación profesional. En el resto de casos, el
TFM podrá tener orientación profesional o investigadora.

3. Los TFG y TFM consistirán en la realización de un trabajo o proyecto original en el
que queden de manifiesto conocimientos, habilidades y competencias adquiridas por el
estudiante a lo largo de sus estudios y, expresamente, las competencias asociadas a la
materia TFG o TFM, tal y como se indique en la memoria de verificación.

4. La originalidad del trabajo a que se hace referencia en el punto anterior, debe entenderse
sin menoscabo de que pueda ser parte independiente e individual de un trabajo integral
desarrollado de manera conjunta entre estudiantes de una misma titulación o de diferentes
titulaciones y ERT. En cualquier caso, la defensa del TFG y del TFM debe ser individual.

5. La materia TFG y TFM podrá organizarse mediante actividades de docencia reglada en
forma de seminario, taller o similar; mediante trabajo autónomo y tutelado del estudiante;
o mediante una mezcla de ambas.

6. El alcance, contenido y nivel de exigencia de los TFG y TFM deberá adecuarse a la
asignación de ECTS que dicha materia haya recibido en la memoria de verificación [...].

7. Como cualquier otra materia de un plan de estudios, los TFG y TFM deberán disponer de
una Guı́a Docente [...].

Artı́culo 4. Tutores

1. Cuando parte o la totalidad de los ECTS asignados a la materia se organicen mediante
trabajo autónomo y tutelado, para la realización de su TFG o TFM, los estudiantes con-
tarán con la dirección de un tutor académico que supervisará el trabajo académico y les
dará apoyo en la gestión administrativa.[...].

Artı́culo 8. Presentación

1. Salvo que la naturaleza del trabajo lo impida, previamente a la defensa y calificación del
TFG o TFM, el estudiante deberá presentar en la secretarı́a de la ERT el trabajo realizado,
en formato electrónico, y redactado en castellano, valenciano o inglés. La presentación

44

2021 Final Bachelor’s Degree Project

del trabajo se realizará siguiendo el procedimiento establecido por el Área de Biblioteca
y Documentación Cientı́fica, a los efectos de su posterior inclusión en los repositorios
institucionales de la universidad.

Moreover, apart from the presented regulations, some conditions have to be met in order for
the worker productivity to be optimal whilst minimising any possible health risks. Therefore, it
must be ensured that:

• A proper body posture is maintained, and a comfortable and ergonomic chair is being
used in order to prevent any muscular injuries.

• Natural light is always present during the daylight hours, and the workspace is sufficiently
lit at all times. This will help reduce fatigue and avoid eye damage.

• Any connections to the electric grid must be safely made so as to prevent any harm to the
equipment or to the engineer.

• The workload must be carefully regulated, as well as the amount and duration of the
breaks taken.

As for the workplace, it is the student’s choice to develop the work in any location that
meets the abovementioned requirements, provided it allows maximum concentration and limits
all distractions.

6.1 Technical aspects
Now, it is also a part of this section to present the hardware and software tools employed

during the project completion.

As for the hardware used, it is an Acer Swift SF314-52 laptop with an Intel(R) Core(TM)
i7-7500U CPU @ 2.70GHz 2.90 GHz processor, an 8GB RAM and an Intel(R) HD Graphics
620 graphic card. The operating system it carries is the 64-bit Windows 10.

Regarding the software employed, it has already been listed in section 5. Now, the use of
each program will also be mentioned.

• MATLAB R2020b
This software was used for programming the necessary code that allowed the implemen-
tation of the genetic algorithm and the presentation of results and graphs.

• Microsoft Teams
This was an essential tool that enabled online meetings between the student and both
tutors.

• Overleaf
This LATEX online editor was used for writing the project memory.

• Microsoft PowerPoint
Employed for assembling the project slide presentation.

45

2021 Final Bachelor’s Degree Project

7 Conclusions
After comparing the obtained results with the bi-impulsive Hohmann transfer and with three

different missions to Mars, it can be said that the objectives of this project have been achieved.
A successful implementation of the multi-objective genetic algorithm has been accomplished in
order to optimise in a fast and reliable manner trajectories between the Earth and Mars. This is
useful in many ways, as it allows reducing the mission costs and the human resources devoted
to orbit calculations. Moreover, the allocated budget to the project is a reasonable quantity, as
all resources have been efficiently used.

This has been possible due to several factors. In the first place, the parameter settings of
the genetic algorithm were carefully thought, and numerous trials were run, until they were
correctly defined. The variable resolution chosen has also been a determining factor for obtain-
ing valid results, and it was the outcome of a compromise between the necessary accuracy and
computational time. Regarding this computational time, calculating the two and three-impulse
transfer orbits for each ε-constraint value takes less than 15 minutes. This can be considered
reasonably fast, as the resolution for both the launch date and time of flight is 1 h, which is a
fairly precise value.

Reaching successful results has also been possible by deeply understanding the orbital prob-
lem that was being solved and the corresponding Lambert solution. This allowed identifying
the methodology that implied less variables, reducing this way the computational cost.

Also, the multi-objective character of the presented algorithm is worth mentioning. By
building a Pareto frontier, the engineer can easily identify the mission that best fulfills the re-
quirements.

In conclusion, for all of the above mentioned reasons, it is believed that this project has
accomplished all of its objectives in a satisfactory manner. A powerful computational tool has
been successfully developed and employed, and relevant and valid results have been presented.

8 Future work
As there is always room for further improvement and development, this project could be

made even more comprehensive, and there are different pathways to do so.

For example, incorporating orbital perturbations caused by third-body accelerations would
increase the accuracy of the model. Also, it could be interesting to take into account other areas
of aerospace engineering such as solar energy. In order to do so, solar panels could be added to
the spaceship travelling to Mars. This would mean calculating the orientation of the satellite so
that such panels were facing the Sun at all times throughout the trajectory. Also, the occurrence
of eclipses would need to be assessed, in order to identify the time spans when the panels would
stop receiving sunlight.

An additional calculation that could be made would be to study the time window for which
communication with the ground station would be possible. Finally, it has been considered
that the propulsion model could be made more accurate. At the present moment, as it has
been explained, impulsive manoeuvres are being taken into account in order to simplify the

46

2021 Final Bachelor’s Degree Project

calculations. However, this could be changed so as to represent a propulsive model based on
continuous thrust. This would lead to incorporating the mass as one of the states and obtaining
a more realistic idea of the cost saved.

On a different line of work, if the mission required so, a fly-by in Venus could be added
to the existing code. This would definitely mean devoting several hours to deciding the most
efficient, reliable way to implement the manoeuvre. However, the result would be an integral
code that would be able to analyse an even wider range of mission possibilities.

Finally, as for the genetic algorithm parameter settings, it has been said that they are care-
fully thought and selected. However, there is always a margin for research and improvement,
and an interesting way to explore the capabilities of the code would be by further analysing even
more settings possibilities. Moreover, different optimisers such as the Evolutionary Algorithm,
Particle Swarm Optimization, or Ant Colony Optimizer could be employed, and the results
compared, in order to find the one that offers the best performance. Also, in this work, a single-
objective algorithm was used, and then the user carried out a study so that the method could be
a multi-objective one. Therefore, it would be interesting to employ a naturally multi-objective
algorithm, and compare the obtained solutions to the present ones.

47

2021 Final Bachelor’s Degree Project

9 APPENDIX

9.1 MATLAB code

Listing 1: Lambert’s problem [22]
% LAMBERT Lambert-targeter for ballistic flights
% (Izzo, and Lancaster, Blanchard & Gooding)
%
% Usage:
% [V1, V2, extremal_distances, exitflag] = lambert(r1, r2,

tf, m, GM_central)
%
% Dimensions:
% r1, r2 -> [1x3]
% V1, V2 -> [1x3]
% extremal_distances -> [1x2]
% tf, m -> [1x1]
% GM_central -> [1x1]
%
% This function solves any Lambert problem *robustly*. It uses

two separate
% solvers; the first one tried is a new and unpublished

algorithm developed
% by Dr. D. Izzo from the European Space Agency [1]. This

version is extremely
% fast, but especially for larger [m] it still fails quite

frequently. In such
% cases, a MUCH more robust algorithm is started (the one by

Lancaster &
% Blancard [2], with modifcations, initial values and other

improvements by
% R.Gooding [3]), which is a lot slower partly because of its

robustness.
%
% INPUT ARGUMENTS:
%

==

% name units description
%

==

% r1, r1 [km] position vectors of the two terminal
points.

% tf [days] time of flight to solve for
% m [-] specifies the number of complete

48

2021 Final Bachelor’s Degree Project

orbits to complete
% (should be an integer)
% GM_central [km3/s2] std. grav. parameter (G M = mu) of

the central body
%
% OUTPUT ARGUMENTS:
%

==

% name units description
%

==

% V1, V2 [km/s] terminal velocities at the end-
points

% extremal_distances [km] minimum(1) and maximum(2)
distance of the

% spacecraft to the central body.
% exitflag [-] Integer containing information on

why the
% routine terminated. A value of +1

indicates
% success; a normal exit. A value

of -1
% indicates that the given problem

has no
% solution and cannot be solved. A

value of -2
% indicates that both algorithms

failed to find
% a solution. This should never

occur since
% these problems are well-defined,

and at the
% very least it can be determined

that the
% problem has no solution.

Nevertheless, it
% still occurs sometimes for

accidental
% erroneous input, so it provides a

basic
% mechanism to check any

application using this
% algorithm.

49

2021 Final Bachelor’s Degree Project

%
% This routine can be compiled to increase its speed by a

factor of about
% 10-15, which is certainly advisable when the complete

application requires
% a great number of Lambert problems to be solved. The entire

routine is
% written in embedded MATLAB, so it can be compiled with the

emlmex()
% function (older MATLAB) or codegen() function (MATLAB 2011a

and later).
%
% To do this using emlmex(), make sure MATLAB's current

directory is equal
% to where this file is located. Then, copy-paste and execute

the following
% commands to the command window:
%
% example_input = {...
% [0.0, 0.0, 0.0], ...% r1vec
% [0.0, 0.0, 0.0], ...% r2vec
% 0.0, ... % tf
% 0.0, ... % m
% 0.0}; % muC
% emlmex -eg example_input lambert.m
%
% This is of course assuming your compiler is configured

correctly. See the
% documentation of emlmex() on how to do that.
%
% Using codegen(), the syntax is as follows:
%
% example_input = {...
% [0.0, 0.0, 0.0], ...% r1vec
% [0.0, 0.0, 0.0], ...% r2vec
% 0.0, ... % tf
% 0.0, ... % m
% 0.0}; % muC
% codegen lambert.m -args example_input
%
% Note that in newer MATLAB versions, the code analyzer will

complain about
% the pragma "%#eml" after the main function's name, and

possibly, issue
% subsequent warnings related to this issue. To get rid of this

50

2021 Final Bachelor’s Degree Project

problem, simply
% replace the "%#eml" directive with "%#codegen".
%
%
%
% References:
%
% [1] Izzo, D. ESA Advanced Concepts team. Code used available

in MGA.M, on
% http://www.esa.int/gsp/ACT/inf/op/globopt.htm. Last

retreived Nov, 2009.
% [2] Lancaster, E.R. and Blanchard, R.C. "A unified form of

Lambert's theorem."
% NASA technical note TN D-5368,1969.
% [3] Gooding, R.H. "A procedure for the solution of Lambert's

orbital boundary-value
% problem. Celestial Mechanics and Dynamical Astronomy,

48:145 165 ,1990.
%
% See also lambert_low_ExpoSins.

% Please report bugs and inquiries to:
%
% Name : Rody P.S. Oldenhuis
% E-mail : oldenhuis@gmail.com
% Licence : 2-clause BSD (see License.txt)

% If you find this work useful, please consider a donation:
% https://www.paypal.me/RodyO/3.5

% If you want to cite this work in an academic paper, please
use

% the following template:
%
% Rody Oldenhuis, orcid.org/0000-0002-3162-3660. "Lambert" <

version>,
% <date you last used it>. MATLAB Robust solver for Lambert's
% orbital-boundary value problem.
% https://nl.mathworks.com/matlabcentral/fileexchange/26348

%

51

2021 Final Bachelor’s Degree Project

% Izzo's version:
% Very fast, but not very robust for more complicated cases
%

function [V1,...
V2, ...
extremal_distances,...
exitflag,a] = lambert(r1vec,...

r2vec,...
tf,...
m,...
muC) %#coder

% original documentation:
%{
This routine implements a new algorithm that solves Lambert's

problem. The
algorithm has two major characteristics that makes it

favorable to other
existing ones.

1) It describes the generic orbit solution of the boundary
condition

problem through the variable X=log(1+cos(alpha/2)). By doing
so the

graph of the time of flight become defined in the entire real
axis and

resembles a straight line. Convergence is granted within few
iterations

for all the possible geometries (except, of course, when the
transfer

angle is zero). When multiple revolutions are considered the
variable is

X=tan(cos(alpha/2)*pi/2).

2) Once the orbit has been determined in the plane, this
routine

evaluates the velocity vectors at the two points in a way that
is not

singular for the transfer angle approaching to pi (Lagrange
coefficient

based methods are numerically not well suited for this purpose

52

2021 Final Bachelor’s Degree Project

).

As a result Lambert's problem is solved (with multiple
revolutions

being accounted for) with the same computational effort for
all

possible geometries. The case of near 180 transfers is also
solved

efficiently.

We note here that even when the transfer angle is exactly
equal to pi

the algorithm does solve the problem in the plane (it finds X)
, but it

is not able to evaluate the plane in which the orbit lies. A
solution

to this would be to provide the direction of the plane
containing the

transfer orbit from outside. This has not been implemented in
this

routine since such a direction would depend on which
application the

transfer is going to be used in.

please report bugs to dario.izzo@esa.int
%}

% adjusted documentation:
%{
By default, the short-way solution is computed. The long way

solution
may be requested by giving a negative value to the

corresponding
time-of-flight [tf].

For problems with |m| > 0, there are generally two solutions.
By

default, the right branch solution will be returned. The left
branch

may be requested by giving a negative value to the
corresponding

number of complete revolutions [m].
%}

% Authors

53

2021 Final Bachelor’s Degree Project

% .-`-.-`-.-`-.-`-.-`-.-`-.-`-.-`-.-`-.-`-.-`-.-`-.-`-.-`-.-`-.
% Name : Dr. Dario Izzo
% E-mail : dario.izzo@esa.int
% Affiliation: ESA / Advanced Concepts Team (ACT)

% Made more readible and optimized for speed by Rody P.S.
Oldenhuis

% Code available in MGA.M on http://www.esa.int/gsp/ACT/inf/
op/globopt.htm

% last edited 12/Dec/2009

% ADJUSTED FOR EML-COMPILATION 24/Dec/2009

% initial values
tol = 1e-14; bad = false; days = 86400;

% work with non-dimensional units
r1 = sqrt(r1vec*r1vec.'); r1vec = r1vec/r1;
V = sqrt(muC/r1); r2vec = r2vec/r1;
T = r1/V; tf = tf*days/T; % also

transform to seconds

% relevant geometry parameters (non dimensional)
mr2vec = sqrt(r2vec*r2vec.');
% make 100% sure it's in (-1 <= dth <= +1)
dth = acos(max(-1, min(1, (r1vec*r2vec.')/mr2vec)));

% decide whether to use the left or right branch (for multi
-revolution

% problems), and the long- or short way
leftbranch = sign(m); longway = sign(tf);
m = abs(m); tf = abs(tf);
if (longway < 0), dth = 2*pi - dth; end

% derived quantities
c = sqrt(1 + mr2vecˆ2 - 2*mr2vec*cos(dth)); % non-

dimensional chord
s = (1 + mr2vec + c)/2; % non-

dimensional semi-perimeter
a_min = s/2; % minimum

energy ellipse semi major axis
Lambda = sqrt(mr2vec)*cos(dth/2)/s; % lambda

parameter (from BATTIN's book)
crossprd = [r1vec(2)*r2vec(3) - r1vec(3)*r2vec(2),...

54

2021 Final Bachelor’s Degree Project

r1vec(3)*r2vec(1) - r1vec(1)*r2vec(3),...% non-
dimensional normal vectors

r1vec(1)*r2vec(2) - r1vec(2)*r2vec(1)];
mcr = sqrt(crossprd*crossprd.'); %

magnitues thereof
nrmunit = crossprd/mcr; % unit

vector thereof

% Initial values
% ---

% ELMEX requires this variable to be declared OUTSIDE the
IF-statement

logt = log(tf); % avoid re-computing the same value

% single revolution (1 solution)
if (m == 0)

% initial values
inn1 = -0.5233; % first initial guess
inn2 = +0.5233; % second initial guess
x1 = log(1 + inn1);% transformed first initial guess
x2 = log(1 + inn2);% transformed first second guess

% multiple revolutions (0, 1 or 2 solutions)
% the returned soltuion depends on the sign of [m]

else
% select initial values
if (leftbranch < 0)

inn1 = -0.5234; % first initial guess, left branch
inn2 = -0.2234; % second initial guess, left branch

else
inn1 = +0.7234; % first initial guess, right branch
inn2 = +0.5234; % second initial guess, right

branch
end
x1 = tan(inn1*pi/2);% transformed first initial guess
x2 = tan(inn2*pi/2);% transformed first second guess

end

% since (inn1, inn2) < 0, initial estimate is always
ellipse

xx = [inn1, inn2]; aa = a_min./(1 - xx.ˆ2);
bbeta = longway * 2*asin(sqrt((s-c)/2./aa));
% make 100.4% sure it's in (-1 <= xx <= +1)

55

2021 Final Bachelor’s Degree Project

aalfa = 2*acos(max(-1, min(1, xx)));

% evaluate the time of flight via Lagrange expression
y12 = aa.*sqrt(aa).*((aalfa - sin(aalfa)) - (bbeta-sin(

bbeta)) + 2*pi*m);

% initial estimates for y
if m == 0

y1 = log(y12(1)) - logt;
y2 = log(y12(2)) - logt;

else
y1 = y12(1) - tf;
y2 = y12(2) - tf;

end

% Solve for x
% ---

% Newton-Raphson iterations
% NOTE - the number of iterations will go to infinity in

case
% m > 0 and there is no solution. Start the other routine

in
% that case
err = inf; iterations = 0; xnew = 0;
while (err > tol)

% increment number of iterations
iterations = iterations + 1;
% new x
xnew = (x1*y2 - y1*x2) / (y2-y1);
% copy-pasted code (for performance)
if m == 0, x = exp(xnew) - 1; else x = atan(xnew)*2/pi;

end
a = a_min/(1 - xˆ2);
if (x < 1) % ellipse

beta = longway * 2*asin(sqrt((s-c)/2/a));
% make 100.4% sure it's in (-1 <= xx <= +1)
alfa = 2*acos(max(-1, min(1, x)));

else % hyperbola
alfa = 2*acosh(x);
beta = longway * 2*asinh(sqrt((s-c)/(-2*a)));

end
% evaluate the time of flight via Lagrange expression
if (a > 0)

tof = a*sqrt(a)*((alfa - sin(alfa)) - (beta-sin(

56

2021 Final Bachelor’s Degree Project

beta)) + 2*pi*m);
else

tof = -a*sqrt(-a)*((sinh(alfa) - alfa) - (sinh(beta
) - beta));

end
% new value of y
if m ==0, ynew = log(tof) - logt; else ynew = tof - tf;

end
% save previous and current values for the next

iterarion
% (prevents getting stuck between two values)
x1 = x2; x2 = xnew;
y1 = y2; y2 = ynew;
% update error
err = abs(x1 - xnew);
% escape clause
if (iterations > 15), bad = true; break; end

end

% If the Newton-Raphson scheme failed, try to solve the
problem

% with the other Lambert targeter.
if bad

% NOTE: use the original, UN-normalized quantities
[V1, V2, extremal_distances, exitflag] = ...

lambert_LancasterBlanchard(r1vec*r1, r2vec*r1,
longway*tf*T, leftbranch*m, muC);

return
end

% convert converged value of x
if m==0, x = exp(xnew) - 1; else x = atan(xnew)*2/pi; end

%{
The solution has been evaluated in terms of log(x+1) or

tan(x*pi/2), we
now need the conic. As for transfer angles near to pi the

Lagrange-
coefficients technique goes singular (dg approaches a

zero/zero that is
numerically bad) we here use a different technique for

those cases. When
the transfer angle is exactly equal to pi, then the ih

unit vector is not
determined. The remaining equations, though, are still

57

2021 Final Bachelor’s Degree Project

valid.
%}

% Solution for the semi-major axis
a = a_min/(1-xˆ2);

% Calculate psi
if (x < 1) % ellipse

beta = longway * 2*asin(sqrt((s-c)/2/a));
% make 100.4% sure it's in (-1 <= xx <= +1)
alfa = 2*acos(max(-1, min(1, x)));
psi = (alfa-beta)/2;
eta2 = 2*a*sin(psi)ˆ2/s;
eta = sqrt(eta2);

else % hyperbola
beta = longway * 2*asinh(sqrt((c-s)/2/a));
alfa = 2*acosh(x);
psi = (alfa-beta)/2;
eta2 = -2*a*sinh(psi)ˆ2/s;
eta = sqrt(eta2);

end

% unit of the normalized normal vector
ih = longway * nrmunit;

% unit vector for normalized [r2vec]
r2n = r2vec/mr2vec;

% cross-products
% don't use cross() (emlmex() would try to compile it, and

this way it
% also does not create any additional overhead)
crsprd1 = [ih(2)*r1vec(3)-ih(3)*r1vec(2),...

ih(3)*r1vec(1)-ih(1)*r1vec(3),...
ih(1)*r1vec(2)-ih(2)*r1vec(1)];

crsprd2 = [ih(2)*r2n(3)-ih(3)*r2n(2),...
ih(3)*r2n(1)-ih(1)*r2n(3),...
ih(1)*r2n(2)-ih(2)*r2n(1)];

% radial and tangential directions for departure velocity
Vr1 = 1/eta/sqrt(a_min) * (2*Lambda*a_min - Lambda - x*eta)

;
Vt1 = sqrt(mr2vec/a_min/eta2 * sin(dth/2)ˆ2);

% radial and tangential directions for arrival velocity

58

2021 Final Bachelor’s Degree Project

Vt2 = Vt1/mr2vec;
Vr2 = (Vt1 - Vt2)/tan(dth/2) - Vr1;

% terminal velocities
V1 = (Vr1*r1vec + Vt1*crsprd1)*V;
V2 = (Vr2*r2n + Vt2*crsprd2)*V;

% exitflag
exitflag = 1; % (success)

% also compute minimum distance to central body
% NOTE: use un-transformed vectors again!
extremal_distances = ...

minmax_distances(r1vec*r1, r1, r2vec*r1, mr2vec*r1, dth
, a*r1, V1, V2, m, muC);

end

%

% Lancaster & Blanchard version, with improvements by Gooding
% Very reliable, moderately fast for both simple and

complicated cases
%

function [V1,...
V2,...
extremal_distances,...
exitflag] = lambert_LancasterBlanchard(r1vec,...

r2vec,...
tf,...
m,...
muC) %#coder

%{
LAMBERT_LANCASTERBLANCHARD High-Thrust Lambert-targeter

lambert_LancasterBlanchard() uses the method developed by
Lancaster & Blancard, as described in their 1969 paper. Initial

values,
and several details of the procedure, are provided by R.H.

Gooding,
as described in his 1990 paper.
%}

59

2021 Final Bachelor’s Degree Project

% Please report bugs and inquiries to:
%
% Name : Rody P.S. Oldenhuis
% E-mail : oldenhuis@gmail.com
% Licence : 2-clause BSD (see License.txt)

% If you find this work useful, please consider a donation:
% https://www.paypal.me/RodyO/3.5

% ADJUSTED FOR EML-COMPILATION 29/Sep/2009

% manipulate input
tol = 1e-12; % optimum for

numerical noise v.s. actual precision
r1 = sqrt(r1vec*r1vec.'); % magnitude of

r1vec
r2 = sqrt(r2vec*r2vec.'); % magnitude of

r2vec
r1unit = r1vec/r1; % unit vector

of r1vec
r2unit = r2vec/r2; % unit vector

of r2vec
crsprod = cross(r1vec, r2vec, 2); % cross product

of r1vec and r2vec
mcrsprd = sqrt(crsprod*crsprod.'); % magnitude of

that cross product
th1unit = cross(crsprod/mcrsprd, r1unit); % unit vectors

in the tangential-directions
th2unit = cross(crsprod/mcrsprd, r2unit);
% make 100.4% sure it's in (-1 <= x <= +1)
dth = acos(max(-1, min(1, (r1vec*r2vec.')/r1/r2))); %

turn angle

% if the long way was selected, the turn-angle must be
negative

% to take care of the direction of final velocity
longway = sign(tf); tf = abs(tf);
if (longway < 0), dth = dth-2*pi; end

% left-branch
leftbranch = sign(m); m = abs(m);

% define constants

60

2021 Final Bachelor’s Degree Project

c = sqrt(r1ˆ2 + r2ˆ2 - 2*r1*r2*cos(dth));
s = (r1 + r2 + c) / 2;
T = sqrt(8*muC/sˆ3) * tf;
q = sqrt(r1*r2)/s * cos(dth/2);

% general formulae for the initial values (Gooding)
% ---

% some initial values
T0 = LancasterBlanchard(0, q, m);
Td = T0 - T;
phr = mod(2*atan2(1 - qˆ2, 2*q), 2*pi);

% initial output is pessimistic
V1 = NaN(1,3); V2 = V1; extremal_distances = [NaN,

NaN];

% single-revolution case
if (m == 0)

x01 = T0*Td/4/T;
if (Td > 0)

x0 = x01;
else

x01 = Td/(4 - Td);
x02 = -sqrt(-Td/(T+T0/2));
W = x01 + 1.7*sqrt(2 - phr/pi);
if (W >= 0)

x03 = x01;
else

x03 = x01 + (-W).ˆ(1/16).*(x02 - x01);
end
lambda = 1 + x03*(1 + x01)/2 - 0.03*x03ˆ2*sqrt(1 +

x01);
x0 = lambda*x03;

end

% this estimate might not give a solution
if (x0 < -1), exitflag = -1; return; end

% multi-revolution case
else

% determine minimum Tp(x)
xMpi = 4/(3*pi*(2*m + 1));
if (phr < pi)

61

2021 Final Bachelor’s Degree Project

xM0 = xMpi*(phr/pi)ˆ(1/8);
elseif (phr > pi)

xM0 = xMpi*(2 - (2 - phr/pi)ˆ(1/8));
% EMLMEX requires this one
else

xM0 = 0;
end

% use Halley's method
xM = xM0; Tp = inf; iterations = 0;
while abs(Tp) > tol

% iterations
iterations = iterations + 1;
% compute first three derivatives
[dummy, Tp, Tpp, Tppp] = LancasterBlanchard(xM, q,

m);%#ok
% new value of xM
xMp = xM;
xM = xM - 2*Tp.*Tpp ./ (2*Tpp.ˆ2 - Tp.*Tppp);
% escape clause
if mod(iterations, 7), xM = (xMp+xM)/2; end
% the method might fail. Exit in that case
if (iterations > 25), exitflag = -2; return; end

end

% xM should be elliptic (-1 < x < 1)
% (this should be impossible to go wrong)
if (xM < -1) || (xM > 1), exitflag = -1; return; end

% corresponding time
TM = LancasterBlanchard(xM, q, m);

% T should lie above the minimum T
if (TM > T), exitflag = -1; return; end

% find two initial values for second solution (again
with lambda-type patch)

%
--

% some initial values
TmTM = T - TM; T0mTM = T0 - TM;
[dummy, Tp, Tpp] = LancasterBlanchard(xM, q, m);%#ok

62

2021 Final Bachelor’s Degree Project

% first estimate (only if m > 0)
if leftbranch > 0

x = sqrt(TmTM / (Tpp/2 + TmTM/(1-xM)ˆ2));
W = xM + x;
W = 4*W/(4 + TmTM) + (1 - W)ˆ2;
x0 = x*(1 - (1 + m + (dth - 1/2)) / ...

(1 + 0.15*m)*x*(W/2 + 0.03*x*sqrt(W))) + xM;

% first estimate might not be able to yield
possible solution

if (x0 > 1), exitflag = -1; return; end

% second estimate (only if m > 0)
else

if (Td > 0)
x0 = xM - sqrt(TM/(Tpp/2 - TmTM*(Tpp/2/T0mTM -

1/xMˆ2)));
else

x00 = Td / (4 - Td);
W = x00 + 1.7*sqrt(2*(1 - phr));
if (W >= 0)

x03 = x00;
else

x03 = x00 - sqrt((-W)ˆ(1/8))*(x00 + sqrt(-
Td/(1.5*T0 - Td)));

end
W = 4/(4 - Td);
lambda = (1 + (1 + m + 0.24*(dth - 1/2)) / ...

(1 + 0.15*m)*x03*(W/2 - 0.03*x03*sqrt(W)));
x0 = x03*lambda;

end

% estimate might not give solutions
if (x0 < -1), exitflag = -1; return; end

end
end

% find root of Lancaster & Blancard's function
% --

% (Halley's method)
x = x0; Tx = inf; iterations = 0;
while abs(Tx) > tol

% iterations

63

2021 Final Bachelor’s Degree Project

iterations = iterations + 1;
% compute function value, and first two derivatives
[Tx, Tp, Tpp] = LancasterBlanchard(x, q, m);
% find the root of the *difference* between the
% function value [T_x] and the required time [T]
Tx = Tx - T;
% new value of x
xp = x;
x = x - 2*Tx*Tp ./ (2*Tpˆ2 - Tx*Tpp);
% escape clause
if mod(iterations, 7), x = (xp+x)/2; end
% Halley's method might fail
if iterations > 25, exitflag = -2; return; end

end

% calculate terminal velocities
% -----------------------------

% constants required for this calculation
gamma = sqrt(muC*s/2);
if (c == 0)

sigma = 1;
rho = 0;
z = abs(x);

else
sigma = 2*sqrt(r1*r2/(cˆ2)) * sin(dth/2);
rho = (r1 - r2)/c;
z = sqrt(1 + qˆ2*(xˆ2 - 1));

end

% radial component
Vr1 = +gamma*((q*z - x) - rho*(q*z + x)) / r1;
Vr1vec = Vr1*r1unit;
Vr2 = -gamma*((q*z - x) + rho*(q*z + x)) / r2;
Vr2vec = Vr2*r2unit;

% tangential component
Vtan1 = sigma * gamma * (z + q*x) / r1;
Vtan1vec = Vtan1 * th1unit;
Vtan2 = sigma * gamma * (z + q*x) / r2;
Vtan2vec = Vtan2 * th2unit;

% Cartesian velocity
V1 = Vtan1vec + Vr1vec;
V2 = Vtan2vec + Vr2vec;

64

2021 Final Bachelor’s Degree Project

% exitflag
exitflag = 1; % (success)

% also determine minimum/maximum distance
a = s/2/(1 - xˆ2); % semi-major axis
extremal_distances = minmax_distances(r1vec, r1, r1vec, r2,

dth, a, V1, V2, m, muC);

end

% Lancaster & Blanchard's function, and three derivatives
thereof

function [T, Tp, Tpp, Tppp] = LancasterBlanchard(x, q, m)

% protection against idiotic input
if (x < -1) % impossible; negative eccentricity

x = abs(x) - 2;
elseif (x == -1) % impossible; offset x slightly

x = x + eps;
end

% compute parameter E
E = x*x - 1;

% T(x), T'(x), T''(x)
if x == 1 % exactly parabolic; solutions known exactly

% T(x)
T = 4/3*(1-qˆ3);
% T'(x)
Tp = 4/5*(qˆ5 - 1);
% T''(x)
Tpp = Tp + 120/70*(1 - qˆ7);
% T'''(x)
Tppp = 3*(Tpp - Tp) + 2400/1080*(qˆ9 - 1);

elseif abs(x-1) < 1e-2 % near-parabolic; compute with
series
% evaluate sigma
[sig1, dsigdx1, d2sigdx21, d3sigdx31] = sigmax(-E);
[sig2, dsigdx2, d2sigdx22, d3sigdx32] = sigmax(-E*q*q);
% T(x)
T = sig1 - qˆ3*sig2;
% T'(x)
Tp = 2*x*(qˆ5*dsigdx2 - dsigdx1);

65

2021 Final Bachelor’s Degree Project

% T''(x)
Tpp = Tp/x + 4*xˆ2*(d2sigdx21 - qˆ7*d2sigdx22);
% T'''(x)
Tppp = 3*(Tpp-Tp/x)/x + 8*x*x*(qˆ9*d3sigdx32 -

d3sigdx31);

else % all other cases
% compute all substitution functions
y = sqrt(abs(E));
z = sqrt(1 + qˆ2*E);
f = y*(z - q*x);
g = x*z - q*E;

% BUGFIX: (Simon Tardivel) this line is incorrect for E
==0 and f+g==0

% d = (E < 0)*(atan2(f, g) + pi*m) + (E > 0)*log(max
(0, f + g));

% it should be written out like so:
if (E<0)

d = atan2(f, g) + pi*m;
elseif (E==0)

d = 0;
else

d = log(max(0, f+g));
end

% T(x)
T = 2*(x - q*z - d/y)/E;
% T'(x)
Tp = (4 - 4*qˆ3*x/z - 3*x*T)/E;
% T''(x)
Tpp = (-4*qˆ3/z * (1 - qˆ2*xˆ2/zˆ2) - 3*T - 3*x*Tp)/E;
% T'''(x)
Tppp = (4*qˆ3/zˆ2*((1 - qˆ2*xˆ2/zˆ2) + 2*qˆ2*x/zˆ2*(z -

x)) - 8*Tp - 7*x*Tpp)/E;

end
end

% series approximation to T(x) and its derivatives
% (used for near-parabolic cases)
function [sig, dsigdx, d2sigdx2, d3sigdx3] = sigmax(y)

% preload the factors [an]
% (25 factors is more than enough for 16-digit accuracy)

66

2021 Final Bachelor’s Degree Project

persistent an;
if isempty(an)

an = [
4.000000000000000e-001; 2.142857142857143e-001;

4.629629629629630e-002
6.628787878787879e-003; 7.211538461538461e-004;

6.365740740740740e-005
4.741479925303455e-006; 3.059406328320802e-007;

1.742836409255060e-008
8.892477331109578e-010; 4.110111531986532e-011;

1.736709384841458e-012
6.759767240041426e-014; 2.439123386614026e-015;

8.203411614538007e-017
2.583771576869575e-018; 7.652331327976716e-020;

2.138860629743989e-021
5.659959451165552e-023; 1.422104833817366e-024;

3.401398483272306e-026
7.762544304774155e-028; 1.693916882090479e-029;

3.541295006766860e-031
7.105336187804402e-033];

end

% powers of y
powers = y.ˆ(1:25);

% sigma itself
sig = 4/3 + powers*an;

% dsigma / dx (derivative)
dsigdx = ((1:25).*[1, powers(1:24)]) * an;

% d2sigma / dx2 (second derivative)
d2sigdx2 = ((1:25).*(0:24).*[1/y, 1, powers(1:23)]) * an;

% d3sigma / dx3 (third derivative)
d3sigdx3 = ((1:25).*(0:24).*(-1:23).*[1/y/y, 1/y, 1,

powers(1:22)]) * an;

end

%

% Helper functions

67

2021 Final Bachelor’s Degree Project

%

% compute minimum and maximum distances to the central body
function extremal_distances = minmax_distances(r1vec, r1,...

r2vec, r2,...
dth,...
a,...
V1, V2,...
m,...
muC)

% default - minimum/maximum of r1,r2
minimum_distance = min(r1,r2);
maximum_distance = max(r1,r2);

% was the longway used or not?
longway = abs(dth) > pi;

% eccentricity vector (use triple product identity)
evec = ((V1*V1.')*r1vec - (V1*r1vec.')*V1)/muC - r1vec/r1;

% eccentricity
e = sqrt(evec*evec.');
% apses
pericenter = a*(1-e);
apocenter = inf; % parabolic/hyperbolic

case
if (e < 1), apocenter = a*(1+e); end % elliptic case

% since we have the eccentricity vector, we know exactly
where the

% pericenter lies. Use this fact, and the given value of [
dth], to

% cross-check if the trajectory goes past it
if (m > 0) % obvious case (always elliptical and both apses

are traversed)
minimum_distance = pericenter;
maximum_distance = apocenter;

else % less obvious case
% compute theta1&2 (use (AxB)-(CxD) = (C B)(D A) - (

C A)(B D)))
pm1 = sign(r1*r1*(evec*V1.') - (r1vec*evec.')*(r1vec*

V1.'));

68

2021 Final Bachelor’s Degree Project

pm2 = sign(r2*r2*(evec*V2.') - (r2vec*evec.')*(r2vec*
V2.'));

% make 100.4% sure it's in (-1 <= theta12 <= +1)
theta1 = pm1*acos(max(-1, min(1, (r1vec/r1)*(evec/e)

.')));
theta2 = pm2*acos(max(-1, min(1, (r2vec/r2)*(evec/e)

.')));
% points 1&2 are on opposite sides of the symmetry axis

-- minimum
% and maximum distance depends both on the value of [

dth], and both
% [theta1] and [theta2]
if (theta1*theta2 < 0)

% if |th1| + |th2| = turnangle, we know that the
pericenter was

% passed
if abs(abs(theta1) + abs(theta2) - dth) < 5*eps(dth

)
minimum_distance = pericenter;

% this condition can only be false for elliptic
cases, and

% when it is indeed false, we know that the orbit
passed

% apocenter
else

maximum_distance = apocenter;
end

% points 1&2 are on the same side of the symmetry axis.
Only if the

% long-way was used are the min. and max. distances
different from

% the min. and max. values of the radii (namely, equal
to the apses)

elseif longway
minimum_distance = pericenter;
if (e < 1), maximum_distance = apocenter; end

end
end

% output argument
extremal_distances = [minimum_distance, maximum_distance];

end

69

2021 Final Bachelor’s Degree Project

References
[1] Evgeny Kuzmin, Dmitry Goritsyn, and Irina Khasanova. Colonization of Mars. https:

//mars-colony.life/. Accessed: 10/07/2021.

[2] Delft University Aerospace Engineering. Spacecraft engineering: Delta-v (velocity incre-
ment) budget. http://lr.tudelft.nl. Accessed: 05/07/2021.

[3] Howard D. Curtis. Orbital Mechanics for Engineering Students. Elsevier, 2010.

[4] José Antonio Moraño Fernández. Orbits, satellites and relativity notes. 2020.

[5] Guido Colasurdo. Astrodynamics. Politecnico di Torino, 2006.

[6] OpenStax College. Algebra and Trigonometry. OpenStax CNX.

[7] Brent Barbee. Mission planning for the mitigation of hazardous near Earth objects. 2021.

[8] Alessandro Zavoli. Orbital mechanics notes. 2020.

[9] Denilson Paulo Souza dos Santos, Antônio Fernando Bertachini de Almeida Prado, and
Guido Colasurdo. Four-impulsive rendezvous maneuvers for spacecraft in circular orbits
using genetic algorithms. Mathematical Problems in Engineering, 2012.

[10] José Tatay Sangüesa. Multi-objective optimisation of impulsive orbital trajectories. Final
Bachelor’s Degree Project, 2019.

[11] Xin-She Yang. Genetic algorithms. In Nature-Inspired Optimization Algorithms, chap-
ter 6, pages 91–100. Academic Press, second edition, 2021.

[12] Ryan Champlin. Selection methods of genetic algorithms. Student Scholarship - Computer
Science, 2018.

[13] Xiao-Bing Hu and Ezequiel Di Paolo. An efficient genetic algorithm with uniform
crossover for air traffic control. Computers operations research, pages 245–259, 2009.

[14] A.E. Eiben and Jim E. Smith. Introduction To Evolutionary Computing, volume 45. 2003.

[15] William Crossley, Kamlesh Nankani, and Daniel Raymer. Comparison of bit-string
affinity and consecutive generation stopping criteria for genetic algorithms. 42nd AIAA
Aerospace Sciences Meeting and Exhibit, 2004.

[16] Alireza Alinezhad, Abolfazl Kazemi, and Mojgan Khorasani. Presenting a model for
decoupling points in supply chain networks. International Journal of Logistics Systems
and Management, 33:383–403, 2019.

[17] George Mavrotas. Effective implementation of the ε-constraint method in multi-objective
mathematical programming problems. Applied mathematics and computation, pages 455–
465, 2009.

[18] George Mavrotas and Kostas Florios. An improved version of the augmented ε-constraint
method (AUGMECON2) for finding the exact pareto set in multi-objective integer pro-
gramming problems. Applied mathematics and computation, pages 9652–9669, 2013.

70

https://mars-colony.life/
https://mars-colony.life/
http://lr.tudelft.nl

2021 Final Bachelor’s Degree Project

[19] Dario Izzo. Revisiting Lambert’s problem. Celestial Mechanics and Dynamical Astron-
omy, 2014.

[20] David Ottesen and Ryan P. Russell. Unconstrained spacecraft trajectory optimization us-
ing embedded boundary value problems. AAS/AIAA Astrodynamics Specialist Conference,
2019.

[21] Ryan P. Russell. On the solution to every Lambert problem. Celestial Mechanics and
Dynamical Astronomy, 2019.

[22] Rody Oldenhuis. Robust solver for Lambert’s orbital-boundary value problem. https:
//nl.mathworks.com/matlabcentral/fileexchange/26348. Accessed:
25/01/2021.

[23] California Institute of Technology Jet Propulsion Laboratory. HORIZONS interface.
https://ssd.jpl.nasa.gov/horizons.cgi. Accessed: 20/01/2021.

[24] P.wormer. Spherical polar coordinates. https://upload.wikimedia.org/
wikipedia/commons/7/75/Spherical_polar_coordinates.png. Ac-
cessed: 06/06/2021.

[25] William Crossley. Genetic algorithm introduction. AAE 55000: Multidisciplinary Design
Optimization, 2018.

[26] Jürgen Giesen. Hohmann transfer orbit applet. http://www.jgiesen.de/
hohmann/. Accessed: 09/06/2021.

[27] David P. Stern. Flight to Mars: calculations. http://www.phy6.org/stargaze/
Smars2.htm. Accessed: 09/06/2021.

[28] NASA’s Science Mission Directorate. Mars exploration program historical log. https:
//mars.nasa.gov/mars-exploration/missions/historical-log/.
Accessed: 20/06/2021.

[29] Acer. Swift 3 technical specifications. https://www.acer.com/ac/es/MX/
content/model/NX.GNUAL.014. Accessed: 10/07/2021.

[30] Selectra. ¿cuál es el precio del kWh en mercado regulado? https://selectra.es/
energia/info/que-es/precio-kwh. Accessed: 10/07/2021.

[31] Agencia Tributaria. Tabla de coeficientes de amortización lineal. https:
//www.agenciatributaria.es/AEAT.internet/Inicio/_Segmentos_
/Empresas_y_profesionales/Empresas/Impuesto_sobre_
Sociedades/Periodos_impositivos_a_partir_de_1_1_2020/
Base_imponible/Amortizacion/Tabla_de_coeficientes_de_
amortizacion_lineal_.shtml. Accessed: 10/07/2021.

[32] Universitat Politècnica de València. Normativa marco de trabajos fin de grado y fin de
máster. 2013.

71

https://nl.mathworks.com/matlabcentral/fileexchange/26348
https://nl.mathworks.com/matlabcentral/fileexchange/26348
https://ssd.jpl.nasa.gov/horizons.cgi
https://upload.wikimedia.org/wikipedia/commons/7/75/Spherical_polar_coordinates.png
https://upload.wikimedia.org/wikipedia/commons/7/75/Spherical_polar_coordinates.png
http://www.jgiesen.de/hohmann/
http://www.jgiesen.de/hohmann/
http://www.phy6.org/stargaze/Smars2.htm
http://www.phy6.org/stargaze/Smars2.htm
https://mars.nasa.gov/mars-exploration/missions/historical-log/
https://mars.nasa.gov/mars-exploration/missions/historical-log/
https://www.acer.com/ac/es/MX/content/model/NX.GNUAL.014
https://www.acer.com/ac/es/MX/content/model/NX.GNUAL.014
https://selectra.es/energia/info/que-es/precio-kwh
https://selectra.es/energia/info/que-es/precio-kwh
https://www.agenciatributaria.es/AEAT.internet/Inicio/_Segmentos_/Empresas_y_profesionales/Empresas/Impuesto_sobre_Sociedades/Periodos_impositivos_a_partir_de_1_1_2020/Base_imponible/Amortizacion/Tabla_de_coeficientes_de_amortizacion_lineal_.shtml
https://www.agenciatributaria.es/AEAT.internet/Inicio/_Segmentos_/Empresas_y_profesionales/Empresas/Impuesto_sobre_Sociedades/Periodos_impositivos_a_partir_de_1_1_2020/Base_imponible/Amortizacion/Tabla_de_coeficientes_de_amortizacion_lineal_.shtml
https://www.agenciatributaria.es/AEAT.internet/Inicio/_Segmentos_/Empresas_y_profesionales/Empresas/Impuesto_sobre_Sociedades/Periodos_impositivos_a_partir_de_1_1_2020/Base_imponible/Amortizacion/Tabla_de_coeficientes_de_amortizacion_lineal_.shtml
https://www.agenciatributaria.es/AEAT.internet/Inicio/_Segmentos_/Empresas_y_profesionales/Empresas/Impuesto_sobre_Sociedades/Periodos_impositivos_a_partir_de_1_1_2020/Base_imponible/Amortizacion/Tabla_de_coeficientes_de_amortizacion_lineal_.shtml
https://www.agenciatributaria.es/AEAT.internet/Inicio/_Segmentos_/Empresas_y_profesionales/Empresas/Impuesto_sobre_Sociedades/Periodos_impositivos_a_partir_de_1_1_2020/Base_imponible/Amortizacion/Tabla_de_coeficientes_de_amortizacion_lineal_.shtml
https://www.agenciatributaria.es/AEAT.internet/Inicio/_Segmentos_/Empresas_y_profesionales/Empresas/Impuesto_sobre_Sociedades/Periodos_impositivos_a_partir_de_1_1_2020/Base_imponible/Amortizacion/Tabla_de_coeficientes_de_amortizacion_lineal_.shtml

	Abstract
	Resumen
	Resum
	Acknowledgements
	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	Introduction
	Motivation

	Theoretical background
	Orbital mechanics
	Heliocentric ecliptic coordinates
	Simplifying hypotheses
	The orbital equation
	Three-dimensional orbits
	Orbital manoeuvres
	Orbit transfer optimisation
	Synodic period

	The genetic algorithm
	Multi-objective optimisation

	Methodology
	Orbital transfer problem
	Genetic algorithm settings

	Presentation of results
	Comparison with Hohmann transfer
	Optimal transfer orbits
	Time of Flight = 100 days
	Time of Flight = 250 days
	Time of Flight = 205 days
	Results validation

	Budget
	Labour costs
	Energy consumption costs
	Hardware costs
	Software costs
	Total costs

	Solicitations
	Technical aspects

	Conclusions
	Future work
	APPENDIX
	MATLAB code

	References

