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Abstract

In this thesis, we consider two problems: we �rst explore the application of
visibility graphs for describing the orbits of a discrete dynamical system that
is governed by a fractional version of the logistic equation. We also study how
to use this type of graphs to study response time series from the perspective of
psychology. The preliminaries and introduction of these visibility graphs are
presented in Chapter 1, where we revisit some basic facts from network science
related to them.

In the �rst part of this thesis, we analyze a phenomenon of mathematical
nature. Wu and Baleanu introduced a fractional discrete dynamical system
inspired by the fractional di�erence logistic equation [WB14]. In order to
study the trajectories of this model under this perspective of network science,
in Chapter 2, we �rst review the most used fractional derivatives (Riemann-
Liouville, Caputo, and Gründwald-Letnikov). Later, we show how to consider
discrete fractional derivatives. Within our work, we present an alternative way
of deducing the governing equation with respect to the one shown by Wu and
Baleanu in [WB14].

We revisit the Wu-Baleanu equation in Chapter 3, focused on the visibility
graphs of trajectories generated under di�erent values of the scaling factor and
the fractional exponent. We also study the existing connections between these
parameters and the �tting with the degree distribution of the corresponding
visibility graphs. When chaos is present, we link them with the exponent
obtained when �tting the degree distribution to a power-law of the form x−α.
With this approach, we provide an integrated vision of the dynamics of a
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family of fractional discrete dynamical systems that cannot be obtained from
single Feigenbaum diagrams computed for each scaling factor and fractional
exponent. We also connect the power-law exponent of the degree distribution
�tting with the Shannon entropy of the visibility graphs degree distribution.

In the second part, we analyze the response times of students to a binary de-
cision task from the perspective of network science. We analyze the properties
of the natural visibility graphs associated with their reaction time series. We
observe that the degree distribution of these graphs usually �ts a power-law
distribution p(x) = x−α. We study the range in which parameter α occurs and
the changes of this exponent with respect to the age and gender of the students.
Besides, we also study the links between the parameter α and the ex-Gaussian
distribution parameters that best �t each subject's response times.

Finally, we outline some conclusions and perspectives of future research in both
parts in Chapter 6.
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Resumen

En esta tesis, hemos considerado dos problemas: primero exploramos la apli-
cación de los grafos de visibilidad para describir las órbitas de un sistema
dinámico discreto que está gobernado por una versión fraccionaria de la ecuación
logística. Además, también estudiamos cómo usar este tipo de grafos para estu-
diar series temporales de tiempos de respuesta desde una perspectiva psicológ-
ica. Los preliminares, así como una introducción a estos grafos de visibilidad,
se presentan en el Capítulo 1, donde revisitamos algunos hechos básicos de la
ciencia de redes relacionados con dichos grafos.

En la primera parte de esta tesis, analizamos un fenómeno de naturaleza
matemática. Wu y Baleanu introdujeron un sistema dinámico discreto frac-
cionario inspirado en la ecuación logística con derivadas fraccionarias [WB14].
Con el propósito de estudiar las trayectorias de este modelo desde la perspectiva
de la ciencia de redes, en el Capítulo 2, primero revisamos las derivadas frac-
cionarias más utilizadas (Riemann-Liouville, Caputo y Gründwald-Letnikov).
Posteriormente, mostramos cómo considerar derivadas fraccionarias discretas.
En nuestro trabajo, presentamos una forma alternativa de deducir la ecuación
gobernante con respecto a la presentada por Wu y Baleanu en [WB14].

Revisitamos la ecuación de Wu-Baleanu en el Capítulo 3, centrado en los grafos
de visibilidad de trayectorias generadas a partir de distintos valores del factor
de escala y del exponente fraccionario. También estudiamos la existencia de
conexiones entre estos parámetros y el ajuste de la distribución de los grados
de los correspondientes grafos de visibilidad. Cuando el caos está presente, los
enlazamos con el exponente obtenido al ajustar la distribución de los grados a
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una ley de potencias de la forma x−α. A través de este enfoque, proporcionamos
una visión integrada de la dinámica de una familia de sistemas dinámicos
discretos fraccionarios que no se pueden obtener a partir de diagramas de
Feigenbaum individuales calculados para cada factor de escala y exponente
fraccionario. Además, relacionamos el exponente de la ley de potencias del
ajuste de la distribución de grados con la entropía de Shannon de la distribución
de grados de los grafos de visibilidad.

En la segunda parte, analizamos el tiempo de respuesta de un grupo de es-
tudiantes que realizaron una tarea de decisión binaria desde la perspectiva
de la ciencia de redes. Estudiamos las propiedades de los grafos de visibilidad
natural asociados con sus correspondientes series de tiempos de respuesta. Ob-
servamos que la distribución de los grados de estos grafos normalmente sigue
una distribución ley de potencias p(x) = x−α. Analizamos el rango en el cual el
parámetro α se mueve y los cambios de este exponente con respecto a la edad y
el sexo de los estudiantes. Por otro lado, también estudiamos la relación entre
el parámetro α y los parámetros de la distribución ex-Gaussiana que mejor se
ajusta al tiempo de respuesta de cada sujeto.

Finalmente, destacamos algunas conclusiones y perspectivas de investigación
futura en ambas líneas de trabajo en el Capítulo 6.
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Resum

En aquesta tesi, hem considerat dos problemes: primer explorem l'aplicació
dels grafs de visibilitat per a descriure les òrbites d'un sistema dinàmic discret
que està governat per una versió fraccionària de l'equació logística. A més a
més, també estudiem com emprar aquest tipus de grafs per a analitzar sèries
temporals de temps de resposta des d'una perspectiva psicològica. Els prelim-
inars, així com una introducció a aquests grafs de visibilitat, es presenten al
Capítol 1, on revisitem alguns fets bàsics de la ciència de xarxes rel·lacionats
amb ells.

En la primera part d'aquesta tesi, analitzem un fenòmen de naturalesa ma-
temàtica. Wu i Baleanu van introduir un sistema dinàmic discret fraccionari
inspirat en l'equació logística amb derivades fraccionàries [WB14]. Amb el �
d'estudiar les trajectòries d'aquest model des d'una perspectiva de la ciència
de xarxes, en el Capítol 2, primer revisem les derivades fraccionàries més util-
itzades (Riemann-Liouville, Caputo i Gründwald-Letnikov). Posteriorment,
mostrem com considerar derivades fraccionàries discretes. Al nostre treball,
presentem una forma alternativa de deduir l'equació governant respecte a la
presentada per Wu i Baleanu en [WB14].

Revisitem l'equació de Wu-Baleanu al Capítol 3, focalitzat en el grafs de visi-
bilitat de trajectòries generades a partir de valors diferents del factor d'escala
i de l'exponent fraccionari. També estudiem l'existència de connexions entre
aquests paràmetres i l'ajust de la distribució dels graus dels corresponents grafs
de visibilitat. Quan el caos hi és, els enllacem amb l'exponent que hem obtés
en ajustar la distribució dels graus a una llei de potències de la forma x−α.
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Des d'aquesta perspectiva, proporcionem una visió integrada de la dinàmica
d'una família de sistemes dinàmics discrets fraccionaris que no es poden obtenir
a partir de diagrames de Feigenbaum individuals calculats per a cada factor
d'escala i exponent fraccionari. A més a més, relacionem l'exponent de la llei
de potències de l'ajust de la distribució de graus amb l'entropia de Shannon
de la distribució de graus dels grafs de visibilitat.

A la segona part, analitzem el temps de resposta d'un grup d'estudiants que
realitzaren una tasca de decisió binària des del punt de vista de la ciència de
xarxes. Estudiem les propietats dels grafs de visibilitat natural associats amb
les seues corresponents sèries temporals de temps de resposta. Observem que
la distribució dels graus d'aquests grafs normalment segueix una distribució
llei de potències p(x) = x−α. Analitzem el rang en què el paràmetre α es mou
i els canvis d'aquest exponent respecte a l'edat i el sexe dels estudiants. D'altra
banda, també estudiem la relació entre el paràmetre α i els paràmetres de la
distribució ex-Gaussiana que millor �ta el temps de resposta de cada subjecte.

Finalment, destaquem algunes conclusions i perspectives d'investigació futura
en ambdues línies de treball en el Capítol 6.
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Chapter 1

Network analysis of time series

A time series is an ordered sequence of values taken by a variable. It can
be understood as the description of the trajectory of an initial condition in a
dynamical system. We can deterministically model many of these systems by
adjusting the data to some mathematical functions. The order of the values
within a trajectory is essential when characterizing a dynamical system. For
instance, this is relevant when studying periodic trajectories, determining the
sensitivity dependence to the initial conditions, or analyzing a stochastic pro-
cess from a statistical point of view. Therefore, any statistical or mathematical
approach used to explore this kind of data must consider the values' order to
better understand the time series' behavior.

A recent perspective for analyzing and visualizing time series is to convert a
univariate time series into a graph (network) and analyze its properties in terms
of network science. Such graphs are called Natural and Horizontal Visibility
Graphs (NVGs and HVGs). We can �nd applications of this type of time series
analysis in climate dynamics, multiphase �ow, brain functions, ECG dynamics,
economics, and tra�c systems [GSK16]. As we will see in the rest of this
chapter, there are many connections between time series and their underlying
network properties. These connections have permitted us to connect dynamical
and complex systems.

9



Chapter 1. Network analysis of time series

In the sequel, we will assume that the reader is familiar with the basic de�-
nitions and properties of graph theory in connection with network science. If
needed, we refer to the following monographs [Bar16, Est12, LNR17, New18].

We brie�y describe the contents of this chapter: In the �rst part, in Section 1.1,
we introduce NVGs, HVGs, and their main properties in Section 1.2. We
present the Hurst exponent and some network complexity measures such as
the Shannon entropy. We also illustrate the applicability of these visibility
graphs through examples from very contrasting �elds. In the second part, in
Section 1.3, we de�ne the power-law distribution for continuous and discrete
random variables. Later, we introduce the Kolmogorov-Smirnov statistic as
a measure of goodness-of-�t for degree distributions to power-laws in Section
1.4. Finally, we present in Section 1.5 some correlation matrices that will be
needed for comparing degree distributions.

1.1 Natural and horizontal visibility graphs

Visibility graphs (VGs) were introduced in order to transform time series into
networks. Given a time series {un : 1 ≤ n ≤ N0}, we represent these values
as points coordinates in the plane {(n, un) : 1 ≤ n ≤ N0}.

On the one hand, the associated Natural Visibility Graph (NVG), introduced
in [LLB+08], is de�ned as follows:

• Nodes correspond to the data of the time series. Every value (n, yn) of
the time series is associated to a node, that we will denote by n.

• Edges represent connections between nodes. Two nodes are connected if
the straight line from one node to the other one does not intersect any
other data height between these two nodes. Formally, two nodes of any
two arbitrary values (na, ya) and (nb, yb) of the time series are connected
if any other data (nc, yc) with na < nc < nb, ful�lls:

yc < yb + (ya − yb)
nb − nc
nb − na

. (1.1)

We illustrate the construction of the NVG of a given time series in Figure 1.1.

10



1.1 Natural and horizontal visibility graphs

Figure 1.1: Construction of a Natural Visibility Graph (NVG). On the left, a time series.
On the right, the NVG associated to this time series.

On the other hand, we can also consider another type of visibility graph. Given
a time series {(n, un) : 1 ≤ n ≤ N0}, its associated Horizontal Visibility Graph
(HVG), introduced by [LLBL09], is structured as follows:

• Nodes correspond to the data of the time series.

• Edges link two nodes of any two arbitrary values (na, ya) and (nb, yb) of
the time series if for any other node (nc, yc) with na < nc < nb, ful�lls
that ya > yc and yb > yc.

We also illustrate the construction of the HVG of a given time series in Fig-
ure 1.2.

Figure 1.2: Construction of a Horizontal Visibility Graph (HVG). On the left, a time series.
On the right, the HVG associated to this time series.
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Chapter 1. Network analysis of time series

The resulting visibility graph, regardless of the algorithm by which we obtain
it, satis�es the following properties:

(i) It is undirected : Edges have no direction.

(ii) It is connected : There are no isolated nodes. Each node is connected,
at least, with the nodes corresponding to the nodes associated with the
previous and subsequent values in the time series.

(iii) It is invariant under a�ne transformations: Rescaling both horizontal
and vertical axes, and horizontal and vertical translations do not modify
the connections in the visibility graph.

(iv) Visibility graphs capture the hub repulsion phenomenon associated with
fractal networks [SHM06] and thus distinguishes scale-free visibility graphs
evidencing the small-world e�ect from those showing scale invariance.

From property (iii), it follows that a time series and its a�ne transformation
are represented by the same visibility graph. For instance, consider the time
series S1 = {(1, 5), (2, 1), (3, 1), (4, 3), (5, 7)} and the one given by adding one
to each observation S2 = {(1, 6), (2, 2), (3, 2), (4, 4), (5, 8)}. Both time series
have the same visibility graph since their adjacency matrices coincide.

1.2 Properties of visibility graphs

Despite visibility graphs do not contain all the quantitative information of the
time series, they comprise part of their qualitative information since visibility
graphs and time series are strongly linked. We revisit some properties that
these graphs inherit from their respective time series.

1.2.1 Degree distributions

The distribution of the number of edges adjacent to each node, i.e., the de-
gree distribution of the nodes, catches part of the time series characteris-
tics. For instance, a periodic series will be represented by a regular graph
(all the nodes with the same degree), and random series by random graphs
[LLB+08, LLLN09]. In the same way, a stochastic time series will be repre-
sented by a scale-free network whose degree distribution will follow a power-law
function [BA99, New03, DM02, SHM05].
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1.2 Properties of visibility graphs

HVGs permit to compute more analytical properties of their structure, see
[NLGL12]. Given a graph G without isolated nodes, whose degree distribution
is given by {p(k)}∞k=1, we recall that the mean degree k can be computed as
k =

∑∞
n=1 kp(k). For the general case of HVGs, we have 2 ≤ k ≤ 4, being

k = 2 if the series is constant and k = 4 if the series is random. For the
particular case of periodic time series {xt}∞t=−∞ of period T , that is x0 = xT
and xi 6= xj,∀i, j ∈ {0, . . . , T − 1} is k = 4(1− 1/(2T )), see [NLV+12].

In the case of the HVG associated to an in�nite random time series, the de-
gree distribution is given by p(k) = 1

3

(
2
3

)k−2
, with k = 2, 3, 4 . . ., [NLV+12].

Applying the formula for the sum of �rst order arithm-geometric progressions,
it yields that k = 4, that agrees with taking limits when T tends to ∞ in the
formula k = 4(1− 1/(2T )).

When the time series is given by a random variable X with values in [0, 1]
and its probability density distribution is given by f(x), then its cumulative
distribution function is given by F (x) =

∫ x
−∞ f(s)ds, where dF (x)

d(x)
= f(x),

F (0) = 0, F (1) = 1. In this case, we can estimate the conditional probability
p(k|x) that a node has degree k provided that it has height x as

p(k|x) =
k−2∑
j=0

(−1)k−2

j!(k − 2− j)!
(1− F (x))2(ln(1− F (x)))k−2. (1.2)

This yields that the mean degree of a node of height x is given by 2−2 log(1−
F (x)) [LLBL09]. AsK(x) is monotonically increasing, since log(x) and F (x) ∈
[0, 1] are monotonically increasing functions, then the most connected nodes,
also called �hubs�, represent the most extreme events of the series (i.e. nodes
with large heights).

The probability p0(n) that two nodes associated with two terms of the series
separated by n intermediate terms are connected is given by p0(n) = 2

n(n+1)

[LLBL09]. This result can be easily obtained using probability theory. Just
consider a random series with n + 1 nodes. There are n(n + 1) equiprobable
positions in the series, however, only two of these positions are separated by n
nodes. The formula is directly obtained by using Laplace's rule.
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Chapter 1. Network analysis of time series

1.2.2 The Hurst exponent

Fractal phenomena are present in many areas of applied mathematics and in
a myriad of phenomena in natural and social sciences [Man82, PJS06]. From
the celebrated Mandelbrot's paper on self-similar curves and fractal dimension
[Man67], fractality was identi�ed in very di�erent �elds such as controlled cog-
nitive performances and other mental activities [GTM95, VOJM05], in some
geologic properties [Gea05], in economic data [MGR+08] or correlations in
DNA base sequences [PBGea92]. The fractal dimension measures the rough-
ness of a process, for instance, the roughness of coastlines [Tur93] or the neu-
ronal growth [TMT92]. The Hurst exponent H is a measure of the long-term
memory in a time series. It can be estimated through the �tting to a power-
law CnH of the estimated value of R(n)/S(n), where R(n) is the di�erence
between the maximum and the minimum of the �rst n cumulative deviations
from the mean, and S(n) is the sum of the �rst n standard deviations. A
small Hurst exponent has a higher fractal dimension and a rougher surface,
and vice versa: a larger Hurst exponent has a smaller fractional dimension and
a smoother surface, see Figure 1.3.

Figure 1.3: Time series with di�erent Hurst exponents: H = 0.72, H = 0.50, andH = 0.43.

A speci�c fractal structure is the 1/f noise or pink noise. Main features of 1/f
noise are long memory and self-similarity. A process is self-similar when is
similar at di�erent scales of time or space [Sta12]. For self-similar time series,
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1.2 Properties of visibility graphs

with fractal dimension 1 < D < 2, we have that D = 2 − H [Man85]. Long
memory and self-similarity can be traduced into statistical properties. Long
memory can be de�ned in terms of autocorrelation. Let {xt}∞t=1 be a time
series. If xi and xi+d are correlated, then the process exhibits autocorrelation.
The autocorrelation function (ACF) of a long memory process decays over time
and this decay follows a power-law distribution:

q(k) ∼ k−α (1.3)

where q(k) is the ACF with lag k. The Hurst exponent is related to the α
power-law exponent as follows

H = 1− α

2
. (1.4)

The Hurst exponent ranges between 0 and 1 and it is linked with Brownian
motions. If H > 0.5, this means that there is a positive autocorrelation (or
persistent behavior); if there is an increase from value xi−d to value xi, then
there will probably be an increase from xi. This is also referred to as having
certain memory. Analogously for decreases. If H < 0.5, the autocorrelation
is negative (antipersistent behavior). In this case, an increase tends to be
followed by a decrease and vice versa. If H = 0.5, there is no correlation
between elements, indicating that it is a completely random process. This
behavior is sometimes called mean reversion.

The Hurst exponent can also be understood as a probability: the probability
that an event is followed by a similar event. This probability is H = 0.5
in white noise as it represents a sequence of uncorrelated random variables
[Sta12] and, therefore, the process has no memory. This probability is also
H = 0.5 in Brown noise as it represents a series with uncorrelated increments
[Sta12]. For pink noise, we have H = 1, con�rming the self-similarity and
long memory properties. Motions with H 6= 0.5 are called fractional Brownian
motions (fBM). They can be generated by various methods, including spectral
synthesis using either the Fourier transform or the wavelet transform.

Since D = 2 − H, the fractal dimension is directly related to the Hurst ex-
ponent for a statistically self-similar data set. A small Hurst exponent has a
higher fractal dimension and a rougher surface. The larger the Hurst exponent
is, the smaller the fractional dimension is, and the smoother the surface is,
too. Apart from the power-law exponent α, the fractal dimension D, and the
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Chapter 1. Network analysis of time series

Hurst exponent H, we can compute another fractal parameter, β, based on the
power spectrum. The power spectrum determines how much power (variance
or amplitude) is accounted for by each frequency (f) in the series. The term
frequency describes how rapidly things repeat themselves. The frequency is
the reciprocal of the period, f = 1/T , where T is the period. If f = 0, there
is no repetition. If f < 1, then we have more than an entire period in a time
unit. On the contrary, if f > 1, the period cannot be completed within the
time expected time lag.

The spectral density function gives the amount of variance accounted for by
each frequency we can measure. Denoting the power spectrum function, 1/fβ,
where β is the power exponent, then β = 0 for white noise, β = 1 for pink
noise and β = 2 for Brown noise.

1.2.3 Fractional Brownian Motions

We de�ne a fractional Brownian motion (fBm) as a non-stationary model de-
scribing a random process [AKCC+15]. It is a generalization of a Brownian
motion with normally distributed process' increments but not independent
[Man82]. Fractional Brownian motions and other self-similar processes describe
fractal dynamics in many disciplines. For instance, for the analysis of the hu-
man heartbeat signals [IAGea99], the study of �nancial markets [MGR+08], or
the exploration of landing sites in Mars [Gea05].

The correlation of a random phenomena, B(t) for any time t ≥ 0, and h > 0
can be determined as:

E [(B(t)−B(0))(B(t+ h)−B(t))] = ((t+ h)2H − t2H − h2H)/2, (1.5)

where H ∈ R is the Hurst exponent.

In general, fractal signals can be classi�ed in fractional Gaussian noises (fGn),
which are stationary processes with constant mean and variance, and fractional
Brownian motions(fBm), which consist of non-stationary processes with sta-
tionary increments. The stationary increments of a fBm are fGn.

There are di�erent approaches to estimate the previously mentioned fractal
parameters, such as the detrended �uctuation analysis (DFA) or periodogram-
based procedures like power spectral density [Sta12]. However, Lacasa et al.
proposed an alternative method to estimate the Hurst exponent in fractional
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1.2 Properties of visibility graphs

Brownian motions based on visibility graphs [LLLN09]. As we aforementioned
described, time series can be mapped into visibility graphs, and these graphs
inherit the structure and properties of the series. As fBm are fractal signals,
the associated visibility graph ful�lls the scale-free property and, therefore, its
degree distribution asymptotically follows a power-law distribution.

p(k) ∼ Ck−α (1.6)

where k is the degree of a given node, and α and C are constants.

In a fBm series, H, α, and β are related as follows:

α(H) = 3− 2H (1.7)

β(H) = 1 + 2H. (1.8)

Then, the degree distribution of the VG associated to a 1/fβ noise should also
follow a power-law distribution p(k) ∼ Ck−α, where α(β) = 4 − β. Equation
(1.8) holds for fBm processes, while for the increments of a fBm process
(fGn) the relation is:

β(H) = −1 + 2H. (1.9)

Consequently, the relation between α and H for an fGn is:

α(H) = 5− 2H. (1.10)

1.2.4 Network complexity

The complexity of a network can be measured through its randomness complex-
ity. This disorganisation degree can be calculated using the Shannon entropy.
The Shannon entropy of a network's degree distribution, {p(k)}∞k=1, is de�ned
as:

h = −
∞∑
k=2

p(k) log(p(k)). (1.11)

It quanti�es the ignorance we have about the system. The higher the entropy
is, the less information we have about the network or the system. Luque et al.

17



Chapter 1. Network analysis of time series

[LLBR11] initially considered the Shannon entropy in the framework of VGs.
Other entropy measures have been explored, such as the von Neumann, and
Gibbs entropies [AB09].

On the one hand, the von Neumann entropy of a density matrix ρ is de�ned
as S(ρ) = − tr(ρ log2(ρ)). For a given network G = (V,E) it is computed over
the normalized Laplacian matrix of G, L(G)/dG, where L(G) is the Laplacian
matrix of G and dG is the sum of the degrees of all the nodes of G. The von
Neumann entropy measures the regularity of a network. If the number of edges
is �xed, the von Neumann entropy is smaller in networks where most nodes
are highly connected. On the other hand, the Gibbs entropy per node was
introduced for microcanonical network ensembles. These networks satisfy a
given set of constraints, for instance, a �xed number of links per node or per
degree sequence. The Gibbs entropy of these ensembles is given by:

Σ =
1

N
log(|E|). (1.12)

1.2.5 Applications of the Visibility Graphs approach

As we said, the VG algorithms allow us to map time series into networks.
Thus, all-powerful tools developed in complex networks permit the analysis of
a time series's underlying dynamics. We can perfectly characterize the time
series and the underlying dynamical process generating it from a very di�erent
perspective by describing the resulting network. We will illustrate the great
potential of this approach and its applicability in various areas through some
examples.

• Qian et al. studied time series from the complex network perspective.
They investigated 30 world stock market indices through their respective
VGs. This algorithm converts each single stock index into a VG. Stock
markets are complex systems from which statistical properties emerge
due to the self-organization of market participants [MCZQWX10].

• Sun et al. converted the gas price time series to a VG and studied their
degree distribution, average shortest path length, and structure. They
found that the gas price network satis�ed both the small-word and scale-
free properties. Moreover, they could recognize signi�cant political and
economic events in those nodes with large degrees [SWG16].
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1.2 Properties of visibility graphs

• Guzmán-Vargas et al. analyzed the correlation properties of word lengths
in texts extracted from 30 books using NVGs. They adjusted each graph's
degree distribution to a power-law distribution and concluded that word
lengths are much more strongly correlated at large distances than at short
distances between words [GVOQAV+15].

• In the United States, Elsner et al. studied hurricanes through VGs. They
converted hurricane counts time series into networks and tried to identify
exceptional years [EJF09]. The degree distribution of the nodes followed
a random Poisson process. As expected by the VGs properties, years
with high hurricane activity surrounded by years with few hurricanes
have many linkages. From the environmental point of view, Elsner et al.
concluded that years with little sunspot activity in September, which is
the peak month of the hurricane season, best correspond with the unusu-
ally high linkage years.

• In 2012, Telesca et al. investigated Italy's seismicity during 5 years using
the VG method [TL12]. They found that the degree distribution of the
network followed a power-law function. In 2013, Aguilar-San Juan et al.
analyzed several earthquake magnitude sequences using data from Italy,
South California, and Mexico. They followed the VG approach to study
the properties of the networks associated with the time series [ASJGV13].

In the particular case of neurology and neurobiology, we brie�y outline the
following works.

• In 2010, Ahmadlou et al. adopted the VG approach to study the elec-
troencephalogram signals to diagnose Alzheimer's disease. After applying
other statistical techniques, the authors obtained a diagnosis tool with an
accuracy of 97.7% [AAA10]. Two years later, followed a similar method-
ology to diagnose autism [AAA12].

• Lehnertz et al. recognized network theory as an attractive approach to
understand some physiological and pathophysiological processes in hu-
man brain networks. They considered an epileptic process as a large-
scale network phenomenon. Through the VG concept, the authors tried
to characterize these evolving networks [LAB+14].
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• Zhu et al. (2014) applied both NVG and HVG to electroencephalogram
data and analyzed the mean degree and degree distributions. Finally,
they get a classi�cation tool for the di�erent sleep stages, reaching an
87.5% of accuracy and a κ coe�cient of 0.81 when considering 6 di�erent
states [ZLW14].

1.3 Power-law degree distributions

In 1999, Barabási and Albert showed that existing network models, such as the
random graph model of Erdös and Rényi [ER60] and the small-world model
introduced by Watts and Strogatz [WS98], did not consider two essential char-
acteristics that can be observed in real networks: growth and preferential at-
tachment [BA99]. Both models assume random network models with a �xed
number of nodes and that the probability that two nodes are connected is
random and uniform. However, real networks are continuously expanding by
adding new nodes connected to existing ones with preferential connectivity
[BA99]. We should mention here the classic example of the World Wide Web
(WWW). The nodes of this network are the di�erent web pages, and edges
represent the links between pages. This network is constantly growing by the
design of new web pages. These new web pages will be more likely connected
to popular web pages with an important number of visitors. Therefore, this
is an example of a real network characterized by its growth and preferential
attachment features.

They also reported the existence of a high degree of self-organization charac-
terizing the large-scale properties of complex networks. The probability that a
vertex in the network interacts with other nodes decays as a power law. This
result indicated that large networks self-organize into a scale-free state, a fact
that previously developed random network models did not predict [BA99].

In 2002, Albert and Barabási published a complete review of state of the art
in the �eld of complex networks, where they mainly explored the statistical
mechanics of network topology and dynamics [AB02]. They also describe the
three fundamental concepts in complex network theory, that are the following:

i Small worlds: We calculate the distance between two nodes as the number
of edges in any of the shortest paths connecting them. Despite how large
a network is, we can always �nd a relatively short path between any two
nodes. A widely known application of small worlds is the �six degrees of
separation� theory that Milgram popularized in 1967 [Mil67].
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1.3 Power-law degree distributions

ii Clustering : Let i a node in the network and di the number of edges
connecting i to other di nodes. If the nearest neighbors of node i are
part of a group where all meet each other (imagine a circle of friends in
a social network), then there would be di(di−1)

2
edges between them. The

clustering coe�cient of node i represents the fraction of existing nodes
with respect to the maximum admissible number. It is de�ned as:

Ci =
2Ei

di(di − 1)
, (1.13)

where Ei represents the number of edges that actually exists between the
di nodes. We consider the whole network's clustering coe�cient as the
average of all the network's clustering coe�cients.

iii Degree distribution: Let us de�ne pi as the probability that a randomly
selected node has i edges connecting it with other nodes. In random
graphs, most of the nodes have approximately the same degree and, there-
fore, their degrees are very close to the mean degree of the network, since
the edges are created also randomly. In this case, the degree distribution
of a random network follows a Poisson distribution. However, there is a
large number of networks whose degree distribution tail follows a power
law. Barabási and Albert called those networks following a power-law
function scale-free networks [BA99].

As random-graph theory and the Watts and Strogatz model do not reproduce
the power-law behavior of scale-free networks, Barabási and Albert proposed a
model that considers the growth and preferential attachment feature [BA99].
They defended that real networks follow organization rules far from random-
ness. The algorithm of the Barabási-Albert model is the following:

i Growth: Starting with a small number of nodes, n0, a new node is added
at every time step with n ≤ n0 edges that link the new node to n di�erent
nodes in the network.

ii Preferential attachment : The probability pa(i) that a new node will be
connected to the node i depends on its degree, that is

pa(i) =
di∑
j dj

. (1.14)

After t time steps, the network will have N = t+ n0 nodes and nt edges. The
network evolves into a scale-invariant state, and the probability that a node
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has d edges follows a power-law distribution with an exponent α = 3. The
scaling exponent is independent of n, the only parameter in the model.

In the next section, we provide some examples and formal de�nitions to better
understand the characteristics of a power-law distribution.

1.3.1 Mathematical formulation of power laws

Power-law distributions are present in di�erent biological, physical, and human-
made processes generated by preferential adherence. Their mathematical prop-
erties arouse the interest of scientists from very di�erent disciplines. For in-
stance, the wealth distribution, the intensity of the earthquakes, and the fre-
quency of words in most languages follow a power-law distribution [Cam18,
MWZ19, Pia14].

Figure 1.4: Examples of power-law distributions.

Clauset, Shalizi, and Newman presented a statistical framework for identify-
ing power-law distributions in empirical data using maximum-likelihood �t-
ting methods and goodness-of-�t tests based on likelihood ratios and the
Kolmogorov-Smirnov statistic [CSN09]. For the sake of completeness, we
will brie�y summarize the de�nitions and procedures described in their work
[CSN09]. We will de�ne the continuous and discrete power-law distributions,
the continuous and discrete power-law complementary cumulative distribution
functions, and the Kolmogorov-Smirnov statistic. For more details, we refer
to [CSN09]. In the next chapters, we will use Clauset's et al. algorithm to
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1.3 Power-law degree distributions

demonstrate that the degree distributions of certain NVGs follow a power-law
distribution based on scale-free networks, as we did in our published work
[MINPC19].

We start with the introduction of the continuous power-law distribution:

De�nition 1.3.1 (Continuous power-law distribution) A continuous ran-
dom variableX is said to follow power-law distribution if its probability density
function p(x) satis�es

p(x) = Cx−α (1.15)

where C is a normalization constant and α is a constant parameter, called
scaling parameter or exponent of the power-law, that usually lies in 2 < α < 3,
although there are exceptions. In other words, p(x) can be understood as the
probability that a node in the network was linked with k other nodes.

However, such probability density diverges as x tends to 0, therefore

p(x) dx = Pr(x ≤ X < x+ dx) = Cx−αdx,

cannot hold for all x ≥ 0, where x is the observed value and C is a normal-
ization constant. So that, the power-law behavior should start at some point
xmin. Then, taking α > 1 and calculating the normalizing constant, we obtain:

p(x) =
α− 1

xmin

(
x

xmin

)−α
.

In a similar way, we introduce the discrete power-law distribution:

De�nition 1.3.2 (Discrete power-law distribution) A discrete random vari-
ableX is said to follow power-law distribution if its probability density function
p(x) satis�es

p(x) = Cx−α, (1.16)

where x is the observed value and C is a normalization constant.

Proceeding as in the continuous case we obtain

p(x) =
x−α

ζ(α, xmin)
, (1.17)
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where

ζ(α, xmin) =
∞∑
n=0

(n+ xmin)−α (1.18)

is the generalized Hurwitz zeta function.

Integrating the density functions, we can get the respective complementary
cumulative distribution functions.

De�nition 1.3.3 (Continuous power-law CCDF) LetX a continuous ran-
dom variable whose distribution follows a power-law. The continuous power-
law complementary cumulative distribution function, P (x) = p(X ≥ x), is
de�ned as

P (x) =

∫ ∞
x

p(s)ds =

(
x

xmin

)−α+1

. (1.19)

The discrete version of the power-law CCDF can be deduced from De�nition
1.3.3 and equation (1.18).

De�nition 1.3.4 (Discrete power-law CCDF) Let X a discrete random
variable whose distribution follows a power-law. The discrete power-law com-
plementary cumulative distribution function, P (x) = p(X ≥ x), is de�ned as

P (x) =
ζ(α, x)

ζ(α, xmin)
. (1.20)

1.4 Fitting degree distributions to power-law functions

As we have stated before, the power-law behavior is only present in the dis-
tribution's tail, above a certain value xmin. Let us suppose that xmin is known
and that our data come from a distribution that follows a power-law for all
x ≥ xmin. Then, we can estimate the exponent of the power-law by using the
method of maximum likelihood as follows:

(a) For continuous data, let us consider the continuous power-law distribu-
tion p(x) de�ned as
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1.4 Fitting degree distributions to power-law functions

p(x) =
α− 1

xmin

(
x

xmin

)−α
. (1.21)

Let us suppose that we have n observations, xi ≥ xmin, i = 1, · · · , n. In
order to estimate the exponent of the power-law distribution that gener-
ated our data, we consider that the probability that our data come from
such a model is proportional to the likelihood:

p(x|α) =
n∏
i=1

α− 1

xmin

(
xi
xmin

)−α
. (1.22)

The exponent α is the value that maximizes this function. Applying log-
arithms and maximizing respect to α, we obtain

α̂ = 1 + n

[
n∑
i=1

log

(
xi
xmin

)]−1

. (1.23)

(b) Discrete data: Let p(x) be the discrete power-law distribution de�ned as

p(x) =
x−α

ζ(α, xmin)
. (1.24)

As before, by maximizing the log-likelihood, α̂ is the solution of the equa-
tion

ζ ′ (α̂, xmin)

ζ (α̂, xmin)
= − 1

n

n∑
i=1

log(xi). (1.25)

However, there is no exact expression for α̂ in the discrete case. We
have to approximate our discrete power-law to a continuous power-law
considering our data as rounded to continuous real values. Following this
approach, we obtain

α̂ ' 1 + n

[
n∑
i=1

log

(
xi

xmin − 1
2

)]−1

. (1.26)

For further details, we refer to [CSN09].
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The maximum likelihood estimators are only assured to be unbiased when n
tends to∞. In �nite data, biases are present but decay as O

(
1
n

)
for any choice

of xmin. For small sample sizes, such biases can be considerable. Nevertheless,
in most practical situations, those biases can be ignored because they are much

smaller than the statistical error of the estimator, which decays as O
(

1√
n

)
[CSN09].

We have already described how to estimate α once xmin is known. The power-
law behavior is only reached in the tail of the distribution. In order to properly
�t the data to the power-law, we have to discard all elements before this xmin.
However, xmin has to be carefully chosen. The larger the value of xmin, the more
observations we drop, leading us to a non-accurate estimation of the scaling
parameter and a �nite size e�ect.

We can make the choice of xmin visually, plotting α̂ as a function of x̂min and
identifying xmin as the point beyond which the value of α appears relatively
stable (Figure 1.5). However, an analytical approach is always preferable. We
follow the method proposed by Clauset et al. for choosing xmin, which is valid
for both discrete and continuous data [CYG07].

The idea is nothing stilted: we have to select x̂min as the value that makes the
probability distributions of the observed data and the power-law that best �ts
the data as close as possible above this x̂min. To compute the distance between
these two distributions, we use the Kolmogorov-Smirnov (KS) goodness-of-�t
test, which is frequently used with non-normally distributed data.

De�nition 1.4.1 (KS statistic) TheKolmogorov-Smirnov statistic is de�ned
as the maximum distance between the cumulative distribution function of the
data ECDF(x) and the cumulative distribution function of the adjusted model
PCDF(x), that is

D = max
x≥xmin

|ECDF(x)− PCDF(x)|. (1.27)

Here, PCDF(x) is obtained as the cumulative distribution function of the best-
�t power-law model in the area x ≥ xmin. The value x̂min is obtained as the
xmin value that minimizes D.

Clauset et al. compared the KS statistic with the Kuiper and Anderson-Darling
(KDS) statistics [DS86] and with a reweighted version of the KS statistic (that
avoid di�erences between distributions at the extremes as CDFs tend to 0 or
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Figure 1.5: Figure extracted from [CSN09]. Mean of the maximum likelihood estimate for
the scaling parameter for 5000 samples drawn from the test distribution, p(x) = C(x/xmin)

−α

for x ≥ xmin and p(x) = Ce−α(x/xmin−1) for x < xmin, with α = 2.5, xmin = 100 and
n = 2500, plotted as a function of the value assumed for xmin. Statistical errors are smaller
than the data points in all cases.

1). They did not obtain better results using these approaches, see [CSN09].

For the computational implementation of all the process above-described, we
followed the original code developed in Matlab by Clauset from Santa Fe Insti-
tute and translated into R language by Dubroca. All source �les can be found
in http://www.santafe.edu/~aaronc/powerlaws/. The only requirement for
working in R is the VGAM package to compute the Hurwitz zeta function.

1.5 Correlation matrices

In Chapter 3, we will show a table with di�erent correlation metrics for ma-
trices. These correlations have also been computed between the NVGs en-
tropy matrix and the power-law exponent �tting matrices to explore if chaos-
related information encoded by the exponent of the power-law �tting is qual-
itatively comparable with the information extracted from the NVGs entropy
[CLMIR19]. In this section, we will provide the de�nitions and properties of
several of these metrics.
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Comparing pairs of observations by using correlation measures is very common
in many scienti�c contexts. Contrary, less work has been published regarding
calculating these metrics for comparing series of variables instead. Indahl et
al. describe some of those metrics for matrices and also introduce a similarity
index for comparing coupled matrices based on a two-stage approach: Firstly,
summarizing the information content of these matrices by identifying the as-
sociated subspaces by subspace identi�cation methods, such as the Principal
Component Analysis (PCA) or Partial Least Squares (PLS) regression; and sec-
ondly, comparing these subspaces through di�erent regression methods, such
as the Orthogonal Projection (OP) or the Procrustes Rotation (PR) [INL18].

In the rest of the section, X1 and X2 will denote two matrices resulting af-
ter mean-centering the n samples of p and q di�erent variables, respectively.
Therefore, their dimensions will respectively be n× p and n× q

A popular measure for comparing two di�erent sets of observations taken on
a set of n samples is the RV coe�cient, introduced by Robert and Escou�er
[RE76].

De�nition 1.5.1 The RV coe�cient of X1 and X2 is calculated as follows

RV (X1,X2) =
tr(Yt

1Y2)√
tr(Yt

1Y1) tr(Yt
2Y2)

, (1.28)

where Y1 = X1X
t
1, Y2 = X2X

t
2, and tr is the matrix trace.

However, it is known that the RV coe�cient is biased towards 1 when the
number of variables (p and q, i.e. matrices columns) increases with respect to
the number of samples (n, i.e. matrices rows). A version of the RV coe�cient,
RV2, was introduced by Smilde et al. [SKB+09] to reduce this bias.

De�nition 1.5.2 The modi�ed RV coe�cient, RV2, of the matrices X1 and
X2 is de�ned as

RV2 (X1,X2) =
tr(Yt

1Y2)√
tr(Yt

1Y1) tr(Yt
2Y2)

, (1.29)

where Y1 = X1X
t
1 − diag(X1X

t
1), Y2 = X2X

t
2 − diag(X2X

t
2) and diag is the

matrix diagonal.
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Although the RV2 coe�cient reduces the RV bias, it is still biased. Mayer
et al. [MLH11] proposed a corrected RV coe�cient called the adjusted RV
coe�cient.

De�nition 1.5.3 Let Cij be the correlation matrix between Xi and Xj, with
i, j = 1, 2, and let nr = (n − 1)/(n − 2) and nc = 1 − nr. The adjusted RV
coe�cient, RVadj of X1 and X2 is calculated as follows

RVadj(X1,X2) =
p · q · nc + nr · tr(Ct

12C12)√
[p · p · nc + nr · tr(Ct

11C11)] [q · q · nc + nr · tr(Ct
22C22)]

.

(1.30)

This RVadj coe�cient is based on the R2 statistic, and it is unbiased. Another
measure of interest is the Procrustes Similarity Index introduced by Sibson
[Sib78].

De�nition 1.5.4 Let H the Procrustes transformation scaling and rotating/
re�ecting X2 to minimize the distance, by using the Fröbenius norm, denoted
by ‖X1 −X2H‖F . Then, the Procrustes Similarity Index is de�ned as

PSI(X1,X2) =
tr(X1

tX2H)√
tr(Xt

1X1) tr(Xt
2X2)

. (1.31)

Yanai also introduced a matrix similarity metric called the Generalized Co-
e�cient of Determination, GCD, which can be de�ned in terms of the RV
coe�cient [Yan74].

De�nition 1.5.5 Let T and U be the orthogonal bases for the column spaces
of matrices X1 and X2, respectively. The Generalized Coe�cient of Determi-
nation, GCD, can be calculated as

GCD(X1,X2) = RV(T,U). (1.32)

We follow the same notation as Indahl et al. to establish connections be-
tween the di�erent metrics, although the original de�nitions are not exactly
the ones proposed here but equivalent [INL18]. These authors also charac-
terized a framework for de�ning an alternative measure for comparing two
matrices, known as the Similarity Matrix Index, SMI.
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For comparing two sets of measurements in the context of their SMI, they
made the following assumptions, with X1 and X2 being de�ned as above,

X1 = TPt
1 + E1, where T = X1C1 (1.33)

X2 = UPt
2 + E2, where U = X2C2 (1.34)

i.e. the data matrices can be decomposed as the sum of approximations of the
matrices X1 and X2 (TPt

1 and UPt
2 respectively), including relevant informa-

tion, and residual structures collected in matrices E1 and E2. The columns
of C1 and C2 are vectors of coe�cients allowing T and U columns being
described as linear combinations of the columns of matrices X1 and X2 (vari-
ables). T and U are considered as orthogonal matrices, including normalized
score vectors in their columns.

There are several approaches to make the partition into substantial informa-
tion (TPt

1 and UPt
2) and residual information (E1 and E2). Among all these

methods, Indahl et al. use the PCA and the PLS regression with normalized
scores. These approaches allow deriving orthogonal matrices, T and U, from
the original mean-centered matrices X1 and X2. The purpose of the SMI
approach popularized by Indahl et al. is �nding linear combinations of the
variables included in matrix X1 that coincide with linear combinations of the
matrix X2 by matching the X1 and X2 matrices approximations, TPt

1 and
UPt

2, as precisely as possible [INL18].

De�nition 1.5.6 Let T and U be the centered orthogonal score matrices
described in equation (1.33) of dimensions n × p and n × q. In other words,
TtT = Iq and UtU = Iq, where 0 < p ≤ m1 and 0 < q ≤ m2.

Let M denotes our regression method of interest (in the case of Indahl et al.
OP or PR). Let BT and BU be the regression coe�cient matrices for �tting
T and U by applying M . Let Û = TBT and T̂ = UBU be the �tted values.

The proportion of variance associated with T and U explained by the regres-

sion method M is de�ned, for each matrix, as
‖T̂‖2

F

p
and

‖Û‖2
F

q
, where ‖·‖2F

represents the squared Fröbenius norm (‖A‖2F =
∑

i,j |ai,j|
2).
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1.5 Correlation matrices

It is assumed that, independently of the method M , 0 ≤ ‖
T̂‖2

F

p
≤ 1 and

0 ≤ ‖
Û‖2

F

q
≤ 1, and that only 1 is reached if and only if T̂ = T or Û = U.

De�nition 1.5.7 The Similarity Matrix Index (SMI) of the matrices T and
U is de�ned as the maximum of the two proportions of explained variance:

SMIM(T,U) = max


∥∥∥T̂∥∥∥2

F

p
,

∥∥∥Û∥∥∥2

F

q

 . (1.35)

It follows that if U = Û = TBT or T = T̂ = UBU, then
‖T̂‖2

F

p
= 1 or

‖Û‖2
F

q
= 1.

Proposition 1.5.8 The regression coe�cients BU and BT are su�cient for
computing the SMIM , since this can be also estimated as

SMIM(T,U) = max

(
‖BU‖2F
p

,
‖BT‖2F
q

)
. (1.36)

We refer the reader to [INL18] for seeing the proof of this property and of the
forthcoming ones stated in this section.

As speci�ed before, the regression method M can be considered, for instance,
as the OP or the PR. In the case that T and U are going to be compared by
OP, their associated matrices of regression coe�cients ful�ll

SMIOP (T,U) = max

(
‖BT‖2F
p

,
‖BU‖2F

q

)
=
‖TtU‖2F

r
, (1.37)

where r = min(p, q).

Proposition 1.5.9 Let TtU 6= 0 and let TtU = VSWt be its Singular Value
Decomposition (SVD). IfM = OP , then the associated squared Fröbenius norm
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Chapter 1. Network analysis of time series

only depends on the nonzero singular values s1, s2, . . . , sr, being r = min(p, q)
if TtU has full rank and then:

SMIOP (T,U) =
‖S‖2F
r

=
1

r

r∑
k=1

s2
k. (1.38)

Proposition 1.5.10 Let PT = TTt and PU = UUt be the n × n projection
matrices associated with the subspaces spanned by T and U. Let (·) be the trace
inner product between any pair of n×n matrices. Since the Fröbenius norm is
�xed by multiplying TtU from the left and right by the orthogonal matrices T
and U, then the following equality holds:

SMIOP (T,U) =
(PT ·PU)

min(PT ·PT,PU ·PU)
. (1.39)

Therefore, this equation shows that SMIOP is proportional to the correlation
between the two matrices PT and PU.

Proposition 1.5.11 Let T and U be the matrices spanning the entire column
spaces of X1 and X2. Let us also consider their projection matrices PX1

= PU

and PX2
= PT. The Generalized Coe�cient of Determination can be also

calculated as

GCD (X1,X2) =
PX1

·PX2

‖PX1
‖ · ‖PX2

‖
. (1.40)

Calculating the GCD is basically calculating the correlation between the pro-
jection matrices. The GCD and the SMIOP are proportional, by multiply-
ing by min(p, q)/

√
pq. Moreover, these two metrics coincide if p = q i.e. if

rank(X1) = rank(X2).

The other regression method we mentioned before for calculating the SMI is
the Procrustes Rotation [Gow75]. However, this approach requires additional
restrictions on the matrix of regression coe�cients B. As it is the case of the
similarity metric SMIOP , theSMIPR only applies to orthogonal matrices T and
U associated to the original ones X1 and X2.

Proposition 1.5.12 Let T and U matrices with same dimension and rank
p = q = r. Let the BT matrix proportional to an orthogonal matrix R: BT =
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1.5 Correlation matrices

gR. The SMI can be simpli�ed (as well as for M = OP ) when M = PR by
the squared average of the associated singular values:

SMIPR(T,U) = max

(
‖BT‖2F
p

,
‖BU‖2F

q

)
=
‖s̄R‖2F
r

= s̄2 ‖R‖
2

F

r
= s̄2. (1.41)

Since the SMIOP and the SMIPR only apply to orthogonal matrices, the fol-
lowing properties hold for both of them:

• SMIM(X,X) = 1. If T = U, then TtU = TtT = I and all the associated
singular values are equal to 1.

• SMIM(X1,X2) = SMIM(X2,X1), as the nonzero singular values of TtU
and UtT are identical.

• SMIM(aX1,X2) = SMIM(X1, bX2) = SMIM(X1,X2).

• SMIM(X1,X2) = 0↔ Xt
1X2 = 0, because having all the singular values

equal to 0 implies that all the elements of the matrix should be 0.

For the particular case of vectors, we recover the squared Pearson correlation
coe�cient.

Proposition 1.5.13 Let X1 and X2 be just two vectors (with p = q = 1).
Then T = t = x1/ ‖x1‖, U = u = x2/ ‖x2‖, and then the SMI corresponds to
the squared Pearson correlation between these two vectors

SMIOP (t, u) = (ttu)2 = corr(x1, x2)2. (1.42)

The Pearson correlation function is probably the most frequently used metric
for calculating the correlation between two matrices [RtBS84], and it can be
de�ned as:

ρ(X1,X2) =
tr(Xt

1X2)√
tr(Xt

1X1) tr(Xt
2X2)

, (1.43)

which can be rede�ned in terms of the orthogonal matrices T and U as

ρ(T,U) =
tr(TtU)√

tr(TtT) tr(UtU)
. (1.44)
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Chapter 1. Network analysis of time series

However, the ordinary Pearson correlation index can result problematic when
applying it to orthogonal matrices as the numerator may be 0 even if T and U
span the same subspace (an example of this problem can be found in [INL18]).
To overcome this problem, the RV coe�cient avoids this inconvenience as it
only involves squared numbers. More relations to similarity indices previously
proposed in the literature can be found in [INL18].

To sum up, in this section we have described all the measures that we will use
in Chapter 3: SMIOP , RV, RV2, RVadj, PSI, and GCD. Indahl et al. simu-
lated data to demonstrate the bene�ts of SMI over any RV coe�cient. They
concluded the GCD and the SMI make more sense regarding the common un-
derstanding of the de�nition of matrices similarity than the RV coe�cient in
any of its versions. As we will see in Chapter 3, our results are very close to 1
(or even equal to 1 in the case of the SMI and GCD coe�cients) when using
any of the previously mentioned measures we use.

Although we will focus our analysis in the indices described in [INL18], many
other metrics have been described in the literature [RtBS84, CN79]. Cramer
and Nicewander make a revision of di�erent metrics for calculating multivari-
ate association of two sets of variables such as the Hotelling-Cramer, Hotelling-
Rozeboom and Coxhead-Sha�er-Gillo measures (see [CN79] for more details).
The authors also proposed other three metrics based in the previously men-
tioned ones and expressed their preference for a version of the Coxhead-Sha�er-
Gillo metric [CN79].
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Chapter 2

Fractional calculus

Fractional calculus is one of the fastest-growing research areas today and ap-
pears among the research topics with the highest number of citations and im-
pact on the Web of Science. The fractional calculus origin dates back to 1695
when Leibniz �rst raised the geometric and physical meaning of a non-integer
order derivative in a letter to L'Hôpital. In his answer, he concluded:

�It will lead to a paradox, from which one day
useful consequences will be drawn.�

Fractional calculus has been extended in order to consider that orders of dif-
ferentiation and integration can be rational, real, or even complex numbers.
From there, fractional tools emerge as a need to model the behavior of dynamic
systems that are non-local. Fractional calculus has been widely used in areas
such as materials theory, electromagnetism, chaos theory, or fractals, as the
fractional-order models have been demonstrated to be more adequate than the
traditional ones due to their non-locality and memory properties [KST06]. The
fractional-order derivative partially or totally includes the temporal history or
the spatial behavior of the function. Then, the fractional di�erential equations
are optimal candidates for the modelization of phenomena with memory. What
occurs in a spatial point or time instant depends on an interval (temporal or
spatial) that includes the point or instant.

35



Chapter 2. Fractional calculus

In this chapter, we review the most well-known notions of fractional calculus
in the continuous case. Later, we will revise how these notions are adapted to
the discrete case.

2.1 Riemann-Liouville fractional derivative

In the second half of the XIX century, Liouville was the �rst one who attempted
to set the fundamental bases of fractional calculus as he tried to establish the
de�nitions of fractional di�erences and integrals formally. His starting point
was to consider functions expansion in exponentials and de�ne the n-order
derivative of the series as the series of each term's derivatives. In the same
years, Riemann proposed a de�nition based on de�nite integrals that also apply
to non-integer exponents. From the combination of their works (1870 to 1884),
we can obtain what is known nowadays as the Riemann-Liouville notion of
fractional calculus. For introducing it, we �rst present the Riemann-Liouville
fractional integral.

De�nition 2.1.1 (Riemann-Liouville fractional integral) Let f ∈ L1(a, b)
with −∞ < a < b < ∞. The Riemann-Liouville (RL) fractional integral of
order ν ∈ C, being <(ν) > 0, of f is de�ned as

(Iνaf)(x) :=
1

Γ(ν)

∫ x

a

f(t)

(x− t)1−ν dt, x > a. (2.1)

We assume that neither the function f nor its RL fractional integral do not
exist or will be constantly equal to 0 out of the interval [a, b].

Once we have the RL fractional integral, we can de�ne fractional derivatives
combining integer derivatives with integrals of this type.

De�nition 2.1.2 (Riemann-Liouville fractional derivative) Let f ∈ L1(a, b)
with −∞ < a < b < ∞. The Riemann-Liouville (RL) fractional derivative of
order ν ∈ C, being <(ν) ≥ 0, of f is de�ned, if exists, as

(Dν
af)(x) :=

(
d

dx

)n
(In−νa f)(x) =

1

Γ(n− ν)

(
d

dx

)n ∫ x

a

f(t)

(x− t)ν−n+1
dt, x > a,

(2.2)
where n = [<(ν)] + 1 and

(
d
dx

)n
is the usual n− th derivative.
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2.2 Gründwald-Letnikov fractional derivative

Remark 2.1.3 In the previous de�nition, <(ν) can take the value 0 making
the RL fractional derivative taking pure imaginary orders. The RL derivative
of order ν = iθ is de�ned as

(Diθ
a f)(x) :=

1

Γ(1− iθ)
d

dx

∫ x

a

f(t)

(x− t)iθ
dt, θ ∈ R \ {0}, x > a. (2.3)

The RL fractional derivative, as well as other fractional derivatives, is a non-
local operator. The integral in the de�nition depends on the values that f
takes along the interval. Only when ν ∈ N the fractional derivative is a local
operator. The following result permits us to assure that we can compute these
fractional derivatives. The only condition required is the absolute continuity
of the function and their �rst n derivatives.

Theorem 2.1.4 Let f ∈ [a, b] such that f, f ′, . . . , f (n), n ∈ N, are absolutely
continuous functions in [a, b]. Let ν ∈ C be satisfying <(ν) ≥ 0 and [<(ν)]+1 ≤
n. Then, Dν

af exists in almost every point in [a, b].

The proof of the theorem can be found, for instance, in [SKM93].

2.2 Gründwald-Letnikov fractional derivative

In 1867, Gründwald-Letnikov de�ned their fractional integral taking as starting
point the following formula for the n-th derivative:

(
d

dx

)n
f(x) = lim

h→0

1

hn

n∑
k=0

(−1)k
(
n

k

)
f(x− kh). (2.4)

This expression can be easily generalized to non-integer values ν > 0 if we
consider a generalization of the binomial numbers looking at its expression in
terms of the Gamma functions:

(
ν

k

)
=

Γ(ν + 1)

k!Γ(ν + 1− k)
. (2.5)
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Then, if we consider the approximation through an in�nite series we can express
the fractional derivative of order ν as

(
d

dx

)ν
f(x) ≈ lim

h→0+

1

hν

∞∑
k=0

(−1)k
(
ν

k

)
f(x− kh). (2.6)

Fixing an arbitrary value h, we are restricted to the values k ≤
[
x−a
h

]
, because

f(x) can only take values on the interval [a, b]. So as to, we can de�ne the
Grünwald-Letnikov fractional derivative as follows.

De�nition 2.2.1 Let f be a bounded function de�ned on the �nite interval
[a, b]. The Grünwald-Letnikov fractional derivative of order ν ∈ R+, if exists,
it is de�ned as

(Dν
af)(x) := lim

h→0+

1

hν

[ x−ah ]∑
k=0

(−1)k
(
ν

k

)
f(x− kh) for x > a. (2.7)

where
(
ν
k

)
is de�ned in Equation (2.5).

It is worth to mention that this de�nition only works for real positive orders
of derivation. We also point out that the Riemann-Liouville and Grünwald-
Letnikov give similar results for the same inferior limits and positive fractional
orders of derivation.

2.3 Caputo fractional derivative

The Riemann-Liouville (RL) fractional derivative was one of the cornerstones of
fractional calculus. However, when we want to model a physical phenomenon,
it presents the problem that it is unclear how to set initial conditions of frac-
tional order since they are not interpretable, hindering the applicability of
fractional calculus.

This disadvantage disappeared with the de�nition of the Caputo derivative
[Cap67]. This derivative can be used to formulate abstract Cauchy problems
in which the derivative operator takes integer-order derivatives as initial con-
ditions, facilitating the formulation of the models and interpreting the results
provided by them.
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2.3 Caputo fractional derivative

De�nition 2.3.1 (Caputo fractional derivative) Let f ∈ ACn[a, b] with
−∞ < a < b < ∞, ν ∈ C satisfying <(ν) ≥ 0 and being n = [<(ν)] + 1. The
Caputo fractional derivative of order ν of f is de�ned as:

(CDν
af)(x) :=

(
In−νa

(
d

dx

)n
f

)
(x) =

1

Γ(n− ν)

∫ x

a

f (n)(t)

(x− t)ν−n+1
dt, x > a

(2.8)
where f (n) is the usual n− th derivative.

The de�nition of the Caputo fractional derivative is more restrictive compared
to Riemann-Liouville's as it is required the integrability of f (n), since, in the
Caputo derivative, we �rst derive (n times) and then integrate. However, in the
Riemann-Liouville derivative, it is just in the opposite order. The hypothesis
of absolute continuity of the function and its �rst n derivatives assumed on
Theorem 2.1.4 is a su�cient condition for, given ν satisfying [<(ν)] + 1 ≤ n,
the existence of CDν

af .

Both RL and C fractional derivatives provide the same values for integer deriva-
tives. However, they provide slightly di�erent values for non-integer derivatives
as the next result shows:

Theorem 2.3.2 Let ν /∈ N, with <(ν) ≥ 0 and n = [<(ν)] + 1. If f ∈ L1[a, b]
is a function with RL and C fractional derivatives, then the following relation
holds:

(CDν
af)(x) := (Dν

af)(x)−
n−1∑
k=0

f (k)(a)

Γ(k + 1− ν)
(x− a)k−ν , x > a. (2.9)

For non-integer di�erential orders, both de�nitions coincide provided that the
�rst n − 1 derivatives of f at a were null. Details of the numerical computa-
tion of fractional derivatives can be found in [Brz16, Brz17]. Other fractional
integral (and derivatives) are due to Hadamard (1892) [Had92], Weyl (1917)
[Wey17], or Riesz (1936) and many more [Fer18, LO14]. It is said that there
are as many di�erent proposals for fractional derivative and integral de�nitions
as experts in the �eld. Beyond these three de�nitions, we will not go deeper
into more de�nitions of fractional calculus because they are not the subject of
this thesis.
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Chapter 2. Fractional calculus

2.4 Discrete fractional calculus

In a similar way as we discretize in calculus, we can also do it in fractional
calculus, and then we can also consider discrete fractional systems.

The �rst studies on time derivatives of fractional order are due to Kutter
[Kut57]. Diaz and Osler [DO74] introduced in 1974 a discrete operator in
fractional di�erences de�ned as an in�nite series. Gray and Zhang [GZ88]
developed the fractional calculus of the discrete di�erence operator ∇. At the
same time, Miller and Ross [MR89] de�ned a fractional sum through a linear
di�erence equation solution. More recently, Atici and Eloe [AE07] introduced
the Riemann-Liouville fractional di�erence operator using the Miller and Ross
notion of fractional sum and studied its properties. Holm [Hol11a, Hol11b]
applied discrete fraction calculus tools to fractional di�erence equations.

The appearance of such dynamic systems refers, in general terms, to mathemat-
ical models that represent evolutions at a nano-level of interest and which are
currently booming due to the rapid development of nanotechnologies. The �rst
studies were carried out by Tarasov [Tar15a, Tar15b] in the �eld of nanome-
chanics and physics and by Wu, Baleanu et al. [WB14, WB16, WBDZ15,
WBX16] in the study of the chaotic behavior of discrete fractional models. It
is worth noting that fractional di�erences exhibit the advantages of memory
e�ects, as does the continuous case, and involve fewer numerical calculations,
as shown by Wu, Baleanu, and Xie [WBX16].

In Chapter 3, we will study the dynamics of the fractional logistic equation
of Wu and Baleanu from the perspective of network science. In this section,
we provide a brief overview of some fractional calculus and fractional discrete
operators. We also present an alternative way to [WB14] of introducing Wu
and Baleanu discrete equation, as we did in our published work [CLMIR19].

2.4.1 Fractional sums

Our goal will be to formulate a discrete fractional dynamical system from a
fractional version of the logistic di�erence equation that generalizes the follow-
ing equation:

∆u(n) = µu(n)(1− u(n)), n ∈ N, u(0) = u0, (2.10)

where ∆ is the di�erence Euler operator de�ned as ∆u(n) = u(n+ 1)− u(n).
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2.4 Discrete fractional calculus

For introducing discrete fractional di�erence equations, our starting point will
be the Caputo fractional derivative as a reference, since it permits to deal with
initial conditions.

First, we introduce the following notation of the translates of an arbitrary value
a ∈ R by step 1, denoted by Na. We set

Na := {a, a+ 1, a+ 2, . . .}. (2.11)

Atici and Eloe [AE09] introduced the discrete sums of order ν > 0. We will
de�ne these sums over a discrete reference set Na+ν , that considers the discrete
point a as a reference and the order ν.

De�nition 2.4.1 (Atici and Eloe '09) Let u : Na → R and 0 < ν be given.
Then the fractional sum of order ν is de�ned by

∆−νa u(t) :=
1

Γ(ν)

t−ν∑
s=a

(t− s− 1)ν−1u(s), for t ∈ Na+ν . (2.12)

So if t = a+ν+k, then we get a weighted sum of the values u(a), . . . , u(a+k):

1

Γ(ν)

(
(ν + k − 1)ν−1u(a) + . . .+ (ν − 1)ν−1u(a+ k)

)
. (2.13)

In the setting abstract Cauchy problems of time di�erence equations, Lizama
introduced the following de�nition [Liz15, Formula 2.2], that corresponds with
a particular instance of Atici and Eloe fractional sum [AE09] when a = 0.
Recently, it has been noticed that it agrees with the Cesàro sums of order
ν > 0 and it has been linked with some algebra homomorphisms.

Finally, we indicate that this fractional sum is expressed as a convolution
through some kernel functions. Recall that the �nite convolution ∗ of two
sequences f(n) and g(n) is de�ned as

(f ∗ g)(n) :=
n∑
j=0

f(n− j)g(j), n ∈ N0. (2.14)

De�nition 2.4.2 Let ν > 0 and u : N0 → X. We can also de�ne the frac-
tional sum of order ν as
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∆−νf(n) =
n∑
k=0

kν(n− k)u(k), n ∈ N0, (2.15)

where

kν(j) :=
Γ(ν + j)

Γ(ν)Γ(j + 1)
, j ∈ N0. (2.16)

By kν(n) we represent the Cesàro numbers of order ν ([Zyg77, Vol. I, p.77]).
With these numbers, the fractional sums can be expressed as a convolution
of the function u with some kernels kν . Alternatively, these kernels may be
de�ned through generating functions:

∞∑
n=0

kν(n)zn =
1

(1− z)ν
, |z| < 1, ν > 0. (2.17)

Since kν ∗ kβ = kν+β for ν, β > 0, the semigroup property holds, and the
numbers kν(n) can be considered as convolution kernels. We can also provide
estimates that illustrate the growth rate of these kernels. For every ν > 0:

kν(n) =
nν−1

Γ(ν)

(
1 +O

(
1

n

))
, n ∈ N. (2.18)

This estimation can be found in [Zyg77, Vol. I, p.77 (1.18)]. On the one hand,
if ν > 1, the kernels kν are increasing respect to n. On the other hand, for
0 < ν < 1 the kernels are decreasing. In the limit case, we have k1(n) = 1
for n ∈ N0 [Zyg77, Theorem III.1.17]. Besides, the kernels are also increasing
respect to the exponent. We can easily check that

kν(n) ≤ kβ(n) for 0 < ν ≤ β and n ∈ N0. (2.19)

It is worth to mention that for the case ν < 0 in the previous de�nition, we
recover the notion of fractional di�erence in the sense of Grünwald-Letnikov.
We can easily check that this de�nition will correspond to a discretization
using the forward Euler operator. We refer the reader to the comments after
De�nition 2.1 in [Liz15] for further details.
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These fractional sums of order ν are required to de�ne fractional di�erence
operators in the next section.

2.4.2 Fractional di�erence operators

Next, we present the fractional di�erence operator which is similar to the RL
fractional derivative [MR89, AE07].

De�nition 2.4.3 [Liz17] Let f : N0 → X. The Riemann-Liouville (RL) frac-
tional di�erence operator of order ν > 0 acting on f is de�ned as

∆νf(n) := ∆m ◦∆−(m−ν)f(n), n ∈ N0, (2.20)

where m− 1 < ν < m, m = dνe.

We can see that it agrees with the sampling obtained with the Poisson distri-
bution of the continuous fractional di�erence of the same order.

Theorem 2.4.4 [Liz17, Th. 3.5] Let u : R+ → X be locally integrable and
bounded. Then we have∫ ∞

0

pn+1(t)Dν
t u(t)dt = ∆νu(n) n ∈ N0, (2.21)

where u(n) =
∫∞

0
pn(t)u(t)dt, with n ∈ N0 and pn(t) = tne−t/n!, n ∈ N0, t ≥ 0.

If we exchange the order of the RL fractional di�erence operators, we obtain
the Caputo fractional di�erence operator. First, we show the formulation due
to Abdeljawad and Baleanu [Abd11, AB11].

De�nition 2.4.5 Let 0 < ν /∈ N and u(t) be de�ned on Na, the ν-th Caputo
like di�erence is de�ned as

C∆ν
au(t) = ∆−(m−ν)

a ∆mu(t) (2.22)

C∆ν
au(t) =

1

Γ(m− ν)

t−(m−ν)∑
s=a

(t− s− 1)m−ν−1∆m
s u(s). (2.23)

where t ∈ Na+m−ν and m = [ν] + 1.
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When u is restricted to the natural numbers, we get the next expression.

De�nition 2.4.6 [Liz17] Let u : N0 → X and ν > 0. The ν-th fractional
Caputo like di�erence can also be de�ned as

C∆νu(n) := ∆−(m−ν)(∆m
0 u)(n), n ∈ N0, (2.24)

where m− 1 < ν < m, and m = dνe.

In the sequel we will use the following expression that links the Caputo and
RL fractional di�erences of order 0 < ν < 1.

Theorem 2.4.7 [Liz15, Th. 2.9] For each 0 < ν < 1 and u : N0 → X, we
have

C∆νu(n) = ∆νu(n)− k1−ν(n+ 1)u(0), n ∈ N0. (2.25)

2.4.3 Fractional di�erence equations

With the previous fractional di�erence operators, we can formulate fractional
di�erence equations. Chen, Luo, and Zhou showed that the following abstract
equation [CLZ11].

C∆ν
au(t) = f(t+ ν − 1, u(t+ ν − 1)), (2.26)

with
∆ku(a) = uk, m = [ν] + 1, k = 0, 1, . . . ,m− 1 (2.27)

can be rewritten as:

u(t) = u0(t) +
1

Γ(ν)

t−ν∑
s=a+m−ν

(t− s− 1))u−1f(s+ ν − 1, u(s+ ν − 1)), (2.28)

with t ∈ Na+m, where the initial condition u0(t) reads as

u0(t) =
m−1∑
k=0

(t− a)k

k!
∆ku(a) (2.29)

With this new expression we have passed from the scale Na+m−ν to Na+m.
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Discrete fractional Wu-Baleanu

time series

The fractional derivatives and integrals have been introduced as a generaliza-
tion of the classical ones. As we said before, they are excellent candidates for
the modelization of processes that include some kind of temporal or spatial
memory. Wu and Baleanu considered a fractional discrete dynamical system
inspired in the logistic map introduced by May [M+76]. In this chapter, we
present the dynamics of this system.

3.1 The logistic equation

Wu and Baleanu considered a fractional discrete dynamical system inspired in
the logistic map, introduced by May [M+76], that is de�ned as

v(n+ 1) = µv(n)(1− v(n)) (3.1)

where v(0) ∈ [0, 1] and µ ∈ R. On the one hand, if 0 ≤ µ ≤ 4, then the
logistic equation (3.1) is well-de�ned in [0, 1] and gives a well-de�ned dynamical
system.
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Chapter 3. Discrete fractional Wu-Baleanu time series

On the other hand, for µ > 4, we still can have a discrete dynamical system,
but this will only be de�ned on the complementary of a particular Cantor set
in [0, 1].

The dynamics of a one-parameter discrete dynamical system can be represented
by a bifurcation (Feigenbaum) diagram. The points of the form (µ̄, v̄) in one
of these diagrams represent that for the dynamical system generated by the
equation with parameter µ̄, then we have that v̄ is in the ω-limit of a concrete
initial condition.

It can be shown that this equation can be transformed into a similar one with
the change of variable v(n) = µ

µ+1
u(n).

In this way, instead of having a formula for computing the term n + 1 by
recurrence, we express the value of the forward Euler operator ∆

∆u(n) = µu(n)(1− u(n)) u(0) = u0, (3.2)

that is just the logistic equation of parameter 1 + µ, with some equivalence
between the initial conditions that are just rescaled by a factor µ

1+µ
. More

precisely, we have

v(n+ 1) = (1 + µ)v(n)(1− v(n)), v(0) =
µ

1 + µ
u(0). (3.3)

3.2 Visibility graphs of the logistic equation

The connection of power-law distribution with chaos and stochastic processes
has been shown in [GRCG+14]. HVG have been studied in connection with
Feigenbaum diagrams by Luque et al. in [LLBR11, LLR12]. For this pur-
pose, Feigenbaum graphs are introduced for representing the dynamics of all
stationary trajectories. They also found a parallelism between the network en-
tropy and the Lyapunov exponents. They also analyzed degree distributions,
clustering coe�cients, and mean path length of visibility graphs to identify
when randomness is present. Other network methods and metrics for studying
dynamical systems can be found in [KS03]. Besides, other approximations to
entropy in network analysis are revisited in [WLST12].

Chaotic series from logistic and Hénon maps have been compared and dis-
tinguished from independent and identically distributed random variables in
[LLBL09, LLBR11]. HVG's associated with any random series give small-
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3.3 Wu-Baleanu equation

world random graphs with a universal exponential degree distribution of the
form P (k) = 1

3
(2/3)k−2, independently of the probability distribution. This

provides an easy test for randomness.

The computation of HVG's over trajectories obtained from the logistic equa-
tion has provided di�erent approaches to study related chaotic phenomena,
such as the period-doubling bifurcation cascade [LLBR11], the quasiperiodic-
ity [LLR12], and the intermittency, that is the seemingly random alternation
of long laminar phases, and relatively short chaotic bursts [NLL+13]. These
approaches have been revisited in [Rob13]. Beyond these results, new phenom-
ena have arisen in the light of the study of the corresponding visibility graphs
such as sequential visibility graph motifs, that are smaller substructures of n
consecutive nodes that appear with characteristic frequencies [IL16].

3.3 Wu-Baleanu equation

Wu and Baleanu recently studied the chaos of a discrete fractional logistic map
inspired in the logistic equation from the left Caputo discrete delta di�erence
[WB14].

Let us �x some 0 < ν < 1. We consider the fractional analogous of (3.2)

C∆νu(t) = µu(n) (1− u(n)) , (3.4)

with u(0) = u0.

On the one hand, the discrete dynamical system obtained from the the frac-
tional di�erence logistic equation, that we will call the Wu-Baleanu equation,
reads as follows:

u(n) = u(0) +
µ

Γ(ν)

n∑
j=1

Γ(n− j + ν)

Γ(n− j + 1)
u(j − 1)(1− u(j − 1)). (3.5)

For the sake of completeness, we check that with ν = 1 and n = 1 we get

u(1) = u(0) +
µ

Γ(1)

1∑
j=1

Γ(1− 1 + 1)

Γ(1− j + 1)
u(0)(1− u(0)) (3.6)

which is, in fact,
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Chapter 3. Discrete fractional Wu-Baleanu time series

∆u(1) = u(1)− u(0) = µu(0)(1− u(0)). (3.7)

On the other hand, we propose an alternative way of deducing Wu-Baleanu
equation using the property ∆−ν C∆νf(n) = f(n + 1) − f(0), the discrete
fractional equation (3.4) can be rewritten as

u(n) = u(0) + µ
n∑
j=1

kν(n− j)(u(j − 1)(1− u(j − 1)). (3.8)

If we compare equations (3.5) and (3.1), we show that the �rst one includes
a memory part, since u(n) depends on ν and the precedent values u(i), with
0 ≤ i ≤ n− 1.

3.4 Feigenbaum diagrams of Wu-Baleanu equation

The logistic equation (3.1) presents a chaotic behaviour from approximately
3.57 until 4, as it can be observed in Feigenbaum diagrams, see for instance
[Str14]. Wu and Baleanu also compute Feigenbaum diagrams in order to nu-
merically illustrate chaos in some particular fractional exponents ν and scaling
factor µ of the model. In fact, just a small variation in the values of ν in (3.5)
permits us to appreciate chaotic phenomena in di�erent zones, see [WB14, Fig.
4 & Fig. 7].

In �gure 3.1, we have recalculated these diagrams with higher resolution, which
show a quite di�erent behaviour that the one that can be noticed in Wu and
Baleanu's work. We have generated these diagrams with u(0) = 0.3 as initial
condition and with a step size for µ of 0.001 in all the cases. For every pair of
values of ν and µ we have computed 200 iterations, considering the last 100 of
them to be plotted.

When analyzing these diagrams it is not clear where to establish the threshold
of the onset of the chaos. This uncertainty is due to the coarseness of the plot
since a closer look into the zone of interest would show another duplication of
the orbits in the ω-limit, and so on until the points in the bifurcation diagram
are too entangled to distinguish one limit from another. Improving the number
of iterations and the parameter step, these could be recognized. For more
detailed studies of chaos of fractional discrete maps we refer to [Ede14, Ede15,
Ede18].
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Figure 3.1: Feigenbaum diagrams for the Wu-Baleanu model: From top to bottom, ν = 0.01
and 2.1 ≤ µ ≤ 3 and 3.1 ≤ µ ≤ 3.20; ν = 0.2 and 2.39 ≤ µ ≤ 2.62; ν = 0.6 and
2.35 ≤ µ ≤ 2.66; ν = 1 and 2.70 ≤ µ ≤ 3.00. 49
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3.5 Visibility graphs of the Wu-Baleanu equation

Wu and Baleanu showed an approach to how the Feigenbaum diagrams evolve
when the tuner ν of the fractional derivative varies. The delayed version of
these models has been studied by the same authors in [WB15].

Besides those diagrams, other techniques can provide some insight into the
dynamics of the discrete fractional logistic model. We have studied time series
generated by iteration of the Wu-Baleanu equation through the natural and
horizontal visibility graphs associated with them [CLMIR19]. We recall that
introduced by Lacasa et al. in [LLB+08] and by Luque et al. in [LLBL09]
for analysing time-series evolution by mapping them into graphs. This ap-
proach �ts within an emerging corpus of methods of time series network anal-
ysis [DSD+11, KT07, ZS06].

The construction of these graphs and their main properties were already in-
troduced in Section 1.1. We also recall that the degree distribution of these
graphs inherits part of the corresponding time series structure. For instance,
regular graphs are associated with periodic time series, random graphs with
random series, and a power-law degree distribution is linked with fractality.

3.6 Shannon entropy of the visibility graphs

We can also conduct further analyses on the visibility graphs degree distribu-
tion, such as the calculation of the Shannon entropy [Sha48]. We recall that
the entropy h of a discrete random variable X is calculated as

h(X,Ω) = −
∑
xi∈Ω

p(xi) log2 p(xi), (3.9)

where Ω is certain set where X is de�ned, and p(xi) is the probability that
X = xi. We can rewrite this expression for visibility graphs as

h(ni) = −
∞∑
j=1

pj(ni) log2 (pj(ni)) , (3.10)

where pj(ni) is the probability that node i has degree j. We point out that
in some cases the natural logarithms replace the base 2 logarithms. An inter-
ested reader can �nd more information on the quanti�cation of the network
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3.7 Visibility graphs analysis

complexity in [AB09]. It is worth to mention that the Lyapunov exponents
highly correlate with the entropy [LLBR11].

For this reason, in this work we are focused in the entropy instead of the
Lyapunov exponents. In particular, we have studied the parameters that yield
chaotic time series. The main reason is that it makes sense to consider the
power-law �tting of the degree distribution in these cases. More precisely,
we have compared the Shannon entropy with the power-law �tting exponent,
taking into account the scaling factor and the fractional exponent of the model.
We have seen that both the scaling factor and the fractional exponent are linked
when chaos is present with these results [CLMIR19].

3.7 Visibility graphs analysis

Each visbility graph is related to a single time series and, therefore, to a single
value of µ in the Feigenbaum diagrams. We have considered a more quanti�able
way to measure chaos that is obtained through the computation of the Shannon
entropy of the degree distributions obtained from the visibility graphs derived
from time series.

We have calculated the Shannon entropy for di�erent pairs (µ, ν) in (µ, ν) ∈
[2.1, 3.3]×[0, 1], with a step of 0.01 for both parameters. For each pair, we have
then computed the exponent of the power law-�tting to the degree distribution
as it has been explained in Section 1.4.

Shannon entropy of the NVG associated to each pair (µ, ν) is illustrated in
Figure 3.2 through a heat map. It can be appreciated that there exists a clear
pattern of chaos across the parametric space. A symmetry with respect to
ν ≈ 0.4 is noted, as well as a Hénon map-like shape. Moreover, there seems to
be non-gradual steps of entropy change, following the same approximate shape
but in at least two clearly di�erent zones (light blue-yellow in Figure 3.2). The
blank space in the right part of the �gure is due to the divergence of the time
series. In general trends, the more fractional the equation is (closer to ν = 0.5)
the sooner the chaos onset appears for lower values of the scaling factor µ.

Analogously, the entropy heat map for the HVG Shannon entropies is shown in
Figure 3.3. A quick visual inspection of this plot compared with Figure 3.2 re-
veals high similarities between both of them, including the di�erent C-shaped
waves of entropy increment. In order to quantify these similarities, we have
computed several correlation metrics for matrices between the HVG's matrix
and the NVG's matrix, already considered in the literature. Di�erent meth-
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Chapter 3. Discrete fractional Wu-Baleanu time series

Figure 3.2: Shannon entropy for the di�erent values of the Wu-Baleanu scaling factor µ
and the fractionary exponent ν in the case of the natural visibility graphs.

ods have been de�ned to compare sets of variables that can be displayed as
matrices, including several measurements of an observation [INL18].

The most widely known method is the RV coe�cient de�ned by Robert and Es-
cou�er [RE76]. However, an alternative was proposed by Smilde et al [SKB+09]
to avert the bias (correlation towards 1) that increases as the number of vari-
ables (or matrix columns) increases in comparison with the number of observa-
tions (or matrix rows) of both matrices under comparison: the RV 2 coe�cient.
Although the RV coe�cient bias was reduced, the RV 2 coe�cient still biased.

To solve the bias problem with these two coe�cients, a di�erent method arose
with the proposal of Mayer et al. [MLH11] that depended on the R2 statistic
and which represented an unbiased option. Similarly, El Ghaziri and Qannari
[EGQ15] presented other unbiased approach avoiding RV and RV 2 inconve-
niences. Other measures of matrix similarities are the generalized coe�cient
of determination (GCD) and the Procrustes similarity index (PSI), de�ned by
Yanai [Yan74] and Sibson [Sib78], respectively.

A more recent alternative was proposed by [INL18] called the similarity of
matrices index (SMI). It consists of comparing a set of dominant subspace
combinations after performing a matrix decomposition method such as partial
least squares (PLS) regression or Principal Component Analysis (PCA). The
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3.7 Visibility graphs analysis

SMI depends on this subspace identi�cation method (PLS or PCA) as well as
on the regression method to compare subspaces: orthogonal projections (OPs)
or Procrustes rotations (PRs) [TB77], although OP highly recommended. A
more complete description of these metrics has been previously provided in
Chapter 1. See [INL18] for more details.

Our similarity index results for HVG's and NVG's matrices can be observed in
the third column of Table 3.1. With such high correlation values, we can state
that the information concerning the chaos onset from the NVG's is essentially
the same present in the HVG's.

Figure 3.3: Shannon entropy for the di�erent values of the Wu-Baleanu scaling factor µ
and the fractionary exponent ν in the case of the horizontal visibility graphs.

Finally, we have computed the exponents of the power law �tting of the degree
distribution of the NVG's for each combination of (µ, ν). The results can be
observed in Figure 3.4. This resembles the aforementioned entropy heat maps,
with a more clear gradient in the �rst C-shaped wave of the chaos onset. In
the fourth column of Table 3.1 the di�erent correlations de�ned in [INL18]
have been computed between the NVG's entropy matrix and the power law
exponent �tting matrix. As it happened with both visibility graphs matrices,
the correlations are high in all the cases, meaning that the chaos-related infor-
mation encoded by the exponent of the power law �tting is qualitatively the
same as within the entropy of the NVG's [CLMIR19].
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Correlation matrices c(X1,X2) formula c (MNVG,MHVG) c (MNVG,Mexp)

SMIOP
‖XT

1 X2‖2F
min(p,q)

1.000 1.000

RV
tr(YT

1 Y2)

(tr(YT
1 Y1) tr(YT

2 Y2))
1/2 , 0.999 0.984

Y1 = X1X
T
1 ,Y2 = X2X

T
2

RV 2
tr(YT

1 Y2)

(tr(YT
1 Y1) tr(YT

2 Y2))
1/2 , 0.999 0.984

Y1 = X1X
T
1 − diag(X1X

T
1 ),Y2 = X2X

T
2 − diag(X2X

T
2 )

RVadj
p·q·nc+nr·tr(CT12C12)

([p2·nc+nr·tr(CT11C11)][q2·nc·tr(CT22C22))
1/2 , 0.999 0.984

nr = (n− 1)/(n− 2), nc = 1− nr
PSI Average of the non-zero singular values of XT

1 X2. 0.993 0.971

GCD
RV (TU), where T and U are orthogonal bases

1.000 1.000
for the column spaces of X1 and X2, respectively.

Table 3.1: Di�erent correlation metrics c(·, ·) for matrices [INL18] computed for the NVG
matrix MNVG and the HVG matrix MHVG (3rd column), and for the MNVG and the matrix
with the exponents of the power law �ttingMexp (4th column). Explanation of the formulae
(2nd column): XT is the transpose of X, ‖ · ‖F stands for the Fröbenius norm, p is the
number of columns of X1, q is the number of columns of X2, tr(·) is the trace, diag(·) is the
matrix diagonal and Cij is the correlation matrix between Xi and Xj .

Figure 3.4: Exponents for the power law �tting of the the natural visibility graphs de-
gree distribution for the di�erent combinations of the Wu-Baleanu scaling factor µ and the
fractional exponent ν. Values over 5 have been disregarded of the plot, for the sake of vi-
sual comparison (these values where approximately 1.73% of the total amount of numerical
values).
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Reaction times and ex-Gaussian

distributions

Reaction time (RT) is the time period between the appearance of a stimulus
and the realization of a response from an individual [LHMS19], and it is a
widely analyzed measure to detect cognition and perception de�cits [Daw88].
Reading disabilities and cognitive impairments, for instance, can be assessed by
examining RT. Although RT marks are commonly used, there is no consensus
on the statistical properties of RT distributions [LHMS19].

RT can be divided, in turn, into di�erent sub-times: the times needed to per-
ceive the stimulus, take a decision, and make a response. Some authors directly
di�erentiate two parts called the decision and the transduction components.
The decision component is considered as the time an individual needs to decide
which is the response, and the transduction component is de�ned as the time
the individual takes to answer after the stimulus perception [Daw88].
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4.1 Attention and reaction times

Attention is a broad psychological concept, and as a mental construct, it can
only be measured indirectly [GKM10] through behaviors such as motor or vi-
sual reactions. Attention can be assessed with di�erent instruments: standard-
ized questionnaires, clinical interviews, direct observation [HRN+13] of target
behaviors, physiological and medical tests, functional magnetic resonance, or
through experimental tasks implemented with di�erent software programs, as
in references [HRN+13, PK91, CSC+00, FF03, MST12, SVvS14], which is the
method used for the present study.

The analysis of attentional problems is a relevant topic of study in school
and clinical settings. Attention de�cit/hyperactivity disorder (ADHD) is the
most common neurobehavioral disorder in the childhood period. It can pro-
foundly a�ect the academic performance, well-being, and social interactions
of children. The prevalence rate of this disorder is approximately 8% in
the normal population [Sub11], and it is higher among children with psy-
chopathological and developmental disorders [BBS+11]. Further information
on attention de�cit and hyperactivity disorders can be found in references
[Bar15, TSD+15, WNP+12, Vea14]. In this context, reaction time or re-
sponse times (RTs) are described as the most accurate measure of percep-
tion/attention, decision-making, and other cognitive processes to be considered
in clinical and normative settings [MHW+07, DB10, VCVG04].

RT recordings (from computerized test batteries developed with the above-
mentioned speci�c software) are an excellent method of assessing attention,
including the two main characteristics: speed (measured in milliseconds) and
trial/error rate. The analysis of the RT associated with solutions to certain
tasks permits us to assess the attention of a subject. It can also help us to �nd
di�erent behavioral pattern di�erences by age or gender, speci�cally in visual
attention and reaction time of school-aged children [HWP+88, SBT01].

4.1.1 Gender di�erences

Di�erences in ADHD prevalence by sex are well documented. The condition
is more frequent in boys than in girls, with ratios that range from 2:1 to 9:1,
depending on the subtype and setting [Ruc10, FAB+15, PSdLBR07, GC97].
This is congruent with other studies which have shown that, on average, males
have a higher variance of inattentiveness and hyperactivity/impulsivity than
females [APW+15, GG02].
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Furthermore, many previous studies have pointed out gender di�erences in sev-
eral psychological domains. A classical metanalysis was completed by Byrnes,
Miller, and Schafer [BMS99] highlighting that variables such as biological mat-
uration, self-perceptions, risk perceptions, perceptions of social environment,
etc., could explain observed di�erences of risk taking between genders. More
speci�cally, women may be less e�ective than men in competitive environ-
ments, even if they are able to perform similarly in non-competitive situations
[GNR03]. Other authors have studied behaviors in computing tasks [NV07],
pointing out that women shift away from competition while men embrace it.
We can see the same gender in�uence even in scholarly contexts. Girls, either
doing poorly or doing well in school, seem to be more vulnerable to inter-
nal distress than boys [PAS02]. In this regard, even an objective assessment
through an unbiased computing task, as we have applied in this study, could
be a�ected by these gender-related psychological di�erences.

4.1.2 Age di�erences

ADHD is one of the most commonly detected mental disorders in children and
adolescents [JKRea99, GGBS98, PR07]. Its prevalence has been worldwide es-
timated between 4 and 7% in children. Nevertheless, concerns have been raised
as con�icting results have been published, varying from 1 [GNdSRN+05] to 20%
[COS+05]. The evolution of ADHD with age represents other controversial is-
sue. Firstly, ADHD was thought to remit during the adolescence; however,
many works refute this idea and argue that the disorder remains in an impor-
tant proportion of adults [GNdSRN+05, WFB04]. Some factors, such as vio-
lence or delinquency problems during childhood, have been associated with the
permanence of ADHD into adulthood [HLL+95, GMSB85, LKM81, TSTG91].

According to the symptoms, ADHD individuals can be classi�ed into two large
groups: those with symptoms related to impulsivity and/or hyperactivity and
those with symptoms related to distraction and/or inattention. Children in the
�rst group are good in school but, when the situation is less guided, some com-
plications arise. Contrary, children in the second group are more comfortable
with family and relationships but they �nd more di�culties in school [SBM07].
Spencer et al. observed a substantial slump of the impulsivity/hyperactivity
symptoms from childhood to adulthood whilst inattention symptoms slowly
waned [SBM07]. In children with ages comprise between 8 and 15, the mean
number of inatentiveness symptoms stay stable and the number of hyperactiv-
ity/impulsivity symptoms diminish with age [SBM07].
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4.2 Ex-Gaussian distributions of RT

A widely used function to �t RT is the ex-Gaussian distribution [Hoc84, Luc86,
Rat78, Rat79, RM76, SBF00], which was �rstly proposed by McGill in 1963
[McG63]. The ex-Gaussian function is the convolution of two additive distri-
butions, a Gaussian (Normal) function, and an exponential function. Mathe-
matically, the ex-Gaussian probability density function (PDF) can be written
as follows:

f(x|µ, σ, τ) =
1

τ
exp

(
µ

τ
+

σ2

2τ 2
− x

τ

)
Φ

(
x− µ− σ2

τ

σ

)
, (4.1)

where Φ represents the value of the cumulative density function (CDF) of the
Gaussian distribution.

In the context of mental processes, this convolution can be seen as the de-
scription of the two additive processes previously de�ned as the decision and
the transduction components. However, there is some controversy over which
component is associated to each one of the sequential processes [Luc86].

Dawson assigned the transduction process to the Gaussian component and
the decision process to the exponential component. He argued that, as the
transduction process compiles several phases, it would be reasonable to think
that this process is normally distributed [Daw88]. Hohle made the same as-
signment, based on the Central Limit Theorem [Hoh65]. Hohle defended that
residual time, as a sum of di�erent processes, followed a Gaussian distribution.
However, for the same reason, as the sum of Gaussian distributions results in a
Gaussian distribution, it can be thought that part of the normally distributed
component can also be due to the decision process [Hea96]. So, subsequently,
publications refused the assignment of each process to one component, argu-
ing that both the exponential and Gaussian components can be functions of
experimental manipulations in�uencing the decision part [Hea96, Hoc84].

McGill, contrary to Dawson and Hohle, attributed the exponential function to
the residual (transduction) component, de�ned as the sum of the nondecision
stages such as motor and perceptual phases. A review published by Meijers
et al. suggested that the motor phase of the residual component hardly con-
tributed to the ex-Gaussian distribution variability, being the main contribu-
tor to this variability the exponential component [ME74]. Leaving aside these
theoretical concerns, the ex-Gaussian function has been demonstrated its ade-
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quacy to �t RT distributions [Hea96] and its parameters have been frequently
interpreted in terms of underlying cognitive processes [MW09].

The ex-Gaussian distribution is characterized by three parameters: µ, σ and
τ , being the mean of the Gaussian component, the standard deviation of the
Gaussian component and the mean of the exponential component, respectively.
These three parameters indicate the location of the leading edge of the distri-
bution (µ and σ; i.e., the fastest response times) and the size of the tail (τ ;
i.e., the degree of positive skew) as Leth-Steensen et al. described [LSED00].

The mean and the variance of a RT distribution X can be related to the ex-
Gaussian parameters as follows:

E(X) = µ+ τ (4.2)

and

V ar(X) = σ2 + τ 2. (4.3)

When analyzing variability in RT, the standard deviation has been the most
frequently used measure [EBFea11]. Nevertheless, the τ parameter of the ex-
Gaussian distribution started being promoted for studying this variability in
children with ADHD, which is a consequence of the heavy positive tail of the
RT distribution [LSED00, VSM09]. The positive skew is attributable to some
extremely slow responses and a majority of RT in the normal range.

The ex-Gaussian parameters have been di�erently interpreted. Vaurio et al.
suggested that µ and σ re�ected the distribution of faster responses, whereas τ
measured the increased intra-individual variability accounting for sporadic long
response times [VSM09]. Hockley and McGill agreed that the τ parameter was
an indicator of the residual motor and neural delays [Hoc84, McG63]. Spieler
et al. stated that this parameter was inversely correlated with the σ parameter
[SBF00]. Palmer et al. found similar trends for both µ and σ but di�erent
than τ [PHTW11]. Balota et al. defended that the µ and τ parameters might
be related to processes automation and attentional needs, respectively [BS99].
Although there is not an agreement between studies, this theory seems to be
the most accepted one in the literature [NPNPGMT13].

RT data is characterized by the presence of slow and fast responses possibly
related to distraction and anticipation, commonly resulting in a positively-
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skewed distribution [Hea96]. This skew seems to be inconvenient for many
researchers, who try to ignore it by censoring or transforming it in di�erent
ways [LSED00, MRCBM15, PWLSL02]. However, an important quantity of
information can be extracted from this positive skew. Censoring data inher-
its that real data be excluded together with �accidental� data, so the cost of
removing data can be too high. Moreover, when evaluating psychological pro-
cesses, extreme observations should not be censored as removing anticipation
and distraction could hide part of the real process [Hea96].

Skewness is usually called the �third shape factor � and it is de�ned as follows:

α3 =

(
µ3

µ2

)2/3

. (4.4)

The variance, µ2, and the third central moment, µ3, are estimated by:

µ̂2 =

∑n
i=1(xi − x̄)2

n− 1
(4.5)

and

µ̂3 =

∑n
i=1(xi − x̄)3

n− 1
. (4.6)

The 2/3 exponent and µ2 component of α3 are scale factors. The µ3 parameter
quanti�es the asymmetry of the distribution. Skewness, α3, is estimated by
the method of moments that demands the existence of such order moments but
do not need any assumption on the distribution [Hea96]. Nevertheless, Rat-
cli� defended the maximum likelihood estimation (MLE) method rather than
the method of moments, highlighting the no robustness of the latter [Rat79].
Apart from the method of moments, other approaches have been evaluated to
estimate the ex-Gaussian parameters as the Bayesian method or the recently
mentioned MLE. Although the classical MLE has been widely used, as well
as its variants such as the Quantile Maximum Probability Estimator (QMPE)
[GSH12] for �tting RT models, the Bayesian method is gaining popularity
among psychologists. However, Farrell et al. concluded that the Bayesian and
ML approaches �performed almost equally well� [FL08].
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4.3 Fitting data to an ex-Gaussian distribution

The ex-Gaussian parameters µ, σ and τ are associated with the mean (µ1), the
variance (µ2) and the third central moments (µ3) as indicated by the following
formulas:

µ1 = µ+ τ, µ2 = σ2 + τ 2, µ3 = 2τ 3. (4.7)

The mean of the ex-Gaussian distribution is the sum of both normal and
exponential location parameters, the variance is the sum of both the squared
variance of the normal and exponential components and µ3 is only determined
by the exponential component of the ex-Gaussian distribution as the normal
component do not logically contribute to the asymmetry of the ex-Gaussian
[Hea96].

Sometimes, this asymmetry is considered as an indicator of the presence of
attentional lapses instead of a signal of inability to respond quickly when an-
alyzing psychological behaviors [LSED00]. The extreme values shaping the
positive skew of the RT distribution in�uence on the mean and variance es-
timation. Many authors decide to censor these in�uential values by making
standard deviations cuto�s [LSED00, MRCBM15] or to ignore the asymmetry
[PWLSL02]. Not only extremely positive values are usually removed, marks
revealing a possible anticipating are also censored, such as responses in <100-
150 ms [BMS09, HHBH+15, Luc86], or authors directly establish a range of
accepted values of 200-1500 ms as Feige et al. did [FBSea13]. Several re-
searchers agree on the fact of considering only correct responses although this
decision may result in a signi�cant loss of information [GSH12, HHBH+15,
LJPea15, VSM09]. By contrast, other authors are in favor of not censor-
ing [NPNPGMT13, TCMB13] following an ex-Gaussian approach including
all values, or carrying out data transformations that can lead to a Gaussian
distribution [MRCBM15]. Marmolejo-Ramos et al. concluded that data trans-
formation was more e�cient than censoring values when normalizing positively
skewed distributions [MRCBM15].

4.3 Fitting data to an ex-Gaussian distribution

Ex-Gaussian parameters are estimated by likelihood maximization and com-
pare it with estimates obtained by using the moments' method. The likeli-
hood of an observation is identical to its probability density function (con-
tinuous case) or probability (discrete case). Then, for �xed RTs, namely
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Chapter 4. Reaction times and ex-Gaussian distributions

RT = (rt1, rt2, . . . , rtn), the likelihood gives the probability density of par-
ticular values of the parameters, as indicated in the expression

L(µ, σ, τ) = f(rt1|µ, σ, τ) · · · f(rtn|µ, σ, τ), (4.8)

where f is the probability density function, µ, σ, and τ are the parameters of
the ex-Gaussian distribution, and L(µ, σ, τ) is the likelihood function in terms
of the parameters of the distribution. The maximum likelihood is done by
search, evaluating the logarithm of the likelihood, log(L(µ, σ, τ)), for di�erent
values of the parameters. There is no di�erence in maximizing log(L) instead
of L, since log is an increasing function, and it permits to convert the products
into sums.

4.4 Alternatives to the ex-Gaussian distribution

Although the ex-Gaussian distribution has become very popular among re-
searchers �tting RT, other approaches have been explored when studying cog-
nition and perception experimental data. Ratcli� et al. used the Gamma
and log-Normal distributions to analyze data from recognition memory experi-
ments [RM76]. However, they found that the ex-Gaussian distribution showed
a better �t since it can also absorb the additive Gaussian measurement errors
on top of this. Hence, the ex-Gaussian can model variability associated with
the measurement process and variability intrinsic to the cognitive mechanisms
producing and the observed RT.

Luce wrote a review describing di�erent RT distribution models such as the
Weibull, log-Normal, Gaussian and inverse Gaussian [Luc86]. All these distri-
butions have been widely used in psychology, but the three parameters de�ning
each one of these functions are nonregular. Luce found that adjusting for an
ex-Gaussian (regular parameters) was easier than for any other of these distri-
butions as nonregular parameters imply poor estimation features. Moreover,
the ex-Gaussian �t was more stable and robust. The Fast Fourier transform
(FFT) is another approach commonly used to explore the RT variability. The
FFT makes use of logarithmic transformations to capture the periodic respond-
ing in RT [MMJ19, VSM09].

Matzke et al. defended that both the shifted Wald and the ex-Gaussian dis-
tributions were appropriate for describing RT data although the meaning and
interpretation of their parameters applied to cognitive tasks remained am-
biguous. The explanation of the ex-Gaussian parameters has been commonly
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4.4 Alternatives to the ex-Gaussian distribution

controverted as the ex-Gaussian distribution does not lie on a good theoretical
basis as the shifted Wald do [MW09]. From Matzke's et al. point of view, the
Ratcli� Di�usion Model is a more suitable �t for RT data. In this case, the
parameter estimates can be interpreted in relation to the di�erent cognitive
factors hidden in the decision process [VRV04].

The parameters of the di�usion model are:

(i) ν: the drift rate, which is determined by the quality of information ex-
tracted from the stimulus.

(ii) a: the boundary separation, that represents response caution.

(iii) z: the starting point, representing the subjects' a priori bias for one of
the two response alternatives.

(iv) Ter: the nondecision time, that quanti�es the part of the reaction time
that it is not related to decision making.

Some links were established between the ex-Gaussian and di�usion model pa-
rameters. Schmiedek et al. found that the ex-Gaussian parameter τ and the
di�usion model parameter ν were strongly correlated with working memory
and reasoning [SOW+07]. Other authors shown that an increase in ν caused
a decrease in τ and an increase in a caused an increase in µ [SBF00, Spi01,
YBCW06]. By contrast, Ratcli� found that µ and τ were in�uenced by ν and
a [Rat78]. In Matzke's et al. work, all the ex-Gaussian parameters decreased
while ν and z increased, and all increased as a increased. The ex-Gaussian
parameter τ was mainly a�ected by the di�usion parameter a. Variations in
z were re�ected in µ. Whereas τ and σ were una�ected by Ter, µ increased as
Ter did. Matzke et al. concluded that the ex-Gaussian parameters could not
be associated uniquely with the di�usion model parameters [MW09].

Palmer et al. analyzed the shapes of RT distributions in the context of visual
search comparing four di�erent functions which parameters were known to
re�ect mental processes: Gamma, Weibull, ex-Gaussian and ex-Wald [Luc86,
PHTW11]. In order to make comparisons between these distributions, the
authors rede�ned the Gamma and Weibull two-parameter functions and the
ex-Wald four-parameter function as a three-parameter functions, with no loss
of generality. Then, all four functions had the same chances to �t the data.

As previously mentioned, the ex-Gaussian distribution has been widely used to
�t RT distributions [Hoc84, Luc86, Rat78, Rat79, RM76, SBF00]. Analogously
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Chapter 4. Reaction times and ex-Gaussian distributions

to the ex-Gaussian distribution, the ex-Wald is the convolution of an exponen-
tial and a Wald distributions. Theoretically, the Wald component explains the
part of the RT related to decision, and the exponential component is said to
capture the residual part of RT such as motor delays [PHTW11]. The Gamma
function represents the sum of di�erent exponential processes. Finally, the
Weibull distribution is appropriate to �t random variables bounded by zero
that can extend with no limit such as RT [Log92].

Palmer et al. concluded that the Weibull �t was poorer than for the other three
distributions, being the ex-Gaussian the closest to the data. The ex-Wald and
Gamma �ts were very similar to the ex-Gaussian [PHTW11]. The authors
highlighted that the three distributions including an exponential function were
all more successful than the Weibull distribution, and the trends of the three
exponential parameters were very similar. This fact has been interpreted in the
literature as that these exponential parts describe the nondecision component
of RTs [McG63].
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Chapter 5

Power-law distribution of

natural visibility graphs from

reaction times series

As we have seen in Chapter 4, the RTs usually follow an ex-Gaussian distri-
bution [BS99, Luc86, RM76]. The �t of the RTs distribution to probabilistic
functions is usually performed with the �gure of merit of maximizing the like-
lihood function [LC08, MTGNPFdC18]. Several studies have been recently
developed with the goal of setting a correspondence between the three param-
eters µ, σ, and τ of an ex-Gaussian distribution of RTs derived from perfor-
mance tests, such as Conners' continuous performance tests [CEAK03], with
attention disorders.

Of all three parameters, the most interesting one seems to be τ , since it has
been assumed to contain a perceptual portion of an RT, the decision com-
ponent, and it has been recently related to factors associated with attention.
For a recent account on the relevance of these three parameters in the diag-
nosis of ADHD, see references [BMS09, GFW+14, GGTH13, MTMCIdLA+14,
MTLSI+16, MTLGAT+17].
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Chapter 5. Power-law distribution of natural visibility graphs from reaction times series

Nevertheless, when �tting to an ex-Gaussian distribution, a loss of information
occurs, since the sequential order in which the response times are given by the
subject is not considered. Moreover, when the time for responding is exceeded,
these items are not usually taken into account in the �t.

In the current study [MINPC19], we follow a radically di�erent approach, closer
to time series analysis, in which we also provide a simple graphic interpretation
of the results provided by natural visibility graphs (NVGs). From this perspec-
tive, a univariate time series is mapped into an abstract graph, with the goal of
describing the time series in graph-theoretical terms. NVGs permitted us not
only to provide a visual description of a given time series but also to connect
the time series itself with the degree distribution of the corresponding graph.

We show that the NVGs degree distributions tend to follow a power-law dis-
tribution, in the spirit of scale-free network. We also study the correlations
between the power-law �t parameter and the ex-Gaussian parameters of the
distribution [CSN09]. The number of commission errors (when the item is
responded to on time with an erroneous answer) and omission errors (when
the maximum permitted time is reached and there is no answer provided) are
also explored. In addition to this, we analyze the NVG degree distribution of
extreme cases when the number of commission errors are out of the expected
range.

5.1 Materials and methods

A total of 130 students, aged between 8 to 12 years and located in the Valencia
Region of Spain, participated in the study: 66 (50.8%) females and 64 (49.2%)
males (Table 5.1). The legal authorization of regional education authorities
was obtained to develop this research. All children parents/tutors signed the
informed consent document allowing their childs' participation. A description
of the population can be found in Table 5.1. The median age was 9 years and
the interquartile range was 8-10 years.

The students participating in the study took a lexical decision task test of
type yes/no, processed using DMDX software on a laptop [FF03]. The task
consisted of the presentation of a set of �sh �gures on the laptop screen. The
student had to answer which direction the �sh in the middle was looking. A
total of 120 of these stimuli were presented to the student. The maximum
time permitted to answer each item was set at 2500 milliseconds (ms). If the
student did not answer within the time, then a new stimulus was presented to
the student.
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5.2 Description of the RTs dataset

Age Females Males Total
8 23 (63.9%) 13 (36.1%) 36
9 15 (48.4%) 16 (51.6%) 31
10 13 (41.9%) 18 (58.1%) 31
11 8 (42.1%) 11 (57.9%) 19
12 7 (53.8%) 6 (46.2%) 13

Overall 66 (50.8%) 64 (49.2%) 130

Table 5.1: Students distribution by age and sex.

In addition, a minimum threshold for considering an admissible reaction time
is set at 100 ms; answers under this threshold are discarded since they are
considered to be unconscious. Experiments on simple RT to intense signals
indicate that the residual (nondecision) component of RT is, at least, equal
to this value of 100ms. The task analyzed in this thesis was inspired by an
adaptation of the attention tasks for children presented in reference [RRM+05].

We analyze this dataset from two di�erent perspectives. On the one hand,
we will �t each individual's RTs to an ex-Gaussian distribution, extracting
the parameters µ, σ, and τ . On the other hand, we will compute the natural
visibility graph of each RT series and �t the degree distribution of this graph
to a power-law. We will study the connections between these parameters, how
they evolve with age, and if exist, we will �nd gender di�erences.

5.2 Description of the RTs dataset

First, we present a brief description of the RT data. Table 5.2 shows the results
by age and sex.

There are no statistically signi�cant di�erences by sex when exploring the RT
means (p-value= 0.6226 for the Student's t-test with 95% con�dence). The
results are presented in Figure 5.1 and Figure 5.2. We can see that there are
only three and four outliers in each case. These cases will be discussed later
in detail.

In contrast, the Kruskal-Wallis test reveals statistically signi�cant di�erences
by age (p-value< 0.001). Speci�cally, there are di�erences for ages between
8 and 9 years, 9 and 10 years, and 10 and 11 years, but not between 11 and
12 years, according to the Wilcoxon test. We repeat the test after eliminat-
ing the outlier in the 12-year-old group and the result does not vary. These
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Chapter 5. Power-law distribution of natural visibility graphs from reaction times series

Mean number Mean number
Mean number of Commission of Omission

Age Sex of Hits Errors Errors
8 Females 116.1 11.6 2.1
8 Males 112.6 15.3 1.8
9 Females 121.5 6.8 1.5
9 Males 120.5 8.4 0.8
10 Females 122.0 7.1 0.6
10 Males 115.4 12.8 1.3
11 Females 126.1 3.7 0.1
11 Males 121.5 7.9 0.4
12 Females 124.9 4.8 0.3
12 Males 118.2 7.3 4.5

Overall Females 120.6 7.9 1.2
Overall Males 117.4 10.9 1.4

Table 5.2: Results of the task by age and sex.

Figure 5.1: Distribution of the response times (RTs) by sex.

results are consistent with the �ndings on how reaction times evolve with age
[MTMCIdLA+14, KRS+13, MTLGAT+17, SB15, VSM09]. A linear model is
adjusted taking the logarithm of RT mean as the dependent variable, and age
and sex as �xed e�ect factors, obtaining the same results: signi�cant di�er-
ences across ages 8 and 9 years (10% less RT mean, p-value= 0.01); 9 and 10
years (8% less, p-value= 0.05); 10 and 11 years (15% less, p-value< 0.01); and
not between sexes (p-value= 0.82).
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5.3 Power-law distribution of the NVGs degrees

Figure 5.2: Distribution of the response times (RTs) by age.

5.3 Power-law distribution of the NVGs degrees

Once we compute the degree distribution of each NVG, we �t each one of these
distributions to a power-law following the procedure described in [CSN09]. For
this �t, the relevant values are α, the exponent of the power-law, and xmin,
the lower bound from which the power-law �t is performed. The use of xmin is
necessary since the �tting of empirical data to a power-law is always performed
from this value onwards. We estimate this value xmin by x̂min, the value that
makes it such that for all x ≥ x̂min, the probability distribution of the empirical
data and the best-�t power-law model are as close as possible.

In order to compute the distance between these pairs of distributions, we
choose the Kolmogorov-Smirnov (K-S) statistic, see De�nition 1.27. For com-
putational purposes, the power-law is considered as p(x) = x−α

ζ(α,xmin)
, where

ζ(α, xmin) is the Hurwitz zeta function that has been already de�ned in equa-
tion (1.17). Then, α is computed in order to maximize the likelihood function

L =
∏n
i=1

x−α
i

ζ(α,xmin)
. For speci�c details, we refer readers to reference [CSN09].

To explore the goodness-of-�t, we generate a large number of power-law-
distributed datasets using as α and xmin those values obtained from the distri-
bution that best �ts the observed data. Each generated dataset is �tted to a
power-law distribution, and the K-S statistic is computed with respect to its
own model. Then, we count for the fraction of time that the K-S statistic is
larger than the value of the empirical data. The p-value of the goodness-of-�t
is estimated as the fraction of the time that the K-S statistic is larger than that
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Chapter 5. Power-law distribution of natural visibility graphs from reaction times series

obtained for the observed data. For additional details, we again refer readers
to reference [CSN09].

We point out that the p-values should be interpreted with caution, especially
if we are dealing with very few data, as larger p-values do not indicate that
the power-law is the most appropriate distribution for our data. The correct
interpretation is that it is di�cult to discard the power-law when we have few
data. In our case, we accept the power-law distribution for 75% of the students.
A summary of the values of the parameter α of the power-law can be found in
Table 5.3.

Age Sex Mean (α) SD (α)
8 Females 4.24 2.06
8 Males 4.03 1.27
9 Females 4.55 2.09
9 Males 4.17 1.01
10 Females 4.66 2.26
10 Males 4.54 2.12
11 Females 3.61 0.74
11 Males 5.54 1.83
12 Females 5.14 2.56
12 Males 4.09 1.22

Overall Females 4.41 2.04
Overall Males 4.47 1.64

Table 5.3: Description of the power-law parameters by age and sex.

To illustrate the �tting of the degree distribution of NVGs to a power-law
distribution, we visualize the NVGs associated with students who did not have
omission or commission errors (participants 39, 77 and 103) in Figure 5.3 and
Figure 5.4.

In order to study the NVGs' complexity, we analyze the Shannon entropy of
the NVGs' degree distributions. Here, it is de�ned as the expected value of the
information content of the variable, that is, the probability that a node i of an
NVG has degree j, see Equation (3.10). The entropy results are summarized
in Table 5.4.

There is no association between the Shannon entropy of the degree distribution
and the RT means (Spearman correlation of -0.03). In contrast, there is a
strong association between the NVGs' mean degree and the Shannon entropy
(Spearman correlation of 0.991).
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(a) (b)

(c)

Figure 5.3: The respective NVGs of participants 39, 77 and 103. (a) Natural Visibility
Graph of participant 39; (b) Natural Visibility Graph of participant 77; (c) Natural Visibility
Graph of participant 103.
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(a)

(b)

(c)

Figure 5.4: Power-law �t of the degree distribution of the NVGs associated with partic-
ipants 39, 77, and 103 (the points represent the cumulative degree distribution function of
the NVG and the red line represents the power-law that best �ts the data). (a) NVG degree
distribution and power-law �t of participant 39; (b) NVG degree distribution and power-law
�t of participant 77; (c) NVG degree distribution and power-law �t of participant 103.
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5.3 Power-law distribution of the NVGs degrees

Age Sex Mean (h) SD (h)
8 Females 3.65 0.39
8 Males 3.50 0.31
9 Females 3.49 0.29
9 Males 3.47 0.41
10 Females 3.44 0.40
10 Males 3.62 0.41
11 Females 3.64 0.38
11 Males 3.54 0.62
12 Females 3.51 0.34
12 Males 3.39 0.23

Overall Females 3.56 0.36
Overall Males 3.53 0.42

Table 5.4: Description of the Shannon entropy by age and sex.

It is worth mentioning that when analyzing the NVGs' mean degree, we did
not �nd any statistically signi�cant di�erences either by sex (p-value=0.748
for the Wilcoxon test) or by age (p-value= 0.8022 for the Kruskal-Wallis test).
The results are presented in Figure 5.5 and Figure 5.6.

Figure 5.5: Distribution of the NVG mean degree by sex.

Moreover, a linear model including age, sex, and their interaction as predictors
and the logarithm of the NVG's mean degree as response variable is adjusted
to corroborate this a�rmation. The obtained p-values are 0.530, 0.591, and
0.618 for age, sex, and their interaction, respectively.
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Figure 5.6: Distribution of the NVG mean degree by age.

5.4 Comparison between the power-law and the ex-Gaussian

distribution parameters

Because of the importance of ex-Gaussian distributions in RT analyses, we
study whether there is a relation between NVG complexity and the three pa-
rameters that characterize an ex-Gaussian distribution. These parameters rep-
resent the mean of the quick responses (µ), the standard deviation of the quick
responses (σ), and the variability of the slow responses (τ). It should be noted
that there is a strong association between the RT mean and τ (Spearman cor-
relation of 0.846) and between the RT mean and µ (Spearman correlation of
0.720). There is also a weaker link between the RT mean and σ (Spearman
correlation of 0.575). The ex-Gaussian parameters for the �tting of the RT
frequency distribution are calculated by maximum likelihood as indicated in
reference [LC08]. A summary of the results is presented in Table 5.5.

The α parameter from the power-law �t and the µ and σ parameters are
negatively, not statistically signi�cantly correlated, with Spearman correlation
coe�cients of -0.062 and -0.042, respectively. However, there is a stronger
positive association, although not statistically signi�cant, between α and the
τ parameter (0.079).

Returning to the aforementioned cases, the results of students 39, 77, and
103 are representative for what is expected of an RT distribution, since their
RTs' frequencies follow ex-Gaussian distributions in each case (see Figure 5.7).
Despite these participants did not commit errors in their answers, they did not

74



5.4 Comparison between the power-law and the ex-Gaussian distribution parameters

Age Sex Mean (µ) SD (µ) Mean (σ) SD (σ) Mean (τ) SD (τ)
8 F 643.4 60.55 105.34 22.88 304.10 79.17
8 M 650.7 93.61 133.18 32.14 316.00 124.5
9 F 587.5 60.97 98.62 33.99 279.89 125.6
9 M 614.9 95.29 122.33 41.63 248.00 103.0
10 F 554.3 64.48 103.58 28.96 221.67 79.67
10 M 552.6 73.77 122.91 65.99 255.10 125.9
11 F 524.9 68.43 81.06 24.12 131.90 43.79
11 M 507.4 42.39 82.43 31.46 185.54 95.39
12 F 512.9 67.19 81.15 21.24 238.20 80.92
12 M 471.3 54.36 75.83 25.72 238.04 306.2

Overall F 629.5 78.30 111.50 27.86 322.87 102.6
Overall M 527.7 96.78 113.48 49.22 252.15 142.1

Table 5.5: Description of the ex-Gaussian parameters by age and sex (F=female, M=male).

need the longest times to respond. Participants 77 and 103 were faster and
older (i.e., 11 years old versus 8 years old) than participant 39.

All parameters, α, µ, σ, and τ are positively correlated with the RT mean
with correlations coe�cients 0.017, 0.768, 0.571, and 0.811, respectively, when
response times equal to 2500 ms are not taken into account. However, no asso-
ciation is found when comparing the RT mean with α (Spearman correlation
coe�cient of 0.017). We �t a linear model to assess those results obtaining no
signi�cant association between the RT mean and α (p-value=0.140) and be-
tween the RT mean and σ (p-value=0.055). We �nd non-remarkable Spearman
correlations of the NVG mean degree with α (-0.196), µ (-0.026), σ (-0.072),
and τ (-0.021).

Finally, three di�erent generalized linear models are adjusted to study the
association between α, µ, σ, and τ and the number of errors of omission,
errors of commission, and hits.

On the one hand, we obtain a signi�cant association between τ and the number
of errors of omission. The number of errors of omission increases as long as τ
increases (when τ increases by 1 unit, omission errors increase 0.7%).

On the other hand, the number of commission errors decreases while µ increases
(when µ increases by 1 unit, commission errors decrease 0.2%) and it increases
while σ and τ increase (when σ increases by 1 unit, commission errors increase
0.6%, and when τ increases by 1 unit these errors increase 0.3%). These
e�ects remain after adjusting for age and sex. No other signi�cant results
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(a)

(b)

(c)

Figure 5.7: Ex-Gaussian �t of the RTs of participants 39, 77, and 103 (continuous line
represents observed data, dashed line represents �tted data). (a) Ex-Gaussian �t of the RTs
of participant 39; (b) Ex-Gaussian �t of the RTs of participant 77; (c) Ex-Gaussian �t of the
RTs of participant 103.
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5.5 Particular cases

are obtained for the other parameters. Finally, the number of hits increases
while µ increases (0.2% more for every increment of µ by 1 unit), however, the
number of hits decreases as σ and τ increase (0.5% less when σ increases by
1 unit, and 0.4% less when τ increases by 1 unit). All the described e�ects
remain after adjusting the respective models for age and sex.

5.5 Particular cases

In order to see how each parameter works, we also analyze in detail the most
extreme cases, the parameters of which are presented in Table 5.6, Table 5.7
and Table 5.8:

Mean Reaction Shannon
Participant Age Sex Time Entropy

89 12 M 1338.7* 3.44
120 8 F 974.5 3.92
84 12 M 492.7* 3.12

Table 5.6: Description of the most extreme cases (a).

Number of Number of
Participant Number of Hits Omission Errors Commission Errors

89 91 27* 12
120 14 7 109*
84 124 0 6

Table 5.7: Description of the most extreme cases (b).

Participant α µ σ τ
89 5.8 481.9 46.9 856.9
120 2.2 580.5 136.8 394.0
84 3.2 437.8 54.1 54.85

Table 5.8: Power-law and ex-Gaussian parameters of the most extreme cases.

Participant 89 was the slowest despite being 12 years old. The α and τ parame-
ters for this participant are the highest among those of all selected participants,
and in contrast σ is the smallest. Participant 120 was the student who com-
mitted more errors than the rest. This participant has the lowest value of α
and the highest of σ. Finally, participant 84 was the fastest one. The entropy
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value for this participant is the lowest, as well as the µ and τ parameters. In
the following sections, we compare them graphically. We compare their NVGs,
their �t to the power-law of the degree distribution, and their �t to ex-Gaussian
distributions in Figure 5.8, Figure 5.9, Figure 5.10 and Figure 5.11.

(a) (b)

(c)

Figure 5.8: The respective NVGs of participants 89, 120 and 84. (a) Natural Visibil-
ity Graph of participant 89; (b) Natural Visibility Graph of participant 120; (c) Natural
Visibility Graph of participant 84.

5.6 Hurst exponents

Finally, we have estimated the Hurst exponent of the RTs time series of the
130 students as described in section 1.2.2. The distribution of the simple
R/S Hurst estimates follows a Gaussian distribution (p-value=0.1427 for the
Shapiro-Wilk normality test), see Figure 5.13. No di�erences have been found
between age and sex (p-value=0.4887 and p-value=0.4277, respectively, for the
Kruskal-Wallis rank-sum test), as it can also be seen in Figure 5.12.

The estimated Ĥ values have been classi�ed into 3 groups: Ĥ = 0.5 (random
process), Ĥ < 0.5 (negative autocorrelation or antipersistent behavior) and
Ĥ > 0.5 (positive autocorrelation or persistent behavior). Among all partic-
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(a) (b)

(c)

Figure 5.9: The respective NVGs of participants 89, 120 and 84 where black nodes repre-
sent hits or commission errors and red nodes represent omission errors. (a) Natural Visibility
Graph of participant 89; (b) Natural Visibility Graph of participant 120; (c) Natural Visi-
bility Graph of participant 84.
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(a)

(b)

(c)

Figure 5.10: Power-law �t of the degree distribution of the NVGs associated with partic-
ipants 89, 120, and 84 (the points represent the cumulative degree distribution function of
the NVG and the red line represents the power-law that best �ts the data). (a) NVG degree
distribution and power-law �t of participant 89; (b) NVG degree distribution and power-law
�t of participant 120; (c) NVG degree distribution and power-law �t of participant 84.
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(a)

(b)

(c)

Figure 5.11: Ex-Gaussian �t of the RTs of participants 89, 120, and 84 (continuous line
represents observed data, dashed line represents �tted data). (a) Ex-Gaussian �t of the RTs
of participant 89; (b) Ex-Gaussian �t of the RTs of participant 120; (c) Ex-Gaussian �t of
the RTs of participant 84.
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Figure 5.12: Distribution of the simple R/S Hurst estimates by age and sex.

ipants, 8% have Ĥ = 0.5, 11% have Ĥ < 0.5 and 85% have Ĥ > 0.5. We
plot the distribution of the Hurst estimates and show the distance from all
estimations to 0.5 in Figure 5.13.

The distance between all Ĥ to 0.5 is also shown by age and sex in Figure 5.14.
Again, no signi�cant di�erences have been found when applying the Kruskal-
Wallis rank-sum test (p-value=0.7073 for age and p-value=0.4124 for sex).

Three participants stand out for their higher H estimates. Participant 26 has
Ĥ = 0.70, participant 89 has Ĥ = 0.68 and participant 140 has Ĥ = 0.66.
In Figure 5.15, we show a series of statistics and estimated parameters for all
the participants, and we highlight students 26, 89, and 140 in blue, green, and
pink, respectively.

In comparison with other students, participant 26 is an 11-years-old female
that distinguishes because of its 129/130 correct responses and just 1/130
commission error. Participant 89 is a 12-years-old male and has the highest
mean reaction time as he has the highest number of omission errors. His σ
parameter is very low (compared to other participants), and, by contrast, his
τ parameter is very high. Finally, participant 140 is a 10-years-old female.
She has a low maximum degree while the power-law α parameter is relatively
high.
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Figure 5.13: Distribution of the simple R/S Hurst estimates and the distance to 0.5.

Figure 5.14: Distribution of the distance from Ĥ to 0.5 by age and sex.
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Figure 5.15: Parameters description of participants 26 (blue), 89 (green) and 140 (pink).
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Chapter 6

Conclusions

We brie�y summarize the main results of this thesis and we also indicate some
lines for future research.

Firstly, we have analyzed the chaos for a parametric family of fractional discrete
dynamical systems generated from the logistic di�erence equation [CLMIR19].
We have proposed an alternative way of deducing this fractional di�erence
equation through convolution kernels.

We have described the chaos phenomena in these systems in terms of the
Shannon entropy of visibility graphs associated with the trajectories obtained
from these models. We have also described the chaos phenomena in connection
with the exponent of the power-law �tting of the degree distribution from the
visibility graphs of these time series.

Some C-shape curves are exhibited showing the connections between the frac-
tional exponent ν and the scaling factor µ. In addition, we have also found
a region in which the orbits diverge and then the computation of the visibil-
ity graphs would not correctly describe such behavior since it lacks of sense.
It would be interesting if some insight could be provided into how both pa-
rameters ν and µ are linked. Besides, it will also be interesting to determine
beforehand the borders of the region where there exists the ω-limit of the
orbits.
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It will be of particular interest to study the dynamics of these fractional dy-
namical systems for other cases, such as the case of delay fractional di�erence
equations [WB16] and also for superdi�usive regime the fractional exponent ν
is between 1 and 2.

Secondly, we deal with the study of RTs during childhood [MINPC19], in
terms of milliseconds, assessed with a standardized experimental task, which
allows for direct assessment of the subject and greater accuracy in clinical,
educational, and research contexts. It was already known that the RTs usu-
ally follow an ex-Gaussian distribution [BS99, Luc86, RM76]. The �t of the
RTs distribution to probabilistic functions is usually performed with the �gure
of merit of maximizing the likelihood function [LC08]. Several studies have
recently been developed with the goal of setting a correspondence between
the three parameters µ, σ, and τ of an ex-Gaussian distribution of RTs derived
from performance tests, such as Conners' continuous performance tests [FF03],
with attention disorders.

Of all three parameters, the most interesting one seems to be τ , since it has
been assumed to contain a perceptual portion of an RT, the decision com-
ponent, and it has been recently related to factors associated with attention.
For a recent account on the relevance of these three parameters in the di-
agnosis of ADHD, see references [BMS09, GFW+14, GGTH13, MTLSI+16,
MTMCIdLA+14].

Nevertheless, when �tting to an ex-Gaussian distribution, a loss of information
occurs, since the sequential order in which the response times are given by the
subject is not considered. Moreover, when the time for responding is exceeded,
these items are not usually taken into account in the �t.

In the current study [MINPC19], we followed a radically di�erent approach,
closer to time series analysis, in which we also provided a simple graphic inter-
pretation of the results represented by natural visibility graphs (NVGs). From
this perspective, a univariate time series was mapped into an abstract graph,
with the goal of describing the time series in graph-theoretical terms. NVGs
permitted us not only to provide a visual description of a given time series
but also to connect the time series itself with the degree distribution of the
corresponding graph.

We have shown that the NVGs degree distributions tended to follow a power-
law distribution, in the spirit of scale-free networks. We also studied the corre-
lations between the power-law �t parameter and the ex-Gaussian parameters
of the distribution [CSN09]. The number of commission errors (when the item
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was responded to on time with an erroneous answer) and omission errors (when
the maximum permitted time was reached and there was no answer provided)
were also explored. In addition to this, we analyzed the NVG degree distribu-
tion of extreme cases when the number of commission errors were out of the
expected range.

We also have shown that the degree distribution of the NVG associated with
one of these series usually follows a power-law distribution of the form p(x) =
x−α, with α > 0. With such an approach, the order in which the items are
answered is preserved, in contrast with �tting to an ex-Gaussian distribution
of the histogram of the response time frequencies. Moreover, we also analyzed
the correlations between the aforementioned parameter α obtained through a
power-law and the ex-Gaussian parameters µ, σ, and τ . We observed that the
parameter α was weakly negatively correlated with µ and σ and weakly pos-
itively correlated with τ . Stronger correlations were found between the mean
response time and the µ and τ parameters, and those results were corroborated
through a linear model �t. In particular, these connections could be noticed
when studying participant 89, the slowest one, with the �nding that in this
case, the τ parameter was the highest among the participants. We also saw
these connections when studying participant 84, the fastest one, with the �nd-
ing that their µ parameter was the lowest one. Other potential approaches can
be made based on the use of high-order statistical techniques, for example, in
references [IMGGS+18, MSS16].

Participants tended to respond faster as age increased from 8 to 11 years,
with no di�erences between sexes as the linear regression revealed. The same
pattern was repeated when looking at the standard deviations of the RTs.
Males responded faster, but not signi�cantly di�erently than females, and with
higher RT variability. No di�erences were detected between sex or age when
comparing NVGs' mean degrees.

The number of omission errors increased as τ increased. The number of com-
mission errors decreased while µ increased, and it increased while σ and τ did.
These e�ects could be seen when studying participant 120, the participant with
the largest number of commission errors, the lowest α, and the highest σ. The
number of hits increased as µ increased and it decreased while σ and τ did. In
all these cases, the e�ects were still noticed after considering participants' age
and sex.

An exploratory analysis was performed to detect outliers or in�uential obser-
vations among participants. Before carrying out the complete analysis, we
removed two participants from our dataset as they gave no response to almost
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all items. Finally, we considered 130 participants from 8 to 12 years, however,
numbers were reduced when dividing the group by sex and/or age.

Although statistically signi�cant di�erences were found across age groups, no
relevant di�erences were observed when comparing boys and girls. This fact
may be due to the small sample size, which in observational studies such as
this one may result in weak statistical signi�cances like those seen here. The
obtained results require careful interpretation and should be con�rmed with
larger sample sizes.

Finally, only one task related to attention was employed to study di�erences
among participants. A wider variety of tasks performed in a larger size sam-
ple would provide more robust conclusions. Moreover, such results may be
combined in order to provide techniques to dissociate students that may be
su�ering an attention disorder that should be later clinically con�rmed.
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