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“The fundamental laws necessary for the mathematical treatment of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty lies only in the fact that application of these laws leads to equations
that are too complex to be solved.”

Paul Dirac
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Abstract

The dimensionality of the system plays a decisive role in the behavior of the
electronic dynamics of interacting electrons. In particular, the quasi-2D di-
mensionality is responsible for the unusual behavior observed in graphene-like
materials and layered van-der-Waal systems. Moreover, such effects are also
observed for superconducting materials of high critical temperature, even in
the normal state, due to their low-dimensionality.

The experimental study of graphene triggered a growing attention to respective
electronic properties, because the honeycomb lattice defines a band structure
with two nodal points in the Brillouin zone which determines a relativistic
Dirac-type electronic dynamics. Within a theoretical framework, many prop-
erties of single-layer graphene have been studied to allow further characteriza-
tion of this material. These properties are unconventional due to the unique
band structure of graphene, which is described in terms of Dirac fermions, cre-
ating links with certain theories of particle physics. In fact, several theoretical
groups have employed phenomenological models inspired in quantum cromo-
dynamics (i.e. Nambu-Jona Lassino and Gross-Neveu models) applied to the
study of graphene properties. These properties are responsible for the unusual
phenomena, such as the fractional Hall effect, which allows the possibility for
magnetic catalysis of an excitonic gap, ferromagnetism and superconductivity.

The research of high critical temperature superconductors with impurity cen-
ters is significant for understanding the underlying physics of such disordered
systems. While the cuprate family present insulating properties in the pristine
state, the undoped iron pnictides (i.e. LaOFeAs) show a semi-metallic behav-
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ior. Inspite these diferences, both compounds are layered structures, where the
superconducting state is supported by a quasi-2D square lattice. While for iron
pnictides this state is formed by the FeAs layer, the cuprate superconducting
state is formed by the CuO layer.

The current work focuses on the theoretical study of the structural, electronic
and optical properties of graphene-type materials, such as bilayer graphene;
and also of s- and d-wave superconductors, more specifically iron pnictides and
cuprates, respectively. Furthermore, disordered systems will be focused upon
since these (quasi-)2D systems are quite sensitive to disorder. Such properties
have major importance for technological device applications, as can be observed
in the increasing technological fields of high temperature superconductores and
electronic devices. The type of perturbations applied to the systems of interest
are chemical impurities and/or external electric bias, and these show variations
of the electronic and optical properties when compared to the pristine systems.

The electronic properties are described by calculating the spectrum of the
material by employing the Tight-Binding theory and the continuum model.
In the case of the graphene system, by performing the calculation in the low
energy limit we obtain the linear dispersion, which is one of the characteristics
of the Dirac massless relativistic particles. Other studies related to suspended
graphene in vacuum, revealed that graphene can change from a semi-metal
into an insulator, due to the formation of a gap in the fermionic spectrum,
resultant from the chiral condensate (exciton). The Dirac equation allows to
further probe the strain effects, leading to deformed graphene, which can be
seen as a tabletop for quantum field theories in curved spacetimes.

Green function methods is the most robust and common analytical tool to
compute the physical observables, such as the density of states (DoS). The
DoS is a fundamental physical quantity which aids in the interpretation of
several experimental data mostly for disordered systems.

The effect of impurities is calculated by employing the simple and self-consistent
T-matrix. For the considered case of finite impurity concentration, the self-
consistent method is more reliable. However, with the exception of the ’spuri-
ous’ effect obtained for the vacancy (DoS divergence), that persists even with
the self-consistent technique, all other observables treated within this formal-
ism will be in accordance with the experimental data and other theoretical
approximations.

Other techniques employed to study the structural and electronic properties of
these systems of interest are based on computational methods, such as Density
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Functional Theory and these serve as a complementary tool to the analytical
methods. Methodologies based on phonon theory are also employed to probe
the dynamical stability of the systems.
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Resumen

La dimensionalidad de un sistema juega un papel fundamental en la conducta
de la dinámica de los electrones que interactúan. En particular, la dimen-
sionalidad cuasi-2D es responsable del comportamiento inusual observado en
materiales de tipo grafeno y sistemas laminares basados en enlaces de tipo van
der Waals. Además, estos efectos también se observan en materiales supercon-
ductores de alta temperatura crítica, incluso en el estado normal, debido a su
baja dimensionalidad.

El estudio experimental del grafeno provocó una atención creciente a sus propie-
dades electrónicas, porque su estructura en forma de panal de abejas da lugar
a una estructura de bandas con dos puntos nodales en la zona de Brillouin
que determina una dinámica electrónica relativista de tipo Dirac. En el plano
teórico, muchas propiedades del grafeno de una sola capa se han estudiado para
permitir una mayor caracterización de este material. Estas propiedades son
poco convencionales debido a la singular estructura de bandas del grafeno, que
se describe en términos de fermiones de Dirac, lo que crea vínculos con ciertas
teorías de la física de partículas. De hecho, varios grupos teóricos han empleado
modelos fenomenológicos inspirados en la cromodinámica cuántica (es decir,
los modelos Nambu-Jona Lassino y Gross-Neveu) aplicados al estudio de las
propiedades del grafeno. Estas propiedades son responsables de inusuales fenó-
menos, como el efecto Hall fraccionario, que permite la posibilidad de catálisis
magnética de un gap excitónico, ferromagnetismo y superconductividad.

La investigación de superconductores de alta temperatura crítica con centros de
impurezas es importante para comprender la física subyacente de tales sistemas
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desordenados. Mientras que la familia de los cupratos presenta propiedades
aislantes en estado prístino, los pnictogenuros de hierro sin dopar (es decir,
LaOFeAs) muestran un comportamiento semimetálico. A pesar de estas difer-
encias, ambos compuestos son estructuras en capas, donde el estado supercon-
ductor está respaldado por una red cuadrada cuasi-2D. Mientras que para los
pnictogenuros de hierro este estado está formado por la capa de FeAs, el estado
superconductor de cuprato está formado por la capa de CuO.

El presente trabajo se centra en el estudio teórico de las propiedades estruc-
turales, electrónicas y ópticas de los materiales de tipo grafeno, como el grafeno
bicapa; y también de superconductores de ondas s y d, más específicamente
pnictogenuros y cupratos de hierro, respectivamente. Además, se hace hincapié
en sistemas desordenados ya que estos sistemas (cuasi-)2D son bastante sensi-
bles al desorden. Tales propiedades tienen gran importancia para aplicaciones
de dispositivos tecnológicos, como se puede observar en la creciente tecnología
campos de tensiotrónica y espintrónica. El tipo de perturbaciones aplicadas a
los sistemas de interés son las impurezas químicas y campos eléctricos exter-
nos. Estas perturbaciones producen variaciones de las propiedades electrónicas
y ópticas cuando se comparan con los sistemas prístinos.

Las propiedades electrónicas se describen calculando el espectro del material
mediante la teoría Tight-Binding y el modelo continuo. En el caso del sistema
de grafeno, al realizar el cálculo en el límite de baja energía se obtiene la
dispersión lineal que es una de las características de las partículas relativistas
sin masa de Dirac. Otros estudios del grafeno suspendido en el vacío revelaron
que el grafeno puede cambiar de semi-metal a aislante debido a la formación de
un espacio en el espectro fermiónico de electrones que resulta del condensado
quiral (excitón). La ecuación de Dirac permite sondear aún más los efectos
de la tensión, lo que lleva a un grafeno deformado, que puede verse como un
campo de pruebas para las teorías cuánticas de campos en espacio-tiempos
curvos.

Los métodos basados en las funciones de Green son las herramientas analíticas
más robustas y comunes para calcular los observables físicos, como la densidad
de estados (DoS). La DoS es una magnitud física fundamental que ayuda en
la interpretación de varios datos experimentales principalmente para sistemas
desordenados. El efecto de las impurezas se calcula empleando el método sim-
ple y autoconsistente Matriz en T. Para el caso considerado de concentración
finita de impurezas, el método autoconsistente es más fiable. Sin embargo,
con la excepción del efecto "espurio" obtenido para la vacante (divergencia
DoS), que persiste incluso con la técnica autoconsistente, todos los demás ob-
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servables tratados dentro de este formalismo estarán de acuerdo con los datos
experimentales y otras aproximaciones teóricas.

Otras técnicas empleadas para estudiar las propiedades estructurales y elec-
trónicas de estos interesantes sistemas se basan en métodos computacionales,
como la teoría del funcional de la densidad, que sirven como herramientas
complementarias a los métodos analíticos. Finalmente, cabe mencionar que
también se emplean metodologías basadas en la teoría de fonones para inves-
tigar la estabilidad dinámica y la conductividad térmica de la red.
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Resum

La dimensionalitat d’un sistema juga un paper fonamental en la conducta de
la dinámica dels electrons que interactúen. En particular, la dimensionalitat
cuasi-2D és responsable del comportament inusual observat a materials de
tipus grafè i sistemes laminars basats en enllaços de tipus van der Waals. A
més a més, aquestos efectes també s’observen a materials superconductors
d’alta temperatura crítica, inclús al seu estat normal, degut a la seua baixa
dimensionalitat.

L’estudi experimental del grafè va produir una atenció creixent a les seues
propietats electròniques, perque la seua estructura en forma de panal d’abelles
dona lloc a una estructura de bandes amb dos punts nodals a la zona de
Brillouin que determinen una dinámica electrónica relativista de tipus Dirac.
Al planol teòric, moltes propietats del grafè d’una sola capa s’han estudiat per
a permetre una major caracterizació d’aquest material. Aquestes propietat
són poc convencionals degut a la singular estructura de bandes del grafè, que
es descriu mitjançant fermions de Dirac. Aquestos fermions permeten establir
víncles amb certes teories de la física de particles. De fet, alguns grups teòrics
han empleat models fenomenològics inspirats a la cromodinàmica quàntica (es
a dir, els models Nambu-Jona Lassino i Gross-Neveu) aplicats a l’estudi de les
propietats del grafè. Aquestes propietats són responsables d’inusuals fenómens,
com l’efecte Hall fraccionari, que permet la possibilitat de catálisi magnètica
d’un gap excitònic, ferromagnetisme i superconductivitat.

La investigació de superconductors d’alta temperatura crítica amb centres
d’impureses és important per a comprendre la física subjacent de tals sistemes
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desordenats. Mentre que la família dels cuprats presenta propietats aïllants en
estat pristí, els pnictogenurs de ferro sense dopar (és a dir, LaOFeAs) mostren
un comportament semimetálico. Malgrat aquestes diferències, tots dos com-
postos són estructures en capes, on l’estat superconductor està recolzat per
una xarxa quadrada quasi-2D. Mentre que per als pnictogenurs de ferro aquest
estat està format per la capa de FeAs, l’estat superconductor dels cuprats està
format per la capa de CuO.

El present treball es centra en l’estudi teòric de les propietats estructurals, elec-
tròniques i òptiques dels materials de tipus grafè, com el grafè bicapa; i també
de superconductors d’ones s i d, més específicament pnictogenurs i cuprats
de ferro, respectivament. A més a més, es fa emfasi en sistemes desordenats
ja que aquestos sistemes (cuasi-)2D són prou sensibles al desordre. Aquestes
propietats tenen gran importància per a aplicacions de dispositius tecnològics,
com es pot observar a la creixent tecnologia dels camps de la tensiotrònica i
l’espintrònica. El tipus de pertorbacions aplicades als sistemes d’interés són les
impureses químiques i els camps elèctrics externs. Aquestes pertorbacions pro-
dueixen variacions de les propietats electròniques i òptiques quan es comparen
amb els sistemes pristins.

Les propietats electròniques es descriuen calculant l’espectre del material mit-
jançant la teoría Tight-Binding i el model continu. En el cas del sistema de
grafé, al realitzar aquest càlcul al límit de baixa energia s’ obté la dispersió
lineal que és una de les característiques de les particles relativistes sense massa
de Dirac. Altres estudis del grafè suspès al buit van revelar que el grafè pot
canviar de semi-metal a aïllant degut a la formació d’un espai a l’espectre
fermiònic d’electrons que resulta del condensat quiral (excitó). L’ecuació de
Dirac permet sondejar encara més els efectes de la tensió, el que condueix al
grafè deformat, que pot considerar-se com un tauler per a provar les teories
quàntiques de camps als espais-temps curvos.

Els mètodes basats a les funcions de Green són les ferramentes analítiques
més robustes i comuns per a calcular els observables físics, com la densi-
tat d’estats (DoS). La DoS és una magnitut física fonamental que ajuda a
l’interpretació de diverses dades experimentals principalment per a sistemes
desordenats. L’efecte de les impureses es calcula empleant el mètode simple i
autoconsistent anomenat Matriu en T. Per al cas considerat de concentració
finita d’impureses, el mètode autoconsistent és més fiable. Tanmateix, amb
l’excepció de l’efecte "espurio" obtés per a la vacant (divergència DoS), que
persisteix inclús amb la tècnica autoconsistent, tots els altres observables trac-
tats dins d’aquest formalisme estaran d’ acord amb les dades experimentals i
altres aproximacions teòriques.
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Altres tècniques emprades per a estudiar les propietats estructurals i elec-
tròniques d’aquestos interesants sistemes es basen a mètodes computacionals,
com la teoria del funcional de la densitat, que serveixen com a ferramentes
complementàries als mètodes analítics. Finalment, cal esmentar que també
s’empren metodologies basades a la teoria de fonons per a investigar l’estabilitat
dinàmica i la conductividad tèrmica de la xarxa.
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Chapter 1

Introduction and Thesis
Objectives

1.1 High Critical Temperature Superconductivity

During a long period, since the discovery of the superconductivity phenomenon
in 1911 by Kammerlingh Onnes, in mercury cooled by liquid helium [1], this
phenomenon had solely been observed in pure metals (lead, niobium, iridium).
Research persisted on the search for materials which could exhibit transition
temperatures for the superconducting (SC) state above 10 K. This was achieved
[2, 3], for discovered superconductivity on the compound, V3Si, revealing Tc ≈
17 K.

Conventional materials exhibiting superconducting transition, required an ex-
tremely expensive cooling system in order to induce the SC state. The produc-
tion of artificial materials with SC transition temperatures within the range
of liquid nitrogen (77.4 K), offered new possibilities for the superconductivity
phenomenon.

In 1986, two physicists [4], revealed the existence of the SC state at tempera-
tures higher than 30 K on a ceramic. Immediately after, yttrium-based ceram-
ics were synthesized [5] which pass into the SC state at critical temperatures
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Chapter 1. Introduction and Thesis Objectives

(Tc) close to 90 K. Since then, several superconductors with Tc > 30K have
been synthesized, and known as the high critical temperature superconductors
(HTSC) [6]. Before 2008, the term of HTSC referred to the copper-based su-
perconductors (discovered in 1986), also known as cuprates. Currently this
term is also used to designate the iron-based superconductors, which reveal
a complex phase diagram where magnetism and superconductivity interact.
This fact is also typical of other exotic superconductors where it is well known
that the coexistence of magnetism and superconductivity is unusual.

The phenomenon of superconductivity of high critical temperature in cuprates
is directly related to the CuO2 planes, while atoms of the neighboring layers
provide these with charge carriers (electrons or holes), thus leading to the
metallization and to superconductivity. This is the reason why the neighboring
layers of CuO2 planes are called the "reservoirs of charge". The assumption
that superconductivity of high critical temperature is a phenomenon in two
dimensions, is based on the fact that the distance between two CuO2 planes
is greater than the distance between the copper and oxygen atoms in those
planes, such that electrons (or holes) are most likely shared by these atoms in
the planes, than outside of them.

Doping is the mechanism that enables the charge transfer, of the "charge reser-
voirs" to the SC planes. Namely, this is the substitution of atoms, of the
"charge reservoirs", by other atoms with different ionization state, such that
electrons are allowed to pass between CuO2 planes, or are withdrawn thereof.
Typically, the HTSCs with hole doping have a higher critical temperature than
those with electron doping.

One of the objectives of this thesis is to study the effects of disorder, mainly by
impurities, on the electronic properties of doped iron pnictides and cuprate-
based HTSCs. The results are presented in chapters three, four and five.
Impurity centers that are essential to form the SC state, result either from
dopants, or from foreign atoms and other local defects. Within the minimal
coupling model, it will be shown that the localized impurity levels (even for the
simplest isotopic impurity perturbations) form within the SC gaps in doped
iron pnictides, e.g LaOFeAs. The results which will be presented in the present
thesis can serve for two purposes:

• Estimate the possibility that impurity excitations at high enough im-
purity concentrations can form coherent collective states, known as the
impurity bands, or these always remain localized states, and
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1.2 Graphene-Based Systems

• Describe more detailed characteristics of each type of impurity states,
the dispersion law and the lifetime for band-like states, or the density of
localized states, and the positions of the boundaries between the Mott
mobility edges.

1.2 Graphene-Based Systems

Many properties of single-layer graphene have been theoretically studied to
allow further characterization of this material. These properties are uncon-
ventional due to the unique band structure of graphene, which is described in
terms of Dirac fermions.

The experimental study of graphene triggered a growing attention to its elec-
tronic properties [7], because the honeycomb lattice defines a band structure
[8] with two nodal points in the Brillouin zone (BZ) which determines a rela-
tivistic Dirac-type electronic dynamics [9] (creating links with certain theories
of particle physics). These properties are responsible for unusual phenomena,
such as the fractional Hall effect [10, 11, 12, 13], which allows the possibility
for magnetic catalysis of an excitonic gap [14, 15, 16, 17, 18], ferromagnetism
and superconductivity [19].

Other studies related to suspended graphene in vacuum, revealed that graphene
can change from a semi-metal into an insulator, due to the formation of a gap in
the fermionic spectrum, resultant from the chiral condensate (exciton) [11, 20].

More recently, attention has turned to the multi-layer graphene [21] and, par-
ticularly, to the bilayer graphene, which also reveals interesting aspects, e.g.,
on the of Quantum Hall effect [10]. In fact, it was shown that the bilayer
graphene also shows unconventional behavior in its properties, however, these
properties are different from those observed a single-layer of graphene.

There are two main reasons that explain the unconventional physics of multi-
layered graphene:

• The coupling between the layers is relatively weak and therefore some
of the properties of the base material, the single layer of graphene, are
manifested.

• The peculiar geometry resulting from the A-B layer stacking (Bernal
stacking), implies that the connection between the two planes takes place
mostly in one of the sub-lattices of each plane.
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Chapter 1. Introduction and Thesis Objectives

As in the case of monolayer graphene, also the bilayer graphene is sensitive to
the inevitable disorder.

It has been theoretically and experimentally shown that the bilayer graphene is
a material with semiconductor properties in which the width of the electronic
gap is proportional to an applied electric field.

Another objective of the present thesis is the study of the effect of perturbation,
by considering an applied electric field normal to the stacking direction, in
bilayer graphene. The results on this subject will be presented in chapters
six and seven. For that purpose, we will start by describing the pure bilayer
graphene system with Bernal stacking, where we only consider the tz coupling
amplitude between vertical layers restricted to shorter vertical distances of
these carbon atoms. We will apply the electric field, E, between these planes,
by considering a potential, V = eEd, between the layers (where e is the electron
charge and d the interlayer spacing).

1.3 Chapter Structure of the Thesis

Chapter two contains a section where some concepts applied to solid crys-
talline systems, namely crystalline order and description of disordered and
surface states will be introduced. It follows with three sections with a detailed
description of the theoretical framework employed to perform the calculations
presented in this thesis, and will be used to pursue the objectives mentioned
in sections 1.1 and 1.2. The last two sections will provide an overview of the
description and properties of high critical temperature superconductors and
graphene systems.

Chapter three, which refers to the first article of this thesis is based on the
study of "Effects of extended impurity perturbation in d -wave superconductor"
where we present with some detail the results obtained from work related
to the study of d -wave superconductors (Impurity clusters and localization
of nodal quasiparticles in d-wave superconductors) [22] and extended s-wave
superconductors (Specifics of impurity effects in ferropnictide superconductors)
[23]. Although the intrinsic differences that exist between the iron and copper
superconductors, the phase diagrams and methodology for the study of the
physics of the superconductivity are very similar.

The second article (chapter four), entitled "Specifics of impurity effects in fer-
ropnictide superconductors" specifies the study of the effect that impurities
produce in the spectra of iron-pnictides, where localized energy states may
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1.3 Chapter Structure of the Thesis

occur inside the superconductor gap. We also study the modification of the
band-structure and the superconducting order-parameter, as well as the evo-
lution of the superconducting state related to the impurity doping.

The third article (chapter five) is based on the study of "Impurity effects on
electronic transport in ferropnictide superconductors" where we describe the
effects that impurities and disorder by electronic quasiparticles, can cause on
the transport properties of superconducting iron pnictides. We show that the
most prominent features appear at high enough impurity concentration, when
compared to the case of a pristine system. These features consist in the for-
mation of localized in-gap impurity states and their development into specific
narrow bands of impurity quasiparticles when the impurity concentration goes
above a certain (quite low) critical value. The predicted specific threshold
effects in the frequency dependent optical conductivity and temperature de-
pendent thermal conductivity and also in Seebeck and Peltier coefficients can
have interesting potentialities for practical applications.

The fourth publication of chapter six, is related to "Electric bias control on
impurity effects in bigraphene". In this work, we study the localized impu-
rity levels on the AB bilayer graphene system. It is shown that a qualitative
restructuring of quasiparticle spectrum within the initial band gap and then
specific metal-insulator phase transitions are possible for such a disordered
system at a given impurity perturbation potential and concentration, and for
which such processes can be effectively controlled by variation of an external
electric field bias.

Chapter seven, with the fifth article, refers to "Electronic and Phonon Instabil-
ities in Bilayer Graphene under Applied External Bias". This article introduces
the application of Density Functional Theory (DFT) and lattice dynamics to
probe the dynamical stabilities of the AB and AA bilayer stacking, and the
effect of applying an external bias to the electronic and phonon properties.

The last chapter refers to the conclusions and general discussion of the thesis
results, and includes a section with some perspectives of continuation of the
work presented in the present thesis.
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Chapter 2

Theoretical Framework

2.1 Crystalline Order and Disordered States

Crystalline order, or lattice periodicity, is the most rigorous form of order,
and it is the simplest arrangement of atoms or molecules in a repeating pat-
tern, forming a macroscopic solid. The full information of the crystal can be
contained in a small region in space, determined by the unit-cell parameters.
The pattern is periodically repeated to set up a translationally invariant space
[24, 25, 26, 27].

Auguste Bravais showed that in three-dimensional (3D) crystal, there existed
14 different possibilities of arranging different group of points in space - named
as the Bravais lattices. The simplest type of lattice is the Bravais lattice, where
the location of all the points are constructed by basic translation though three
primitive lattice vectors a1, a2, a3. If the crystal is shifted by any of these
three vectors, or a combination of them of the form n1a1 +n2a2 +n3a3, where
ni are three integers, then the atoms end up in the same set of locations as
they started, such that, the neighborhoods of all points must be identical under
translation.

In a Bravais lattice, the primitive-cell should contain only one point, which is
invariant under all symmetry operations [25, 27]. By drawing the perpendicular
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bisector plane of the translation vector from the center point to the nearest
equivalent lattice sites, the volume defined inside the bisector planes is the
Wigner-Seitz (WS) cell. Moreover, the WS cell of the reciprocal lattice is
called first Brillouin Zone (BZ). The unit-cell is the smallest group of points
(atoms, ions, molecules) that, when repeated in 3D, will produce the periodic
lattice of a bulk crystal system.

The symmetry of a crystal depends on the complete set of ways that a given
crystal can be transformed so that the distance between all points are pre-
served. Rigid motions include translations and rotations, which may also be
allowed to reflect and invert. The complete set of rigid motions that take the
crystal into itself is called a space group [27]. The space groups in 3D are
formed by combinations of the 32 crystallographic point groups with the 14
Bravais lattices, each of these belonging to 7 lattice systems. These 7 differ-
ent lattice systems are characterized according to the relative lengths of the
unit-cell parameters (a, b, c) and the angles between them (α, β, γ): tri-
clinic, monoclinic, orthorhombic, tetragonal, rhombohedral, hexagonal, and
cubic. The combination of all these symmetry operations results in a total of
230 different space groups describing all possible crystallographic symmetries
[28, 29].

The space-group can yet be divided into two sub-groups:

• Translation group, which consists of translations through all lattice vec-
tors (leaving the crystal invariant)

• Point group consists of operations that also leave the crystal invariant
and also map some particular Bravais lattice point onto itself.

When two systems share the same point group symmetry, these will belong to
the same crystal system, but may be different lattices belonging to different
space groups. One may characterize if two structures are the same, by deform-
ing one of the systems continuously into the other structure without lose of
symmetry [27].
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2.1 Crystalline Order and Disordered States

2.1.1 Electronic States in Crystalline Solids

Schrödinger Equation of an Electron in a Solid

Considering a solid formed by Na multi-electron atoms, which contains N
electrons, the Schrödinger equation for the crystal can be represented through
the following Hamiltonian:

H(...,Rj, ..., ri, ...) = −~2

2

∑
j

1

Mj

∇2
j −

~2

2m0

∑
i

∇2
i +

1

2

′∑
j,j′

ZjZ
′
je

2

|Rj −R′j|

+
1

2

′∑
i,i′

e2

|ri − r′i|
−
∑
i,j

Zje
2

|ri −Rj|
, (2.1)

where Rj are the vectors defining the ion position and ri the electron posi-
tions, Mj is the mass corresponding to the respective j ion with Zj being the
respective atomic number, and m0 is the electron mass.

The complete wavefunction will involve all the space coordinates of the nucleus
and electrons of the system, being too complex to obtain the exact solution
of the Schrödinger equation. Moreover, the electron-ion interactions and the
par interactions (ion-ion and electron-electron) do not allow the decomposition
of the Schrödinger equation into as many differential equations according to
the existing independent parameters. Therefore, approximations are required
which will allow the simplification of the interacting many-body problem.

One such approach is the adiabatic approximation (Rj = const) [25, 28], (also
known as the Born-Oppenheimer approximation) which consists in considering
that electrons ’move’ in a spacial configuration of nearly constant (’frozen’)
nucleus motion. The nucleus possess very slow motion (vibrational), allowing
the possibility to eliminate several degrees of freedom related to the ion motion.

The mean-field approximation allows reducing the many-body electron prob-
lem to a single-particle electron. This is achieved by introducing an effective
potential, created by the group of all ions and all electrons, with exception of
the considered electron:

veff (ri) = −
∑
j

Zj
|ri −Rj|

+
∑
i′ 6=i

e2

∫
dr′i

|ψ′i|2

|ri − r′i|
. (2.2)
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Based on the independent electron picture, the wavefunction of the crystal is
the product of the individual electron wavefunctions by:

Ψ(..., ri, ...) = ΠN
i=1ψ(ri). (2.3)

The employment of an effective potential and the factorized wavefuntion is
known as the Hartree approximation, or as the self-consistent field.

The mean-field theory was later refined to consider the exchange-interaction,
or permutation energy, between electrons. In this approach, known as the
Hartree-Fock approximation [28], the total wavefunction of each electron is
written as the product of the spatial wavefunction (orbital) by the spin wave-
function, and it is anti-symmetrical with respect to all possible permutations
of the electron, thus obeying the Pauli exclusion principle. Moreover, the ef-
fective potential, Veff (r), is not explicitly known. The only information about
this potential is that it is periodic:

Veff (r + an) = Veff (r) (2.4)

where an is one of the translational vectors of the crystalline lattice. From the
periodicity of Veff (r), it is possible to obtain important information related to
the electronic spectrum of the crystal system.

Even after the adoption of the adiabatic approximation, and the mean-field
concept, the problem of searching for an adequate effective potential and the
approximate solutions to the Schrödinger equation still persists. Even with
the current development of the computational resources, it is very difficult to
construct a crystalline potential based solely from first-principles (from the
electronic structure of the atoms that composes the crystal).

Bloch theorem

Independent electrons, obeying the Schrödinger equation with a periodic po-
tential are known as the Bloch electrons. Electrons moving in a regular ar-
rangement of atoms forming a crystal are subject to a periodic potential, due
to the lattice of ions and an averaged electron-electron interaction. The en-
ergy spectrum of the extended electronic states form bands of allowed states
(electrons and holes) and gaps of "forbidden" states. The band structure of
electrons is what defines the solid into metals, insulators and/or semiconduc-
tors.
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2.1 Crystalline Order and Disordered States

There are two limiting cases for the formation of a band structure. One is for
the free electron gas, with which the continuous spectrum is perturbed into
bands under the influence of a periodic potential (Bragg scattering) [28, 29].
The second limit is due to independent atoms, which are bonded together to
form a lattice, until the outermost electronic states overlap, leading to delo-
calized states. Discrete states are therefore turned into a continua of energy
dispersion, forming the bands.

Within the mean-field approximation, the Schrödinger equation for an electron
in the crystal can be written as:

− ~
2m0

∇2ψ(r) + Veff (r)ψ(r) = εψ(r). (2.5)

To represent another point in space, distanced from a translational vector, the
expression can be re-written as:

− ~
2m0

∇2ψ(r + an) + Veff (r)ψ(r + an) = εψ(r + an) (2.6)

Considering the potential periodicity, we have

ψ(r + an) = Cnψ(r), (2.7)

with Cn being a constant that satisfies the normalization condition, |Cn| = 1.
Similarly, for another translational vector, an′ 6= an, and for the translation
that results from the sum of the former two translations, an′′ = a′n + an, we
arrive at the conclusion that

Cn′+n = Cn′ · Cn (2.8)

This condition is always satisfied whenever

Cn = eik·an (2.9)

where k is an arbitrary vector. The wavefunction of the crystal, or Bloch wave,
is therefore written as:

ψ(r) = uk(r)eik·r (2.10)
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where

uk(r) = uk(r + an) (2.11)

is a periodic function, known as the Bloch amplitude and, eikr is the Bloch
exponential. Therefore resulting in,

ψ(r + an) = ψ(r)eik·an . (2.12)

Eq. 2.11 expresses the Bloch theorem and the respective wavefunction is built
by two factors: the Bloch amplitude, which is the same for any unit-cell, and
the ’envelope function’, which consists in an harmonic function. The parameter
that distinguishes the different wavefunctions is the wavevector, k. If Eq. 2.11
is valid for one k wavevector, it will also be valid for a wavevector k′, with

k′ = k + bn

(bn · an) = 0, 2π, 4π, ... (2.13)

The reciprocal lattice therefore can be constructed based on the vectors,

b1 =
2π

v
(a2 × a3) ,

b2 =
2π

v
(a3 × a1), (2.14)

b3 =
2π

v
(a1 × a2),

where v = a1 · [a2 × a3] is defined as the volume of the unit cell.

Application of Bloch’s theorem will ensure that the wavefunctions will incor-
porate the translational periodicity of the system.

ϕk,n(r) = eık·r
∑
G

ck,n(G)eıG·r, (2.15)

where ck,n are the coefficients for the plane waves, with k being the wavevector
and n the band index; and G are the reciprocal lattice vectors, of the form
G = m1b1 +m2b2 +m3b3. The electronic density is

n(r) =
∑
k,n

∑
G,G′

fk,nc
∗
k,n(G′)ck,n(G)eı(G−G

′)·r (2.16)
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2.1 Crystalline Order and Disordered States

where fk,n are the band occupation numbers. Fourier transformation held:

n(G) =
∑
k,n

∑
G′

fk,nc
∗
k,n(G′ −G)ck,n(G′). (2.17)

The sums over k must be performed over all BZ wavevectors, but this can be
reduced to sums on the irreducible BZ by taking advantage of the space group
symmetry of the lattice.

Consequences of the Bloch Theorem

The electronic states with k and k + b (where b is a translational vector of
the first BZ), with

ε(k) = ε(k + b), (2.18)

defines the electron in the crystal as being a periodic function in k. All the
physically distinguishable states correspond to those k of the first BZ. More-
over,

ε(k) = ε(−k), (2.19)

which is due to the symmetry of the Schrödinger equation with respect to
time-inversion symmetry

The allowed values for the k components are determined by the boundary-
conditions in the crystal surfaces. Generally, the boundary-conditions are those
proposed by Born and von Karman,

ψ(r) = ψ(r + L) (2.20)

where r is the position vector of a point on the crystal surface, L = (Lx, Ly, Lz),
with Lα(α = x, y, z) being the dimension of the crystal on the respective
direction.

Applying this condition to the wavefunction of Eq. 2.11, we obtain that the
quasi-momentum (~k) will vary discretely.
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Quasi-free Electron Approximation

The quasi-free electron approximation is based on the assumption that Veff (r)
is sufficiently weak to be considered as a perturbation with respect to the free
electron system (non-perturbed system). This situation corresponds to admit-
ting that electrons interact weakly with the ions of the crystal, and between
themselves.

The non-perturbed wavefunction can be described by a plane-wave through

ψ(r) =
1√
v
eikr (2.21)

where v is the volume of the crystal. From perturbation theory one has:

ε(k) =
~2k2

2m0

+
∑
k′ 6=k

|Vkk′ |2

ε0(k)− ε0(k′)
, (2.22)

where ε0(k) = ~2k2/2m0 and Vkk′ is the matrix element of the potential
Veff (r),

Vkk′ =
1

v

∫
v

V (r)ei(k−k
′)rdr. (2.23)

Eq. 2.22 determines the energy band-structure for the quasi-free electron en-
ergy spectrum.

The action of the periodic potential, with origin on the crystalline ionic lattice,
is considered as a perturbation and determines the appearance of forbidden
energy-bands, or energy-gap.

2.1.2 Disordered Crystalline Systems and Surface States

Equilibrium lattice structures are dependent on temperature and pressure.
Even at temperature ranges where vibrations about a particular state are small,
the entropy associated with the vibrations may be large enough to cause the
ions to switch from one configuration to another. In some cases, more than
one crystalline form of an element or compound may be stable at a given
temperature and pressure; these are known as allotropes [27].

Systems are usually ordered at low temperatures, but upon heating, they may
undergo phase transitions into less ordered states. Other forms of disorder
occur when the crystalline pattern of the atoms or molecules in the solid is
interrupted by crystallographic defects.
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2.1 Crystalline Order and Disordered States

Long range order characterizes the physical system, in which remote portions
of the same sample exhibit correlated behavior. A correlation function can
be expressed as G(n, n′), where n displays the distance function within the
system. This function decreases as the distance |n − n′| increases; when it
decays exponentially to zero, the system is considered to be disordered. The
system possesses long-range order [30] if the correlation function decays to a
constant value at large distances.

The presence or absence of symmetry or correlation in a many-particle system
is characterized through order or disorder. The degree of freedom that char-
acterizes the order/disorder can be identified through translation, rotation,
or spin states, which will consist in the characterization of a full symmetry
space-group.

An ideal perfect crystal, where every atom of the same type is at the correct
position, does not exist in nature. All crystals have a certain amount of im-
purities. Atom arrangements of a real material do not obey perfect crystalline
patterns.

The atoms are relatively motionless in solids, and therefore it is difficult to
eliminate any imperfections that might occur, and which may be introduced
into the crystal during its growth environment, processing or application.

The fact that real materials are not perfect crystals is a fundamental advantage
for material engineering. If solids were perfect crystalline structures, then its
properties would be dictated solely by the composition and the crystal struc-
ture alone, restricting therefore the variety and functionality of allowed solids.
The possibility of engineering crystalline solids with imperfections will allow
property adaption for several combinations that modern engineering devices
require. Therefore, the most important characteristics for the micro-structure
of a device, are the crystalline defects, which may be manipulated to con-
trol the electronic and optical properties, according to the desired engineering
application.

Moreover, considering the point defect perturbation, one may distinguish be-
tween intrinsic defects and extrinsic defects. Intrinsic defects are formed when
an atom, belonging to the host crystal, is missing from a position, creating
a vacancy, or when this atom occupies a void in the lattice, thus creating an
interstitial site. Extrinsic defects, on the other hand, are caused by solute or
foreign impurity atoms (atoms that do not belong to the host lattice).

Electrically active defects are defined as atomic configurations which give rise to
electronic states in the band gap of the material. Impurities play an important
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role in physics, and their presence is inevitable in all materials, which can either
take place naturally (in contact to solvents or air by oxidation or reduction
processes) or can also be intentionally manipulated during the growth or the
processing of the materials. Therefore considerable effort has been directed
towards the study of defects in semiconductors and insulators and pragmatic
strategies are engineered in order to control the defect densities, according to
the potential device application of the material [31]. The level of impurities
in a material is generally defined in relative terms, and the material’s level
of purity can only be compared as being more or less pure than some other
material.

Unlike the advantages of shallow impurities to enable conducting properties,
deep defects can cause unreliability, being these the main origin for electrical
failure and breakdown of devices. Trapped charges in defects cause a shift
in the gate threshold voltage of the transistor; it can also change with time,
shifting the threshold voltage with time, thus leading to instability of operating
characteristics. Also, trapped charges scatter carriers in the channel and lowers
the carrier mobility [31].

The presence of impurities can also enable important effects on the mechanical,
electronic and magnetic properties of materials. For example, in metal-alloys,
the conduction electron spins form a magnetic bound state with the impurity
atom - the Kondo effect. In superconductors, magnetic impurities yield sites
for vortex defects.

The wide range of colors observed in various materials and minerals in nature,
is connected to the semiconductors band-gap widths. It is accepted that the
mechanism that governs color in many materials, in particular semiconduc-
tors, can be explained by band-theory. A reflective surface occurs in materials,
when polished, but semiconductors are less efficient in conducting electricity
than metals. In fact, semiconductors frequently act as insulators, and require
special conditions in order to become conductors, with enhanced performance
as temperature increases. By contrast, metals get larger resistance with in-
creasing temperature.

A defect in a crystal structure is also said to be a color center if it induces
a change in color. Color centers can be classified as electron color centers or
hole color centers. The color centers cause the solid to become colored when
the electronic ground state of the defect is excited to higher energy states by
the absorption of visible light. Well known examples of color centers are the
presence of transition metal impurities that originate the distinctive colors of
gemstones in an otherwise transparent crystal lattice. Brilliant colors are com-
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2.1 Crystalline Order and Disordered States

monly produced, when impurities are introduced on colorless gemstones. For
example, fluorite is built with alternating calcium ions (Ca2+) and fluorine ions
(F−). Every positive calcium ion is surrounded by negative fluorine ions, and
vice-versa. The electrical attraction between the positive and negative charges
creates strong bonds in the crystal. In its pure form, fluorite is transparent,
but the purple feature of fluorite is caused by a defect in the crystal. Flu-
orite occurs in a wide variety of colors, also presenting fluorescent behavior.
Transparent diamonds can be colored blue or yellow when certain impurities
are added. The existence of impurities in corundum can produce a deep blue
sapphire. Also, the presence of chromium impurities on a colorless corundum,
gives rise to a red ruby, and the colorless beryl, transforms into a green emer-
ald. The addiction of iron impurities transforms a crystalline quartz into a
violet Amethyst.

Another common and most studied impurity is interstitial hydrogen, that can
be unintentionally incorporated during the growth environment [32], due to
the source gases which contain hydrogen as carrier gas and in molecular beam
epitaxy where hydrogen is the prevailing background impurity, exhibiting com-
plex behaviors when introduced in materials [32].

Hydrogen can interact with other dopants, similarly to what occurs, for ex-
ample in Ge, where this impurity is found to counteract electrical defects and
activate neutral impurities [33]. Hydrogen can also be used to passivate the
dangling bonds at the SiO2/Si interface. In many other materials, as to what
happens for example in GaN, where the neutral state, H0, is never the lowest-
energy state, a negative-U effect is obtained; hydrogen acts as a deep, am-
photeric impurity, which always counteracts the prevailing conductivity [33].
Hydrogen can also behave as a donor dopant, for instance in ZnO, enabling a
shallow defect level close to the conduction band. These findings motivate the
research of the hydrogen behavior in many semiconductors and oxides, where
it can influence their electrical properties [33].

The presence of impurity atoms in semiconductors, perturbs the crystalline
potential, which may produce localized energy levels located in the band gap.
More relevant impurities are those that create localized levels close to the ends
of the conduction band (CB) and/or the valence band (VB); these are known
as shallow levels. Impurities that create localized levels near the CB are called
donors, and those which give rise to levels near the VB are acceptor levels.

One way to control the conductivity of semiconductors is to add impurities
and/or imperfections to the system (doping). This can be done either by re-
placing some of the semiconducting atoms by atoms of other elements of differ-
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ent potential (substitutional impurities), or by adding impurities on interstitial
sites in an energetically favorable configuration of the lattice (interstitial impu-
rities). The resulting conductivity is referred to as extrinsic conductivity. The
energy levels related to impurities, are not extended states, but are localized,
and can give rise to an impurity discrete level. The reason is that impurity
atoms are distant from each other (when doping concentration is low), of the
order of several lattice parameters, thus being very weakly interacting with
each other.

As already mentioned above, the presence of impurities leads to the emergence
of localized states. The number of states, per unit volume, is equal to the
concentration of impurity atoms. Considering the example of donor states, we
have,

g(E) = Niδ(Ec − Ei) (2.24)

where Ni is the impurity concentration and Ei is the level in the gap created
by the impurity (in this case from the donor type) and Ec the energy of the
conduction-band minimum [29].The excited states are already close to the CB,
where the density of states is higher, so these do not exhibit fundamental
importance to the electronic statistics.

Expression 2.24 is only valid if the impurity concentration is not too high.
Under these conditions, the average distance between the impurity sites is
≈ N−1/D

i , (where D is the dimension of the material), which is higher than the
effective Bohr radius, a = ε0~2m−1e−2, where ε0 is the dielectric constant of
the material and m is the effective mass of the charge carriers (this parameter
indicates the number/distance of unit cells that can be ’reached’ by the charge
carriers, around the impurity atom).

The most simplistic model to predict localized energy levels is by employing
the analog of the hydrogen model, the hydrogenoic model. When the above
mentioned distance, D, becomes comparable to a, then each atom of the impu-
rity will ’feel’ the presence of other impurity sites, thus arising an interaction
between the electrons located in different sites of the impurity atoms. An-
other effect contributing to the energy dispersion of the localized levels is the
Coulomb interaction, originated from an ionized impurity. Owing that the
distance fluctuates between neighboring donors, the energy of this interaction
is random. The outcome is the formation of an impurity-band, and the
formation of this bandwidth can be rather complex and therefore difficult to
calculate the respective density of states (DOS) [34].

In order to study the doping effects on a semiconductor material, a good control
of the doping concentration must be quantitatively and qualitatively ensured.
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2.1 Crystalline Order and Disordered States

In a highly-doped semiconductor, the impurity-band, whilst being a set of
states, each of which is created by a single donor/acceptor atom, can disappear
due to the shielding effect produced by free charge carriers. In this high-limit
doping, the DOS becomes continuous and forms a tail that extends into the
gap.

Surface States

The presence of surface and interface states give rise to electrical potential
profiles at the surface, which are located within the gap region, between the
CB and VB. The surface states may arise due to either surface contamination,
or imperfections at the surface, or due to dangling bonds associated with in-
complete covalent bonding [35, 36, 37]. The surface breaks the translational
symmetry of the perfect crystal, thus leading to the appearance of the known
Tamm levels [38, 39]. Furthermore, due to favorable adsorption observed on
the surfaces, and also due to the appearance of dangling bonds, unexpected
energy levels emerge in the electronic band structure, when compared to the
bulk crystal. On the surface of any sample of a semiconducting material, many
of these well known localized states exist and are called surface states.

The profile of the surface electric potential is associated with the presence
of surface states, which give rise to a surface electric field. Indeed, Tamm
(1932) [38] and Shockley (1939) [40] demonstrated, that this electrical potential
profiles are in fact related to the presence of surface states [38, 40, 41, 42, 43].
The characterization of the electric potential is very important to understand
the physical phenomena which occurs within these semiconducting structures.
Interesting applications may originate from this phenomena, for example, in
the construction of more rapid and sensitive electronic devices and to the
catalysis phenomenon.

Some of these localized surface states may appear within the theoretically pre-
dicted gap of the perfect crystal; if the states overlap with the permitted bands
they are called resonant states. Surface states express an almost-continuous
distribution within the gap. These states may attract electrons of the bulk
(’semiconductor volume’) if its occupation is energetically more favorable. Due
to this effect, the surface Fermi level can take a different position with respect
to the corresponding bulk Fermi level – pinning of Fermi level. Also, the bot-
tom of the CB and the top of the VB are also shifted relative to their original
positions of the bulk semiconductor.
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The electric potential profile can be calculated based on the charge distri-
butions within the sample. Experimental techniques, such as modulation
spectroscopy techniques [44, 45, 46], aid in the determination of the electri-
cal potential surface. One example is the photo-reflectance technique used to
characterize and measure the electronic band structure and optical response of
several semiconducting materials [44, 45, 46].

Concentration of Charge Carriers as a Function of the Concentration of
Impurities and Temperature

The control of the charge carriers concentration (electron or holes) of a semi-
conductor is an important requirement to obtain the desirable electrical prop-
erties for a given application. The physical effects of the impurity density/con-
centration are temperature dependent and system dependent (semiconductor
parameters), determined by the DOS and the probability occupation.

Some impurities can create simultaneously donor levels, Ed, close to the CB
edge and acceptors, Ea, close to the top of the VB. Such materials are called
compensated semiconductors which contain both donor and acceptor im-
purities in comparable concentrations. It should however be noteworthy, that
the compensation significantly alters the position of the Fermi level for low
temperatures.

At temperatures close to absolute zero, the Fermi level splits the empty states
from the occupied states. For the impurity band, wherein there is a level
distribution, the Fermi level will lie at the center of this band. This situation
is similar to that found on metals that have partially filled bands. In fact,
under certain conditions, the conductivity on the impurity band may have a
metallic character, depending on the position where the Fermi level lies [34].
This phenomenon is known as the Mott-Anderson transition [47, 48].

This effect not only takes place on heavily doped-semiconductors but it has
also been observed on amorphous materials. From a theoretical point of view,
this is a fundamental problem of localization/delocalization of electronic states
in disordered systems. Currently, it is widely accepted, the existence of a char-
acteristic energy in the electronic spectrum that borders between localized and
delocalized states. This energy depends on the degree of disorder and is called
mobility threshold [47]. The Mott-Anderson transition occurs when the
Fermi level crosses the threshold mobility. One may consider that a material
in which the Fermi level (T → 0) is located either within the gap or between
localized states, has a dielectric character. By contrast, a material is metallic
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2.1 Crystalline Order and Disordered States

if the Fermi level (for T → 0) is located between the allowed electronic states
and the delocalized states. Thus, from this point of view, a heavily doped and
compensated semiconductor can be regarded as a metal. However, typically
for temperatures higher than 10K, the effect of the impurity bands on the
electrical conductivity, is negligible.

The degree of disorder can be defined by a disorder parameter, ∆d, which
measures the width of probability distribution relative to the average distance
between the impurities for disorder sites and relative to the disorder ampli-
tude band-width. The mean free path, l, which at T = 0 is only the scattering
characterization, is a function of ∆d and the dimension of the system. For
weak disorder, l will be large compared to the wavelength λ = 2π/kF of the
electrons, l(∆d)� λ. In this regime of weak localization, the electrons follow
classical trajectories between collisions, so disorder only gives rise to quan-
tum corrections to the conductivity, but is not sufficient to trap the electrons
[49, 50, 51]. The latter occurs when ∆d is large such that l(∆d) ≈ λ, to which
the notion of wavefunction becomes meaningless. In this regime of strong lo-
calization, Anderson localization [48, 49, 50], the wavefunction is exponentially
localized [52, 53], |φ(r)|2 ≈ exp(−|r|/ξ), where ξ = ξ(∆d) is the localization
length [54]. Since the notion of wave disappears in this regime, the condition
λ > l has no meaning; this is known has the Ioff-Regel-Mott criterion [51, 52].

The transition from weak to strong localization is a metal-insulator transition
called Anderson transition [52, 53, 47], and which is characterized by a critical
value of disorder, ∆c. For weak localization we have ∆ < ∆c and ξ →∞. As
already mentioned, for disordered sites, which physically are more important,
∆ is measured in units of the average distance c−1/D between the impurities, c
being the impurity concentration. Therefore, in this case, the metal-insulator
transition is also characterized by a critical concentration ccr. Moreover, there
exists a critical dimension Dcr such that ξ <∞ for D < Dcr.

According to Mott [52, 53], localized and extended electron/donor states are
energetically separated by the mobility edge, εc [47]. There is conduction only
if the Fermi energy, εF , lies at the extended part of the spectrum above εc.
The conductivity will depend on the degree of disorder ∆ as well as on the
impurity concentration c [52, 53, 47, 55].

Another major topic relevant for the study of impurities, is related to the
physics of phase transitions. In the study of phase transition theory, it is well
known that the stable new phase requires a finite-size domain for the creation of
a new phase; this is the establishment of a critical size achievement of a nucleus
formation, such that the energetic cost will be lower at the point defect. This
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threshold size is often lower at an impurity site, which is the major cause for
inducing phase transitions.

2.2 Tight-Binding Approximation

The state of the electron in a crystal is considered to be very similar to its
atomic state.

Such an approach is acceptable for the core electrons, for which the wavefunc-
tion is localized in the vicinity of the atomic nucleus. Within this condition,
the interaction with the other atoms is quite weak. The wavefunction may be
obtained through the linear combination of atomic orbitals in the form:

ψ(r) =
∑
j

ajφ(r−Rj) (2.25)

where aj is the coefficient which corresponds to φj = φ(r−Rj), and represents
the atomic orbital of the atom positioned at point Rj. Each φj obeys the
Schrödinger equation such that:

− ~2

2m0

∇2φj + Ujφj = εjφj (2.26)

with Uj being the atomic potential and εj an atomic energy level. By replacing
Eq. 2.25 with Eq. 2.5, one obtains∑

j

−aj
(

~2

2m0

∇2 + aj(V − Uj) + ajUj

)
φj = ε

∑
j

ajφj. (2.27)

According to Eq. 2.26, and taking into account that all atoms are the same
with energy level ε, one obtains∑

j

(V − Uj)aj − (ε− ε)ajφj = 0. (2.28)

By multiplying Eq. 2.28 by the function φ∗j′ and integrating, we have:

∑
j

aj

(∫
(V − Uj)φjφ∗j′dr− (ε− ε)

∫
φjφ

∗
j′dr

)
= 0. (2.29)

The integrals A(Rjj′) =
∫

(V −Uj)φjφ∗j′dr e S(Rjj′) =
∫
φjφ

∗
j′dr, only depend

on the atom distances, j and j′. For the wavefunction of Eq. 2.25, obeying
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2.2 Tight-Binding Approximation

the Bloch theorem, the coefficients aj are written the form:

aj = eikRj . (2.30)

Hence,

φ(r) =
∑
j

eikRjφ(r−Rj) =
∑
j

eik(Rj−r)φ(r−Rj)e
ikr, (2.31)

where
∑

j e
ik(Rj−r)φ(r − Rj) = uk(r). The wavefunction will therefore have

the compatible form to the Bloch theorem of Eq. 2.5. By replacing Eqs. 2.30
and 2.28 and by multiplying with e−ikRj′ , the following result is obtained:

ε = ε+

∑
j e

ik(Rj−Rj′ )A(Rjj′)∑
j e

ik(Rj−Rj′ )S(Rjj′)
, (2.32)

or, by modifying the sum indexes by m = j − j′,

ε = ε+

∑
m e

ik(Rm)A(Rm)∑
m e

ik(Rm)S(Rm)
. (2.33)

For a perfect crystal one considers that εj = ε and Rm = Rj −Rj′ , which is
also a translational vector of the lattice.

By admitting that the overlap of the wavefunctions is small, it is admissible to
employ the following approximation:

S(Rm) =

{
1 for Rm = 0

0 for other conditions
(2.34)

A(Rm) =


A0 for Rm = 0

A1 for Rm = a (1st neighbors)
0 for other conditions

(2.35)

In the calculation of A(Rjj′), the term φjφ
∗
j′ , of reduced value, is compensated

by the large difference found between the crystalline and atomic potentials
V − Uj, which are distanced from atom j.

Therefore,

ε(k) = ε+A0 +A1

∑
N

eikRm (2.36)
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where N refers to the sum of the next-neighbors.

An example can be given for a square lattice in the form,

ε(k) = ε+A0 +A1(cos kxa+ cos kya) (2.37)

As one may confirm from Eq. 2.36, the width of the band will depend of
A1, and this parameter is dependent upon the degree of overlap of the atomic
orbitals between the first next-neighbors.

Tight-Binding Model in Second Quantization Formulation

The tight-binding formulation of band electrons can also be easily implemented
in second quantization language that provides a intuitive interpretation. For
simplicity we restrict here to the single-orbital case and define the following
Fermionic operators,

ĉ†j,s creates an electron of spin s on lattice site Rj,

ĉj,s annihilates an electron of spin s on lattice site Rj,

We introduce the following Hamiltonian,

H =
∑
j,s

ε0ĉ
†
j,sĉj,s +

∑
i,j

tij ĉ
†
i,sĉj,s (2.38)

with tij = tji real. These coefficients tij are called "hopping matrix elements",
since ĉ†i,sĉj,s annihilates an electron on site Rj and creates one on site Ri. In
this way, an electron moves (hops) from Rj to Ri. Thus, this Hamiltonian
represents the "kinetic energy" of the electron. Let us now diagonalize this
Hamiltonian by following Fourier transformation, equivalent to the transfor-
mation between Bloch and Wannier functions,

ĉ†j,s =
1√
N

∑
k

ĉ†k,se
−ik·Rj and ĉj,s =

1√
N

∑
k

ĉk,se
ik·Rj (2.39)

where ĉ†k,s (ĉk,s) creates (annihilates) an electron in the Bloch state with
pseudo-momentum k and spin s. Inserting this into the Hamiltonian 2.38
leads to

H =
1

N

∑
k,k′,s

[∑
i

ε0e
i(k−k′)·Ri +

∑
i,j

tije
ik·Rj−k′·Ri

]
ĉ†k′,sĉk,s =

∑
k,s

εkĉ
†
k,sĉk,s

(2.40)
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2.3 Green Function’s Methods for Description of Disorder Materials

where ĉ†k′,sĉk,s = n̂†k′,s constitutes the number operator for electrons. The band
energy is the same as obtained above from the tight-binding approach. The
Hamiltonian 2.38 is used for the Hubbard model where a real-space formula-
tion is helpful. The real-space formulation of the kinetic energy allows also for
the introduction of disorder, i.e. non-periodicity which can be most straight-
forwardly implemented by site dependent potentials ε0 → ε0i and by spatially
(bond) dependent hopping matrix elements ti,j = t(Ri,Rj) 6= t(Ri −Rj).

The Hubbard model (describes electronic states) is based on the tight-binding
approximation, and takes into account if a site is doubly occupied. The Hub-
bard model, has the form

H = −t
∑
〈i,j〉,s

(ĉ†i,sĉj,s + h.c) + U
∑
i

n̂i,↑n̂i,↓ (2.41)

where we consider hopping between nearest neighbors only, via the matrix
element −t. The ĉ†i,s are real-space field operators on the lattice (site index i)
and n̂i,s = ĉ†i,sĉi,s is the density operator. In the case of half filling, it results
in one electron per site on average. There are two evident limiting cases:

• Insulating atomic limit: t = 0. The ground state has exactly one electron
on each lattice site.

• Metallic band limit: We set U = 0. The electrons are independent and
move freely via hopping processes. The band energy is found through a
Fourier transform of the Hamiltonian. With 2.39 we can rewrite

− t
∑
〈i,j〉,s

(ĉ†i,sĉj,s + h.c) =
∑
k,s

εkĉ
†
k,sĉk,s, (2.42)

where εk = −t
∑

a e
ik·a and the sum runs over all vectors a connecting

nearest neighbors.

2.3 Green Function’s Methods for Description of Disorder
Materials

The method of the Green’s functions (GF) is one of the most powerful and
universal in theoretical physics. The concept of GF was developed at the XIX
century, in the context of classical physics associated with linear differential
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problems in partial derivatives and theory of propagation of heat, electrostatics,
magnetostatics, wave propagation, etc. In the basic formulation is considered
the uniform system:

L̂u(r, t) = 0, (2.43)

were L̂ is a linear differential operator, usually with 1st and 2nd order deriva-
tives, and u(r, t) is the requested function. For this problem, the GF g(r, t) is
defined as the solution of the associated equation:

L̂g(r, t) = δ(r)δ(t).

Also these functions are known as fundamental solutions to the problem, Eq.
2.43. The importance of the GF lies in the possibility of obtaining solutions
to a non-uniform problem related to the equation 2.43:

L̂u(r, t) = f(r, t), (2.44)

where f(r, t) is an arbitrary function. Then the solution for Eq. 2.44 has the
form:

u(r, t) = u0(r, t) +

∫
g(r− r′, t− t′)f(r′, t′)dr′dt′,

where u0(r, t) is a solution of Eq. 2.43. This construction also indicates the
route for the treatment of the disorder corresponding problem of Eq. 2.43:(

L̂+ V̂
)
u(r, t) = 0,

leading it to the form similar to Eq. 2.44: L̂u = −V̂ u, and writing the solution
as an integral equation for u(r, t):

u(r, t) = u0(r, t)−
∫
g(r− r′, t− t′)V u(r′, t′)dr′dt′.
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2.3 Green Function’s Methods for Description of Disorder Materials

Perturbation Theory

The one-particle Hamiltonian, H, can be separated into an unperturbed part,
H0, and a perturbation, H1, where H = H0 + H1. Assuming we can solve
for the GF G0 of H0, we find G of H, noting that G0(ε) = (ε−H0)

−1 and
G(ε) = (ε−H)

−1, we obtain the called Dyson ’s equation

G = G0 + G0H1G (2.45)

Often H1(r1, r2) is a local potential which can be written δ(r1−r2)V (r1); then
Eq. 2.45 written in terms of the coordinates, r-representation, becomes

G(r, r′; ε) = G0(r, r′; ε) +

∫
dr1G0(r, r1; ε)V (r1)G(r1, r

′; ε) (2.46)

which is a linear inhomogeneous integral equation with a kernel of the form
G0(r, r′; ε)V (r1), the Eq. 2.45, in the momentum, k-representation is

G(k,k′; ε) = G0(k,k′; ε) +
∑
k1,k2

G0(k,k1; ε)H1(k1,k2)G(k2,k
′; ε),

Methods of GFs in Many Body Physics

There are several types of GF, used in many body physics: temporal, thermal
(Matsubara), functions out of equilibrium (Keldysh), etc. For our purposes,
we will use the time functions. This GF is defined as:

〈〈Â(t)|B̂(t′)〉〉 = −iθ(t− t′)〈[Â(t), B̂(t′)]±〉, (2.47)

where Â(t) and B̂(t) are operators in the Heisenberg representation, 〈· · ·〉
is the quantum-statistical average with the corresponding Hamiltonian, and
± are the commutation relations, for the operators A, B of Bose or Fermi
type, respectively. These relationships corresponds to the kinds of statistics
that the particles obey. Considering a general problem, the operator Ĥ is
the Hamiltonian of a considered system; and the large canonical ensemble,
Ĥ = Ĥ − µN̂ , where, N̂ is the operator for the number of particles and µ is
the chemical potential. The function θ(t− t′) is defined as follows: θ(t) = 1 for
t > 0, θ(t) = 0 for t < 0. Using the Boltzmann constant, β = 1/KBT (referred
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to the absolute temperature), we can calculate any thermodynamic value, for
a quantity Q,

〈Q〉 =
TrQ̂ exp(−βĤ)

Tr exp(−βĤ)
. (2.48)

The operators Â(t) and B̂(t) in Eq. 2.47 are Heisenberg operators satisfying
the equations of motion ˙̂

iA = [Â, Ĥ]. In this way Eq. 2.47 results in the motion
equation corresponding to GF 〈〈Â(t)|B̂(t′)〉〉.

i
d

dt
〈〈Â(t)|B̂(t′)〉〉 = δ(t− t′)〈[Â(t), B̂(t′)]±〉+ 〈〈[Â(t), Ĥ]|B̂(t′)〉〉. (2.49)

Considering Fourier transform

〈〈Â|B̂〉〉ε =

∫ ∞
−∞
〈〈Â(t)|B̂(t′)〉〉e−iεtdt, (2.50)

given that 〈〈Â(t)|B̂(t′)〉〉 is just a function of the difference t− t′ and its inver-
sion

〈〈Â(t)|B̂(t′)〉〉 =

∫ ∞
−∞
〈〈Â|B̂〉〉εe−iε(t−t

′)dε, (2.51)

whose energy argument ε is understood as ε−i0 and 〈{A(t), B(0)}〉 is the quan-
tum statistical average with Hamiltonian H of the anticommutator of Heisen-
berg operators, we obtain the equation of motion corresponding to Eq.2.49:

ε〈〈Â(t)|B̂(t′)〉〉ε =
i

2π
〈[Â, B̂]±〉+ 〈〈[Â, Ĥ]|B̂(t′)〉〉ε. (2.52)

The usefulness of GFs consists in that these are related to observable quanti-
ties, expressed by so-called correlation functions (or correlators): 〈Â(t)B̂(t′)〉.
Therefore correlators account for the mean values of operators (generally dif-
ferent) for different times, and any observable value may be displayed in this
way.
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2.4 Density Functional Theory

To describe the dynamics of the many particle system, we distinguish two types
of time GFs and their corresponding Fourier transforms,

〈〈Â|B̂〉〉(±)
ε+iδ = −i

∫ ∞
0

ei(ε+iδ)t〈
[
Â(t), B̂(0)

]
±
〉dt,

〈〈Â|B̂〉〉(±)
ε−iδ = i

∫ 0

−∞
ei(ε−iδ)t〈

[
Â(t), B̂(0)

]
±
〉dt,

known as retarded and advanced GFs, respectively. The average product of
operators can be expressed through the corresponding GF [56], by using the
spectral theorem,

〈Â, B̂〉 =
1

2π

∫ ∞
−∞

dε

eβ(ε−µ) ± 1
lim
δ→0

i
[
〈〈B̂|Â〉〉(±)

ε+iδ − 〈〈B̂|Â〉〉
(±)
ε−iδ

]
. (2.53)

Note that the equation of motion is the same for the retarded and advanced
GFs; These two functions reflect the analytical properties of the observable
averages, being the retarded GF 〈〈Â|B̂〉〉ε defined in the upper half-plane ε
(complex energy plane) and advanced GF defined in the lower half-plane. For
the system in equilibrium, these functions are related to the correlations be-
tween quantum states different times (past and future), respectively.

2.4 Density Functional Theory

Theoretical chemists and physicists, following the path of the Schrödinger
equation, have become accustomed to think in a truncated Hilbert space of

single particle orbitals. DFT provides a complementary perspective. It focuses
on the quantities in the real 3-dimensional coordinate space, principally on
the electron density n(r) of the ground state. These quantities are physical,

independent of representation, and easily visualizable even for very large
systems."

Walter Kohn’s, Nobel Lecture

Density Function Theory (DFT) is an electronic structure method based on
the fundamental laws of quantum mechanics and was initially developed by
Hohenberg, Kohn and Sham in 1965 [57, 58]. DFT is currently one of the
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most successful approaches to compute the ground-state properties of bulk
and finite-sized systems.

Some electronic structure methods, based on the expansion of the wave-function
in Slater determinants, attempt to arrive at approximate solutions to the
Schrödinger equation of 3N interacting electrons moving in an external po-
tential. The problem with these methods is the huge computational effort,
making these methods virtually impossible to efficiently apply to larger and
more complex systems. On the other hand, DFT uses a one-body density as
fundamental variable. The density, n(r), is a function of only three spatial
coordinates thus making DFT computationally more feasible even for large
systems.

Within this approach, the electronic orbitals are obtained as solutions of a set of
Schrödinger-like equations, referred to as the Kohn-Sham equations, for which
the potential terms depend solely on the electron density, n(r). The Kohn-
Sham method assumes that for each real and interacting ground-state density,
an auxiliary and non-interacting electron system should exist and possessing
the same ground-state density.

The Kohn-Sham equations can be written as:

[
− ∇

2

2
+ vKS[n(r)]

]
ϕi(r) = εiϕi(r), (2.54)

where vKS is the Kohn-Sham potential and n is defined in terms of the Kohn-
Sham wave-functions, and constructed by summing over all the occupied or-
bitals:

n(r) =
occ∑
i

|ϕi(r)|2. (2.55)

The Kohn-Sham potential can be defined as the sum of three terms [59]:

• The external potential, vext, representing the Coulomb attraction between
the bare nucleus and the electrons;

• the Hartree term, vHartree, which is the electrostatic energy of the electron
in the field generated by the total density;

• and the exchange-correlation (xc) potential, vxc
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2.4 Density Functional Theory

following the form

vKS[n(r)] = vext(r) + vHartree[n(r)] + vxc[n(r)]. (2.56)

The xc potential (last term of Eq. 2.56), takes the form of a functional deriva-
tive of the non-interacting electronic density, such that:

vxc[n(r)] =
δExc[n(r)]

δn(r)
. (2.57)

The electron exchange term describes the wave-function of indistinguishable
particles that is subject to exchange symmetry when two particles are ex-
changed. For any particle characterized by Fermi-Dirac statistics with half-
integer spin (fermions), i.e. electrons, this effect undergoes the Pauli exclusion
principle, preventing two parallel-spin particles from being found at the same
point in space (i.e. orbital). The exchange term lowers the energy by keep-
ing the electrons of the same spin away from each other, thus reducing the
Coulomb repulsion [60]. Correlation energy, on the other hand, results from
the collective behaviour of electrons to screen and decrease the Coulombic in-
teraction; correlations become more pronounced for opposite spins since they
are most likely to occupy nearby locations [60, 61].

DFT is an exact method, being the only approximation the treatment of the
non-trivial many-body effects, which are grouped into the xc functional. This
functional is obtained through approximations, and currently there are many
different forms which are grouped into different ladder rungs as a function of
chemical accuracy.

Expansion of the Kohn-Sham Wave-functions in a Plane-Wave Basis

The Kohn-Sham wave-functions can be expanded using different numerical
basis sets, being the most natural and simple method to treat periodic systems
the plane-wave expansion. With plane-waves the Kohn-Sham equations can
then be solved in momentum space, and by employing Bloch’s theorem the
wave-functions will satisfy the translational periodicity of the system.

Two technical convergence parameters need to be adjusted for periodic cal-
culations. One of these conditions is the Brillouin-zone (BZ) sampling which
replaces the integration of the periodic functions over reciprocal space. To
numerically evaluate the integrals, a weighted sum over a subset of k-points is

31



Chapter 2. Theoretical Framework

performed. By taking advantage of the space-group symmetry of the lattice,
it is possible to reduce these sums to the irreducible BZ [59], thus generating
a finite set of representative reducible k-vectors.

The second convergence parameter that should be considered is the cut-off
radius, which is set to truncate the sums over the reciprocal lattice vectors.
The cut-off energy is given by Ecutoff = G2

max/2, where Gmax is defined as the
radius of the sphere that contains all plane-waves up to the cut-off within a
volume, Vsphere = (4π/3)G3

max.

For finite systems (i.e. molecules, nano-clusters, surfaces), it is also possible to
employ plane-wave basis sets. However, care should be taken since large enough
vacuum space has to be considered along the finite dimension, to ensure suf-
ficient spacing between neighbouring images, and therefore avoid interactions
between these periodic images. The disadvantage of using this technique is
that since the electronic density is concentrated in a small fraction of the total
volume of the supercell, a very large number of plane-waves would be required
(the larger the vacuum space is, the more plane-waves are necessary), thus
increasing the computational cost.

More efficient basis sets can be applied to expand the Kohn-Sham orbitals for
finite systems. These impose the condition that the wave-functions tend to
zero at a distance far enough from the system. Such type of basis sets are
mostly implemented in quantum-chemistry codes, and are localized orbitals.
Examples include Gaussian basis sets and numeric atom-centered basis sets.
The error of these approaches is determined by the number of functions used
and the suitability of the choice of these functions for the specific system.

Also, real space basis sets are another alternative, not only for finite systems,
but also for periodic crystals. These type of basis functions are sampled on a
uniform real-space mesh; therefore, convergence of the results has to be checked
against the grid and spacing size of the employed mesh [59].

Pseudopotentials

For periodic systems it becomes unfeasible to calculate the complete Coulomb
potential (external potential term of Eq. 2.56), due to the large number of
electrons and basis set size to be considered. Effective potentials (pseudopo-
tentials) attempt to replace the inner core electrons and the nucleus by an inert
core that interacts with the valence electrons [59].
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2.4 Density Functional Theory

The concept of a pseudopotential had first been introduced by Enrico Fermi
in 1934 [62], in order to describe the scattering of a free neutron by a nucleus.
During 1935, Hellman [63] suggested a potential form for potassium, to be able
to replace the complex effects of the core electrons with an effective potential.
However, it was only during late 50’s that the concept of pseudopotential be-
gan to be extensively applied for metals and semiconductors, when Phillips
and Kleinman [64] generalised an approximation to Hellmann’s original pseu-
dopotential form.

Within this approach, the Schrödinger equation will contain a modified ef-
fective potential term, representing the core electrons, instead of an explicit
Coulombic potential. The wavefunction can thus be written as a sum of a
smooth function (pseudo-wavefunction) plus an oscillating function, to main-
tain orthogonality between the valence and core electrons [59]:

|ψv〉 = |ϕv〉+
∑
c

αcv|ψc〉, (2.58)

where αcv = −〈ψc|ϕv〉, |ψv〉 and |ψc〉 are the exact solutions of the Schrödinger
equation for the valence and the core electrons, respectively, and |ϕv〉 is the
pseudo-wavefunction. Since orthogonality ensures that core electrons do not
occupy filled valence orbitals, the Pauli exclusion principle will therefore be
satisfied.

For the smooth orbital, |ϕv〉, the Schrödinger equation is thus written as

Ĥ|ϕv〉 = Ev|ϕv〉+
∑
c

(Ec − Ev)|ψc〉〈ψc|ϕv〉. (2.59)

The most widely employed pseudopotentials for plane-wave electronic structure
codes are: norm-conserving, ultrasoft and projector augmented-wave (PAW)
pseudopotentials.

Norm-conserving pseudopotentials, were first introduced by Hamann, Sclüter
and Chiang [65], and these are built based on ab-initio procedures. The method
requires that the pseudo- and all-electron valence eigenstates possess the same
energies, amplitudes, and charge densities outside a certain cut-off radius, rl
(Fig. 2.1). The integrated charge inside the rl for each wavefunction must
agree (norm-conservation), so that the total charge in the core region is cor-
rect and the normalized pseudo-orbital equals the true orbital beyond rl [66],
enforcing that the pseudo-wavefunction to have the same norm as the true va-
lence wavefunction [59]. The norm-conserving condition can mathematically
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Figure 2.1: Representation of the effective core charge where comparison is made between
the all electron wavefunction and the pseudo-wavefuntion (blue), and the Coulomb potential
with the pseudopotential (red), up to a certain rl (from Ref. [67]).

be written as:
RPP
l (r) = RAE

nl (r), if r > rl (2.60)∫ rl

0

|RPP
l (r)|2 r2 dr =

∫ rl

0

|RAE
nl (r)|2 r2 dr, if r < rl (2.61)

where Rl(r) is the radial part of the wavefunction with angular momentum l,
and the superscript PP and AE define the pseudo and all-electron wavefunc-
tion, respectively.

The cut-off radius influences the accuracy and ability to reproduce realistic
electronic and structural properties for different environments (transferabil-
ity). The quality of the pseudopotential is therefore defined by the choice of
the rl. The minimum value for the cut-off radius is determined by the loca-
tion of the outermost nodal surface of the true wavefunction. If rl is close
to this minimum, the pseudopotential can reproduce the electronic structure
more accurately (hard pseudopotential). On the other hand, if a very large rl
is chosen, the pseudopotential will be smooth and almost angular-momentum
independent (soft pseudopotential), and these are less accurate to reproduce
realistic features in different systems (less transferable). The softer the poten-
tial is, the faster the electronic convergence of the plane-wave cut-off must be.
The choice of the ideal rl should therefore be a balance between the basis set
size and the pseudopotential accuracy.

Ultrasoft pseudopotentials does not enforce norm-conservation. These are con-
structed to describe a particular atomic environment [59], and therefore are less
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2.4 Density Functional Theory

transferable to other systems. The best known approach to develop ultrasoft
pseudopotentials was introduced by Vanderbilt [68], and currently it is widely
employed, in particular for 3-d transition metals, where a large plane-wave
basis-set is frequently necessary to treat strongly-localized orbitals. Blöchl
[69] further developed the ultrasoft pseudopotential concept by generalizing
the pseudopotential and linear augmented-plane-wave (LAPW) methods into
the projector augmented-wave (PAW) method [70]. This method introduces a
linear transformation from the pseudo-wavefunction to the all-electron wave-
function (Kohn-Sham single particle wavefunction), operating directly on the
full valence and core wavefunctions. Similarly to the LAPW method, PAW
can be used to treat first-row and transition-metal elements with affordable
basis sets, while providing access to the full wavefunction, and thus to a higher
accuracy for a given level of optimization.

Exchange-Correlation Potential

The xc potential is a functional derivative of the xc energy (Eq. 2.57) with
respect to the density. To ensure that the Kohn-Sham formulation remains
exact, the xc energy can be defined as

Exc[n(r)] = T [n(r)]− TS[n(r)] + Eee[n(r)]− EHartree[n(r)] (2.62)

where T [n(r)] and Eee[n(r)] are the exact kinetic and electron-electron inter-
action energies, respectively, TS[n(r)] is the Kohn-Sham kinetic energy

TS[n(r)] =
∑
i=1

∫
ψ∗i (r)

(
− 1

2
∇2
)
ψi(r) dr (2.63)

and EHartree is the classical Hartree energy of the electrons:

EHartree[n(r)] =
1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′. (2.64)

The two terms of the xc energy that are not known exactly are the kinetic
and interaction terms, which are are grouped into an universal functional. The
universal functional reproduces the all-electron kinetic and interaction energies
and is independent of the external potential, and is written as:

FHK[n(r)] = T [n(r)] + Eee[n(r)], (2.65)

where HK refers to the the Hohenberg-Kohn theory. Thus, Exc can be written
in terms of HK functional as:
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Exc[n(r)] = FHK[n(r)]− (TS[n(r)] + EHartree[n(r)]). (2.66)

The simplest approximation to the xc potential is the Local Density Approx-
imation (LDA) where the potential only depends on the value of the density
at point r. LDA has the form [59]:

ELDA
xc [n] =

∫
εHEGxc [n(r)] d3r (2.67)

vLDAxc =
d

dn
εHEGxc [n(r)], (2.68)

where εHEGxc (n) is the xc energy per unit volume of the homogeneous electron
gas (HEG) at constant density n.

The Local Spin Density Approximation (LSDA) will have the form
ELSDA

xc [n↑, n↓] =

∫
εxc[n↑(r), n↓(r)] d3r, (2.69)

with εxc(n↑(r), n↓(r)) being the xc energy per unit volume for an electron gas
of uniform spin densities n↑ and n↓.

The exchange energy of the HEG can easily be calculated from the expression
[60]:

ELDA
x [n] = −3

4

( 3

π

)1/3
∫

n(r)4/3 dr. (2.70)

On the other hand, the correlation energy of the HEG is obtained through
the parametrization of several densities, originally obtained through Monte
Carlo methods by Ceperley and Alder [71]. Currently, there exist several
parametrized forms for this functional, e.g. PZ81 [72], PW92 [73].

The generalized-gradient approximation (GGA) is a simple extension of the
LSDA (Eq. 2.69), and includes the effects of inhomogeneities by including the
gradient of the electron density, i.e. ∇n, into ε (semi-local method)

EGGA
xc [n↑, n↓] =

∫
f(n↑, n↓,∇n↑,∇n↓) d3r. (2.71)

Some results obtained with L(S)DA are found to be in very good agreement
with experimental data, including, in some cases, molecular properties such
as equilibrium structures, harmonic stretch frequencies, and charge moments
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2.4 Density Functional Theory

[61]. Inspite this, the L(S)DA approach tends to fail in predicting other proper-
ties. Examples include the incorrect prediction of negative ions to be unstable,
underestimation of the fundamental energy band gaps of semiconductors and
insulators, overestimation of hydrogen bond lengths, underestimation of vol-
umes.

Similarly, GGA also fails to describe the energy band gaps, which are a cru-
cial physical observable to study, e.g. the impurity levels in doped semicon-
ductors, band alignments, etc. Other common problems and deficiencies of
(semi-)local approximations are, i.e. incorrect description of long-range corre-
lation, in particular van-der-Waals (vdW) interactions; incorrect treatment of
strongly localized d− and f−states [74]. Inspite these failures, GGA can give
reasonably accurate results with respect to force constants, charge-densities,
energy barriers.

The original GGA functionals had a tendency to overestimate the equilibrium
volume, and therefore a revised semi-local functional was subsequently con-
structed for solids - the Perdew-Burke-Ernzerhof parametrization revised for
solids (PBEsol) - which has been successful in improving the description of
equilibrium properties such as bond lengths and lattice parameters [75, 76].

Improved xc functionals have been formulated ever since, and due to the large
variety of these approximations these have been categorized and grouped into
five rungs in a sequence of chemical accuracy, known as the Jacob’s ladder of
density functional approximations [77]. As the ladder is ascended, the function-
als incorporate higher levels of theory with increasingly complex parameters.

2.4.1 Lattice Dynamics

When a system is perturbed by an external potential (temperature, pressure,
electric fields) it can undergo a phase transition. However, to account for
dynamics one must consider the effect of thermal vibrations which generates
entropy in the system. The study of the vibrational properties requires ac-
counting for the nuclear motions of the atoms which vibrate with respect to
their equilibrium positions. The atomic motions are thus determined by the
forces that atoms exert upon each other, from which the dynamical and ther-
modynamic properties of solids will be obtained.

The normal modes of vibration in a solid can be considered as particle-like and
are known as phonons. The energy of a phonon is given by the product of the
quantum of action, the Planck’s constant, ~, and the angular frequency, ω. Due
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to fluctuations of the ground-state, characteristic of the harmonic oscillator,
the associated zero-point energy of the system is [78]:

E0 =
1

2
~ω (2.72)

which corresponds to motions at T = 0 K, known as zero-point vibrations.
The mean energy of each vibrational mode, ν, with wave-vector, q, is given by

E(q, ν) = ~ω(q, ν)

[
1

2
+ n(q, ν)

]
(2.73)

where n(q, ν) is the phonon occupation number for each mode obtained from a
Bose-Einstein distribution using the characteristic oscillator frequency ω. The
phonon occupation number can be related to temperature, T , by

n(q, ν) = n(ω, T ) =

[
1

exp (~ω(q, ν)/kBT )− 1

]
(2.74)

where kB is the Boltzmann constant.

The thermodynamic properties of a solid are directly related to the phonon
structure, where the entire set of all possible phonons in the solid are described
by the phonon dispersion relations. These combine as the phonon DOS which
determines the heat capacity of the solid.

Considering any wave-vector, q, and mode label, ν, the displacement of any
atom, j, with mass, m, in the unit-cell, l, will be given by:

u(j, l) =
1√
Nmj

∑
q,ν

e(j,q, ν) exp [iq · r(jl)]Q(q, ν) (2.75)

where r is a vector in real space; N is the number of unit-cells; e(q, ν) is the
mode eigenvector (displacement or polarisation vector) which gives the direc-
tion of the movement of the atom; and Q(q, ν) is the normal mode coordinate
that provides the amplitude and the time dependence. The time derivative
can be written as:

Q̇(q, ν) = −iω(q, ν)Q(q, ν). (2.76)
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2.4 Density Functional Theory

The vibrational modes are known as the normal modes of the system, and
these are characterized as travelling waves with unique frequency. From Eq.
2.75 one obtains [79]:

Q(q, ν) =
1√
N

∑
j,l

√
mj exp [−iq · r(jl)]e∗(j,q, ν) · u(jl), (2.77)

where each normal mode follows the orthogonality relation:∑
j

e(j,q, ν) · e(j,−q, ν ′) = δν,ν′ . (2.78)

Within the formalism of normal mode coordinates one can write the Hamilto-
nian of the system in terms of individual vibrations:

H =
1

2

∑
q,ν

Q̇(q, ν)Q̇(−q, ν) +
1

2

∑
q,ν

ω2(q, ν)Q̇(q, ν)Q̇(−q, ν) (2.79)

For a unit-cell, there are 3N dispersion branches corresponding to 3N modes
of motion. At small wavevectors (ω → 0 and q→ 0), three modes are related
to all atoms moving in phase and these are known as the acoustic modes. All
remaining modes (non-zero at q → 0) are optic modes and refer to atoms
moving out-of-phase [78].

By considering the potential energy of a phonon system as a function of the
atomic positions, V [u(j1, l1), · · ·u(jn, ln)] [79], the potential energy can be ex-
panded in a Taylor series as a function of the atomic displacements from their
equilibrium position [80]:

φ = V0 +
1

2

∑
j , j′

l , l′

∂2V

∂uj,l∂uj′,l′
uj,luj′,l′ + · · ·

+
1

n!

∑
j,··· ,j(n)

l,··· ,l(n)

∂nV

∂uj,l · · · ∂uj(n),l(n)

uj,l · · ·uj(n),l(n) (2.80)

where V0 is the potential energy with all atoms at rest. The first-order term
of the expansion vanishes since it corresponds to a potential minimum.
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The simplest model to study lattice dynamics is the harmonic approximation
(HA) in which the Taylor expansion of the potential (Eq. 2.80) is truncated up
to second order. The higher order terms in the series expansion of the crystal
potential energy correspond to the anharmonic terms. These correspond to
the physical effects of anharmonicity in solids such as the thermal volume
expansion of solids, the temperature shift of the normal mode frequencies and
the thermal resistivity [78].

Phonon frequencies are derived from the restoring force in response to the dis-
placement of ions by a small amplitude from their equilibrium positions. The
interatomic force constants (IFCs) can either be computed from perturbation
theory (e.g. density-functional perturbation theory, DFPT), or by perform-
ing force calculations on a series of symmetry-inequivalent displaced struc-
tures. The force/displacement curves are then fitted to a harmonic function.
In the latter finite-displacement (direct) method, the Parlinski-Li-Kawazoe
supercell approach is commonly employed [81, 82], which allows to capture
the long-range contributions to the IFCs between atoms in different crystal-
lographic unit-cells, and required to accurately compute the frequencies of
short-wavelength phonon modes [83].

2.5 High Critical Temperature Superconductors

Techniques of GFs to Study Superconductors

The Superconducting (SC) state is characterized by the appearance in the
system of a coherent condensate of Cooper pairs related through the GF, of
the kind: 〈â†k↑â

†
k↓〉, where â

†
k↑ and â

†
k↓ are the creation operators for electrons

with opposite spins. To get the superconductivity equations in compact form,
it is convenient to use the technique proposed by Nambu, introducing for the
electrons, the spinor operators of two components, the (line) spinor

ψ̂†k =
(
â†k↑ â−k↓

)
,

and the (column) spinor:

ψ̂k =

(
âk↑
â†−k↓

)
.
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2.5 High Critical Temperature Superconductors

We consider the Pauli matrices:

τ̂1 =

(
0 1
1 0

)
, τ̂2 =

(
0 −i
i 0

)
, τ̂3 =

(
1 0
0 −1

)
.

Now let’s consider the normal type functions 〈〈âk,↑â†k′,↑〉〉 and the anomalous,
〈〈âk,↑â−k′,↓〉〉 then writing them, in a single array,

Ĝ(k,k′) = 〈〈ψ̂kψ̂
†
k′〉〉, (2.81)

we can write Ĝ(k,k′), explicitly in a matrix form

Ĝ(k,k′) =

(
〈〈âk,↑â†k′,↑〉〉 〈〈âk,↑â−k′,↓〉〉
〈〈â†−k,↓â

†
k′,↑〉〉 〈〈â

†
−k,↓â−k′,↓〉〉

)
. (2.82)

We see that the diagonal elements of this matrix are the normal GFs for elec-
trons, while the array elements outside the diagonal are anomalous GFs, which
are due to the presence in the condensate of Cooper pairs from the system.
These two types of GF on superconductivity were introduced by Gor’kov. We
define the Fourier transform of the GF matrix in correspondence with the
equation

Ĝk,k′(ε) ≡ 〈〈ψ̂k |̂ψ
†
k′〉〉ε = −i

∫ 0

−∞
ei(ε+i0)t

〈{
ψk′ , ψ

†
k′

}〉
dt ,

where Ĝ denotes a matrix 2 × 2 in the Nambu indices, in which 〈...〉 is an
quantum statistics average, and {a(t), b(0)} is the anti-commutator for Heisen-
berg operators. The matrix elements are the Gor’kov normal and anomalous
functions. We distinguish between the Nambu indices (N-indices) and the
quasi-momentum indices (M-indices).
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Green’s function for the pure crystal in the SC state

The Hamiltonian that describes the SC system in the absence of impurities,
can be displayed in compact form as

Ĥ =
∑
k

[
ψ̂†k(ξkτ̂3 −∆kτ̂1)ψ̂k

]
,

where ψ̂k is the Nambu spinor, ξk is the energy of normal quasiparticle with
quasimomentum k, and τi are the Pauli matrices. The SC parameter ∆k

satisfies the Bardeen-Cooper-Schrieffer (BCS) gap equation

∆k = −
∑
k′

VSC〈âk′↓|âk′↑〉, (2.83)

where the SC coupling constant VSC , is attractive for the phonon-mediated
electron-electron interaction. The equation of motion of the kind Eq. 2.49, is
written for the creation and annihilation operators as follows

ε〈〈âk|â†k〉〉 = 1 + 〈〈
[
âk, Ĥ

]
|â†k〉〉. (2.84)

we can write the equation Eq: 2.84 as

ε〈〈âk↑|â†k′↓〉〉 = 1 + ξk〈〈âk↑|â†k′↓〉〉 −∆k〈〈â†−k↓|â
†
k′↓〉〉. (2.85)

For the GFs in the right part of Eq. 2.85, we can rewrite the equations of
motion. So the next equation to consider, for the next element in Nambu
column matrix is:

ε〈〈â†−k↓|â
†
k′↓〉〉 = −ξk〈〈â†−k↓|â

†
k′↓〉〉 −∆k〈〈âk↑|â†k′↓〉〉, (2.86)

We can now present Eqs. 2.85 and 2.86 in the form:

(ε− ξk)〈〈âk↑|â†k′↓〉〉 = 1−∆k〈〈â†−k↓|â
†
k′↓〉〉,

(ε+ ξk)〈〈â†−k↓|â
†
k′↓〉〉 = −∆k〈〈âk↑|â†k′↓〉〉. (2.87)

Multiplying the first expression of 2.87 for (ε+ ξk) becomes:
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2.5 High Critical Temperature Superconductors

(ε2 − ξ2
k)〈〈âk↑|â†k′↓〉〉 = (ε+ ξk)−∆k(ε+ ξk)〈〈â†−k↓|â

†
k′↓〉〉, (2.88)

and multiplying the second term by −∆k one gets:

−∆k(ε+ ξk)〈〈â†−k↓|â
†
k′↓〉〉 = −∆2

k〈〈âk↑|â
†
k′↓〉〉. (2.89)

Therefore, by replacing Eq. 2.88 on Eq. 2.89 we get:

(ε2 − ξ2
k)〈〈âk↑|â†k′↓〉〉 = ε+ ξk −∆2

k〈〈â−k↓|â
†
k′↓〉〉,

so the explicit results for the above considered GFs:

〈〈âk↑|â†k′↓〉〉 =
ε+ ξk

ε2 − ξ2
k −∆2

k

,

(2.90)

〈〈â†−k↓|â
†
k′↓〉〉 =

−∆k

ε2 − ξ2
k −∆2

k

.

Proceeding similarly, one can calculate the elements of the second column
of the Nambu matrix Eq. 2.82, yielding the corresponding expressions for
〈〈âk↑|â−k′↓〉〉 and 〈〈â†−k↓|â

†
−k′↓〉〉. With these expressions and the equation Eq.

2.82 we get the matrix form of GF for the SC uniform state,

Ĝ0
k = (ε−∆kτ̂1 − ξkτ̂3)

−1
. (2.91)

DOS for the SC Pure Crystal

By performing the inversion of matrices, Eq. 2.91, we have

Ĝ0
k =

1

ε2 − ξ2
k −∆2

k

[
ε+ ξk ∆k

∆k ε− ξk

]
,

then the DOS is given by:

ρ(ε) = Im
∑
k

TrĜ0
k =

1

2πN
Im
∑
k

2ε

ε2 − ξ2
k −∆2

k

, (2.92)
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By applying the integration rule for delta functions [84]:∫
dxδ(g(x)f(x) =

∑
i

f(xi)

| g′(xi) |
, (2.93)

where xi are the roots of the equation g(xi) = 0 that lie within the integration
area.

By applying the rule given in Eq. 2.93 to Eq. 2.92 we obtain:

ρ(ε) = 2ε
a2

(2π)2

∫
δ(ε2 − ξ2

k −∆2
k)kdkdϕ

= 2ε
a2

(2π)2

∫
kδ(ε2 − ~2v2

F |k − kF |2 −∆2
k)dkdϕ. (2.94)

for which the relevant roots are

k = kF ∓

√
ε2 −∆2

~vF
.

The particular result is therefore dependant on the symmetry of the order
parameter ∆k. Thus, for s-wave, ∆k = ∆, the DOS shows the similar charac-
teristic of the BCS theory:

ρ(ε) =
2ε

π2W

∫ 2π

0

dϕ√
ε2 −∆2

= ρ0

ε√
ε2 −∆2

.

The case more relevant to HTSC with d-wave symmetry, it is associated with
the order parameter in the form: ∆k = ∆ cos 2ϕ (corresponding to the circular
Fermi surface approach). The last expression in Eq.2.94 is written in terms of
elliptic integrals as:

ρ(ε) =
2ε

π2W

∫ 2π

0

dϕ√
ε2 −∆2 cos2 2ϕ

=
2√

∆2 − ε2
K(

ε2

∆2 − ε2
),
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2.5 High Critical Temperature Superconductors

where, K(x) is the elliptic integral of the first kind. The singularity at point
ε = ∆ is similar to the results obtained in experimental measurements from
tunnel spectroscopy.

2.5.1 Impurities Effects and the Self-Energy Matrix

The tight-binding approach comes from the idea that all the charge carriers
occupy the atomic states located on the lattice sites with the same energy εa,
and that these can perform jumps between close neighbors sites with a certain
transition amplitude t � εa. The corresponding Hamiltonian is expressed in
terms of local operators ân,σ, â†n,σ as:

Ĥ0 =
∑
n,σ

(εaâ
†
n,σân,σ + t

∑
δ

â†n+δân), (2.95)

where the vectors δ link the site n with the sites which are its close neighbors on
the lattice and t is the jump amplitude for these sites. Using the translational
symmetry, the band energy, for the tight binding Hamiltonian approach is
written,

Ĥ0 =
∑
n

(εaâ
†
nân + t

∑
δ

â†nân+δ) =
∑
k

εkâ
†
kâk,

where we have used the Fourier transform for operators in the form:

âk,σ =
1√
N

∑
k

e−ik·nân,σ.

So the Hamiltonian (2.95) can be diagonalized, and the dispersion law, that is
given by the general expression: εk = εa + t

∑
δ e

ik·δ,

in the particular case of the 2D square lattice, where the vectors δ are directed
along the axis a, got the form εk = 4t− 2t(cos akx + cos aky).

For the more general case, in which it is considered the presence of impurities,
with impurity potential V , which occupy localized states in the sites p. We
can further express the Hamiltonian of this system in terms of plane wave
operators âk by writing:
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Ĥ =
∑
k

εkâ
†
kâk +

V

N

∑
p,k,k′

ei(k−k
′)·pâ†k′ âk.

Green Functions and Motion Equation

Considerations on the effects of introducing impurities in a physical system
allows one to write the equation of motion Eq. 2.52 in terms of GF,

εĜ0
k(ε) = 〈{â†k, âk}〉+ 〈〈

[
âk, Ĥ

]
|â†k〉〉, (2.96)

being the Hamiltonian written in the form: Ĥ = Ĥ0 + Ĥimp, where Ĥimp is the
term that describes the impurities, we can re-write

Ĝk = 〈〈âk|â†k〉〉 = 1 + 〈〈
[
âk, Ĥimp

]
|â†k〉〉. (2.97)

By employing the Fourier transforms for the operators,

âp,σ =
1√
N

∑
k

e−ik·pâk,σ,

and the commutator:

[
âk, Ĥimp

]
=
V

N

∑
p,k′

e−i(k−k
′)·pâk′ ,

it is possible to study the equation of motion (the terms of multiple diffusions).
In particular, the above considerations will allow to re-write Eq. 2.97 in the
following manner:

(ε− εk)〈〈âk|â†k〉〉 = 1 + V
N

∑
p,k′ e

−i(k−k′)·p〈〈âk′ |â†k〉〉
= 1 + V

N

∑
p〈〈âk|â

†
k〉〉+ V

N

∑
p,k′ 6=k e

−i(k−k′)·p〈〈âk′ |â†k〉〉 (2.98)

where (V/N)
∑

p = cV . In this way, the equations of motion for the function
〈〈âk′ |â†k〉〉k′ 6=k, which appears in the above expression, gives:
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2.5 High Critical Temperature Superconductors

(ε− εk′)〈〈âk′ |â†k〉〉 =
V

N

∑
p′,k′′

e−i(k
′−k′′)·p′′〈〈âk′′ |â†k〉〉

=
V

N

∑
p′

e−i(k−k
′)·p〈〈âk|â†k〉〉+ ..., (2.99)

where we have ignored the terms in k′′ 6= k′. So placing the Eq. 2.99 in Eq.
2.98 we obtain:(

ε− εk − cV −
V̂

N

∑
p′,k′ 6=k

e−i(k−k
′)·p V

N

e−i(k−k
′)·p

ε− εk′

)
〈〈âk|â†k〉〉 = 1+..., (2.100)

which can be re-written as:

〈〈âk|â†k〉〉 =

(
ε− εk − cV −

cV 2

N

∑
k′ 6=k

1

ε− εk′
+ ...

)−1

,

we define G(ε) = (1/N)
∑

kGk(ε), and present the GF for describing the
impure systems,

〈〈âk|â†k〉〉 ≈
(
ε− εk −

cV

1− V G(ε)

)−1

=
1

ε− εk − Σk

,

where the sum cV + cV 2G(ε) + cV 3G2(ε) + cV 4G3(ε) + ... is expressed by a
geometric series cV/(1 − V G(ε)). The representation Σk refers to the self-
energy matrix, which in the most general case, we can write as

Σk =
cV

1− V̂ Ĝ(ε)

(
1− c

∑
n6=0

A0ne
−ik·n +A0nAn0

1−A0nAn0

+ ...

)
, (2.101)

where the matrices A0n relates to indirect interaction between the scattering
sites 0 and n are:

A0n = V
∑
k′ 6=k

eik
′·n

ε− εk

[
1− V Ĝ(ε)

]−1

.
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These expansions refers to indirect interactions between the impurity centers,
the self-energy Σk where the first term T-matrix, is followed by a group series in
increasing numbers of interacting impurity centers. Alike the classical Ursell-
Mayer group expansions [85].

Impurity Perturbations and Group Expansions (GE)

To study the effect of the perturbations introduced by impurities in a material
we use the model of Lifshitz whose potential Vi is point type in random sites
p and with concentration c � 1, [22]. The Hamiltonian in the presence of
impurities is written asH+H ′, whereH ′ refers the perturbation matrix V̂ ∝ Vi,

H ′ =
1

N

∑
p,k,k′

ei(k−k
′)pψ†k′ V̂ ψk. (2.102)

The equation of motion in the presence of impurities is written as:

Ĝk,k′ = δk,k′Ĝ
0
k −

1

N

∑
p,k′′

ei(k−k
′′)pĜ0

kV̂ Ĝk′′,k′ . (2.103)

We can choose several routines to approximate these to an infinite chain of
equations of the type Ĝk′′,k′ , in which Eq. 2.103 describes the scattering pro-
cesses. In particular, analyzing the consecutive interactions of this equation
allows for the GE routine to be fully renormalized, proceeding to the system-
atic separation of all interaction terms that figured in previous interactions.
So we separate the function Gk from those that include the scattering terms,
Ĝk′,k,k

′ 6= k:

Ĝk = Ĝ0
k +

1

N

∑
k′,p

ei(k−k
′)·pĜ0

kV̂ Ĝk′,k

= Ĝ0
k + cĜ0

kV̂ Gk +
1

N

∑
k′ 6=k,p

ei(k−k
′)·pĜ0

kV̂ Ĝk′,k. (2.104)

Then for each Ĝk′,k,k
′ 6= k we write again Eq. 2.103 and, in the right hand

side, one can find the isolated scatter terms of Ĝk and Ĝk′,k:
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2.5 High Critical Temperature Superconductors

Ĝk′,k =
1

N

∑
k′′,p′

ei(k
′−k′′)·pĜ0

k′ V̂ Ĝk′′,k

= cĜ0
k′ V̂ Ĝk′,k +

1

N
ei(k

′−k)·pĜ0
k′ V̂ Ĝk

+
1

N

∑
p′ 6=p

ei(k
′−k)·p′Ĝ0

k′ V̂ Ĝk

+
1

N

∑
k′′ 6=k,k′;p′

ei(k
′−k′′)·p′Ĝ0

k′ V̂ Ĝk′′,k. (2.105)

It must be noted that among the terms with Ĝk, the term with p′ = p (second
on the right side of Eq. 2.105), contains the phase factor ei(k

′−k)·p. Therefore,
this expression is consistent with the previously presented in the last sum of
Eq. 2.104. Consequently, this term is explicitly separated from the incoherent
terms, ∝ ei(k

′−k)·p′ , with p′ 6= p.

Carrying on with this sequence, we have collected the terms whose initial
function Ĝk results in:

1. all multiple scattering on the same site p,

2. processes on the same pair sites p and p′ 6= p, and so on.

Then, the sum in p of the terms 1)- result in the first term of GE:

T̂ = V̂
(

1− ĜV̂
)−1

, (2.106)

and if we ignore the processes in the impurity clusters, this term identifies
with the self-consistent T -matrix [86]. The second term of GE is obtained by
the sum of terms 2), with p,p′ 6= p, which contain interaction matrices [87]
Âp′,p = N−1

∑
k′ e

ik′·pĜk′ T̂ generated from the GF of multiple diffusions Ĝk′,k,
k′ 6= k....

In summary, we obtain a fully normalized representation for M-diagonal GF

Ĝk = Ĝk,k =

[(
Ĝ0

k

)−1

− Σ̂k

]−1

, (2.107)
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where the renormalized matrix self energy is represented by GE

Σ̂k = cT̂
(

1− cÂ0 − cÂ2
0 + cB̂k + · · ·

)
(2.108)

with the pair term

B̂k =
∑
n6=0

(
Â3

ne−ikn + Â4
n

)(
1− Â2

n

)−1

. (2.109)

The term that follows the unity in Eq. 2.101, describes the contributions
from all possible clusters of two impurities, with the remaining terms referring
to contributions of clusters with three or more impurities. This allows us to
describe a hierarchical structure for localized states in a crystal with impurities
[88].

2.6 Overview of Low-Dimensional Physics in 2D Graphene

Niels Bohr: “What are you working on Mr. Dirac?”
Paul Dirac: “I’m trying to take the square root of something”

To describe the electronic properties of monolayer graphene, we compute the
spectrum of the material by employing the Tight-Binding theory. By perform-
ing the calculation in the low energy limit we will obtain the linear dispersion,
which is one of the characteristics of Dirac massless relativistic particles.

We also focus on disordered systems which is obtained by applying perturba-
tions (impurities). The DOS of the intrinsic graphene system will be calculated
by employing the GF technique. The DOS is a fundamental physical quantity
which aids in the interpretation of several experimental data for disordered
systems.

The effect of impurities will be calculated by employing the simple and self-
consistent T-matrix method. For the considered case of finite impurity con-
centration, the self-consistent method is more reliable. However, with the
exception of the ’spurious’ effect obtained for the vacancy (DOS divergence for
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2.6 Overview of Low-Dimensional Physics in 2D Graphene

ε = 0), that persists even with the self-consistent technique, all other observ-
ables treated within this formalism will be in accordance with the experimental
data and other theoretical approximations.

2.6.1 Graphene Spectrum

Graphene is a carbon allotrope constructed by an hexagonal lattice due to the
sp2 hybridization between the s orbital and two p orbitals.The sp2 orbital leads
to sigma bonds, while the orbital that does not enter the hybridization process,
pz, will form a π bond with its neighbors, which is the origin of the conducting
properties of the material. Therefore a valence electron per atomic site is
considered. The π-type bonds can thus be associated with the conduction
band and the σ-type bonds to the valence band.

The hexagonal crystalline structure of graphene is well known in condensed
matter physics as being composed of two triangular sub-lattices (mathemat-
ically labeled as ’non-equivalent’, A and B) each consisting of two atoms in
the unit-cell (with atom a ∈ A and b ∈ B), in order to satisfy the transational
properties and symmetry of a Bravais lattice Fig 2.2. As a consequence, two
inequivalent points in the reciprocal lattice are identified, K and K ′.

The characteristics of the hexagonal lattice, are defined by the lattice vectors:

a1 = a
2
(3,
√

3), a2 = a
2
(3,−

√
3), with a ≈ 1.42

◦

A. and three next-neighbors
(real space)

δ1 =
a

2
(1,
√

3), δ2 =
a

2
(1,−

√
3), δ3 = −a(1, 0). (2.110)

The reciprocal lattice vectors obtained by the relation bi · aj = 2πδij are:

b1 =
2π

3a
(1,
√

3), b2 =
2π

3a
(1,−

√
3)

’Tight-Binding’ Hamiltonian

To obtain the tight-binding Hamiltonian, one considers electronic transitions
which occur only between next-neighbors

H = t
∑
n,δ

(a†nbn+δ + h.c.) (2.111)
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Figure 2.2: Hexagonal lattice representing the graphene structure (left), divided in two
triangular lattices, A and B, in which atoms A and B belong to each lattice, respectively.
Vectors a1 and a2 are the lattice vectors and δi are the next-neighbor vectors (the transition
amplitude between these are of the order t ≈ 2.7 eV). The unit-cell is described by the
rhombic geometry. The reciprocal lattice (right) corresponds to the first BZ represented in
k space. Vectors b1 and b2 are reciprocal vectors and K and K′ are special lattice points,
which result in the atom differentiation of the two triangular lattices. Points Γ and M are
high-symmetry k-points in the BZ.
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2.6 Overview of Low-Dimensional Physics in 2D Graphene

in which t is the transition amplitude for the next-neighbor (≈ 2.7 eV). The
an, bn+δ are Fermi operators and these represent electrons at the A and B sub-
lattices, respectively. δ are vectors that are directed to the three next-neighbors
of the site.

Considering the periodic boundary conditions of the system, which leads to
the conversion of the real-space operators to plane-waves of reciprocal space
(Fourier transform), one obtains

ak =
1√
N

∑
n

e−ık·nan; bk′ =
1√
N

∑
n

e−ık
′·(n+δ)bn+δ , (2.112)

then

H =
t

N

∑
n,δ,k,k′

e−ık·na†k e
ık′·(n+δ)bk′ + h.c. .

The sum of all the lattice sites, n, originates the Dirac delta function, such
that, ıδ(k′ − k) = 1/N

∑
n e

ı(k′−k)n, therefore

H = t
∑
k,δ

eık·δa†kbk + h.c. =
∑
k

εk(eıϕka†kbk + e−ıϕkb†kak) ,

with εk = t|fk| and fk =
∑

δ e
ık·δ = |fk|eıϕk . The Hamiltonian can be written

in a matrix form,

H =
∑
k

εk
[
a†k b†k

] [ 0 eıϕk

e−ıϕk 0

] [
ak
bk

]
=
∑
k

tψ†k

[
0 fk
f∗k 0

]
ψk . (2.113)

Replacing its values by the coordinates in Eq. 2.110, one obtains

fk =
∑
δ

eık·δ = eık·δ1 + eık·δ2 + eık·δ3 ,

then

fk = exp [ı(
akx
2

+

√
3aky
2

)] + exp [ı(
akx
2
−
√

3aky
2

)] + exp [−ıakx] ,

thereby computing in Eq. 2.113, the eigenvalues:
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Figure 2.3: Energy dispersion, band structure highlighting the low energy limits. Note the
linear band structure near the Dirac cones located at the points K and K′. Reproduced
from Ref. [89].

εk = ±t
√

3 + 4 cos [akx/2] cos [
√

3aky/2] + 2 cos [akx] ,

we get the electronic dispersion relation, Fig. 2.3.

Low Energy Limit

Within the limit of low energies, εk = 0, close to the two nodal points, K and
K ′, one obtains a cone type energetic surface, leading to a relativistic-type
electronic dynamics, which is described by the Dirac equation, Fig. 2.3. The
position of these points in momentum space is given by

K =
(2π

3a
,

2π

3
√

3a

)
, K ′ =

(2π

3a
,− 2π

3
√

3a

)
.

The linear behavior of the dispersion relation can be better identified if we
expand the Hamiltonian of Eq.2.113 around the points K and K ′. Thus,
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2.6 Overview of Low-Dimensional Physics in 2D Graphene

H = t

[
0 − 3

4
(−ı+

√
3)a(qx + ıqy)

− 3
4
(ı+
√

3)a(qx − ıqy) 0

]
. (2.114)

The eigenvalues are linear in momentum

εq = ±ta3

2

√
q2
x + q2

y = ±νF |q|,

on what νF = ta(3/2) ≈ 1× 106 m/s is the Fermi velocity.

The above equation, Eq. 2.114, acquires a more perceptible form if if one
applies a counter clockwise rotation of π/6. Re-writing the moment variables
as, κx = (

√
3qx)/2− qy/2 and κy = (qx/2) + (

√
3qy)/2, one obtains

HK = −3

2
at

(
0 κx + ıκy

κx − ıκy 0

)
= −3

2
at
[
σxκx − σyκy

]
,

where σx and σy are the Pauli matrices, representing σ = (σx, σy)). Please
note that the respective conjugate is σ∗ = (σ∗x, σ

∗
y) = (σx,−σy); thus one gets

HK = −νFσ∗ · κ. (2.115)

At the point K ′, the calculations are obtained analogously by applying a
counter-clockwise rotation of −π/6, yielding

HK′ = −3

2
at

(
0 κx − ıκy

κx + ıκy 0

)
= −3

2
at
[
σxκx + σyκy

]
.

In that case, one obtains

HK′ = −νFσ · κ. (2.116)

Both Hamiltonians, Eqs. 2.116 and Eq. 2.115, are decoupled, and have been
obtained with the relativistic Dirac Hamiltonian [13]. The corresponding rep-
resentation in a matrix form is then

H = −νF
∑
κ

(ψ†K,κ σ
∗ · κ ψK,κ + ψ†K′,κ σ · κ ψK′,κ) , (2.117)

wherein wavefunctions are the operators defined in Eq. 2.111, so that
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Ψκ =

(
ψK,κ
ψK′,κ

)
=


aK,κ
bK,κ
aK′,κ
bK′,κ

 .

In this way, the Hamiltonian of Eq. 2.117 then becomes

H = −νF
∑
κ

Ψ†κ


0 κx − ıκy 0 0

κx + ıκy 0 0 0
0 0 0 κx + ıκy
0 0 κx − ıκy 0

Ψκ .

If we introduce the matrices αi in the form [90]

α1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ; α2 =


0 −ı 0 0
ı 0 0 0
0 0 0 ı
0 0 −ı 0

 ;

(2.118)

α3 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 ; α4 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 ,

then the Hamiltonian can be further expressed as

H = −νF
∑
κ

Ψ†κ(α1κx + α2κy)Ψκ .

For graphene, the 2D + 1 Hamiltonian, is obtained noting that γ1 = γ0α1,
γ2 = γ0α2 and γ0 = α4. In such a case, we can write

H = ıνF
∑
κ

Ψ̄κγ
µ∂µΨκ . (2.119)

Graphene comprises a relativistic dynamics described by the Dirac algebra,
as reflected in Dirac matrices. It is noted however, that in QED2+1, γ3 is
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2.6 Overview of Low-Dimensional Physics in 2D Graphene

not used in the construction of Hamiltonian, since the electronic dynamics in
this material is restricted to 2D. Eq. 2.119 shows that graphene involves a
relativistic electronic dynamic type described by a Dirac equation.

Graphene is a material with an electronic dynamics of Dirac relativistic type,
which is striking in condensed matter physics. The remarkable distinction
of graphene is that the relativistic effects are genuine systems of quantum
field theory. Moreover, one may have the possibility of studying the effects of
localization of the wavefunction caused by impurity disorder.

2.6.2 DOS in Graphene

The DOS of the Graphene system can then be obtained using the equation:

ρ0 = − 1

π
Im Tr Ĝ(0) .

By definition, we write

Ĝ(0)(ε, k) = (ε− Ĥ0)−1 =
1

N

∑
k

ε1̂ + νF (γ1kx + γ2ky)

ε2 − ε2
k

.

Then, the diagonal element of the GF g(0), in the vicinity of the Dirac point
is given in Ref. [91]. Indeed, by integrating around the Dirac cones

∑
k →∫

Dirac Cone dk, for a linear scattering behavior, we obtain

g(0) =
a2

2π

∫ 2π

0

∂θ

∫ 2
√
π/a

0

∂k
k ε

ε2 − (t a k)2
= ε ln

ε2

1− ε2
− ıπ |ε| , (2.120)

where we choose the energy unit in such a way that the bandwidth 2
√
π t = 1

[91]. Therefore the DOS is given by

ρ0 = − 1

π
Im Tr Ĝ(0) = − 1

π
Im g(0) = |ε|

whose representation is in the graph of Fig. 2.4
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ε

ρ
(ε

)

Figure 2.4: The density of states, for pure graphene

Impurities in graphene - Disordered Systems

For a disordered system, the most reliable characteristics for relevant observa-
tions, are described by the ’self-mediated’ GFs whose values do not depend on
the particular realization of disorder. In other words, this means that, to all
particular realization for disorder, the GFs become equal to the mean values
over the disorder [92].

For the present study, related to low concentration of impurities, we will apply
the Lifshitz disordered model, which refers to the randomness on the spatial
distribution of impurities - better suited to low concentration of defects.

Impurities will be considered within the Tight-Binding description by adding
a local energy term of the form:

Himp =
∑
〈α,p〉

Vpc
†
α,pcα,p (2.121)

where, Vp, is the random potential, α, represents two sub-lattices and p is
the site of the respective sub-lattice. Rewriting the operators, to explicitly
represent electrons at the A and B sub-lattices, we have:
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2.6 Overview of Low-Dimensional Physics in 2D Graphene

Himp =
∑
〈p〉

Vp(a
†
pap + b†pbp).

According to the notation of Ref. [91] we can write the Hamiltonian as a
spinor. Therefore we have

Himp =
∑

k,k′,〈p〉

Vp
N
eı(k−k

′)pΨ†kτ0Ψk′

where Ψ =

(
ak
bk

)
.

One of the theoretical objects mostly employed to study impurities is the T-
matriz, method T̂ (ε). In this work, all the effects induced by the impurity will
be considered within the T-matrix method, of which standard perturbation
theory results in an infinite sum of perturbed Gfs

T̂ (ε) = V̂ + V̂ Ĝ0V̂ + V̂ Ĝ0V̂ ĜV̂ + · · ·

=
V̂

1− V̂ Ĝ
(2.122)

In case of assuming a small concentration of impurities, ci = Ni/N , the GF
can be written as

Ĝ(ε, k) = Ĝ0
k + Ĝ0

k T̂ (ε) Ĝk (2.123)

being this equation only valid up to first order of ci, meaning that this form
only considers the multiple scattering of electrons by the effect of only one
impurity. From Eq. 2.122, and replacing the respective result, T-matrix is
written:

T (ε) =
V

1− V
(
Re g(0) − ıπ|ε|

) ,
therefore

Im T (ε) =
V 2π|ε|(

1− V Re g(0)
)2

+
(
V πε

)2 ,
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ε

ρ
(ε

)

V=0
V=2

V=3
V=4

Figure 2.5: DOS and T-matrix in graphene as a function of energy, where different per-
turbation potentials are applied with ci = 0.01 of impurity concentrations.

for sufficiently large V , a peak is observed in the DOS (see Fig. 2.5).

2.6.3 Vacancy defects

Vacancies are an example of possible defects that can be introduced in the
lattice by proton irradiation. A vacancy can be considered as extreme cases of
the local potential when V →∞, being the potential considered in the unitary
limit. Therefore, the T-matrix will transform as

lim
V→∞

T (ε) = − 1

g(0)(ε)
,

when g(0)(ε = 0) = 0, the DOS will tend to ∞, as observed in Fig. 2.6.

To calculate the DOS when dealing with vacancies, in the extreme case when
V → ∞, the T-matrix calculation, as previously obtained, is not rigorous
because the resonance peak will diverge to infinity.

In what concerns the vacancy problem, one may still observe the divergence of
the DOS at ε = 0 (see Fig. 2.6), even by calculating through the self-consistent
method [22]. Nevertheless, this method is more reliable, allowing for one to
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2.6 Overview of Low-Dimensional Physics in 2D Graphene

ε

ρ
(ε

)

Figure 2.6: Effect of the vacancy impurity on the DOS (green solid line) where a divergence
at ε = 0 is observed. The dashed black line refers to the DOS of the pure graphene system.

reproduce in better agreement experimental results and compare with other
data obtained through theoretical and computational analysis [93].
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2.6.4 Strain-Induced Effects of Deformed Graphene

In this section we will present an analytical solution of the relativistic Dirac
equation defined in the framework of quantum field theory in curved space
and will apply it to study the electronic properties of deformed monolayer
graphene. We will obtain as solution the Dirac oscillator equation, where
an effective vector potential term naturally appears. Such a term describes
a pseudo-magnetic field that emerges due to the initially defined curvature,
and influences the dynamics of the charge carriers, as if these were under the
influence of an applied external magnetic field.

The flexibility of manipulating monolayer graphene allows one to engineer the
electronic and optical properties by inducing local lattice deformations to con-
trol the strain distribution of the atom-thick material (straintronics and cur-
vatronics). Inspite the electron dynamics in graphene is described by a two-
dimensional (2D) Dirac equation, one should expect deviations from a 2D flat
surface. In fact, structural corrugations and ripples have been experimentally
observed in suspended graphene and ab initio simulations have shown that
ripples tend to emerge spontaneously due to thermal fluctuations [89, 94].

When the monolayer sheet is perturbed under strained geometric curvatures,
the behaviour of the charge carriers will mirror those occurring under the
influence of an applied out-of-plane magnetic field [95, 96, 97]. It has been
observed that inducing large enough stretching/strain promotes tiny triangular
bubbles in the material sheet that causes pseudomagnetic fields localized inside
the bubbles. These fields can reach as high as 300 T, i.e. well beyond field
values currently obtained with stable laboratory magnets[95, 97]. Such strong
fields result in the localization of the electronic states, leading to observable
phenomena, such as pseudo-quantum Hall effects and Landau levels.

Since the linear band dispersion of graphene presents degenerate valleys, where
the valence and conduction bands touch at the Dirac points, the effect of lattice
deformations on electrons is equivalent to that of an effective gauge field. As
a consequence, homogeneous deformations causes small shifts in momentum
of the Dirac cones, whereas inhomogeneous strain influences the electron mo-
tion, similarly to a valley-dependent effective pseudo-magnetic field[97]. Such
effects could enable potential applications, mainly in the fields of valleytronics,
in which electron separation between different valleys in the electronic band
dispersion can occur [97].

Gauge fields, arising due to elastic deformations in the presence of inhomoge-
neous external stress, have already been realized more than 20 years ago by
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2.6 Overview of Low-Dimensional Physics in 2D Graphene

Kane and Mele[98]. However, the correlation between a particular topologi-
cal strain and the corresponding pseudo-magnetic field is not straightforward,
and thus several theoretical studies have attempted to use strain-engineering
techniques to generate homogeneous magnetic fields[94, 99, 100, 101, 102].

Moreover, since induced strain modifies the Fermi level, correlation between
strain and deformation engineering, with the possibility of tuning the en-
ergy band gaps in the graphene electronic spectrum, has also been evidenced
[95, 101]. This issue is still one of the most debated challenges in graphene
electronics. Only quite recently it has been found through numerical calcula-
tions that the combination of shear strain and uniaxial tensile deformations
seem to be the easiest form of band gap engineering [103], enabling band gap
widths of up to 6 eV. Curved 2D systems also present another form of inducing
compressive and tensile strain in the lattice. Therefore the magnitudes of the
strain percentages depend on the topology and on the curvature radius of the
induced curved surface [104].

It is important to note that applying isotropic or uniaxial strains it is not
possible to break inversion symmetry of the graphene lattice, therefore not
being possible to induce a band gap opening. Alternative local strains may
allow the possibility for band gap engineering. Local strains can naturally
occur from growing conditions on substrates with different structural local
deformations (grooves, wrinkles, steps, etc.), thereby generating different strain
profiles [103].

Two main theoretical approaches based on effective gauge fields are usually em-
ployed to study the electronic properties of strain/deformation induced mod-
ifications in graphene. The most standard method is based on tight-binding
models and focuses on the low-energy continuum limit accounting for displace-
ments of carbon atoms in a strained sheet. The second approach is based on
quantum field theories of curved space, which starts off with a low-energy ef-
fective Dirac equation for graphene and by considering a curved space metric,
one obtains geometry-induced gauge fields.

Initially the Dirac oscillator had been introduced in the context of many body
theory, mainly in connection with quark confinement models in quantum chro-
modynamics [105]. Within the non-relativistic limit, the Dirac oscillator is re-
duced to a simple harmonic oscillator with a strong spin-orbit coupling term.
Currently, a wide variety of works have directed the physics of the Dirac os-
cillator when monolayer graphene is subject to an external applied magnetic
field[106, 107]. However, in the present work, we will verify that a pseudo-
magnetic field naturally emerges when graphene presents a deformation of the
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type of z(x, y), which in turn produces the same space group symmetry as the
pristine flat monolayer sheet of graphene, thus showing it to be a naturally
occurring deformation of the system.

The main motivation to search for deformations on the monolayer sheet is
because graphene-type materials inevitably are subject to out-of-plane defor-
mations, and described by the function that we will demonstrate in this work.
The physics described by the Dirac oscillator equation allows to interpret many
experimental results carried out in graphene-type materials. As a consequence
of the Dirac harmonic oscillator equation, it is possible to address the physics
of the Landau levels and also consider the theoretical framework of Jaynes-
Cummings for the relevant optical properties of curved graphene [108, 109].

Within the framework of the relativistic electron in curved space, the action
can be written 1 as

S =

∫
d3x
√
gΨ(x){ΓµDµ −M}Ψ(x)

where Ψ(x) is the Dirac field, g = det(gµν) with gµν being the metric tensor.
The Dirac equation in a curved space-time is written as {ıΓµDµ−M}Ψ(x) = 0,
where the Dirac matrices in curved space-time are Γµ = eµAγ

A. The local
Lorentzian frame is defined by eµA with space-time interval given by ds2 =
ηABθ

AθB, being ηAB the Minkowski metric and θA = eµAdx
µ.

The covariant derivative is:

Dµ = ∂µ +
1

4
ωABµ ωAB

with ωAB = 1
2
(γAγB − γBγA) and the spin connection is

ωABµ =
1

2
eνA(∂µe

B
ν

− ∂νe
B
µ )− 1

2
eνB(∂µe

A
ν − ∂νeAµ )

− 1

2
eρAeσB(∂ρeσC − ∂σeρCeCµ

1’Es en la acción y solo en la acción cuando la virtud se destaca’ Cicerön

64



i
i

i
i

i
i

i
i

2.6 Overview of Low-Dimensional Physics in 2D Graphene

Figure 2.7: 3D representation (left) and contour plot (right) of the geometric deformation
pattern of graphene defined by Eq. 2.124.

In the particular case of a time independent metric, one can choose θ0 = dt
and Γ0 = γ0, where γ0 is the flatland Dirac matrix [94].

We consider the out-of-plane deformation of the form (Fig. 2.7):

z(x, y) =
1

2
A cos [k(x+ y)]

cos [
√

3k(−x+ y)− k(x+ y)]

cos [
√

3k(−x+ y) + k(x+ y)]

sin [k(x+ y] (2.124)

where A is the deformation amplitude and k refers to the modulation frequency
of the deformation. For a small deformation parameter η = Ak << 1, we
obtain

Γ1(x, y) = γ1, Γ2(x, y) = γ2,

with the spin connection expression written as

ω12
1 (x, y) = −A2k4x, ω12

2 (x, y) = −A2k4x.

After rearranging the terms, we obtain the Dirac oscillator expression
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ı{γ0∂0 + γx(∂x + yB) + γy(∂y − xB)}Ψ = 0 (2.125)

where B is a constant that represents the pseudo-magnetic field which emerges
due to the defined out-of-plane deformation. For this out-of-plane deformation
it is possible to obtain the Dirac harmonic oscillator equation, where Landau
levels can here be addressed. Such an expression had initially been introduced
in the context of quark confinement models in the fields of quantum chromo-
dynamics [105].

Arias and co-workers [110] have studied both in-plane and out-of-plane de-
formations and have obtained a closed expression for the effective gauge field
due to arbitrary nonuniform sheet deformations. Moreover, these authors re-
veal a relation between the local pseudo-magnetic field and the intrinsic scalar
curvature; i.e. the Riemann curvature [110].

The Dirac oscillator expression decouples in a set of equations of the form:

E|Ψa〉 = [px + ıBx − ıpy +By]|ψb〉
E|Ψb〉 = [px − ıBx + ıpy +By]|ψa〉

Re-writing the equation in complex notation we thus obtain:

HD(λ) =

(
0 2pz + ıBz

2pz − ıBz 0

)

in which the Dirac oscillator equation can be written in the usual creation
and annihilation operators, reformulated in the complex formalism (Jaynes-
Cummings model) [106], as:

HD ∝
(

0 az
az 0

)

Previous work [94] has considered that deformations result from the Mathieu
equations that describe the Kaptiza pendulum, therefore the motivation here
is to try and search for a more generalized deformation, in such a way as to
obtain the Dirac oscillator.
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We describe the effects of electronic perturbation distributed on nearest-neighbor sites to the impurity center
in a planar d-wave superconductor, in approximation of circular Fermi surface. The behavior previously
reported for pointlike perturbation and square Fermi surface, the quasiparticle density of states !!"" can display
a resonance inside the gap and asymptotically vanishes at "�0 as !�" / ln2 ". Unique features are weak
antiresonances from low-symmetry representations of nonlocal perturbation. The local suppression of super-
conducting !SC" order parameters in this model is found to be somewhat weaker than for an equivalent
pointlike !nonmagnetic" perturbation and much weaker than for a spin-dependent !extended" perturbation. The
developed approach can be used for a wide class of nonlocal impurity perturbations in superconductors.

DOI: 10.1103/PhysRevB.71.014516 PACS number!s": 74.25.Jb, 74.62.Dh, 74.72.#h

I. INTRODUCTION

The study of the density of states !DOS" in high-Tc super-
conducting !SC" metal oxides has motivated many theorists
and experimentalists through the last years, because it de-
fines such fundamental physical parameters as the quasipar-
ticle conductivity $, the penetration length %, the electronic
specific heat, etc. This study is guided by the facts that !i" the
charge carriers are practically confined to the CuO2 planes1
and characterized by two-dimensional !2D" wave vectors k
= !kx ,ky"and !ii" the SC order parameter has d-wave
symmetry2 with four nodal points ki= !±kF /#2, ±kF /#2",
where the Fermi surface crosses the nodal directions kx
= ±ky; along these directions the SC gap function &k turns
zero, and the quasiparticle dispersion law Ek=#'k

2 +&k
2 coin-

cides with that of normal metal, 'k. Another important factor
is that the high-Tc materials are the so-called “doped metals”
!also called doped insulators or doped semiconductors",
where the Fermi energy "F is defined by the density of
charge carriers, introduced by the doping process.3 This very
process creates the scattering centers for quasiparticles, due
to random Coulomb fields from ionized dopants. Other scat-
terers, not related to the density of carriers, can be addition-
ally introduced, and all of them can produce considerable
effects on the system physical properties.4
In particular, some resonances can emerge in the quasi-

particle spectrum with d-wave gap symmetry,5,6 even at low
concentrations of impurities. Such resonance manifests itself
in a maximum of DOS at a certain energy "res(&
= maxk $&k$, as well as in logarithmic suppression of DOS at
"�"res !Ref. 7" !the energies being referred to "F". These
conclusions can be directly compared to experimental re-
sults, as those obtained in the scanning tunneling microscopy
experiments.10
The perturbation that impurities introduce into the elec-

tronic subsystem of crystal, depend either on their positions
with respect to the lattice and on the potential they produce
on nearest matrix sites. Within the simplest possible model,
where an impurity only disturbs a single site in the
lattice,5,6,11–14 the potential is characterized by a single per-
turbation parameter. This pointlike perturbation model al-

lows one to obtain a simple solution for the quasiparticle
DOS in terms of their Green’s functions, leading to the
above-mentioned possibility of low-energy resonances.
However, in reality, the impurity perturbations in high-Tc
materials are not exactly pointlike but rather extended to
lattice sites neighboring the impurity center. The opposite
limit to the pointlike perturbation is when the perturbed area
is much bigger of the Fermi wavelength and can be treated
quasiclassically,15 but it hardly applies to real atomic substi-
tutes in high-Tc systems where the perturbation extends to
few nearest neighbors of the impurity site. One important
question in this respect is how robust are the results of point-
like approximation to the spatial extent and geometry of im-
purity perturbation.5 In particular, the linkage of d-wave SC
order to nearest-neighbor pairing rather than to on-site pair-
ing can generate new features, e.g., the extended impurity
gets to perturb diagonal and off-diagonal observable values
in different ways !see below". Recently, an example of such
an extended impurity center was considered,16 but for a spe-
cific spin-dependent perturbation which does not have a
pointlike counterpart. Here we use a similar approach to
compare the effects of pointlike and extended perturbations
of otherwise identical !spin-independent" structure, and also
to compare them with the spin-dependent perturbation. These
studies could prepare a more flexible base for treating the
dynamics of disordered high-Tc materials.
Usually, the low-energy excitations in d-wave systems

with impurities are considered starting from a tight-binding
spectrum in the simplest nearest-neighbor approximation,
'k=2t!2−cos akx−cos aky", and using a certain parametriza-
tion in the vicinity of nodal points. Thus, in the popular
approach proposed by Lee,11 one expands the difference k
−ki in the local axes, ei,1=ki /kF and ei,2= !ei+1,1−ei−1,1" /2
%Fig. 1!a"&, and then approximates the spectrum components
as,

'k = )�Fk1, &k = )�2k2,

with two characteristic velocities �2��F. However, this
“square” geometry is a good approximation only for low
quasiparticle energies !Ek�&= maxk $&k$" %except for the

PHYSICAL REVIEW B 71, 014516 !2005"
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Effects of extended impurity perturbation in d-wave superconductor

Yu.G. Pogorelov and M.C. Santos
CFP/Departamento de Física, Universidade do Porto, 4169-007 Porto,

Portugal

We describe the effects of electronic perturbation distributed on nearest-neigh-
bor sites to the impurity center in a planar d -wave superconductor, in ap-
proximation of circular Fermi surface. The behavior previously reported for
pointlike perturbation and square Fermi surface, the quasiparticle density of
states ρ(ε) can display a resonance inside the gap and asymptotically vanishes
atε → 0 as ρ ∼ ε/ ln2 ε. Unique features are weak anti resonances from low-
symmetry representations of nonlocal perturbation. The local suppression of
superconducting (SC) order parameters in this model is found to be somewhat
weaker than for an equivalent pointlike (nonmagnetic) perturbation and much
weaker than for a spin-dependent (extended) perturbation. The developed
approach can be used for a wide class of nonlocal impurity perturbations in
superconductors.

I. Introduction

The study of the density of states (DOS) in high-Tc superconducting (SC)
metal oxides has motivated many theorists and experimentalists through the
last years, because it defines such fundamental physical parameters as the
quasiparticle conductivity σ, the penetration length λ, the electronic specific
heat, etc. This study is guided by the facts that (i) the charge carriers are prac-
tically confined to the CuO2 planes [111] and characterized by two-dimensional
(2D) wave vectors k = (kx, ky) and (ii) the SC order parameter has d -wave sym-
metry [112] with four nodal points ki = (±kF/

√
2,±kF/

√
2), where the Fermi

surface crosses the nodal directions kx = ±ky; along these directions the SC gap
function ∆k turns zero, and the quasiparticle dispersion law Ek =

√
ξ2
k + ∆2

k

coincides with that of normal metal, ξk. Another important factor is that the
high-Tc materials are the so-called “doped metals” (also called doped insulators
or doped semiconductors), where the Fermi energy is defined by the density
of charge carriers, introduced by the doping process.[113] This very process
creates the scattering centers for quasiparticles, due to random Coulomb fields
from ionized dopants. Other scatterers, not related to the density of carri-
ers, can be additionally introduced, and all of them can produce considerable
effects on the system physical properties.[114]
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Chapter 3. Effects of extended impurity perturbation in d-wave superconductor

In particular, some resonances can emerge in the quasiparticle spectrum with
d -wave gap symmetry,[87, 115] even at low concentrations of impurities. Such
resonance manifests itself in a maximum of DOS at a certain energy εres <
∆ = maxk |∆k|, as well as in logarithmic suppression of DOS at ε� εres (Ref.
[116]) (the energies being referred to εF). These conclusions can be directly
compared to experimental results, as those obtained in the scanning tunneling
microscopy experiments.[117]

The perturbation that impurities introduce into the electronic subsystem of
crystal, depend either on their positions with respect to the lattice and on
the potential they produce on nearest matrix sites. Within the simplest pos-
sible model, where an impurity only disturbs a single site in the lattice,[87,
115, 118, 119, 120, 121] the potential is characterized by a single perturbation
parameter. This pointlike perturbation model allows one to obtain a simple
solution for the quasiparticle DOS in terms of their Green’s functions, leading
to the above-mentioned possibility of low-energy resonances. However, in real-
ity, the impurity perturbations in high-Tc materials are not exactly pointlike
but rather extended to lattice sites neighboring the impurity center. The op-
posite limit to the pointlike perturbation is when the perturbed area is much
bigger of the Fermi wavelength and can be treated quasiclassically,[122] but it
hardly applies to real atomic substitutes in high-Tc systems where the pertur-
bation extends to few nearest neighbors of the impurity site. One important
question in this respect is how robust are the results of pointlike approxi-
mation to the spatial extent and geometry of impurity perturbation.[123] In
particular, the linkage of d-wave SC order to nearest-neighbor pairing rather
than to on-site pairing can generate new features, e.g., the extended impurity
gets to perturb diagonal and off-diagonal observable values in different ways
(see below). Recently, an example of such an extended impurity center was
considered,[124] but for a specific spin-dependent perturbation which does not
have a pointlike counterpart. Here we use a similar approach to compare the
effects of pointlike and extended perturbation sof otherwise identical (spin-
independent) structure, and also to compare them with the spin-dependent
perturbation. These studies could prepare a more flexible base for treating the
dynamics of disordered high-Tc materials.

Usually, the low-energy excitations in d -wave system swith impurities are con-
sidered starting from a tight-binding spectrum in the simplest nearest-neighbor
approximation, ξk = 2t(2−cos akx−cos aky), and using a certain parametriza-
tion in the vicinity of nodal points. Thus, in the popular approach proposed
by Lee,[118] one expands the difference k − ki in the local axes, ei,1 = ki/kF

70



i
i

i
i

i
i

i
i

Figure 3.1: Fermi surfaces for a d-wave superconductor: (a) "squarelike" geometry at
closeness to half filling (εF/W = 0.475). The local axes e1,1 and e1,2 are shown explicitly
for the wave vector k near the nodal point k1; (b) "circularlike" geometry at lower doping
(εF/W = 0.125), almost indistinguishable from exact circle (thin dashed line).

and ei,2 = (ei+1,1−ei−1,1)/2 [Fig. 3.1(a)], and then approximates the spectrum
components as,

ξk = ~vFk1, ∆k = ~v2k2,

with two characteristic velocities v2 � vF. However, this “square” geometry is a
good approximation only for low quasiparticle energies (Ek � ∆ = maxk|∆k|)
[except for the special case of closeness to half filling as shown in Fig. 3.1(a)].
Generally, when treating higher energies Ek & ∆, one must consider a real
Fermi surface geometry that in many cases is close to circular, [125, 126, 127,
128] and within the adopted approximation this relates to a small enough Fermi
surface εF � W [Fig. 3.1(b)]. In this case, a more adequate parametrization
of spectrum is obtained with ξk = ~vF (k − kF) and ∆k = ∆ cos 2ϕkθ(ε

2
D − ξ2

k)
where ϕk = arctan(ky/kx) and the theta-function factor restricts SC pairing
to the BCS shell of width εD (Debye energy) around εF.

Most of the known treatments of impurity effects in doped and disordered d-
wave SC systems, including a self-consistent T -matrix approximation (SCTMA),
[129] were developed within pointlike perturbation models (though extended
impurity perturbations were also studied by numerical treatment of Bogolyubov–
de Gennes equations on finite-size lattices [130]) and “square” geometry of
Fermi surface.[114, 116] This paper includes more realistic features, either of
the impurity perturbation (which can affect several equivalent neighbor sites
to the impurity ion) and of the Fermi surface geometry (in a more adequate
circular approximation) into analytic calculations using the Green’s-function
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Chapter 3. Effects of extended impurity perturbation in d-wave superconductor

method. Apart from confirmation of the known results for pointlike centers,
we search for new impurity effects, specific for extended perturbation

II. Physical Description of the System

We use the Nambu spinors Ψ†k = (a†k,↑, a−k,↓) where a†k,σ and ak,σ are the
Fermi operators for quasiparticles with wave vector k and spin σ and the
model Hamiltonian for disordered d -wave superconductor is

H = H0 +Himp,

H0 =
∑
k

Ψ†k(ξkτ̂3 −∆kτ̂1)Ψk,

Himp = − 1

N

∑
k,k′,p

ei(k
′−k)p

∑
δ

ei(k
′−k)δΨ†k′ V̂Ψk. (3.1)

In what follows we denote by hats the matrices in Nambu indices, e.g., the
Pauli matrices τ̂i and the matrix V̂ = Vimpτ̂3 which describes the quasiparti-
cle scattering by extended (attractive) perturbation Vimp around an impurity
center p, over its near neighbors δ (Fig. 3.2). Formally, this perturbation only
differs by the presence of τ̂3 factor from that considered in Ref. [124]. The
concentration of randomly distributed centers c = N−1

∑
p 1 (where N is the

number of cells) is supposed small, c� 1.

We define the Green function (GF) matrices as:

Ĝk,k′(ε) = 〈〈Ψ̂k|Ψ̂†k′〉〉 = i

∫ 0

−∞
ei(ε−i0)t〈

{
Ψ̂k(t), Ψ̂†k′(0)

}
〉dt, (3.2)

where 〈. . .〉 is the quantum-statistical average with Hamiltonian, Eq. (3.1),
and {a(t),b(0)} the anticommutator of Heisenberg operators. The energy ε is
referred to the chemical potenial µ (identified in what follows with the Fermi
energy εF). The observable characteristics follow from the averages of products
of these operators (at given inverse temperature β), expressed through the
corresponding GFs by the spectral theorem

〈ab〉 =

∫ ∞
−∞

dε

eβε + 1
Im〈〈b|a〉〉ε. (3.3)
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Figure 3.2: Extended perturbation over four nearest neighbor sites to the impurity ion (its
projection onto the CuO2 plane is shown by the dashed circle at the origin).

For the disordered system with the Hamiltonian, Eq. (3.1), we calculate GFs
from the basic equation of motion,

Ĝk,k′ = Ĝ0
kδk,k′ −

1

N

∑
k′′,p,j

ei(k−k
′′)pαjkαjk′′Ĝ

0
kV̂ Ĝk′′,k′ , (3.4)

where Ĝ0
k = (ε − ξkτ̂3 − ∆kτ̂1)−1, and we expanded the structural function

for impurity scattering in Eq. (3.1) as:
∑

δ e
i(k′−k)δ =

∑4
j=1 αjkαjk′ . The

functions

α1,k = 2 cos
akx
2

cos
aky
2
, α2,k = 2 cos

akx
2

sin
aky
2
,

α3,k = 2 sin
akx
2

cos
aky
2
, α4,k = 2 sin

akx
2

sin
aky
2
,

realize irreducible representations of the C4 point group (j = 1 being related
to A-, j = 2, 3 to E -, and j = 4 to B -representations [131]) and thus satisfy
the orthogonality condition

1

N

∑
k

αj,kαj′k = δjj′ . (3.5)
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Chapter 3. Effects of extended impurity perturbation in d-wave superconductor

The impurity effects on quasiparticle spectrum are then naturally classified
along these representations, like the known results for magnetic impurities in
ferro- and antiferromagnetic crystals. [132, 133]

III. T -Matrix Solutions for the Green’s Functions

The orthogonality of the αj,k functions implies that in the general solution to
Eq. 3.4

Ĝk =

[(
Ĝ0

k

)−1

− Σ̂k

]−1

, (3.6)

has the self-energy matrix additive in these representations: Σ̂k =
∑

j Σ̂jk.
Each partial term in the latter sum can be given by a specific group expansion
(GE), like those known for point-like impurity perturbations in normal [134]
or superconducting [114, 135] systems and also for extended perturbations in
magnetic systems [132],

Σ̂jk = −cT̂j

{
1− cÂj − cÂ2

j + c
∑
n6=0

[
Â3
j (n) e−ikn + Â4

j (n)
]

×
[
1− Â2

j (n)
]−1

+ . . .

}
. (3.7)

Here T̂j = V̂ (1 + V̂ Ĝj)
−1 is the (renormalized) partial T -matrix, and the ma-

trices Âj (n) represent indirect interactions (in jth symmetry channel) between
scatterers at sites 0 and n,

Âj (n) = −Ĝj (n) T̂j, Ĝj (n) =
1

N

∑
k

eiknα2
j,kĜk,

Âj = ĜjT̂j, Ĝj = Ĝj (0) .

The sum
∑

n6=0 in Eq. (3.7) describes all the processes involving pairs of
impurities, it implies averaging in random impurity configurations, and hence
runs over all the lattice sites n. The omitted terms are for triples and more
of impurities. This defines a generalization of the GE approach for extended
impurity centers in superconductors. If the series in the brackets is restricted
to its first term, the self-energy matrix Σ̂k becomes independent of k,
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Σ̂k → Σ̂ = −c
∑
j

T̂j. (3.8)

Then, for small enough concentration of impurities, the renormalization of
T -matrices can be neglected and we arrive at

T̂j → T̂ 0
j = V̂ (1 + Ĝ0

j V̂ )−1, Ĝ0
j =

1

N

∑
k

α2
j,kĜ

0
k. (3.9)

The matrix functions Ĝ0
j can be expanded in the basis of Pauli matrices

Ĝ0
j = ρ0 (gj0 + gj1τ̂1 − gj3τ̂3) (3.10)

where ρ0 = 4/(πW ) is the constant DOS in a 2D normal system [the absence
of τ̂2 component in Eq. (3.10) is related to the fact that the gap function ∆k

is chosen real]. Passing in Eq. (3.9) from summation in k to integration in
"polar" coordinates ξk = ξ and ϕk = ϕ [Fig. 3.1(b)] according to the rule,

1

N

∑
k

fk ≈
ρ0

4π

∫ 2/ρ0−µ

−µ
dξ

∫ 2π

0

dϕf (ξ, ϕ) ,

we calculate the dimensionless coefficient functions gji. Some of them are zero
by the symmetry reasons: g11 = g41 = 0. The rest can be approximated as

gj0 ≈ α2
jg0, gj3 ≈ α2

jg3,

g21 = −g31 ≈ α2
2g1. (3.11)

Here α2
j are the average values of α2

jk over the Fermi surface: α2
1 ≈ 4 (1− ω),

α2
2,3 ≈ 4ω, α2

4 ≈ 2ω2, where the band occupation parameter ω = µ/W is sup-
posed small, in concordance with the chosen circular geometry. The functions
g0 and g1 are known from the studies of pointlike perturbations: [136, 137]

g0(ε) =
ε

4π

∫ 2/ρ0−µ

−µ
dξ

∫ 2π

0

dϕ

ε2 − ξ2 −∆2 cos2 2ϕ

≈ ε
[
1/µ̃− F1

(
1− ε2/∆2

)
/∆
]
, (3.12)
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g1(ε) =
∆

2π

∫ εD

0

dξ

∫ 2π

0

cos2 2ϕ dϕ

ε2 − ξ2 −∆2 cos2 2ϕ

≈ ∆/εD + 2
[
F2

(
1− ε2/∆2

)
+ (ε2/∆2)

×F1

(
1− ε2/∆2

)]
. (3.13)

They include µ̃ = µ (1− 2ω/π) ≈ µ and the functions F1(z) = K(1/z)/
√

z and
F2(z) =

√
zE(1/z) with full elliptic integrals of first and second kind K and E,

having similar behavior with the elementary functions obtained within square
geometry. [116] In the same similarity, the function g3 = (4π)−1

∫ 2/ρ0−µ
−µ ξdξ

∫ 2π

0
dϕ/(ε2−

ξ2 −∆2 cos2 2ϕ) is practically constant: g3 ≈ ln
√
π/(2ω)− 1, within the rele-

vant energy range |ε| �W,µ.

Using these results, we readily calculate the partial T matrices, Eq. (3.9). The
most important contribution to Σ̂ comes from the j = 1 term (A representa-
tion):

T̂ 0
1 =

vA

α2
1ρ0

vAg0 − τ̂3

DA

, (3.14)

where vA = α2
1Vimpρ0/(1 − α2

1Vimpρ0g3) is the dimensionless perturbation pa-
rameter in the A channel, and DA(ε) = 1 − v2

Ag
2
0(ε) is the energy dependent

denominator. In particular, it can produce a low energy resonance at ε = εres
such that ReDA(εres) = 0, analogous to the above mentioned resonance from
pointlike impurity center. This requires that vA exceeds some critical value
≈ 2/π. The resonance can approach the Fermi level, εres → 0, only in the
unitary limit for perturbation, vA → 0, unlike the case of Ref. [124] where this
can happen for a finite spin-dependent perturbation.

The contributions from j = 2, 3 (E -representation) are

T̂ 0
2,3 =

vE

α2
2ρ0

vE (g0 ∓ g1τ̂1)− τ̂3

DE

, (3.15)

with the respective perturbation parameter vE = α2
2Vimpρ0/(1 − α2

2Vimpρ0g3)
and denominator DE = 1−v2

E (g2
0 − g2

1). It is less probable to have a resonance
effect in this channel at low occupation ω � 1, since (i) the parameter vE is
reduced versus the A-channel value, and (ii) there is a competition between
Reg2

0 and Reg2
1 in the denominator DE.
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The B -channel contribution (j = 4) has the same structure as the A-channel
term, Eq. (3.14), but with vA replaced by a strongly reduced value vB =

α2
4Vimpρ0/(1 − α2

4Vimpρ0g3); hence it turns even less important than the E -
channel terms.

IV. Perturbation of Observable Values

Now we are in a position to describe the perturbation of basic observable
characteristics of SC system by extended impurity centers. Thus, the global
DOS is defined by the momentum diagonal GFs, ρ(ε) = (πN)−1

∑
k Im Tr Ĝk,

and, using Eqs. (3.8), (3.14), (3.15) Eq. (3.6), it is obtained as

ρ(ε) =
ρ0

π
Im g0(ε− Σ0), (3.16)

where the scalar self-energy

Σ0 =
cg0(ε)

ρ0

(
v2
A

α2
1DA

+
2v2

E

α2
2DE

+
v2
B

α2
4DB

)
(3.17)

includes the effects of extended impurity centers in all three channels. The
result of direct calculation from Eq. 3.16 with use of Eq. 3.17 for the charac-
teristic choice of parameters, W = 2 eV, µ = 0.3 eV, εD = 0.15 eV, Vimp = 0.2
eV (giving for particular channels: vA ≈ 0.934, vE ≈ 0.088, and vB ≈ 0.006),
and c = 0.15, is shown in Fig. 3.3. It is quite similar to the known results
for point-like impurities, [87, 115] showing a reduction of the sharp coherence
peak at ε = ∆ and emergence of a relatively broad low-energy resonance at
εres (shown by the arrow), mainly due to the A-channel effect, but, addition-
ally, there are small "antiresonance" effects from the E -channel (insets to Fig.
3.3), at ε ≈ ∆ and at some high enough energy (∼ 70∆ in this case). These
E -channel features (the high-energy one even probably nonexisting) should not
have any sizeable effect on the system thermodynamics.

The local density of states (LDOS) on nth site is expressed in terms of GFs as
ρn(ε) = (πN)−1

∑
k,k′ Im Tr ei(k−k

′)·nĜk,k′ and its variation δρn(ε) = ρn(ε) −
ρ(ε), compared to the mean value ρ(ε) = N−1

∑
n ρn(ε) (identical to the global

DOS), is only given by the momentum-nondiagonal GFs,

δρn(ε) =
1

πN

∑
k,k′ 6=k

Im Tr ei(k−k
′)·nĜk,k′ . (3.18)
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Figure 3.3: Density of states in the d-wave superconductor with extended impurity cen-
ters (the solid line), for the choice of parameters W = 2 eV, µ = 0.3 eV, εD = 0.15 eV,
Vimp = 0.2 eV, c = 0.15. The arrow indicates the low-energy resonance by the A-channel
impurity effect and the dashed line represents the pure d-wave DOS. Insets: weak E -channel
"antiresonances" at high energies (upper panel) and near the gap edge (lower panel).
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Figure 3.4: Local density of states on the nearest-neighbor site to an extended impurity
center, for the same choice of parameters as in Fig. 3.3 (but supposing c → 0). Note an
overall enhancement of electronic density compared to remote sites from impurity (dashed
line) and a much stronger effect of the low-energy resonance (the arrow).

These functions are easily calculated for the simplest case of a single impurity
center at p = 0,

Ĝk,k′ =
1

N

∑
j

αj,kĜ
0
kT̂

0
j Ĝ

0
k′αj,k′ , (3.19)

describing a finite effect on the local characteristics near the impurity. Thus,
the quantity δρn attains its maximum value at n = δ, the nearest-neighbor
sites to the impurity. Using Eq. (3.19) and the orthogonality relations, we
expand this value in a sum,

δρn=δ(ε) =
1

πN2

∑
k,k′,j

Im Tr eik·δαj,kĜ0
kT̂

0
j Ĝ

0
k′αj,k′e

−ik′·δ

=
1

π

∑
j

Im Tr Ĝ0
j T̂

0
j Ĝ

0
j ,
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and present the overall maximum LDOS as

ρn=δ(ε) =
2ρ0

π
Im

[
g0(ε)

(
1 +

vANA

α2
1DA

+ 2
vENE

α2
2DE

+
vBNB

α2
4DB

)]
. (3.20)

Similar to the lienar in c, Eq. (3.17), for global DOS and the case of Ref.
[124] for LDOS, the resonance contribution to Eq. (3.20) comes from the A-
channel with the numerator NA = 2g3 +vA(g2

0 +g2
3), while other channels with

NE = 2g3 + vE(g2
0 − g2

1 − g2
3) and NB = 2g3 + vB(g2

0 + g2
3) mainly contribute to

renormalization of the pure d -wave DOS ρd(ε) = 2/πImg0(ε).

The behavior calculated from Eq. (3.20) of LDOS on nearest-neighbor sites
to the impurity is shown by solid line in Fig. 3.4. It displays a low energy
resonance (the arrow), much more pronounced than that in the global DOS,
Fig. 3.3, and an overall enhancement compared to the LDOS curve for remote
sites from impurity ρn→∞ = ρd (the dashed line).

The latter effect is related to the local attraction by impurity and, of course,
the overall particle number is conserved: N1

∑
n

∫
ρn(ε)dε = 1. The curves

in Fig. 3.4 can be compared with the direct experimental measurements of
differential conductance through the STM tip positioned close to and far from
an impurity center. [117]

In a similar manner, the local perturbation of SC order parameter can be
considered. The local d -wave SC order in the unit cell containing the impurity
(Fig. 3.2) is given by the average ∆32 = 2V 〈aδ3,↓aδ2,↑〉,[124] where V is the SC
coupling constant and site operators an,σ are expressed through band operators:
an,σ = N−1/2

∑
k e

ik·nak,σ. For Vimp = 0, this average coincides with the
uniform gap parameter

∆ =
2V

N

∑
k

eik·(δ2−δ3)〈a−k,↓ak,↑〉

=
4λ∆

π

∫ εD/∆

0

[
F2(1 + x2)− F1(1 + x2)

]
dx, (3.21)

the latter expression (with the dimensionless d -wave coupling constant λ =
V ρ0ω) being obtained from Eqs. (3.3) and (3.13). The integral in Eq. (3.21)
behaves as a logarithm:

∫ a
0

[F2(1 + x2) − F1(1 + x2)]dx ≈ (π/4) ln(2.428a) at
a� 1, thus providing ∆ ≈ 2.428 εD exp(−1/λ).
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Figure 3.5: Dimensionless function F (ε/∆) (solid line) used in Eq. (3.24) to calculate the
suppression parameter ηsup, at the same choice of parameters as in Fig. 3.4, compared to
the integrand in the uniform gap equation, Eq. (3.21) (dashed line) and its asymptotics
π∆/(4ε) (dash-dotted line).

But for Vimp 6= 0 this value is locally suppressed. The suppression is charac-
terized by the dimensionless parameter ηsup = 1 − ∆32/∆, confined between
0 (pure SC) and 1 (complete local suppression of SC order),[124] and it only
results from nondiagonal GFs,

ηsup =
2V

N∆

∑
k,k′ 6=k

〈a−k,↓ak′,↑〉ei(k·δ2−k
′·δ3) =

=
V

4π∆

∑
j

(−1)j
∫ 0

−∞
dεIm TrĜ0

j T̂
0
j Ĝ

0
j τ̂1. (3.22)

Using here Eqs. (3.19) and (3.10) leads to the expression,
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ηsup =
4λ

π

∫ εD/∆

0

F (x)dx, (3.23)

where only the E -channel terms contribute to the dimensionless function

F (x) = −vE
2
Im
g1(x∆)NE

DE

[compared in Fig. 3.5 with the integrand for the uniform gap equation, Eq.
(3.21)]. Numeric analysis of this expression for the above chosen perturbation
parameters results in ηsup ≈ 0.47. This is slightly smaller than the respective
value for pointlike impurity in d -wave system:[87] ηsup = 1/(1 + v2) (assuming
v equal to vA), and about twice weaker than almost complete suppression in
the case of spin-dependent perturbation of the same dimensionless magnitude.
In the latter case, the analogous integrand function (as follows from Fig. 2
in Ref. [124])is close to the dashed line in Fig. 3.5. Those relations confirm
the general Abrikosov-Gor’kov conclusion [138] on the pair-breaking effects by
impurities in superconductors, irrespective of their spatial extension.

V. Self-Consistent Generalization

The above given analysis corresponds to the simplest restriction of the group
series, Eq. (3.7), for self-energy to its first, single-impurity term with use of un-
perturbed GFs. The resulting linear approximation in impurity concentration
Σ̂ = −c

∑
j T̂

0
j , is only justified when this concentration is low enough c� c0,

where c0 ∼ ρ0ε0 is related to the characteristic energy scale ε0 for impurity
perturbation (in this case ε0 ∼ εres). At higher concentrations, c > c0, when
perturbations from different impurity centers effectively overlap. The simplest
way to take account of these collective impurity effects is provided by replace-
ment of Σ̂ by its self-consistent analogue Σ̂(sc) = −c

∑
j T

(sc)
j , in the spirit

of well-known SCTMA method. [116, 118, 139] It was shown for the case
of pointlike impurity perturbation, [116] that effects of such self-consistency
are most essential at the lowest excitation energies, ε � ∆. In view of the
similarity in the system response to pointlike and extended perturbations and
of the predominant role of the A-channel at low energies, we can restrict the
self-consistency of T -matrix only to its A-channel term. Then Eqs. (3.6) and
(3.8) are modified to
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Ĝ
(sc)
k =

[(
Ĝ0

k

)−1

+ c
4∑
j=2

T̂j + cT̂
(sc)
1

]−1

, (3.24)

including the self-consistent A-channel T -matrix:

T̂
(sc)
1 = V̂ [1 + Ĝ

(sc)
1 V̂ ]−1.

As in Eq. (3.10), the self-consistent GF matrix Ĝ(sc)
1 = N−1

∑
k α

2
1kĜ

(sc)
k can

be parametrized in Pauli matrices,

Ĝ0
1 = ρ0α2

1 (g − g3τ̂3) .

Then, using Eq. (3.15) in Eq. (3.24), we readily conclude that Σ̂(sc) is diag-
onal in Nambu indices; that is, within the considered SCTMA for extended
impurity centers, the scattering by dopants does not influence the d-wave order
parameter the same as for pointlike centers.[114] Hence, the self-consistency
should be achieved only for the scalar function g = (2N)−1

∑
k TrĜ

(sc)
k through

the equation

g(ε) = g0(ε− Σ
(sc)
0 (ε)), (3.25)

where the scalar self-consistent self-energy

Σ
(sc)
0 (ε) =

cg(ε)

ρ0

(
v2
A

α2
1D

(sc)
A

+
2v2

E

α2
2DE

+
v2
B

α2
4DB

)
, (3.26)

includes the self-consistent denominator D(sc)
A (ε) = 1−v2

Ag
2(ε). Then, passing

to dimensionless energy x = ε/∆ and denoting

Σ
(sc]
0

∆
= σ(g) = αg

(
β

1− α2g2
+ β′

)
, (3.27)

with α = vA, β = cvA/(α2
1ρ0∆), β′ = c[2v2

E/(α
2
2DE) + v2

B/(α
2
4DB)]/(vAρ0∆),

and γ = ∆/[µ(1−2ω/π)], we arrive at the self-consistency equation for g = g(x)
as
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g = (x− σ)

γ − 1√
1− (x− σ)

2
K

[
1

1− (x− σ)
2

] , (3.28)

with σ = σ(g) defined by Eq. (3.27). This equation is quite similar to that
reported for pointlike impurity centers and squarelike geometry,[114, 116] dif-
fering only by the appearance of additional term β′ in Eq. (3.27). In the same
way, Eq. (3.28) admits two types of solutions in the energy range of princi-
pal interest x → 0. One of them, g = g(1)(x), tends in this limit to a finite
imaginary value, g(1)(x→ 0)→ iγ0, defined by the equation

1 = −αf (γ0)

{
γ − 1√

1 + α2γ2
0f

2 (γ0)
K
[

1

1 + α2γ2
0f

2 (γ0)

]}
, (3.29)

with f (γ0) = β′ + β/(1 +α2γ2
0). Another solution, g = g(2)(x), is vanishing in

this limit: g(2)(x→ 0)→ 0, so that all the denominators D in Eq. (3.26) can
be safely put equal to unity, simplifying Eq. (3.28) to

g = (x− α′g)

{
γ −K

[
1

1− (x− α′g)2

]}
, (3.30)

with α′ = α(β + β′). Its solution has the same logarithmic asymptotics at
x→ 0,

g(x) ≈ x

α′

[
1− 1

πα′ ln(2iπα′/x)

]
, (3.31)

as found in Refs. [114] and [116]. Also the conclusion as to which solution
is valid in a specific energy range, g(1) far enough from and g(2) close to the
Fermi level, [137] remains true in the present situation. Thus the DOS ρ(ε) at
ε� εres should be suppressed as

ρ(ε) ≈ ρ0

ε

2π∆ [α′ ln(2πα′∆/ε)]
2 (3.32)

compared to its linear asymptotics ρ ∼ ρ0ε/∆ in the simple approximation of
Eq. 3.16 shown in Fig. 3.3.
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VI. Conclusion

The Green’s function analysis is developed for the quasi-particle spectrum
in a planar d -wave superconductor with finite concentration of impurity cen-
ters which perturb atomic energy levels on nearest-neighbor lattice sites. We
demonstrate that in this case the general picture of spectrum restructuring
is quite similar to that previously established for pointlike impurity pertur-
bation, though some uniquely specific features due to the extended nature of
the perturbation also appear. In particular, it is found that the effects on the
quasiparticle DOS and on the SC order parameter result from different irre-
ducible representations of the point symmetry group of the impurity center.
Compared to the case of spin-dependent extended perturbation, the suppres-
sion of SC order near the considered impurity is much weaker. A generalization
of the method of group expansions for quasiparticle self-energy is obtained for
such extended impurity centers. The self-consistent procedure is developed,
generalizing the known SCTMA formulation for pointlike centers, and a quali-
tative similarity with that case is demonstrated. These techniques can be also
applied for other types of extended impurity centers where stronger effects of
low-symmetry representations are not excluded.
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Effects of impurities and disorder on quasiparticle spectrum in superconducting
iron pnictides are considered.The possibility of occurrence of localized energy
levels due to impurities within the superconducting gap and therelated modifi-
cation of band structure, including the emergence of narrow bands of extended
quasiparticle statesnear impurity levels, is analyzed. The evolution of a su-
perconducting state with an impurity concentration istraced and some specific
effects of the modified quasiparticle spectrum on the superconducting order
parameterand other observable characteristics are discussed.

I. Introduction

The recent discovery of superconductivity (SC) with rather high critical tem-
perature in the family of doped ferropnictide compounds [140, 141] has moti-
vated a great interest to these materials (see Reviews in Refs. [142] and [143]).
Unlike the extensively studied cuprate family, [144] which presents insulating
properties in their initial undoped state, the undoped LaOFeAs compound is a
semimetal. As established in previous physical and chemical studies (see, e.g.,
Refs. [145] and [146]), this material has a layered structure, where the SC state
is suported by the FeAs layer with a two-dimensional (2D) square lattice of Fe
atoms and with As atoms located out of plane, above or below the centers of
square cells (Fig. 4.1). Its electronic structure, relevant for constructing mi-
croscopic SC models, have been explored with high-resolution angle-resolved
photoemission spectroscopy (ARPES) techniques. [147, 148] Their results in-
dicate the multiple connected structure of Fermi surface, consisting of electron
and hole pockets and absence of nodes in both electron and hole gaps, [147]
suggesting that these systems display the so-called extended s-wave (also called
s± wave) SC order, changing the order parameter sign between electron and
hole segments. [149]

To study band structure, first principles numeric calculations are commonly
used, outlining the importance of Fe atomic d -orbitals. The calculations show
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that SC in these materials is associated with Fe atoms in the layer plane, rep-
resented in Fig. 4.1 by their orbitals and the related hopping amplitudes. The
dominance of Fe atomic 3d orbitals in the density of states (DOS) of LaOFeAs
compound near its Fermi surface was demonstrated by local density approxi-
mation (LDA) calculations. [149, 150, 151, 152, 153, 154] It was then concluded
that the multiorbital effects are important for electronic excitation spectrum
in the SC state, causing formation of two spectrum gaps: by electron and hole
pockets at the Fermi surface. To explain the observed SC properties, it is sug-
gested that these materials may reveal an unconventional pairing mechanism,
beyond the common electron-phonon scheme. [155, 156, 157, 158] In general,
a total of five atomic orbitals for each iron in the LaOFeAs compound can be
involved, however, ways to reduce this basis are sought, in order to simplify an-
alytical and computational work. Some authors [159, 160] have suggested that
it is sufficient to consider only the dxz and dyz orbitals. Building such minimal
coupling model based on two orbitals, one is able to adjust the model pa-
rameters (energy hopping and chemical potential) to obtain the Fermi surface
with the same topology as in the first-principles calculations of band struc-
ture. Even though it fails to reproduce some finer features of the electronic
spectrum, [161, 162] this minimal coupling scheme is favored, because of its
technical simplicity, to be chosen as the basis for study of impurity effects in
LaOFeAs which would hardly be tractable in more involved frameworks.

Having established the SC-state parameters, an important class of problems
can be considered about the effects of disorder, in particular, by impurities,
on the system electronic properties, and this issue has been also studied for
doped ferropnictides. Like the situation in doped perovskite cuprates, here im-
purity centers can either result from the dopants, necessary to form the very SC
state, or from foreign atoms and other local defects in the crystalline structure.
Within the minimal coupling model, an interesting possibility for localized im-
purity levels appearing within SC gaps in doped LaOFeAs was indicated, even
for the simplest, so-called isotopic (or nonmagnetic) type of impurity perturba-
tion. [163, 164] This finding marks an essential difference from the traditional
SC systems with s-wave gap on a single-connected Fermi surface, were such
perturbations are known not to produce localized impurity states and thus
to have no sizeable effect on SC order, according to the Anderson theorem.
[113] In presence of localized quasiparticle states by isolated impurity centers,
the next important issue is the possibility of collective behavior of such states
at high enough impurity concentrations. This possibility was studied long
ago for electronic quasiparticles in doped semiconducting systems [165] and
also for other types of quasiparticles in pnononic, magnonic, excitonic, etc.,
spectra under impurities, [132] establishing conditions for collective (including
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Figure 4.1: Schematics of a FeAs layer in the LaoFeAs compound with dxz (white) and dyz
(dark) Fe orbitals and the Fe-Fe hopping parameters in the minimal coupling model. Note
that the hoppings between next near neighbors (t3,4) are mediated by the As orbitals (out
of Fe plane).

coherent) behavior of impurity excitations, with striking effects in observable
properties of such systems. As for high-Tc doped cuprates, it is known that
their d -wave symmetry of SC order permits only existence of impurity reso-
nances in the spectrum of quasiparticles, [?, 115] not their true localization,
and hinders notable collective effects on their observable properties. To our
knowledge, no consistent study on collective impurity effects is know for the
doped ferropnictide systems at present, and this defines the main emphasis of
the present work.

Namely, we develop an analysis of these systems, using the Green function
(GF) techniques, similar to those for doped cuprate SC systems, [22] the min-
imal coupling model by two orbitals for ferropnictide electronic structure, and
the simplest isotopic type for impurity perturbation. The structure of quasi-
particle spectrum near in-gap impurity levels at finite impurity concentrations,
conditions for emergence of specific branches of collective excitations in this
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region of the spectrum, and expected observable effects of such spectrum re-
structuring will be discussed.

II. Model Hamiltonian and Green Functions

For the minimal coupling model of Fig. 4.1, the hopping Hamiltonian Ht is
written in the local orbital basis as

Ht = −
∑
n,σ

[
t1
(
x†n,σxn+δx,σ + y†n,σyn+δy,σ + h.c.

)
+ t2

(
x†n,σxn+δy,σ + y†n,σyn+δx,σ + h.c.

)
+ t3

(
x†n,σxn+δx+δy,σ + x†n,σxn+δx−δy,σ

+ y†n,σyn+δx+δy,σ + y†n,σyn+δx−δy,σ + h.c.
)

+ t4
(
x†n,σyn+δx+δy,σ + y†n,σxn+δx+δy,σ

− x†n,σyn+δx−δy,σ − y†n,σxn+δx−δy,σ + h.c.
)]
. (4.1)

where xn,σ and yn,σ are the Fermi operators for dxz and dyz Fe orbitals with
spin σ on n lattice site and the vectors δx,y point to its nearest neighbors
in the square lattice. Passing to the operators of orbital plane waves xk,σ =
N−1/2

∑
n eik·nxn,σ (with the number N of lattice cells) and analogous yk,σ,

and defining an "orbital" 2-spinor ψ†(k, σ) = (xk,σ, yk,σ), one can expand the
spinor Hamiltonian in quasimomentum:

Ht =
∑
k,σ

ψ†(k, σ)ĥt(k)ψ(k, σ). (4.2)

Here the 2×2 matrix,

ĥt(k) = ε+,kσ̂0 + ε−,kσ̂3 + εxy,kσ̂1, (4.3)

includes the Pauli matrices σ̂i and the energy functions

ε±,k =
εx,k ± εx,k

2
,

with
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εx,k = −2t1 cos kx − 2t2 cos ky − 4t3 cos kx cos ky,

εy,k = −2t1 cos ky − 2t2 cos kx − 4t3 cos kx cos ky,

εxy,k = −4t4 sin kx sin ky. (4.4)

The optimum fit for the calculated band structure within the minimum cou-
pling model is attained with the following set of hopping parameters (in |t1|
units): t1 = −1.0, t2 = 1.3, t3 = t4 = −0.85, and with the choice of the Fermi
energy (chemical potential at zero temperature) εF = 1.45. [154] The ĥt matrix
is diagonalized by the standard unitary transformation:

Û(k) =

(
cos θk/2 − sin θk/2
sin θk/2 cos θk/2

)
,

with θk = arctan (εxy,k/ε−,k), transforming it from an orbital to a sub-band
basis:

ĥb(k) = Û †(k)ĥt(k)Û(k) =

(
εe,k 0
0 εh,k

)
(4.5)

The energy eigenvalues in Eq. (4.4):

εh,e(k) = ε+,k ±
√
ε2
xy,k + ε2

−,k, (4.6)

correspond to the two sub-bands in the normal-state spectrum that define
electron and hole pockets of the Fermi surface, respectively. There are two
segments of each type, defined by the equations εe,h(k) = µ, as shown in Fig.
4.2. We note that both functions cos θk and sin θk change their sign around
these segments, corresponding to their "azimuthal dependencies" around char-
acteristic points of the Brillouin zone (Fig. 4.2), so that integrals of these
functions with some azimuthal-independent factors over the relevant vicinity
of Fermi surface practically vanish and are neglected beside such integrals of
fully azimuthal-independent functions in the analysis below.

The adequate basis for constructing the SC state is generated by the operators
of electron and hole sub-bands:

αk,σ = xk,σ cos θk/2− yk,σ sin θk/2,

βk,σ = yk,σ cos θk/2 + xk,σ sin θk/2, (4.7)
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Figure 4.2: Electron (−) and hole (+) segments of the Fermi surface in the normal state of
model system with electronic spectrum from Eq. (4.5). The center of first Brillouin zone is
displaced by (π/2a, π/2a) to fully include all the segments around four characteristic points
Γ, X, M, and Y in this zone.

giving rise to the "multiband-Nambu" 4-spinors Ψ†k =
(
α†k,↑, α−k,↓, β

†
k,↑, β−k,↓

)
and to a 4×4 extension of the Hamiltonian, Eq. (4.2), in the form

Hs =
∑
k,σ

Ψ†kĥs(k)Ψk, (4.8)

where the 4×4 matrix

ĥs(k) = ĥb(k)⊗ τ̂3 + ∆kσ̂0 ⊗ τ̂1,

includes the Pauli matrices τ̂i acting on the Nambu (particle-antiparticle) in-
dices in Ψ-spinors and ĥb(k) is defined by Eq. (4.5). The simplified form for
the extended s-wave SC order is realized with the definition of the gap function
by constant values, ∆k = ∆ on the electron segments and ∆k = −∆ on the
hole segments.

The electronic dynamics of this system is determined by the (Fourier trans-
formed) GF 4×4 matrices [132, 22, 166]

Ĝk,k′ = 〈〈Ψk|Ψ†k〉〉 = i

∫ 0

−∞
dteiεt/~〈{Ψk(t),Ψ†k′(0)}〉, (4.9)
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whose energy argument ε is understood as ε − i0 and 〈{A(t), B(0)}〉 is the
quantum statistical average with Hamiltonian H of the anticommutator of
Heisenberg operators. From the equation of motion,

εĜk,k′ = ~δk,k′ σ̂0 ⊗ τ0 + 〈〈[Ψk, H] |Ψ†k′〉〉, (4.10)

the explicit GF for the unperturbed SC system with the Hamiltonian Hs, Eq.
(4.7), is diagonal in quasimomentum, Ĝk,k′ = δk,k′Ĝ

0
k and

Ĝ0
k =

ετ̂0 + εe(k)τ̂3 + ∆τ̂1

2De,k

⊗ σ̂+

+
ετ̂0 + εh(k)τ̂3 −∆τ̂1

2Dh,k

⊗ σ̂−, (4.11)

where σ̂± = (σ̂0 ± σ̂3) /2 and the secular denominators Di,k = ε2 − ε2
i (k) −

∆2 for i = e, h. In what follows, we use the energy reference to the Fermi
level εF and approximate the segments of Fermi surface by some circles of
radius ki around the characteristic points Ki in the Brillouin zone, so that
the dispersion laws εj(k) = εF + ξj,k permit linearization of the quasiparticle
dispersion close to the Fermi level as ξj,k ≈ ~vj (|k−Kj| − ki). Generally, the
Fermi wave numbers kj and related Fermi velocities vj for j = e and h can differ
somewhat at a given choice of hopping parameters and chemical potential, but
for simplicity, we neglect this difference and consider their single values kj = kF

and vj = vF.

III. Impurity Perturbation and Self-Energy

We pass to the impurity problem, where the above Hamiltonian is added by
the local perturbation terms due to nonmagnetic impurities [164] on random
sites p in Fe square lattice with an on-site energy shift V :

Himp = V
∑
p,σ

(
x†p,σxp,σ + y†p,σyp,σ

)
. (4.12)

Without loss of generality, the parameter V can be taken positive, and for GF
calculations, this perturbation is suitably expressed in the multiband-Nambu
basis,
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Himp =
1

N

∑
p,k,k′

ei(k
′−k)·pΨ†kV̂k,k′Ψk′ , (4.13)

through the 4×4 scattering matrix V̂k,k′ = V Û †kÛk′ ⊗ τ3. As follows from the
above expression for Ûk, this matrix involves either “intraband” or “interband”
elements.[166] The latter type of scattering could lead to a possible transfor-
mation from the s± to a competing s++ SC order (with the same sign of order
parameter on both Fermi pockets) under the impurity effect.[167] However, as
shown below, such a possibility is effectively eliminated for the chosen local
perturbation type, due to the specific quasimomentum k dependence of the
scattering elements, unlike their constancy, postulated in Ref. [167].

Within the approach of Refs. [132] and [22], the solution for Eq. (4.9) with the
perturbed Hamiltonian Hs + Hi can be obtained in different forms, suitable
for different types of states, band-like (extended) or localized. All these forms
result from the basic equation of motion,

Ĝk,k′ = δk,k′Ĝ
0
k +

1

N

∑
p,k′′

ei(k
′′−k)·pĜ0

kV̂k,k′′Ĝk′′,k′ , (4.14)

by specific routines of iterating this equation for the "scattered" GFs Ĝk′′,k′ .

Thus, the algorithm, where the next iteration step never applies to the scat-
tered GFs already present after previous steps, e.g. that with k′′ = k in Eq.
(4.14), leads to the so-called fully renormalized form, suitable for band-like
states,

Ĝk =

[(
Ĝ0

k

)−1

− Σ̂k

]−1

, (4.15)

where the self-energy matrix Σ̂k is expressed by the related group expansion
(GE):

Σ̂k = cT̂k

(
1 + cB̂k + . . .

)
. (4.16)

Here c =
∑

pN
−1 is the impurity concentration (per Fe site) and the T matrix

results from all the multiple scatterings by a single impurity:
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T̂k = V̂k,k +
1

N

∑
k′ 6=k

V̂k,k′Ĝ
0
k′ V̂k′,k

+
1

N2

∑
k′ 6=k,k′′ 6=k,k′

V̂k,k′Ĝ
0
k′ V̂k′,k′′Ĝ

0
k′′ V̂k′′,k + . . . . (4.17)

The next term to the unity in the brackets in Eq. (4.16),

B̂k =
∑
n

(
Âne−ik·n + ÂnÂ−n

)(
1− ÂnÂ−n

)−1

, (4.18)

describes the effects of indirect interactions in pairs of impurities, separated
by vector n, in terms of interaction matrices Ân = T̂k

∑
k′ 6=k eik

′·nĜk′ . Besides
this restriction on summation, multiple sums in the products like ÂnÂ−n never
contain coincident quasimomenta. Eq. (4.18) presents the first non-trivial
GE term and the rest of its terms omitted in Eq. (4.14) correspond to the
contributions from groups of three and more impurities. [132]

An alternative iteration routine for Eq. (4.14) applies it to all the scattered
GFs; this results in the so-called nonrenormalized form, suitable for localized
states:

Ĝk = Ĝ0
k + Ĝ0

kΣ̂0
kĜ

0
k. (4.19)

Here the non-renormalized self-energy GE, Σ̂0
k = cT̂

(
1 + cB̂0

k + . . .
)
, differs

from the above renormalized one by absence of restrictions in quasimomentum
sums for interaction matrices Â0

n = T̂k

∑
k′ e

ik′·nĜ0
k′ and their products.

In the first step, we shall restrict GE to the common T -matrix level, providing
the conditions for localized quasiparticle states with in-gap energy levels to
appear at single impurities, [160] and study certain (narrow) energy bands of
specific collective states that can be formed near these levels at finite impurity
concentrations. At the next step, the criteria for such collective states to really
exist in the disordered SC system will follow from the analysis of nontrivial GE
terms. We note that presence of renormalized GFs Ĝk′ in the above interaction
matrices is just necessary for adequate treatment of interaction effects over the
in-gap bands.
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IV. T -Matrix and Quasiparticle States

The T -matrix, Eq. (4.16), is readily simplified taking into account that V̂k,k =
V σ̂0 ⊗ τ̂3 and introducing the integrated GF matrix:

Ĝ0 =
1

N

∑
k

ÛkĜ
0
kU
†
k = ε [ge(ε)σ̂+ + gh(ε)σ̂−]⊗ τ̂0.

This diagonal form (that is, restricted only to the “intraband” matrix ele-
ments) follows directly from the aforementioned cancellation of the integrals
with cos θk and sin θk that appear in the interband matrix elements of ÛkĜ

0
kU
†
k.

Therefore, we do not consider below that SC order can change its type under
impurity effects.

Respectively, the functions gj(ε) = N−1
∑

kD
−1
j,k for j = e, h are approximated

near the Fermi level, |ε− εF| . ∆, as,

gj(ε) ≈ −
πρj√

∆2 − ε2
. (4.20)

Here ρj = mja
2/(2π~2) are the Fermi densities of states for respective sub-

bands (in parabolic approximation for their dispersion laws), and by the as-
sumed identity of all the segments of Fermi surface, they can be also considered
identical, ρj = ρF. Omitted terms in Eq. (4.16) are of higher orders in the
small parameter |ε|/εF � 1.

Then the momentum independent T matrix is explicitly written as

T̂ = γ2 ε− ε0τ̂3

ε2 − ε2
0

, (4.21)

where ε0 = ∆/
√

1 + v2 defines the in-gap impurity level [160] through the
dimensionless impurity perturbation parameter v = πρFV , and γ2 = v2V ε2

0/∆
is the effective constant of coupling between localized and band quasiparticles.
Evidently, Eq. (4.21) is only valid in a narrow enough vicinity of ε0.

At finite c, using this T matrix in Eq. (4.14), we obtain, from the condition
det Ĝ−1

k = 0, [166] the formal dispersion equation expressed through dispersion
of normal quasiparticles ξk = εk−εF (but neglecting the energy level width due
to the effects of indirect interaction between impurities by higher GE terms):
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Dk(ε) = ε2 − ξ2
k −∆2 − 2cγ2 (ε2 − ε0ξk)

ε2 − ε2
0

= 0. (4.22)

Its solutions shown in Fig. 4.3 as a function of the quasimomentum argu-
ment ξ = ξk display a peculiar multiband structure. First, it includes four
modified bands ±εb(±ξ), slightly shifted with respect to the unperturbed SC
quasiparticle bands ±

√
∆2 + ξ2, accordingly to the basic function:

εb(ξ) ≈
√

∆2 + ξ2 + cγ2 ∆2 + ξ2 − ε0ξ√
∆2 + ξ2 (ξ2 + ξ2

0)
, (4.23)

with ξ2
0 = ∆2 − ε2

0. It should be noted that these sub-bands for opposite
signs of their argument ξ in fact refer to excitations around different segments
(by electron and holes) of the Fermi surface, but for clarity presented in Fig.
4.3 in the same ξ-reference. Besides these εb bands, four (narrow) in-gap
bands ±εi(±ξ) also appear, generated close to ±ε0 by finite concentrations of
impurities, according to

εi(ξ) ≈ ε0 + cγ2 ξ − ε0

ξ2 + ξ2
0

. (4.24)

As follows from Eq. (4.21), the εj(ξ) band is located between its extrema
εmax = ε0 + cγ2ε0/(∆ + ε0) at ξ+ = ε0 + ∆ and εmin = ε0 − cγ2ε0/(∆ − ε0)
at −ξ− = ε0−∆. The energy and momentum shifts of the extremal points by
Eqs. (4.20) and (4.21) and Fig. 4.3 are specific for the impurity effect on the
multiband initial spectrum and they contrast with a simpler situation for an
impurity level near the edge of a single-quasiparticle band. [132]

All these spectrum bands would contribute to the overall DOS by related
quasiparticles: ρ(ε) = (4πN)−1Im Tr

∑
k Ĝk. The more common contribu-

tions here come from the εb bands and they can be expressed through the
Bardeen-Cooper-Schrieffer (BCS) DOS in pure crystal, [168] ρBCS(ε,∆) =
ρFε/

√
ε2 −∆2, as follows:

ρb(ε) ≈
(

1− cγ2

ε2 − ε2
0

)
ρBCS (ε,∆c) , (4.25)

at ε2 ≥ ∆2
c = ∆2 + 2cγ2ε2

0/(∆
2 − ε2

0). The first factor in the left-hand side of
Eq. (4.25) describes a certain reduction of the BCS DOS, especially when the
energy argument is close to the gap limits, and the shift of its gap argument
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Figure 4.3: Dispersion laws for band-like quasiparticles in the T -matrix approximation, ne-
glecting their finite lifetime, at a specific choice of impurity parameters v = 1, c = 0.1∆2/γ2.
The argument ξ composes all specific ξj = ~vF(|k − Kj | − kF) for quasimomentum near
each jth characteristic point in the Brillouin zone [see the text after Eq. 4.23)], so that
the solid lines presennt the bands near electron-like segments of the Fermi surface, and
dash-dotted lines those near hole-like segments. Nonperturbed SC quasiparticle bands and
single-impurity localized levels are shown with dashed lines. The narrow rectangle around
the top of εi band (shown by the arrow) delimits the region in Fig. 4.5.
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Figure 4.4: Density of states in the narrow in-gap band near the impurity level ε0 (dashed
line) for the case in Fig. 4.3.

is due to the quantum-mechanical repulsion between the band and impurity
levels.

More peculiar is the contribution to DOS from the εi bands, written as

ρi(ε) ≈
ρF

v

ε2 − ε2
0 − cγ2√

(ε2
max − ε2) (ε2 − ε2

min)
, (4.26)

at ε2
min ≤ ε2 ≤ ε2

max, and presented in Fig. 4.4.

The effects of both εb band shifts and of εi band formation can have important
repercussions for the physical behavior of a disordered SC system and they
are considered below. But before this, we need to analyze the criteria for the
quasiparticles considered actually to exist, especially in close to the limits of
corresponding bands.
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Figure 4.5: Parabolic approximation (dashed line) for the dispersion law near the top of
impurity band (solid line), within the region indicated by the small rectangle in Fig. 4.3.

V. Group Expansion and Coherence Criteria

Let us now study the crossover from band to localized states near the limits of
εi bands, say for definiteness, its upper limit εmax. Supposing the actual energy
ε < εmax to be within the range of band states, we use the fully renormalized
self-energy matrix, Eq. (4.16), up to the GE pair term, c2T̂ B̂k, which will
add a certain finite imaginary part Γi(ξ) to the dispersion law ε = εi(ξ), Eq.
(4.23). Then the known Ioffe-Regel-Mott criterion [53, 169] for the state at
this energy to be really band-like (also called extended) is written as

εmax − ε� Γi(ε). (4.27)

To simplify calculation of the scalar function Γi(ε), we fix the energy argument
in the numerators of T matrix and interaction matrices at ε = ε0, obtaining
their forms

T̂ (ε) ≈ γ2ε0

ε2 − ε2
0

m̂+, Ân(ε) ≈ T̂ (ε)
ε0

N

∑
k

eik·n

Dk(ε)
, (4.28)
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both proportional to the matrix m̂+ = σ̂0 ⊗ (τ̂0 + τ̂3) with important mul-
tiplicative property: m̂2

+ = 2m̂+. The k summation (integration) in Eq.
(4.28) is suitably done in polar coordinates over the circular segments of
the Fermi surface. Here the azimuthal integration only refers to the phase
of numerator, resulting in a zeroth-order Bessel function:

∫ 2π

0
eix cos θdθ =

2πJ0(x). Since x = n (kF + ξ/~vF) is typically big, x � 1, the asymptotical
formula applies: J0(x) ≈

√
2/(πx) cos(x − π/4). Then, for radial integration

in ξ around the extremum point ξ+, it is convenient to decompose this func-
tion in the fast and slow oscillating factors, J0(x) ≈

√
2/(πk+n) cos(k+n −

π/4) cos[(ξ − ξ+)n/~vF], with the fast wave number k+ = kF + ξ+/~vF ≈
kF, and to write the denominator in the parabolic approximation: Dξ(ε) ≈
(ξ − ξ+)

2 − δ2(ε), with δ2(ε) = 4∆ (∆ + ε0)
2

(εmax − ε) /(2cγ2) (see Fig. 4.5).
Thus, the interaction matrix Ân(ε) = An(ε)m̂+ depends only on the distance n
between impurities, and for ε close to εmax, this dependence can be expressed
as

Ar(ε) ≈
√
rε
r

sin kεr cos kFr, (4.29)

where the length scales both for the monotonous decay,

rε =
2π

kF

[
ε0ρF (∆ + ε0)

cδ(ε)

]2

,

and for the sine factor: k−1
ε = ~vF/δ(ε), are much longer than k−1

F for the
fast cosine. The latter fast oscillation is specific for the interactions medi-
ated by Fermi quasiparticles (like the known RKKY mechanism), unlike the
monotonous or slowly oscillating interactions between impurities in semicon-
ductors or in bosonic systems. [132] Now the calculation of Γi(ε) = c2T (ε)ImB(ε)
mainly concerns the dominant scalar part of the GE pair term:

B(ε) ≈ 2π

a2

∫ rε

a

r dr

1− 4A2
r(ε)

(4.30)

[since the k-dependent term in Eq. (4.18) turns out to be negligible beside
this].

The upper integration limit in Eq. (4.30) corresponds to the condition that
its integrand only has poles for r < rε. In conformity with the slow and fast
modes in the function, Eq. (4.29) (see Fig. 4.6), the integration is naturally
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Figure 4.6: Interaction function A2
r(ε) obtained with Eq. (4.29) at the choice of parameters

εmax − ε = 0.1 and ∆/εF = 5 · 10−2 displays slow sine oscillations (solid line) and the
monotonous envelope function (dashed line). Shaded intervals are those contributing to
ImB, according to the condition (re/r) sin2 kεr > 1. Inset: Expansion of the rectangle in
the figure also shows fast oscillations by the cosine.
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divided in two stages. At the first stage, integration over each mth period of
fast cosine, around rm = 2πm/kF, is done by setting constant the slow factors,
r ≈ rm and sin kεr ≈ sin kεrm, and using the explicit formula

Im

∫ π

−π

dx

1− 4A2 cos2 x
= Im

π√
1−A2

. (4.31)

At the second stage, the summation of these results in m is approximated by
the integration in the slow variable

π

kF

Im
∑
m

r3/2
m√

rm − rε sin2 kεrm

≈ Im

∫ rε

a

r3/2dr√
r − rε sin2 kεr

. (4.32)

The numerical calculation of the latter integral results in

ImB =
r2
ε

a2
f (kεrε) . (4.33)

where the function f(z) is zero for z < z0 ≈ 1.3585, and monotonously grows
for z > z0, rapidly approaching the asymptotic constant value, fas ≈ 1.1478,
for z � z0. Then the Ioffe-Regel-Mott criterion, Eq. (4.27), at ε so close to
εmax that kεrε � z0, is expressed as

εmax − ε�
c2γ2

εmax − ε0

r2
ε

a2
, (4.34)

and this would result in a (concentration independent) estimate for the range
of extended states within the impurity band,

εmax − ε� Γ0 =
(vε0)3/2

akF

√
2πρF

1 + v2
, (4.35)

and its comparison with the full extension of this band, εmax− εmin = cγ2(1 +
v2)/(v2∆), would suggest possibility for such extended states to really exist if
the impurity concentration surpass the characteristic (low) value:

c� c0 =
(πρFε0)

3/2

akF

√
2v

1 + v2
. (4.36)

105



Chapter 4. Specifics of impurity effects in ferropnictide superconductors

Figure 4.7: Structure of the energy spectrum near the impurity level in function of impurity
concentration.

For typical values of ρ−1
F ∼ 2 eV, akF ∼ 1, and ∆ ∼ 10 meV in LaOFeAs

system, [147, 151, 170], and supposing a plausible impurity perturbation v ∼ 1,
we estimate c0 ≈ 8 · 10−4, manifesting important impurity effects already at
their very low content.

However, the right-hand side of Eq. (4.34) vanishes at kεrε < z0, which occurs
beyond the vicinity of the band top:

εmax − ε > Γ0

(c0

c

)3

. (4.37)

Under the condition of Eq. (4.36), this vicinity is even more narrow than Γ0

obtained with Eq. (4.35), defining the true, even wider, range of extended
states.

Otherwise, for c � c0, the impurity band does not exist, then we analyze the
energy range near the impurity level with the nonrenormalized GE and write
the approximate criterion for its convergence as c|B0| � 1. This calculation
is done in a similar way as before but replacing the interaction function, Eq.
(4.29), by its nonrenormalized version:
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A0
r(ε) ≈

√
Rε/r e−r/r0 cos kFr, (4.38)

with kFRε = 2π (ε0/|ε− ε0|)2 and kFr0 = 2εF/ξ0. Then the above GE conver-
gence criterion is assured beyond the following vicinity of impurity level:

|ε− ε0| � Γc = Γ0 exp
(
−c4/3

0 /c
)
, (4.39)

defining the range of its broadening due to interimpurity interactions. The
DOS function for localized states can be only estimated by the order of mag-
nitude within this range, but outside is given by

ρloc(ε) ≈
c2

c
4/3
0 |ε− ε0|

, for Γc � |ε− ε0| � Γ0,

ρloc(ε) ≈
c2ε4

0

|ε− ε0|5
, for Γ0 � |ε− ε0|. (4.40)

Notably, the total number of states near the impurity level is
∫
ρloc(ε)dε ∼ c,

like that of extended states in the impurity band with Eq. (4.26). A summary
of evolution of this area of quasiparticle spectrum as a function of the impurity
concentration is shown in Fig. 4.7.

VI. Impurity Effects on SC Characteristics

The above results on the quasiparticle spectrum in a disordered SC system
can be used immediately for calculation of impurity effects on its observable
characteristics.

Thus the fundamental SC order parameter ∆ is estimated from the modified
gap equation,

λ−1 =

∫ εD

0

ρ(ε)dε, (4.41)

where λ = ρFVSC is the (small) dimensionless SC pairing constant and the
Debye energy εD restricts the energy range of its action. In absence of impuri-
ties, c = 0, using the BCS DOS in this equation leads straightforwardly to the
known result for its nonperturbed value ∆0, λ−1 = arcsinh (εD/∆0) and thus
to ∆0 ≈ εDe−1/λ.
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For finite c, the total DOS is combined from the contributions from the shifted
main band ρb, Eq. (4.25), and from the impurity band (or level) ρi (or ρloc),
Eq. (4.26) [or (4.40)]. The latter contribution is ∼ c, according to the previous
discussion, defining a small correction beside λ−1 � 1. But a much stronger
c-dependent correction comes from the modified main band:∫ εD

∆c

ρb(ε)dε ≈ arcsinh
εD

∆c

− cγ2

∫ εD

∆c

dε

(ε− ε0)
2√

∆2
c − ε2

.

For εD � ∆c, the last integral is well approximated by

cγ2

∫ ∞
∆c

dε

(ε− ε0)
2√

∆2
c − ε2

=
cγ2

∆2
c

F

(
∆c

ε0

)
,

with the function

F (z) = z

√
z2 − 1 + z arccos(−1/z)

(z2 − 1)
3/2

.

This F diverges at z → 1, but actually its argument,

∆c/ε0 =
√

1 + v2 (1 + c/c1) , with c1 = πρF∆/v,

is always above unity. Neglecting the small ρi contribution in Eq. (4.41) and
taking account of the BCS relation λ−1 = arcsinh (εD/∆0), we express the gap
equation as

arcsinh
∆c −∆0

∆0

≈ cv2

c1 (1 + v2)
F (∆c/ε0) . (4.42)

Its approximate solution for c � c1, together with the relation ∆c/∆ =
1 + c/ [c1 (1 + v2)], lead to the desired expression for the perturbed SC order
parameter ∆:

∆

∆0

≈ 1− c

c1

1 + v2F
[√

1 + v2 (1 + c/c1)
]

1 + v2
, (4.43)
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that rapidly decays with impurity concentration and would vanish at

c = c1

1 + v2

1 + v2F
[√

1 + v2 (1 + c/c1)
] .

The latter equality defines in fact defines a certain equation for c and its
solution, e.g., for the above choice of v = 1, is c ≈ 0.5c1 ≈ 6 · 10−3. However,
such concentrations would already correspond to an impurity band as wide as
the gap itself; this goes beyond the validity of the above derivation and requires
special treatment (to be done elsewhere).

To study another important dependence, that of the SC transition temperature
Tc on the concentration c, one must, strictly speaking, extend the above GF
techniques for finite temperatures, but a very simple estimate can be done,
supposing that the BCS relation ∆/Tc ≈ 1.76 still holds in the presence of
impurities. Then the right-hand side of Eq. (4.42) would also describe the
decay of Tc/Tc0.

It is of interest to compare the present results with the known Abrikosov-
Gor’kov solution for BCS SC with paramagnetic impurities in the Born ap-
proximation. [171, 172] In that approximation, the only perturbation parame-
ter is the (constant) quasiparticle lifetime τ . In our framework, the τ−1 can be
related to ImΣ(ε) at a proper choice of energy, ε ∼ |∆− ε| ∼ ∆. Then, in the
self-consistent T -matrix approximation, [22] we estimate τ−1 ∼ c∆/c1, which
leads to the relation τTc ∼ c1/c, reaching, at c & c1, qualitative agreement
with the Abrikosov-Gor’kov universal criterion for complete SC suppression
τTc < 0.567 (though in our case this criterion is not universal and depends yet
on the perturbation parameter v).

Also, a notable impurity effect on the London penetration depth λL ∼ n1/2
s is

expected, as follows from the temperature dependence of the superfluid density:

ns(T ) =

∫ ∞
0

ρ(ε)dε

eε/kBT + 1

≈ c

eε0/kBT + 1
+

(
1− cγ2

∆2 − ε2
0

)
n0
s(T ). (4.44)

Compared to its unperturbed value in the pure SC system,

109



Chapter 4. Specifics of impurity effects in ferropnictide superconductors

Figure 4.8: Low-temperature decay of the London penetration depthdifference for an SC
with impurities (solid line) is slower than that inthe absence of impurities (dashed line).

n0
s(T ) = ρF

∫ ∞
∆

εdε

(eε/kBT + 1)
√
ε2 −∆2

≈ πρF

√
kBT∆

2
e−∆/kBT ,

a considerable slowing-down of the low-temperature decay of the characteristic
difference λ(T )/λ(0)− 1 is displayed (Fig. ??), in reasonable agreement with
recent experimental observations for SC ferropnictides under doping. [173]

Finally, a similar analysis can be applied for the impurity effect on the elec-
tronic specific heat in the SC state, whose dependence on inverse temperature
β = 1/kBT is represented as

C(β) =
∂

∂T

∫ ∞
0

ρ(ε)dε

eβε + 1
, (4.45)

and naturally divided in two characteristic contributions, C = Ci + Cb, from
ρi and ρb states:

Ci(β) ≈ kBc

[
βε0

2 cosh (βε0/2)

]2
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Figure 4.9: Temperature behavior of specific heat for a SC with impurities presents a
crossover from β∆ exponent (dashed line) to βε0 at low enough temperature (high enough
β = 1/kBT ).

and
Cb(β) ≈ kB(c1 − c)v (β∆c)

3/2
exp (−β∆c) .

The resulting function C(β) deviates from the known low temperature behavior
C0(β) ∼ exp(−β∆) for a nonperturbed SC system at β > ln(c1/c−1)/(∆−ε0),
where the characteristic exponent is changed to a slower ∼ exp(−βε0) as shoen
in Fig. 4.9.

The same approach can be used for calculation of other observable characteris-
tics for the SC state under impurity effects, e.g., heat conductivity, differential
conductivity for scanning tunneling spectroscopy, and absorption coefficient
for far-infrared radiation, although these issues are beyond the scope of this
work.
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VII. Conclusions

In summary, the GF analysis of quasiparticle spectra in an SC ferropnictide
with impurities of the simplest (local and nonmagnetic) perturbation type per-
mits us to describe the formation of impurity localized levels within the SC gap
and, with increasing impurity concentration, their evolution to specific bands
of extended quasiparticle states, approximately described by the quasimomen-
tum but mainly supported by the impurity centers. Explicit dispersion laws
and DOS are obtained for the modified main bands and impurity bands.Further
specification of the nature of all the states in different energy ranges within the
SC gap is obtained through analysis of different types of GEs for a self-energy
matrix, revealing a complex oscillatory structure of indirect interactions be-
tween impurity centers and, after their proper summation,resulting in criteria
for crossovers between localized and extended states. The developed spectral
characteristics are applied to the prediction of several observable impurity ef-
fects. The proposed treatment can be further adapted for analysis of more
involved types of impurity perturbations in SC ferropnictides, including mag-
netic and nonlocal perturbations.
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Effects of impurities and disorder on transport properties by electronic quasi-
particles in superconducting iron pnictides are theoretically considered. The
most prominent new features compared to the case of pure material should
appear at high enough impurity concentration when a specific narrow band of
conducting quasiparticle states can develop within the superconducting gap,
around the position of localized impurity level by a single impurity center. The
predicted specific threshold effects in the frequency-dependent optical conduc-
tivity and temperature-dependent thermal conductivity and also in Seebeck
and Peltier coefficients can have interesting potentialities for practical appli-
cations.

I. Introduction

A considerable interest in actual research of superconductivity (SC) with high
critical temperature is focused on the family of doped ferropnictide compounds
[140, 141] and one of their notable distinctions from "old" BCS superconduc-
tors and more recent doped perovskite systems consists in possibility for a
peculiar, so-called extended s-wave symmetry of superconducting order param-
eter which changes its sign between electron and hole segments of the Fermi
surface. [149] This additional property permits to avoid the fundamental lim-
itation by the Anderson theorem [113] for nonmagnetic impurities to produce
localized impurity levels within the superconducting band gap. [164, 163] At
finite, but low enough, impurity concentration, such levels are expected to give
rise to some resonance effects like those well studied in semiconductors at low
doping concentrations. [34] Analogous effects in superconductors were theoret-
ically predicted and experimentally discovered for magnetic impurities, either
in BCS systems [174, 175, 176] and in the two-band MgB2 system. [177, 178]
In all those cases, the breakdown of the Anderson theorem is only due to the
breakdown of the spin-singlet symmetry of an s-wave Cooper pair by a spin-
polarized impurity, and the main physical interest of the considered case of SC
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iron pnictides from the point of view of disorder in general is the possibility
for pair breaking even in nonmagnetic impurity [179, 180, 181] states and for
related localized in-gap states.[160, 182, 183, 184] This theoretical prediction
was confirmed by the observations of various effects from localized impurity
states, for instance, in the superfluid density (observed through the London
penetration length), [173, 185] transition critical temperature, [186, 187] and
electronic specific heat, [188] all mainly due to an emerging spike of electronic
density of states against its zero value in the initial band gap.

But it is also known that indirect interactions between random impurity cen-
ters of certain type (the so-called deep levels at high enough concentrations)
in doped semiconductors can lead to formation of collective bandlike states.
[134, 189] This corresponds to the Anderson transition in a general disordered
system, [48] and the emerging new band of quasiparticles in the spectrum
can essentially change thermodynamics and transport in the doped material.
[169] An intriguing possibility for similar banding of impurity levels within
the SC gap [115, 190] was recently discussed for the doped ferropnictides.
[23] The present work is aimed on a more detailed analysis of the bandlike
impurity states, focused on their observable effects that cannot be produced
by localized impurity states. We use the specific form of Green’s functions
for superconducting quasiparticles derived in the previous work [23] in the
general Kubo-Greenwood formalism [191, 192] to obtain the temperature and
frequency dependencies of optical and thermal conductivity and also of ther-
moelectric coefficients. These results are compared with the available experi-
mental data and some suggestions are made on possible practical applications
of such impurity effects.

II. Green Functions for Disordered SC Ferropnictide

We begin from a brief summary of the Green’s function (GF) description of
electronic spectrum in LaOFeAs with impurities (not necessarily dopants) us-
ing the minimal coupling model [159, 160] for the non-perturbed Hamiltonian.
It considers only 2 types of local Fe orbitals, dxz (or x) and dyz (or y), on sites
of square lattice with lattice parameter a and 4 hopping parameters between
nearest neighbors (NNs) and next nearest neighbors (NNNs): (i) t1 for xx or
yy NNs along their orientations, and t2 across them, and (ii) t3 for xx or yy
NNNs, and t4 for xy NNNs. The resulting band Hamiltonian is diagonal in
quasimomentum k and spin σ, but non-diagonal with respect to the orbital
indices of the 2-spinors ψ†(k, σ) = (x†k,σ, y

†
k,σ):

116



i
i

i
i

i
i

i
i

Ht =
∑
k,σ

ψ†(k, σ)ĥ(k)ψ(k, σ). (5.1)

Here the energy matrix in orbital basis is expanded in Pauli matrices σ̂i: ĥ(k) =
ε+,kσ̂0 + ε−,kσ̂3 + εxy,kσ̂1 with the energy factors ε±,k = (εx,k ± εx,k)/2, and

εx,k = −2t1 cos akx − 2t2 cos aky − 4t3 cos akx cos aky,

εy,k = −2t1 cos aky − 2t2 cos akx − 4t3 cos akx cos aky,

εxy,k = −4t4 sin akx sin aky.

It is readily diagonalized at passing from the orbital to subband basis: ĥb(k) =

Û(k)ĥ(k)Û(k)†, with the unitary matrix Û(k) = exp(−iσ̂2θk/2) and θk =
arctan (εxy,k/ε−,k). The resulting eigenenergies for electron and hole subbands
are

εh,e(k) = ε+,k ±
√
ε2
xy,k + ε2

−,k, (5.2)

and respective electron and hole segments of the Fermi surface are defined by
the equations εe,h(k) = εF. A reasonable fit to the LaOFeAs band structure
by the more detailed LDA calculations [152] is attained with the parameter
choice (in |t1| units) of t1 = −1, t2 = 1.3, t3 = t4 = −0.85. [154]

The SC state of such multiband electronic system is suitably described in
terms of "multiband -Nambu" 4-spinors Ψ†k =

(
α†k,↑, α−k,↓, β

†
k,↑, β−k,↓

)
with

the multiband spinor
(
α†k,σ, β

†
k,σ

)
= ψ†(k, σ)Û †(k), by a 4×4 extension of the

Hamiltonian Eq. (5.1) in the form:

Hs =
∑
k,σ

Ψ†kĥs(k)Ψk, (5.3)

where the 4×4 matrix ĥs(k) = ĥb(k) ⊗ τ̂3 + ∆kσ̂0 ⊗ τ̂1 includes the Pauli
matrices τ̂i acting on the Nambu (particle-antiparticle) indices in Ψ-spinors.
The simplified form for the extended s-wave gap function takes constant values
∆k = ∆ on the electron segments and ∆k = −∆ on the hole segments.

The observable values result from the (Fourier transformed) GF 4×4 matrices
Ĝk,k′ = 〈〈Ψk|Ψ†k′〉〉, and for the nonperturbed system, Eq. (5.1), they are
diagonal in quasimomentum: Ĝk,k′ = δk,k′ ĝk with
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ĝk =
ετ̂0 + εe(k)τ̂3 + ∆τ̂1

2de,k
⊗ σ̂e

+
ετ̂0 + εh(k)τ̂3 −∆τ̂1

2dh,k
⊗ σ̂h, (5.4)

σ̂e,h = (σ̂0 ± σ̂3) /2, di,k = ε2 − ε2
i (k)−∆2.

To simplify the treatment of impurity perturbations, the band structure is
approximated to identical circular electron and hole Fermi segments of radius
kF around respective points Ke,h in the Brillouin zone and to similar linear
dispersion of normal state quasiparticles near the Fermi level εF: εe(k)− εF =
~vF (|k−Ke| − kF) and εh(k)−εF = −~vF (|k−Kh| − kF). Moreover, we shall
describe the contributions of both segments to overall electronic properties by
a single quasimomentum variable ξ that identifies electron ξe = εe(k)− εF and
hole ξh = εh(k)− εF ones.

Next, the Hamiltonian of the disordered SC system is chosen as H = Hs+Himp

including besides Hs, Eq. (5.3), the term due to non-magnetic impurities [164]
on random sites p in Fe square lattice with an on-site energy shift V (supposed
positive without loss of generality). It is written in the multiband-Nambu
spinor form as:

Himp =
1

N

∑
p,k,k′

ei(k
′−k)·pΨ†kV̂k,k′Ψk′ , (5.5)

with the number N of unit cells in the crystal and the 4×4 scattering matrix
V̂k,k′ = V Û †(k)Û(k′) ⊗ τ̂3. In presence of this perturbation, the GFs can be
expressed in specific forms depending on whether the considered quasiparticle
energy falls into the range of bandlike or localized states. Namely, for bandlike
states, the momentum diagonal GF,

Ĝk = Ĝk,k = (ĝ−1
k − Σ̂k)−1, (5.6)

involves the self-energy matrix Σ̂k in the form of the so-called renormalized
group expansion: [132]

Σ̂k = cT̂
(

1 + cB̂k + . . .
)
. (5.7)

This series in powers of impurity concentration c begins from the (k-independent)

T matrix, T̂ = V̂
(

1− ĜV̂
)−1

. From the matrices V̂ = V̂k,k = V τ̂3 and
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Ĝ = N−1
∑

k ĝk = περFτ̂0/
√

∆2 − ε2 (with the Fermi density of states ρF and
the henceforth omitted trivial factor σ̂0), the T -matrix explicit form is

T̂ =
V

1 + v2

vε
√

∆2 − ε2τ̂0 − (∆2 − ε2) τ̂3

ε2 − ε2
0

. (5.8)

where ε0 = ∆/
√

1 + v2 defines the in-gap impurity levels [160] through the
dimensionless impurity perturbation parameter v = πρFV . Inside the gap, the
T -matrix, Eq. (5.8), is a real function which can be approximated near the im-
purity levels ±ε0 as T̂ ≈ γ2 (ετ̂0 − ε0τ̂3) / (ε2 − ε2

0), with the effective coupling
constant γ2 = V ε0(vε0/∆)2. In contrary, outside the gap it is dominated by
its imaginary part: ImT̂ = (γ2/vε0)ε

√
ε2 −∆2/ (ε2 − ε2

0).

The next terms besides unity in the brackets of Eq. (5.7) describe the effects
of indirect interactions between impurities, with B̂k related to pairs and the
omitted terms to groups of three and more impurities. The series convergence
defines the energy ranges of bandlike states, delimited by the Mott mobility
edges εc. [169] Within the bandlike energy ranges, the self-energy matrix can
be safely approximated by the T -matrix, Σ̂k ≈ cT̂ , and the dispersion laws
for corresponding bands at given quasimomentum k are defined from the Ĝk

denominator:

Dk(ε) = det Ĝ−1
k (ε) = d̃e,k(ε)d̃h,k(ε)

=
(
ε̃2 − ξ̃2

e −∆2
)(

ε̃2 − ξ̃2
h −∆2

)
, (5.9)

with the renormalized energy and momenta forms

ε̃ = ε

(
1− cV v

1 + v2

√
∆2 − ε2

ε2 − ε2
0

)
,

ξ̃j = ξj −
cV

1 + v2

∆2 − ε2

ε2 − ε2
0

.

The roots of the dispersion equation Re Dk(ε) = 0 define up to 8 subbands: 4
of them with energies near the roots of the nonperturbed denominators dj,k in
the e and h segments can be called "principal" or pr bands (they are similar to
quasiparticles in the pure crystal); and the other 4, "impurity" or imp bands,
with energies near ±ε0 in the same segments are only specific for disordered
systems. The dispersion law for p bands is presented in the ξ-scale as
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εpr(ξ) ≈
√
ξ2 + ∆2, (5.10)

and it only differs from the nonperturbed one by the finite linewidth Γ(ε) ≈
cImT̂ , so that the validity range of Eq. (5.10) defined from the known Ioffe-
Regel-Mott criterion, ξdεb/dξ & Γ(εb(ξ)), [53, 169] is ξ & c/(πρF). This defines
the mobility edge in closeness to the gap edge,

εc −∆ ∼ c2/c
4/3
0 ∆. (5.11)

Here c0 = (πρFε0)3/2/ (akF)
√

2v/(1 + v2) is the characteristic impurity con-
centration such that the impurity bands emerge just at c > c0. [23] Their
dispersion (in ξ) for the exemplar case of positive energies and e segment is
approximated as

εimp(ξ) ≈ ε0 + cγ2 ξ − ε0

ξ2 + ξ2
0

. (5.12)

The formal upper limit energy by Eq. (5.12), ε+ = ε0 + cγ2/[2(∆ + ε0)], is
attained at ξ = ξ+ = ε0 + ∆ and the lower limit ε− = ε0 − cγ2/[2(∆ − ε0)]
at ξ− = ε0 −∆. But in fact, this dispersion law is only valid until the related
mobility edges εc,± whose onset near the i-band edges is due to the higher
terms in the group expansion, Eq. (5.7), and amounts to

ε+ − εc,+ ∼ (εmax − ε0)
(c0

c

)4

,

εc,− − ε− ∼ (ε0 − εmin)
(c0

c

)4

. (5.13)

These limitations restrict ξ to beyond some vicinities of the extremal points:
|ξ − ξ±| & ξ± (c0/c)

2 (narrow enough at c� c0). Another limitation is that ξ
not be too far from these points: |ξ − ξ±| . ξ±(c/c0)4. A symmetric replica
of Eq. (5.12) near −ε0 at the e segment is the impurity subband with the
dispersion law −εi(ξ). Yet two more impurity subbands near the h segment
are described in the unified ξ frame by the inverted dispersion laws ±εimp(−ξ).
The overall composition of band-like states in this frame is shown in Fig. 5.1.
It is also important to notice that the above-described in-gap impurity band
structure is only justified until it is narrow enough compared to the SC gap
∆ itself. From Eq. (5.12), this requires that the impurity concentration stays
well below the upper critical value

c1 = πρF∆
√

1 + v2,
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which can amount about few percent. In what follows, the condition c� c1 is
presumed.

Figure 5.1: Dispersion laws in the modified quasiparticle spectrum of a SC ferropnictide
with impurities. The impurity perturbation parameters were chosen as: v = 0.5, c0 =
1.3 ·10−3, c1 = 1.7 ·10−2, c = 4 ·10−3. For compactness, the plot superimposes the blue lines
for the in-gap impurity subbands near the electron-like pockets of the Fermi surface and red
lines for those near the hole-like pockets.

At least, for c < c0, all the in-gap states are localized and more adequately
described by an alternative, the so called nonrenormalized group expansion
of Ĝk (though this case is beyond the scope of the present study) while the
principal bands are still defined by Eqs. (5.10) and (5.11).

In-gap impurity states, either localized and bandlike, can produce notable res-
onance effects on various thermodynamical properties of disordered supercon-
ductors, as transition critical temperature, London penetration length, elec-
tronic specific heat, etc. [23] But besides that, other effects, only specific for
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new quasiparticle bands, can be expected on kinetic properties of the disor-
dered material, while the localized impurity states should have practically no
effect on them. Such phenomena can be naturally described in terms of the
above indicated GF matrices as seen in what follows.

An important remark can yet be made on possible self-consistency correc-
tions for the self-energy in Eq. (5.6) at the T -matrix level, as used in many
known treatments of impurity effects (e.g., Ref. [181]). Such corrections can
be also explicitly included in our approach but they will not change essen-
tially the obtained bandlike spectra when the group expansion, Eq. (5.7),
is converging.[193] Otherwise, if there is no such convergence and a Mott-
Anderson transition from bandlike to localized states takes place, the very
concept of self-consistency is not justified and, if still applied, can lead to spu-
rious results as unphysical broadening of narrow impurity peaks in the spec-
trum (these caveats were recognized either in a general context of disordered
solids39and specifically for impurity effects in superconductors [194]).

III. Kubo-Greenwood Formalism for Multiband Superconductor

The relevant kinetic coefficients for electronic processes in the considered dis-
ordered superconductor follow from the general Kubo-Greenwood formulation,
[191, 192] adapted here to the specific multiband structure of Green’s function
matrices. Thus, one of the basic transport characteristics, the (frequency and
temperature dependent) electrical conductivity, is expressed in this approach
as

σ(ω, T ) =
e2

π

∫
dε
f(ε)− f(ε′)

ω

∫
dkvx(k, ε)vx(k, ε

′)

× Tr
[
ImĜk(ε)ImĜk(ε′)

]
, (5.14)

for ε′ = ε−~ω and the electric field applied along the x axis. Besides the com-
mon Fermi occupation function f(ε) = (eβε+1)−1 with the inverse temperature
β = 1/kBT , the above formula involves the generalized velocity function:

v(k, ε) =

(
~
∂ReDk(ε)

∂ε

)−1

∇kReDk(ε). (5.15)

This function is defined in the whole ξ, ε plane in a way to coincide with the
physical quasiparticle velocities for each particular band, Eqs. (5.9) and (5.12),
along the corresponding dispersion laws: v(k, εj(k)) = ~−1∇kεj(k) = vj,k,
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j = p, i. The conductivity resulting from Eq. (5.13) can be then used for
calculation of optical reflectivity.

Other relevant quantities are the static (but temperature dependent) transport
coefficients, as the heat conductivity:

κ(T ) =
~
π

∫
dε
∂f(ε)

∂ε
ε2

∫
dk [vx(k, ε)]

2
Tr
[
ImĜk(ε)

]2

, (5.16)

and the thermoelectric coefficients associated with the static electrical conduc-
tivity σ(T ) ≡ σ(0, T ), the Peltier coefficient:[195]

Π(T ) =
~e

πσ(0, T )

∫
dε
∂f(ε)

∂ε
ε

∫
dk [vx(k, ε)]

2

× Tr
[
ImĜk(ε)

]2

, (5.17)

and the Seebeck coefficient S(T ) = Π(T )/T . All these transport character-
istics, though being relatively more complicated from the theoretical point of
view than the purely thermodynamical quantities as, e.g., specific heat or Lon-
don penetration length,[23] permit an easier and more reliable experimental
verification and so could be of higher interest for practical applications of the
considered impurity effects in the multiband superconductors.

It is worth recalling that the above formulas are only contributed by the ban-
dlike states; that is, the energy arguments ε, ε′ in Eqs. (5.14)–(5.17) are de-
limited by the relevant mobility edges. This is the main distinction of our
approach from existing treatments of impurity effects on transport in ferrop-
nictide superconductors using the T -matrix approximation to a solution like
Eq. (5.6) for the whole energy spectrum,[196] even for its ranges where the
very concept of velocity, as Eq. (5.15), ceases to be valid.

Next, we consider the particular calculation algorithms for the expressions,
Eqs. (5.14), (5.16), and (5.17), beginning from the more involved case of
dynamical conductivity, Eq. (5.14), and then reducing it to simpler static
quantities, Eqs. (5.16) and (5.17).
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IV. Optical Conductivity

The integral in Eq. (5.14) is dominated by the contributions from δ-like peaks
of the ImĜk(ε) and ImĜk(ε′) matrix elements. These peaks arise from the
above dispersion laws, Eqs. (5.9) and (5.11), thus restricting the energy inte-
gration to the bandlike ranges: |ε| > εc for the p bands and εc,− < |ε| < εc,+
for the i bands. Regarding the occupation numbers f(ε) and f(ε′) at rea-
sonably low temperatures kBT � ∆, ε0, the most effective contributions cor-
respond to positive ε values, either from pr or imp bands, and to negative
ε′ values from their negative counterparts, p′ or i′. There are three general
kinds of such contributions: (i) pr − pr′, due to transitions between the prin-
cipal bands, similar to those in optical conductivity by the pure crystal (but
with a slightly shifted frequency threshold: ~ω ≥ 2εc), (ii) pr − imp′ (or
imp − pr′), due to combined transitions between the principal and impurity
bands within the frequency range ~ω ≥ εc + εc,−, and (iii) imp − imp′, due
to transitions between the impurity bands within a narrow frequency range of
2εc,− < ~ω < 2εc,+. The frequency-momentum relations for these processes
and corresponding peaks are displayed in Fig. ??. The resulting optical con-
ductivity reads σ(ω, T ) =

∑
ν σν(ω, T ) with ν = pr − pr′, imp − imp′, and

imp− pr′.

For practical calculation of each contribution, the relevant matrix ImĜk(ε)

(within the bandlike energy ranges) can be presented as ImĜk(ε) = N̂(ε, ξ)Im [Dk(ε)−1]
where the numerator matrix,

N̂(ε, ξ) = Re
(
ε̃+ ξ̃τ̂3 + ∆τ̂1

)
, (5.18)

is a smooth enough function while the peaks referred to above result from zeros
of ReDk(ε). Now, the quasimomentum integration in Eq. (5.14) under the
above-chosen symmetry of Fermi segments spells as

∫
dk = 2(hvF)−1

∫
dϕ
∫
dξ

where the factor 2 accounts for identical contributions from e and h segments.
The azimuthal integration contributes by the factor of π (from x projections
of velocities) and the most important radial integration is readily done after
expanding its integrand in particular pole terms:

v(ξ, ε)v(ξ, ε′) Tr
[
ImĜ(ξ, ε)ImĜ(ξ, ε′)

]
=

∑
α

Aα(ε, ε′)δ (ξ − ξα) , (5.19)

where v(ξ, ε) = |v(k, ε)| and Ĝ(ξ, ε′) ≡ Ĝk(ε′) define the respective residues:
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Aα(ε, ε′) = πvαv
′
α

ε̃ε̃′ + ξ̃ξ̃′ + ∆2∏
β 6=α (ξα − ξβ)

. (5.20)

Figure 5.2: Configuration of the poles ξj of GFs contributing to different types of optical
conductivity processes over one part (electronic pocket) of the quasiparticles spectrum by
Fig. 5.1.

Here vα ≡ v (ε, ξα), v′α ≡ v (ε′, ξα), and the indices α, β run over all the poles
of the two Green’s functions. As follows from Eqs. (5.10) and (5.12) and seen
in Fig. 5.2, there can be two such poles of Ĝ(ξ, ε) related to bandlike states
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with positive ε and respective quasimomentum values denoted as ξ1,2(ε). For
energies within the pr band, ε > εc, they are symmetrical:

ξ1,2(ε) ≈ ±
√
ε2 −∆2, (5.21)

while within the imp band at εc,− < ε < εc,+, their positions are asymmetrical:

ξ1,2(ε) ≈ cγ2 ∓ 2ε0

√
(ε+ − ε) (ε− ε−)

2 (ε− ε0)
. (5.22)

Notice also that, within the imp band, there is a narrow vicinity of ε0 of
∼ c

1/3
0 (c0/c)

3ε0 width where only the ξ1 pole by Eq. (5.22) is meaningful and
the other contradicts to the Ioffe-Regel-Mott criterion (so that there are no
bandlike states with that formal ξ2 values in this energy range). Analogous
poles of Ĝ(ξ, ε′) at negative ε′ are referred to as ξ3,4(ε′) in what follows. Taking
into account a non-zero ImDk(ε) [for the imp band, it is due to the nontrivial
terms in the group expansion, Eq. (5.7)], each αth pole becomes a δ-like peak
with an effective linewidth Γα but this value turns to be essential (and will be
specified) only at calculation of static coefficients like Eqs. (5.16) and (5.17).

Since four peaks in Eq. (5.19) for optical conductivity are typically well sep-
arated, the ξ-integration is trivially done considering them true δ-functions;
then the particular terms in σ(ω, T ) follow as the energy integrals:

σν(ω, T ) = 2e2

∫ εν,+

εν,−

dε
f(ε)− f(ε′)

ω

4∑
α=1

Aα(ε, ε′), (5.23)

where ν takes the values pr− pr′, imp− pr′, or imp− imp′ and the limits εν,±
should assure that both ε and ε′ are kept within the respective bandlike energy
ranges.

Thus, in the pr − pr′ term, the symmetry of the poles ξ1,2(ε) and ξ3,4(ε′) by
Eq. (5.21) and the symmetry of pr and pr′ bands themselves defines their
equal contributions; then using simplicity of the generalized velocity function
v(ξ, ε) = ξ/ε and the nonrenormalized energy and momentum variables, ε̃→ ε,
ξ̃ → ξ, the energy integration between the limits εpr−pr′,− = εc and εpr−pr′,+ =
~ω − εc provides its explicit analytic form as σpr−pr′(ω, T ) = σpr−pr′(ω, 0) −
σpr−pr′,T (ω). Here the zero-temperature limit value is
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σpr−pr′(ω, 0) ≈ σ0

2ωc
ω2

{√
4ω2 − ω2

c ln

[
2
ω(2ω − ωc) +

√
ω(ω − ωc)(4ω2 − ω2

c )

ω2
c

− 1

]

+ 2ω ln

[
2
ω −

√
ω(ω − ωc)
ωc

− 1

]
− 2
√
ω(ω − ωc)

}
, (5.24)

with the characteristic scale σ0 = e2/∆2 and simple asymptotics:

σpr−pr′(ω, 0) ≈ (2/3)σ0(ω/ωc − 1)3/2, ω − ωc � ωc,

σpr−pr′(ω, 0) ≈ σ0(32ωc/ω) ln(2ω/ωc), ω � ωc,

with respect to the threshold frequency ωc = 2εc/~, reaching the maximum
value ≈ 1.19σ0 at ω ≈ 2.12ωc as seen in Fig. 5.3. The (small) finite-
temperature correction to the above value,

σpr−pr′,T (ω) ≈ σ0

2ω2
ce
−β∆

β~(ω − ωc)ω
√

∆

[√
~ω
∆

(
1− F (

√
β~(ω − ωc))√
β~(ω − ωc)

)

+

√
2∆

~ω −∆

(√
π

2

erf(
√
β~(ω − ωc))√
β~(ω − ωc)

− e−β~(ω−ωc)

)]
, (5.25)

involves the Dawson function F (z) =
√
πe−z

2

erf(iz)/(2i) and the error func-
tion erf(z). [197]

Calculation of the imp− pr′ term is more complicated since asymmetry of the
imp-band poles ξ1,2(ε) by Eq. (5.22) and their nonequivalence to the symmetric
poles ξ3,4(ε′) of the pr′ band analogous to Eq. (5.21). More complicated
expressions also define the generalized velocity function within the imp-band
range,

~v(ξ, ε) =
cγ2 − ξ(ε− ε0)

ε(ε− ε0 − cγ2/ε0)
, (5.26)

and the energy integration limits: εimp−pr′,− = εc,− and εimp−pr′,+ = min[εc,+, ~ω−
εc]. Then the function σimp−pr′(ω, T ) follows from a numerical integration
in Eq. (5.23) and, as seen in Fig. 5.3, it has a lower threshold frequency
ω′c = εc + εc,− than the pr − pr′ term. Above this threshold, it starts to
grow linearly as ∼ (ω/ω′c − 1)c5/2c

−5/3
0 σ0 and, for the impurity concentrations

within the "safety range", c � c1 ∼ c
2/3
0 , becomes completely dominated by

the pr − pr′ function, Eq. (5.24) above its threshold ωc.
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Finally, the imp − imp′ term is obtained with a similar numerical routine on
Eq. (5.23), using Eq. (5.22) either for the poles ξ1,2(ε) by the imp band and for
the ξ3,4(ε′) by the imp′ band and Eq. (5.26) for respective generalized veloci-
ties, while the energy integration limits in this case are εimp−imp′,− = εc,− and
εimp−imp′,+ = min[εc,+, ~ω − εc.−]. The resulting function σimp−imp′(ω, T ) oc-
cupies the narrow frequency band from ωimp−imp′,− = 2εc,−/~ to ωimp−imp′,+ =
2εc,+/~ (Fig. 5.3) and its asymptotics near these thresholds and in the zero-
temperature limit are obtained analytically as:

σimp−imp′(ω, 0) ≈ σ0

16c7/2γ7

3
√

2ξ7
−

(
ω − ω−
ω−

)3/2

, (5.27)

at 0 < ω − ω− � ω− and a similar formula for 0 < ω+ − ω � ω+ only differs
from it by the change: ξ− → ξ+ and ω− → ω+.

Figure 5.3: General picture of the optical conductivity showing three types of contributions.
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Then the maximum contribution by the imp − imp′ term is estimated by
extrapolation of the above asymptotics to the center of the impurity band:
|ω − ω±| ∼ |ω0 − ω±|, resulting in σimp−imp′,max ∼ σ0c

5c
−10/3
0 (ξ+/ξ−)7/2. This

estimate shows that the narrow imp−imp′ peak of optical conductivity around
ω ≈ 2ε0/~ can, unlike the "combined" imp − pr′ term, become as intense or
even more so than the maximum of "principal" pr − pr′ intensity, Eq. (5.24),
if the small factor ∼ (c/c1)5 is overweighted by the next factor (ξ+/ξ−)7/2.
The latter is only possible if the impurity perturbation is weak enough: v �
1. Then the ratio ξ+/ξ− turns ≈ (2/v)2 � 1 and can really overweight the
concentration factor if the impurity concentration c reaches ∼ c1(v/2)7/5 � c1,
that is quite realistic within the "safety" range c � 1. The overall picture of
optical conductivity for an example of weakly coupled, v = 0.25, impurities at
high enough concentration c = 4c0 is shown in Fig. 5.3. The expressed effect
of "giant" optical conductivity by the in-gap impurity excitations could be
compared with the well-known Rashba enhancement of optical luminescence
by impurity levels at closeness to the edge of excitonic band [198] or with the
huge impurity spin resonances in magnetic crystals, [132] but with a distinction
that it appears here in a two-particle process instead of the above mentioned
single-particle ones.

It should be underlined again that the considered impurity features in opti-
cal conductivity cannot be interpreted in a simplistic view of optical transi-
tions between localized impurity states (or between these and principal band
states)since the lack of mobility for localized states would prevent their con-
tribution to the currents. This is only recovered at high enough impurity
concentrations, c & c0, when the impurity state banding takes place.

V. Static Kinetic Coefficients

Now we can pass to the relatively simpler calculation of the kinetic coefficients
in the static limit of ω → 0. To begin with, consider the heat conductivity, Eq.
(5.16), where the momentum integration at coincidence of the above mentioned
poles ξ1.3 and ξ2.4 is readily done using the general convolution formula,∫

LΓj (ξ − ξj)LΓ′k
(ξ − ξ′k) dξ = LΓj+Γ′k

(ξj − ξ′k) , (5.28)

for two Lorentzian fuctions LΓ(ξ) = Γ/(ξ2 +Γ2), and in the limit of ξi = ξ′k and
Γj = Γ′k obtaining simply (2Γj)

−1, a "combined lifetime". This immediately
leads to a Drude-like formula for heat conductivity as a sum of principal and
impurity terms, κ(T ) = κpr(T ) + κimp(T ), each of them given by
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κpr(T ) =
~(1 + v2)

πcV v

∫ ∞
εc

dε
∂f(ε)

∂ε

ε (ε2 − ε2
0)√

ε2 −∆2

≈ ~ρF∆2

c

√
πβ∆

2
exp(−β∆) (5.29)

and

κimp(T ) ≈ ~
π (εc,+ − εc,−)

(
c

c0

)4 ∫ εc,+

εc,−

dε
∂f(ε)

∂ε
ε2

≈ ~
π

(
c

c0

)4

βε2
0 exp(−βε0). (5.30)

Then the comparison of Eqs. (5.29) and (5.30) shows that the impurity contri-
bution to the heat conductance κimp for impurity concentrations c above the
critical value c0 turns to dominate over the principal contribution κpr at all
the temperatures (of course, below the critical transition temperature). Such
strong impurity effect is combined from enhanced thermal occupation of im-
purity states and from their growing lifetime as ∼ c3 against the decreasing as
∼ 1/c lifetime in the principal band.

Similar strong impurity effects should also follow for the static electric conduc-
tivity σ(0, T ) (see Ref. [195]) and for the thermoelectric Peltier and Seebeck
coefficients, Eq. (5.17). All of them can be considered as fully due to the corre-
sponding impurity contributions and the temperature dependencies of thermo-
electric coefficients should be nonexponential: Π(T ) ≈ Π(0) = constant, and
S(T ) ≈ Π(0)/T , alike the nonperturbed case but at much higher level. Like
the final note in the previous section, these predictions are only valid for impu-
rity concentrations above the critical value, c & c0, while the system transport
properties should stay almost nonaffected by impurities below this concentra-
tion, c < c0. Fig. 5.4 demonstrates these differences between temperature
dependencies of static conductivities and of thermoelectric coefficients for low
and high concentrations of impurities at the choice of perturbation parameter
as v = 1. Such drastic changes of transport behavior are of interest for ex-
perimental verification in properly prepared samples of SC ferropnictides with
controlled concentration of specific impurities.
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Figure 5.4: Logarithmic plots for two contributions to the heat conductivity shows domi-
nation of the impurity term at all the temperatures where SC itself exists.
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VI. Conclusive Remarks

In conclusion, the essential modification of quasiparticle spectra in a SC fer-
ropnictide with impurities of simplest (local and nonmagnetic) perturbation
type is expected, consisting of formation of localized in-gap impurity states
and their development into specific narrow bands of impurity quasiparticles at
impurity concentration above a certain (quite low) critical value c0 and leading
to a number of effects in the system’s observable properties. Besides the pre-
viously discussed thermodynamical effects, expected to appear at all impurity
concentrations, which are due to either localized or bandlike impurity states, a
special interest is seen in studying the impurity effects on electronic transport
properties of such systems, only affected by the impurity bandlike states. It
was shown above that the latter effects can be very strongly pronounced, ei-
ther for high-frequency transport and for static transport processes. In the first
case, the impurity effect is expected to most strongly be revealed in a narrow
peak of optical conductance at its closeness to the edge of conductance band
in nonperturbed crystal, resembling the known resonance enhancement of im-
purity absorption (or emission) processes near the edge of main quasiparticle
band in normal systems; here it would be possible if the impurity perturbation
were weak enough. The static transport coefficients at overcritical impurity
concentrations are also expected to be strongly enhanced compared to those
in a nonperturbed system, including the thermoelectric Peltier and Seebeck
coefficients.

The above-presented simplest theoretical model can be extended to include
either more realistic multiorbital structures of the initial ferropnictide system
or more general type sof impurity perturbation on it (e.g., as extended centers
considered earlier in d-wave cuprate systems [199]). Of course,this can lead
to some quantitative modifications of the results but their main qualitative
features as a possibility for new narrow in-gap quasiparticle bands and related
sharp resonant peaks in transport coefficients should be still present

The experimental verifications of these predictions would be of evident in-
terest, since they can open perspectives for important practical applications,
e.g., in narrow-band microwave devices or advanced low-temperature sensors.
However this would impose rather hard requirements on the quality and com-
position of the necessary samples; they should be extremely pure aside the
extremely low (by common standards) and well-controlled contents of specially
chosen and uniformly distributed impurity centers within the SC iron-arsenic
planes of a ferropnictide compound. This situation can be compared to the
requirements on doped semiconductor devices and hopefully should not be a
real problem for modern lab technologies.
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Electric bias control on
impurity effects in bigraphene
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Formation of localized impurity levels within the band gap in bigraphene un-
der applied electric field and the conditions for their collectivization at finite
impurity concentrations are considered. It is shown that a qualitative restruc-
turing of the quasiparticle spectrum within the initial band gap and subsequent
metal-insulator phase transitions are possible for such disordered systems, be-
ing effectively controlled by variation of the electric field bias. Since these
effects can be expected at low enough impurity concentrations and accessible
applied voltages,they can be promising for practical applications in nanoelec-
tronics devices.

I. Introduction

Between various derivatives from the basic graphene system [7, 8, 9], spe-
cial interest is attributed to its bilayer combination [10]. This interest is
mainly due to the important possibility of realizing here a case of semicon-
ductor with controllable band gap through the application of an electric field
[200, 201, 202, 203]. It should be noted that a similar crystalline structure
of two planes with hexagonal lattices is now recognized for a whole family of
materials, either really fabricated or theoretically predicted. Besides the two
known modifications of bigraphene itself, the Bernal (or A-B) structure [204]
and its alternative, A-A structure [205], there exist also the bilayers of sil-
icene, the silicon analog to graphene [206], the bilayers of boron nitride [207]
or its bilayered combination with graphene [208], the bilayered chalcogenides
of transition metals (pure or alloyed) [209], etc. However, the most reliable
structure for external tuning and rather simple for theoretical study is seen
in the Bernal-stacked bilayer graphene, hence chosen here as the basic host
system for studying impurity effects. Having introduced impurities in such a
system, such as dopants in common semiconductor systems [34, 210], there is
a possibility for localized impurity levels to appear within the host spectrum

135



Chapter 6. Electric bias control on impurity effects in bigraphene

gap [211, 212]. Next, it is known that, at high enough impurity concentration,
an intensive interaction between the localized impurity states related to these
levels can take place. This can essentially modify the band spectrum near
the gap edge [165, 213], giving rise to specific narrow energy ranges of band-
like states near impurity levels (called impurity bands) and even producing a
phase transition from insulating to metallic state [169], with important prac-
tical applications. An attempt to treat such impurity bands in doped bilayer
graphene was done by Nilsson and Castro Neto [211]; however, it missed the
crucial issue of whether the respective states in a disordered crystal are re-
ally bandlike (extended) or localized and where the separation points between
these two kinds in the energy spectrum (the mobility edges [169]) are located.
A consistent study of these questions is one of our main purposes here. Having
it resolved,the resulting possibility of continuous control on band gap and of
controllable phase transitions can make the in-gap impurity states in bilayer
graphene quite a flexible tool with regard to electronic properties. A similar
situation was recognized long ago in some magnetic crystals with impurities
at the magnon spectra, and so the observable properties can be controlled by
an applied magnetic field [132]. Such a possibility for fermionic systems could
open interesting possibilities for future nanoelectronics.

The paper is organized as follows. In Sec. II, the second quantization Hamil-
tonian is defined for a biased Bernal-stacked graphene bilayer (with no impuri-
ties) and the related matrix representation for Green’s functions (GFs) is built,
giving rise to its four-subband electronic spectrum. SectionIII introduces the
model impurity perturbation and analyzes formation of impurity levels and
their possible development into impurity bands, based on specific self-energy
matrices forthe GF matrices. Such impurity bands are considered in more de-
tail in Sec.IV, including the estimates for mobility edges between the bandlike
and localized states. Then the possibility for metal-insulator phase transitions
in doped bilayer graphene under electric field bias (at fixed impurity concentra-
tion) and the resulting transport effects are analyzed in Sec.V. The final Sec.VI
presents the main conclusions and suggestions for practical applications of the
described impurity effects.
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Figure 6.1: Schematic of Bernal-stacked bigraphene under applied electric bias V . The A-
and B-type sites in each plane are indicated by black and white circles respectively, the solid
and dashed lines indicate the in-plane t and interplane tz links. Inset: the Brillouin zone in
k-plane with two Dirac points ±K and an equivalent circle of radius kmax =

√
K/a.

II. Bigraphene under Applied Field

As is well known, the relevant electronic dynamics of a graphene sheet are
generated by the carbon sp3 orbitals (whose energy level can be chosen as the
energy reference) in the simplest approximation of single hopping parameter
t between nearest neighbor carbons from different sublattices at distance a in
the honeycomb lattice [8]. The bigraphene structure, furthermore, involves the
interlayer hopping tz by vertical links between nearest neighbors from different
sublattices (for Bernal stacking) shown in Fig. 6.1. With an account taken of
an electric bias V = eEd between the layers (with the electron charge e, the
applied electric field E, and the interlayer spacing d), this defines the tight-
binding (Fourier transformed) Hamiltonian 4× 4 matrix [214]:

Ĥk =


V/2 γk 0 tz
γ∗k V/2 0 0
0 0 −V/2 γk
tz 0 γ∗k −V/2

 . (6.1)
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Here the wave vector k lies in the first Brillouin zone (see inset in Fig. 6.1)
and the in-plane dispersion follows from the sums γk = t

∑
δ eik·δ over nearest

neighbor vectors δ of the honeycomb lattice. It suitably approximates as γk ≈
ξkeiϕk , with ξk = ~vF|k−K| near the Dirac points K = ±(4π/3

√
3a, 0), where

the Fermi velocity vF = 3ta/2~, and ϕk = arctan ky/(kx −Kx) . The relevant
range of |k − K| ∼ Ktz/W is really narrow, since tz is weak besides the
total bandwidth W (see below). Then the second-quantization Hamiltonian
(in absence of impurity perturbation),

H0 =
∑
k

ψ†kĤkψk, (6.2)

where the spinors ψ†k =
(
a†1k, b

†
1k, a

†
2k, b

†
2k

)
made of Fourier transformed sec-

ond quantization operators ajk = N−1
∑

n ajneik·n and bjk = N−1
∑

n bjneik·n,
where the on-site operators ajn and bjn relate for A- and B-type sites from nth
unit cell in j(= 1,2)th layer, and N is the number of cells in a layer. Generally,
the energy spectrum is defined by the matrix of Fourier-transformed two-time
GFs [166, 215] Ĝk = 〈〈ψk|ψ†k〉〉 as solutions of the dispersion equation:

Re det Ĝ−1
k = 0. (6.3)

Thus for the nonperturbed system by Eq. (6.2), the GF matrix reads Ĝ(0)
k =

(ε − Ĥk)−1 and, after diagonalization of Ĥk in spinor indices, its dispersion
near the Dirac points is suitably expressed through the radial variable ξk ≡ ξ.
It includes two positive energy subbands [214]:

εν(ξ) =

√
t2z
2

+
V 2

4
+ ξ2 − (−1)ν

√
t4z
4

+ ξ2 (t2z + V 2), (6.4)

the "external" (ν = 1) and "internal" (ν = 2) ones, and their negative
energy counterparts, as shown in Fig. 6.2a. The most relevant feature of
this spectrum is the bias-controlled energy gap between the extrema ±εg =

±V/[2
√

1 + (V/tz)2] of two internal subbands, attained along a circle around
each Dirac point (the so-called Mexican hat) whose radius in the ξ-variable is
ξ0 =

√
ε2
g + V 2/4 .

The GF matrix generates physical characteristics of this system as, for instance,
the density of states (DOS) by electronic quasiparticles,
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ρ(ε) =
1

π
Im Tr Ĝ(ε), (6.5)

where Ĝ(ε) = (2N)−1
∑

k Ĝk(ε) is the local GF matrix, and its imaginary part
for exact band spectrum results usually from an infinitesimal imaginary shift
of energy argument, ε− i0 [166]. In what follows, the sum in k over triangular
halves of the Brillouin zone is approximated by the ξ- integration,

1

2N

∑
k

fk(ε) ≈ 2

W 2

∫ W

0

f(ξ, ε)ξdξ,

over two equivalent circles around the Dirac points (inset in Fig. 6.1) of the
ξ-radius W = ~vFkmax (where kmax =

√
K/a, see inset in Fig. 6.1). This

approximation is well justified at low energies, |ε| � W , compared to the
effective bandwidthW . For the pure bigraphene system by Eq. (6.1), the result
for Eq. (6.5) is generated by the explicit diagonal elements of nonperturbed
local GF matrix [211]:

G
(0)
11 ≈ 2

ε− ε2

W 2

[
εε2

δ2

(
π − arctan

δ2

ε2 + ε2
2

)
+ ln

γ

W

]
,

G
(0)
22 = G

(0)
11 (ε)− t2z

ε+ ε2

W 2δ2

(
π − arctan

δ2

ε2 + ε2
2

)
, (6.6)

where

δ2(ε) =
√

(t2z + V 2)
(
ε2
g − ε2

)
,

γ2(ε) =
√

(ε2 − ε2
1) (ε2 − ε2

2).

These elements reveal the inverse square root divergences at the gap edges ±εg
(of Im G beyond the gap and of Re G within the gap); also note the finite steps
of Im G at the limiting energies ε1,2 ≡ ε1,2(0) of the two subbands. The resting
diagonal elements are simply G(0)

33 (ε) = −G(0)
22 (−ε) and G(0)

44 (ε) = −G(0)
11 (−ε),

so that finally DOS is a function of ε2, as shown in Fig. 6.2b, in agreement
with the known previous calculations [203]. It presents BCS-like divergences
near ε2

g, finite steps at ε2
1,2, and coincides with the linear DOS for monolayer

graphene [8, 9] beyond ε2
1, due to joint (non-linear) contributions from both

subbands.
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Figure 6.2: (a) Dispersion laws for the bilayer in Fig. 6.1 vs the radial variable ξ near a
Dirac point, given by Eq. (??) at the choice of V = 2tz; the dash-dotted line indicate the
Dirac dispersion for monolayered graphene. (b) DOS for this choice; the dash-dotted line
marks the linear DOS for monolayered graphene.
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Within the gap, only real parts of Gjj(ε) are nonzero, and their divergences
near the gap edges are crucial for appearance, under the effect of localized
impurity perturbations, of in-gap localized levels and related collective states,
which is the main focus for the analysis below.

III. Impurity Levels and Impurity Subbands

As was recognized from experimental studies on graphene systems [216], they
can contain a variety of defects, ranging from topological ones (vacancies, dis-
locations, edges, boundaries, etc.) to impurity adatoms (or some functional
groups) near one of the planes and in-plane substitutes or interstitials. This
provides a doping of charge carriers (of both signs) into these systems, as well
as scattering of carriers on impurity potentials and possibly formation of lo-
calized (or resonance) impurity states on such potentials. The latter must be
characterized by some model parameters within the common tight-binding ap-
proximation, and the simplest case is the Lifshitz model, involving only the
on-site perturbation potential U , identical for all impurity sites randomly dis-
tributed among the lattice sites [92]. This model was already used in the
literature on impurity problems in graphene systems, with U values ranging
from the Born regime, |U | � W [211, 217, 218], to the unitary limit, U � W
[218, 219]. For the case of substitutional impurities in graphene, this value can
be roughly estimated by the differences between the first ionization potential
of 11.26 V for C and those for its neighbors in the periodic table: 8.3 V for B
and 14.53 V for N. Then, for the commonly adopted graphene bandwidth of
W ≈ 7 eV, the choice of |U |/W ∼ 1/2 looks to be plausible. Also, for diluted
impurities at separations much greater than the screening radius [217], the
Lifshitz model looks more adequate than the alternative choice of the Ander-
son model [113], with random perturbations at each lattice site in Ref. [220].
Another alternative is the Anderson hybride (or s-d) model [221] with two pa-
rameters, the impurity binding energy and its coupling to the host excitations.
Its use for the so-called deep impurity levels in semiconductors is known to
result in formation of the above-mentioned impurity bands and related phase
transitions [165]. However, such a perturbation model, when introduced into
the framework of a four-component host spectrum of Sec. II, could make
the treatment of interactions between impurities and of impurity band coher-
ence technically unfeasible. This determines our choice for the Lifshitz model
(though known to provide less freedom for impurity band formation than the
s-d model). Due to similar reasons, we do not consider the long-range impurity
potentials [222, 223]

141



Chapter 6. Electric bias control on impurity effects in bigraphene

Let us build the perturbation Hamiltonian by Lifshitz impurities on certain
impurity sites. In accordance with the composition of ψ-spinors, the A and B
sites from first plane can be referred to the types j = 1, 2, respectively and
those from second plane to j = 3, 4, then pj denote the defect sites of jth
type with relative concentrations cj =

∑
pj
N−1 such that the total impurity

concentration
∑

j cj = c � 1. Then the sought Hamiltonian in terms of local
Fermi operators reads

H1 = U

(∑
p1

a†1p1
a1p1

+
∑
p2

b†1p2
b1p2

+
∑
p3

a†2p3
a2p3

+
∑
p4

b†2p4
b2p4

)
, (6.7)

or, in terms of ψ-spinors by Eq. 6.2, it takes the form of scattering operator,

H1 =
1

N

∑
j,pj

∑
k,k′

ei(k
′−k)·pjψ†kÛjψk′ . (6.8)

where the diagonal matrix Ûj has a single non-zero element U at the jj site.
Considering now the Hamiltonian in presence of impurities H0 + H1 and fol-
lowing a similar routine to Refs. [23, 224], we arrive at solutions for the GF
matrix in two specific forms adequate for two alternative types of excitation
states in a disordered system [92, 169]: the bandlike (extended) states and lo-
calized states. Thus, the first of these types is better described by the so-called
fully renormalized representation (FR) of GF [132],

Ĝk =

[(
(Ĝ

(0)
k

)−1

− Σ̂k

]−1

, (6.9)

providing the roots of the dispersion equation [Eq. (6.3)], classified along the
quasimomentum k. Here the self-energy matrix is additive in different types
of impurity centers: Σ̂k =

∑
j Σ̂j,k, with the partial matrices given by the

related FR group expansions (GEs) in complexes of impurity centers (of the
same jtype, involved in multiple scattering processes):
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Σ̂j,k = cjT̂j

[
1 + cj

∑
n6=0

(
e−ik·nÂj,n + Âj,nÂj,−n

)
×

(
1− Âj,nÂj,−n

)−1

+ . . .

]
. (6.10)

Each T matrix T̂j = Ûj
(

1− ĜÛj
)−1

describes all the scatterings on a single
impurity center of jth type, and the next-to-unity term in right-hand side
of Eq. (6.10) accounts for scatterings on pairs of j-impurities through the
matrices Âj,n = T̂j(2N)−1

∑
k′ 6=k Ĝk′e

ik′·n of indirect interaction (via bandlike
excitations) in such pairs at separation n. Notice the excluded quasimomentum
k (for given Σ̂k) in this sum; also the FR GE excludes coinciding quasimomenta
in all the multiple sums for products of interaction matrices [132]. The omitted
terms in Eq. (6.10) relate to all scattering processes in groups of three and
more impurities, and their general structure can be found in similarity with
the known group integrals from the Ursell-Mayer classical theory of nonideal
gases.

Otherwise, for the range of localized states, the nonrenormalized representation
(NR),

Ĝk = Ĝ
(0)
k − Ĝ

(0)
k Σ̂Ĝ

(0)
k , (6.11)

defining rather DOS from Eq. (6.5) than dispersion from Eq. (6.3), is more
adequate. Here the respective NR self-energy matrix Σ̂ =

∑
j Σ̂j has a similar

structure to the FR structure one by Eq. (6.10) but with the NR matrices
T̂

(0)
j = Ûj(1 − Ĝ(0)Ûj)

−1, Ĝ(0) = (2N)−1
∑

k Ĝ
(0)
k , and with no restrictions

in all the quasimomentum sums for the products of NR interaction matrices
Â

(0)
j,n = T̂

(0)
j (2N)−1

∑
k Ĝ

(0)
k eik·n (that are only present in their even combina-

tions Â(0)
j,nÂ

(0)
j,−n).

The best-known effect of local perturbations consists in emergence of localized
energy levels within the band gap, and those were already indicated for impu-
rities in bilayer graphene [211, 212]. As known from general theory [92, 132],
such levels are most pronounced at sufficiently low concentration of impurities
(so that their indirect interactions can be neglected) when they are given by
the poles of T matrices. In the present case, the matrices T̂ (0)

j give rise to four
different local levels ε(j) within the band gap, and their locations depend on the
magnitude and sign of perturbation parameter U (like the known situations in
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Figure 6.3: Separations of the in-gap impurity levels ε(j) from the gap edge as functions
of the applied bias V (all in units of tz) for the choice of impurity perturbation parameter
U = −W/2. Note the different behaviors of ε(1,2) and ε(3,4) pairs and the interchange of the
deepest level from ε(2) to ε(4) at the bias value Vcr ≈ 2.6tz (see also the text).
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common doped semiconductors [34, 210]) but yet on the applied field V (as a
specifics of doped bilayer graphene). The positions of four impurity levels ε(j)

by each type of impurity center are the roots of related Lifshitz equations,

UG
(0)
jj (ε(j)) = 1, (6.12)

so that choosing for definiteness U = −W/2 and using Eq. (6.6) provides
their dependence on the applied bias V as shown in Fig. 6.3 (for their relative
separations from the gap edge). It is seen that generally they stay rather
shallow at growing V , but with a notable difference between the levels ε(1,2)

(by impurities in the positive biased layer) and ε(3,4) (by those in the negative
biased one). In particular, a specific interchange of the deepest levels occurs in
this course, from ε(2) to ε(4), at Vcr ≈ 2.6tz for the given U . This feature was
not indicated in the former analysis of the same model in Ref. [211], where
only ε(2) was considered as the deepest level. However, for the commonly used
value of tz ≈ 0.35 eV, this interchange bias would amount to Vcr ≈ 0.91 eV, well
above the experimentally realized (to the moment) V values of up to ≈ 0.36
eV [200, 201]. Thus, the much stronger separation of the ε(2) level at lower
bias voltages could be of significant practical importance.

Also, we note that while the impurity levels generally become deeper at greater
U values, the indicated interchange bias decreases in this course: from Vcr ≈
3.53tz at U = −W/4 to Vcr ≈ 1.88tz at U = −W .

The well-known property of localized states by shallow energy levels is their
long effective radius [132], also indicated for impurities in biased bilayer graphene
[211], defining intensive interactions between them already at their very low
concentrations. Such interactions were shown to allow, at certain conditions,
collectivization of impurity states to form specific bandlike states within nar-
row energy bands (called impurity bands) around the initial localized levels
[165]. As will be seen below, this effect is possible as well in the present case
of multiple localized levels, where the most essential specifics is their joint par-
ticipation in forming the lowest impurity subband of much stronger dispersion
than in higher-lying subbands (if those are permitted).

Formally, in similarity to the nonperturbed case, the band spectrum for the
disordered system can be evaluated from the dispersion equation, Eq. (6.3),
with the FR GF matrix by Eqs. (6.9) and (??). Of course, if treated rig-
orously, it presents a tremendous problem of developing infinite sequence of
renormalization procedures in all possible terms of the corresponding GE, and
there is no reasonable hope for its exact solution. On the other hand, validity
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of the relatively simpler NR, Eq. (6.11), is only limited to the energy ranges
of localized states.

One could try to use the coherent potential approximation (CPA) [225], a
useful tool, e.g., in the theory of disordered alloys, where the full self-energy
is presented in a self-consistent T-matrix form. It reduces the impurity effect
at each given energy to a certain spatially uniform potential adjusted to make
the average scattering zero. This is done through a stable iterative procedure
and readily provides a definite band spectrum. However, this approach treats
the disordered system as if keeping unbroken translation symmetry and so
leads to a purely extended spectrum, unlike its real composition of bandlike
and localized ranges [169]. Therefore the CPA results can be only justified
within the bandlike ranges, far enough from their edges [194], accordingly
to the known Ioffe-Regel-Mott (IRM) criterion of long enough mean free path
compared to the wavelength [169, 53]. Moreover, for the disorder due to diluted
impurities, CPA applies only to the less perturbed interiors of the broad initial
bands but not to the narrow impurity bands between close mobility edges. This
can be verified by comparing its results to those by more consistent theories or
to experimental data (when available).The CPA versions were also suggested
for impurity effects both in monolayer graphene [226] and bilayer graphene
[211], producing in the latter case some band features within the initial band
gap. But our analysis below, starting from the same structure of impurity
levels as in Ref. [211], results in a quite different picture of impurity bands
and we justify it based on the IRM criteria relevant for this case.

The practical approach is done through partial renormalizations of the full
self-energy in Eq. (6.10), first substituting there the NR T matrix and in-
teraction matrices and then subsequently introducing such approximate self-
energies into the next generations of GF and interaction matrices. In this
course, convergence of the obtained GEs is checked in order not to extend the
renormalizations to irrelevant GE terms. Namely, it is reasonable to define the
lth generation GF matrix Ĝ(l)

k by an analog to Eq. (6.9) with the respective
self-energy Σ̂

(l)
k by an analog to Eq. (6.10) but containing the matrices T̂ (l−1)

and Â(l−1)
n built from the preceding generation Ĝ(l−1)

k matrices. This algorithm
leads to the true FR at l → ∞. However, even its first non-trivial l = 1 ap-
proximation can be reasonable for the bandlike energy ranges where the true
FR GE converges.

Then, in the first step of this routine, the formal solutions of Eq. (6.10) with
the self-energies in the NR T-matrix approximation, Σ̂j,k ≈ cjT̂

(0)
j , display

four narrow subbands near four impurity levels ε(j), besides the four broad
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Figure 6.4: Formation of impurity subbands near the impurity levels by the solutions of
Eq. (6.3) in the first step of renormalization (see text) for the case of Fig. 6.3 at V = 2tz
and c = 0.01 (with the variables ε and ξ presented in tz units). Only the most dispersive
ε(2)(ξ) subband extends well beyond the shadowed vicinity of the ε(2) level, which delimits
the range of localized states down to the respective mobility edge εc,2. Together with the
localized states around ε(4,3,1), this range continues up to above the gap edge εg.
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principal bands ±εν(ξ) [here only slightly modified compared to Eq. (??)].
An example of such modified spectrum (at a natural choice of equal partial
concentrations cj = c and taking the total impurity concentration 4c = 0.01)
for the cases of Fig. 6.3 is shown in Fig. 6.4. The lowest impurity subband,
conventionally denoted here as ε(2)(ξ) by its proximity to the lowest ε(2) level,
is seen to strongly dominate in its dispersion over all the resting ones, and
the direct analysis of Eq. (6.10) shows that this domination is due to the
above-mentioned constructive interplay between all ε(j).

Note that all the impurity subbands in this approximation produce BCS-like
divergences in DOS, as well near the levels ε(j) as near subbands terminations.
However, since quasimomentum is not true quantum number in a disordered
system [92], the analysis of its real energy spectrum, especially for the in-gap
states, should also take account of the damping Γj(ξ) of each ε(j)(ξ) state re-
sulting from Im Σj. Hence one can consider these states Bloch-like (or conduct-
ing) only if the IRM criterion is fulfilled or the GE, Eq. (6.10), is convergent
at related energies. Otherwise they should pertain to the localized type. As
will be seen, all the formal DOS singularities fall within the localized energy
ranges and so are effectively broadened.

The mentioned criteria also permit to estimate the Mott mobility edges be-
tween bandlike and localized ranges. Of course, such mobility edges can be
found near the limits of both principal and impurity bands, but our main fo-
cus here will be on the most dispersive impurity band, for instance ε(2)(ξ) in the
above example. Finally, a certain special value VA of bias control (at given im-
purity concentrations cj and perturbation parameter U) can be indicated, such
that mobility edges from both sides of a conducting impurity band will merge.
This collapse of the impurity band will manifest a kind of Anderson transition
[113] in a disordered system, realized in a controllable way at V → VA.

It should be noted that all these fundamental features of the energy spectrum
in a disordered system are lost when the impurity bands are treated withinthe
CPA approximation (as, e.g., in Refs. [211] and [226]).
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IV. Conditions for Existence of Impurity Subbands

As known from studies on many disordered systems where a localized impurity
level εimp near an edge εg of pure crystal energy band can give rise, at high
enough impurity concentration, to a specific impurity band εimp(k) [132], the
latter is restricted by the general IRM criterion,

k · ∇kεimp(k)� Γimp(εimp(k)), (6.13)

where the linewidth Γimp(ε) of a Bloch-like state with quasimomentum k and
energy ε is defined as the imaginary part of the corresponding self-energy. For
the present multiband system, this criterion should be formulated for each of
ε(j)(ξ) subbands by expanding the general determinant from Eq. (6.3) near
a given energy ε in a complex form, det Ĝ−1

k ≈
[
ε− ε(j)(ξ) + iΓj(ε)

]
Ωj(ε),

to obtain the corresponding linewidth Γj(ε) [aside a certain factor Ωj(ε) of
energy-to-cube dimension].

In the adopted Lifshitz model, each partial T matrix T̂j (regardless of its
renormalization) has a single non-zero element at the jj site (alike Ûj itself):
Tj = U/(1 − UGjj). For the above suggested first step renormalization, we
have ImT (0)

j = 0 for ε within the band gap. Here the imaginary part of
related self-energy function Σ

(1)
j is only due to the GE terms next to unity

in Eq. (6.10), dominated by the pair term once GE is convergent. It can be
also shown that the most relevant contribution to ImΣj(ε) comes from the
jjth matrix element of the GE pair term, while those from its other elements
(though generally nonzero) are strongly reduced by the quantum interference
effects. This contribution:

Bj(ε) = Im
∑
n>a

A
(0)
j,nA

(0)
j,−n

1−A(0)
j,nA

(0)
j,−n

, (6.14)

can be obtained from the residues at zeros of the denominator, using the ex-
plicit spatial behavior of scalar interaction functions (see Appendix for details),

A
(0)
j,n(ε) =

T
(0)
j (ε)

2N

∑
k

eik·n
(
G

(0)
k

)
jj

≈
√
rj,ε
n

e−n/rε sin
n

r0

cosK · n, (6.15)

where the characteristic scales are
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rj,ε = r0

(
π
εg − ε(j)

ε− ε(j)

)2

, rε = r0

ξ2
0

δ2
, r0 =

~vF

ξ0

.

A similar behavior with two oscillating factors in effective interimpurity inter-
actions was previously indicated for the impurity states within superconducting
gap in iron pnictides [23, 224], where a faster cosine factor had Fermi wave-
length. But, the present case is simplified by the K-point specific property
that, for all separations n between lattice sites of the same jth type, cos2 K ·n
only takes the values σ = 1 and 1/4 (with respective weights pσ = 1/3 and
2/3), whose contributions can be then simply added up in Eq. (6.14). These
partial contributions are obtained by subsequent integrations [23], first over the
poles of fast oscillating sine and then over its residues with the slow envelope
function F 2

j,n,σ = σrj,εe
−2n/rε/n:

Bj =
∑
σ

pσIm
∑
n>a

F 2
j,n,σ sin2(n/r0)

1− F 2
j,n,σ sin2(n/r0)

≈
∑
σ

4πpσ√
3a2

∫ rmax

a

rdr√
F 2
j,r,σ − 1

, (6.16)

where rmax corresponds to Fj,rmax = 1. The latter integration is simplified
within the energy range of

ε(j) − ε� (εg − ε(j))5/4/ε1/4
g , (6.17)

where rj,ε � rε so that the exponential factor in Eq. (6.15) is approximately
unity for all distances r < rmax ≈ rj,ε. In this approximation, the explicit
result for the most dispersive subband reads

B2(ε) =
7π

64

(r2,ε

a

)2

, (6.18)

with the prefactor resulting precisely from weighting of σ values. Then the
above-suggested expansion of det Ĝ−1

k for ε closer to ε(2) than to other ε(j) (so
that all Σj except Σ2 can be neglected) provides the linewidth,

Γ2(ε) ≈ c2(ε(2) − ε)B2(ε), (6.19)

valid until ε(2)−ε . εg−ε(2). Upon going farther from ε(2), we have rj,ε < r0 so
that B2(ε) vanishes and finite Γ2 values can only result from the higher-order
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GE terms (if not to include, of course, such relaxation processes as by thermal
phonons, electron-electron collisions, etc.). From Eq. (6.19), the IRM criterion
is reduced to the inequality

cB2(ε)� 1

(agreeing with the GE convergence), and, supposing Eq. (6.17) to be valid,
this criterion permits to estimate the mobility edge separation from the ε(2)

level:

ε(2) − εc,2 ∼ c1/4

√
W

2ξ0

(
εg − ε(2)

)
. (6.20)

All the states with energies closer to ε(2) than εc,2 are localized on certain clus-
ters of second-type impurity centers. The first conclusion from the estimate,
Eq. (6.20), is that existence of the impurity subband itself is only assured if its
bandwidth ≈ ε(2)−εg,2 surpasses the width of localized range around ε(2). This
is fulfilled when the total impurity concentration exceeds the critical value:

ccr ∼
(
tz
W

)8/3 ( |U |
W

)4/3 (
V

W

)2/3

×
(tz +

√
t2z + V 2)(2t2z + V 2)

(t2z + V 2)2/3t
5/3
z

. (6.21)

[it is obtained by approximating Eq. (6.6) only to its diverging terms]. Small-
ness of this expression is mainly due to its first three essential factors of inter-
layer coupling, impurity perturbation, and applied bias, while the last factor
stays almost constant for all realistic (not too high) V values. Thus, for the
sample choice ofW = 20tz, |U | = 10tz, and V = 2tz, we obtain ccr ∼ 1.8 ·10−5.
Then for the example of c = 0.01 chosen in Fig. 6.3, the mobility edge εc,2 ex-
tends from ε(2) to about the distance εg−ε(2), while the dispersion of ε(2)(ξ) sub-
band is about an order of magnitude bigger (see Fig. 6.4). Finally, from com-
parison of ranges by Eqs. refeq202015)and(6.17), itfollowsthatthelatteroneforc
> ccr always occurs within the localized range and so the exponential factor in
Eq. (6.15) cannot influence the above-obtained estimates. In summary, only
the most dispersive impurity subband by the lowest impurity level can be con-
sidered to really emerge beyond its mobility edge. Its main specifics in anoma-
lously strong variation of the lifetimes τ(ε) along very narrow energy intervals.
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Figure 6.5: Schematics of extended (ext) and localized (loc) ranges in the energy spectrum
of bilayer graphene with impurities for the situation like that of Fig. (6.4). Note the position
of the Fermi level εF (separating occupied and empty states) with respect to the mobility
edges (separating ext and loc states); the narrow impurity band only emerges below the
lowest impurity level ε(2), while the resting εj levels get buried within the localized range
from εc,2 up to εc,+ (see in text).

As to other formal solutions of Eq. refeq32015)(analyzedwithinclusionoftherestingBj),
they are mostly invalidated within the common overlapped range of localized
levels that extends up to εc,+, the mobility edge of the upper main band. The
states in this area can be characterized only by their DOS. Though the latter
function can not be directly found here from the above defined GEs [Eqs. (6.9)
and (??)], it can be plausibly expected to vary smoothly up to the peak near
εg (Fig. ??) so that the total number of states

∫W
−W ρ(ε)dε = 4 is kept.

Similarly, some finer details of the energy spectrum can be found, as, for in-
stance, the rest of mobility edges εc,± that define the broadened edges of main
subbands, and that near the extremum εg,2 ≈ ε(2)(ξ0) of the impurity subband

152



i
i

i
i

i
i

i
i

(see Fig. ??). Finally, the case of low impurity concentration, c < ccr, can be
also included when there is no impurity band within the gap, but the localized
levels ε(j) turn to be separately resolved. Since all these data are less relevant
for our main practical purpose below, they are left beyond the present scope.
Nevertheless, the presented results essentially develop the general picture of
quasiparticle spectra in crystals with impurities under external fields [132].

V. Biased Metal-Insulator Transitions and their Observable Effects

Now we can pass to the important processes of electric transport in the system
with the above-described band spectrum. For simplicity, this consideration is
restricted to the case of zero temperature, and the main attention is paid to
the position of Fermi level εF and to the lifetime τF of Fermi states under the
applied bias control V at given parameters of impurity perturbations c and U .
The basic condition for the Fermi level,

2

∫ εF

−∞
ρ(ε)dε = 1 + c′, (6.22)

defines its shift from the zero energy position in the unperturbed system, in
order to accommodate the total of c′ extra carriers per unit cell (brought by
impurities themselves and possibly by some external sources). This generally
requires knowledge of DOS functions for all the impurity subbands (besides
weakly perturbed main subbands). But our main interest here is in finding
a possibility for εF to be located within the most dispersive impurity band
ε(2)(ξ), so we focus on the related DOS, especially in proximity to this band
termination εg,2 (Fig. ??). An important simplification of this task is obtained
by noting that for this energy range all the self-energies Σj in Eq. (6.10) can be
taken as constants, small enough compared to the gap width; thus the solutions
of the dispersion equation [Eq. (6.3)] almost reproduce here the non-perturbed
ε2(ξ) band within accuracy to a constant shift of its edge from εg to εg,2 (see
also Fig. 6.4), just due to the common effect of all Σj. The resulting DOS
function,

ρ2(ε) ≈ 2ε

W 2

t2z + V 2

δ2
, (6.23)

at 0 < ε− εg,2 . ε(2) − εg,2 defines from Eq. (6.21) the Fermi level εF position
by the equation
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c′ ≈
(

2

W

)2√
(t2z + V 2)(ε2

g − ε2
F). (6.24)

Let c′max be the maximum permitted amount of carriers such that εF stays
within the conducting range. Then, for the case of Fig. 6.4, this value results
c′max ≈ 4·10−3, that is, somewhat lower than the proper impurity concentration
c = 10−2 in this case. Nevertheless, conduction through the impurity band
can be realized if c′ is brought below the indicated limit of c′max, e.g., by
external compensation of a part of charge carriers [34]. Once this is assured, one
can then strongly change the conductivity by raising the applied V , since the
localized range width by Eq. (6.19) grows with bias faster than ∝ V 2/3 against
the almost bias insensitive (at V . Vcr) width of the impurity band, while the
Fermi level εF goes to the band edge εg,2 slower than ∝ V −2. Then the faster
advancing mobility edge εc,2 will finally cross εF at some bias VM−I , giving
rise to a Mott metal-insulator transition and vanishing conductivity. Thus,
for the proposed choice of U = −W/2 = −10tz and c′ = 3 · 10−3, we obtain
VM−I ≈ 0.87 eV. In this course, at V → VM−I , conductivity can vary by orders
of magnitude, when we drive the Fermi inverse lifetime τ−1

F ∼ Γ2(εF)/~ close to
divergence, under very tiny variations (say, some meV) of bias. This indicates
a tremendous potentiality of such type of doped semiconducting systems in
comparison with traditional materials.

Besides their evident field transistor applications, critical effects by the biased
Mott transition can be also expected in other observable properties of this
doped system, for instance, in its optical response at the frequency ωi,b ≈(
ε(2) + εg

)
/~ of transition from the top of occupied −ε2(ξ) band and the Fermi

states of impurity ε(2)(ξ) band (like the case formerly considered by the authors
for doped superconducting iron pnictides [224]), which can be switched on and
off by tiny variation of the bias.

At last, with further growing bias, the collapse of upper and lower mobility
edges within the impurity band and the aforementioned Anderson transition to
fully localized in-gap spectrum can be realized. From Eq. (6.20) at V . tz, this
bias value estimates as VA ∼ c3/2W 7|U |−2t−4

z , though this analytic expression
applies only (at moderate |U |) for as low impurity concentrations as c . 10−5

. However, a numerical analysis with use of full Eq. (6.6) shows that VA

remains attainable up to c ∼ 10−2 as well. This transition can also produce
observable effects; in this case the collapse of narrow impurity band would lead
to a dramatic drop of the plasmonic resonance frequency [227].
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VI. Discussion and Conclusions

The above main conclusion regarding the possibility of attaining extensive con-
trol of electrical conduction through very slight variations of applied potential
implies, of course,many additional factors to be taken into account. They can
be indicated both from the fundamental and practical sides.Thus, the theoret-
ical approach used is restricted to a simple model of impurity perturbation by
a single on-site parameter,and some elaboration of it could be done involving,
for instance, perturbations of hopping parameters. These kinds of analyses are
known for traditional doped semiconductors and also have demonstrated possi-
bilities for similar impurity bands near localized impurity levels at high enough
impurity concentrations. Notably, for those materials, the Lifshitz perturba-
tion model was found to be the most restrictive for such effects, for instance,
due to unrealistically high critical concentrations, of the order of unity or even
more [unlike that in Eq. (6.19)]. This permits the expectations that modifi-
cations of the present Lifshitz model, as in Ref. [212] for single impurity at a
gapless spectrum, or using the Anderson hybrid model [221] as in Ref. [228]
(provided all the technical aspects be assured), will not essentially change
the physical behavior of the system. On the other hand, there are yet many
properties of this simple model that can be further studied, for instance, the
possibilities to realize multiple conducting impurity subbands and subsequent
processes of multiple switching between them, including, e.g., optical transi-
tions under electrical biasing. Of course, a more realistic approach should also
take account of topological defects (see beginning of Sec. III) as well as the
above-mentioned Coulomb interactions, thermal effects, etc. Generally, this
would require the impurity band structure to exceed a certain "background"
relaxation level that could be achieved by varying either the impurity sort (that
is, U parameter) and concentration or/and the applied bias V . Finally, similar
impurity multiband effects can be also sought in other atomically multilayered
systems, such as those mentioned in the Introduction, where a special focus
might be put on the tuned band gap in silicene bilayers (yet wider than in bi-
layer graphene [206]) or even on single layers of buckled silicene or germanene
[229].

As to the practical issues, first of all, rather strict conditions on fabrication
of the basic doped bilayered system are in order, perhaps mainly aimed to
minimize all the "foreign" defects vs the chosen dopants, but the next require-
ment to control the levels of dopants (and possibly their compensating species)
within fractions of percent should not be a real problem for modern nanoelec-
tronics. Special attention is also required for precise control and manipulation
of the applied bias V , particularly in exploring possibilities to realize its near-
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critical and super-critical regimes, like those indicated in the above analysis.
Finally, the practical arrangement of an experimental transistor-type setup
based on the suggested conductivity control by tiny impurity subbands would
perhaps require some specific technical solutions. However, they do not look
too difficult to be found in the available engineering depository. Thus a fair
hope exists for this theoretical proposal to be realized in a practical device.

In conclusion, the effects of localized on-site perturbations by rather disperse
impurities on a bilayered graphene system under the applied electrical bias
between the layers are analytically considered using the Green’s function tech-
niques adapted for a multiband electronic system. Thus the conditions for
different types of localized impurity levels to appear within the bias-induced
band gap in the electronic spectrum of this system and then extension of these
levels into specific narrow energy bands at impurity concentrations above cer-
tain characteristic values are demonstrated. The analysis of these processes
demonstrated their similarities to those known from literature on various crys-
talline materials with impurities. Also, some specifics of the present system
were shown in considerable bias dependencies of impurity bands and of critical
concentrations for their formation. These dependencies can be further treated
to provide some specific phase diagrams in variable "bias concentrations", as
it took place in antiferromagnetic insulators where such diagrams in variable
"magnetic field concentration" were quite informative [132]. A practical appli-
cation of the described electronic band structure is suggested in a form of highly
sensitive bias control on the system’s conductivity through the impurity sub-
band when brought close to a regime of bias-controlled Mott metal-insulator
transition.

Appendix

In calculation of the interaction function, Eq. (6.15), the essential task consists
in the integration as follows:

1

2N

∑
k

eik·n
(
G

(0)
k

)
jj

=
2 cosK · n

W 2

∫ W

0

J0

(
ξn

~vF

)
× (Nj(ε)− ξ2)ξdξ

(ξ2 − ξ2
1) (ξ2 − ξ2

2)
, (6.25)

where J0 is the zeroth order Bessel function, ξ2
1,2 = ε2 + ε2

2 ± δ2(ε) are the
complex poles of detĜ(0)

k in ξ variable, and all |Nj(ε)| ∼ ε2
g [as seen from Eq.

(6.6]). Since this integral is fast converging after ξ & εg, its upper limit can be
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safely extended to infinity. Then, after expanding the factor besides the Bessel
function in simple fractions,

Nj(ε, ξ)

(ξ2 − ξ2
1) (ξ2 − ξ2

2)
=
Nj(ε)− ξ2

1

ξ2 − ξ2
1

− Nj(ε)− ξ2
2

ξ2 − ξ2
2

, (6.26)

the Hankel-Nicholson integration formula can be applied to each of them:∫ ∞
0

J0(x)xdx

x2 + z2
= K0(z), (6.27)

with the zeroth order MacDonald function K0, valid for complex z if Rez > 0
(Ref. [197]). The z-arguments related to the terms in Eq. (6.26), can be defined
as z2

1,2 = −ξ2
1,2(n/~vF)2 and the above requirement will read Re

√
−ξ2

1,2 > 0.

For the relevant energy range 0 < εg−ε� εg, we can use the choices
√
−ξ2

1,2 =√√
γ2(ε)− ε2 − ε2

2 ∓ i
√√

γ2(ε) + ε2 + ε2
2. At last, for relevant distances n &

r0, the resulting K0(z1,2) have big enough arguments, |z1,2| = |nξ1,2/~vF| & 1,
to use their asymptotics: K0(z1) ≈ −

√
2/πz1e−z1 and K0(z2) ≈

√
2/πz2e−z2 .

Then, taking account of all prefactors besides these expressions present in Eqs.
(6.15) and (6.26), we arrive at the final result of Eq. (6.15).
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We have performed electronic-structure and lattice-dynamics calculations on
the AB and AA structures of bilayer graphene. We study the effect of external
electric fields and compare results obtained with different levels of theory to
existing theoretical and experimental results. Application of an external field
to the AB bilayer alters the electronic spectrum, with the bands changing under
bias from a parabolic to a "Mexican hat" structure. This results in a semi-
metal-to-semiconductor phase transition, with the size of the induced electronic
band-gap being tuneable through the field strength. A reduction of continuous
symmetry from a hexagonal to a triangular lattice is also evidenced through in-
plane electronic charge inhomogeneities between the sublattices. When spin-
orbit coupling is turned on for the AB system, we find that the bulk gap
decreases, gradually increasing for larger intensities of the bias. Under large
bias the energy dispersion recovers the Mexican hat structure, since the energy
interaction between the layers balances the coupling interaction. We find that
external bias perturbs the harmonic phonon spectra and leads to anomalous
behaviour of the out-of-plane flexural ZA and layer-breathing ZO’ modes. For
the AA system, the electronic and phonon dispersions both remain stable under
bias, but the phonon spectrum exhibits zone-center imaginary modes due to
layer-sliding dynamical instabilities.
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I. Introduction

Among the numerous derivatives of the monolayer graphene (MLG) system,
special interest has been given to the multi-layer allotropes [21] in partic-
ular Bernal bilayer graphene with AB stacking (AB-BLG) [230]. Like ML
graphene, BL graphene also displays unconventional properties [10] that are
relevant to technological developments including tunnelling field-effect tran-
sistors [231] and high-rate lithium-sulphur batteries [232, 233], nanophotonics
[234], sensor modelling [235], among others. These properties originate from
the weak coupling between layers, which allows for the properties of the base
ML graphene material to be retained. Despite the similarities between ML and
BL graphene, there are also significant differences between the two allotropes.
ML graphene shows a linear band dispersion near the Fermi energy, and the
valence and conduction bands touch at the K-point (the Dirac point), yielding
the characteristic dispersion of relativistic massless Dirac electrons [236, 237].
For unbiased AB-BLG, on the other hand, the interlayer coupling produces
a parabolic-like band structure around the K-point. These different features
result in a vanishing of the density-of-states (DOS) at the Fermi energy for
the MLG [237], in contrast to a finite DOS evidenced in the AB-BLG. An-
other characteristic feature of AB-BLG is the behaviour of the system when
an electric field is applied normal to the layers. It has recently been shown that
biased AB-BLG can form a Wigner crystal, due to the existence of different
kinetic-energy dispersions at different electron densities [238]. The energy band
gap can be tuned in proportion to the intensity of the applied bias [230], and
two distinct zero-temperature quantum phases at different electron densities
can be formed [238, 239]. For the AB-BLG system, the presence of significant
spin-orbit coupling (SOC) effects has been evidenced by topological-insulator
behaviour with a finite spin Hall conductivity [240]. Moreover, it has also
been shown that biased BLG may exhibit two topologically-distinct phases
depending on the intensity of the Rashba spin-orbit coupling (RSOC) [241].
For weak coupling, the system exhibits a quantum-valley Hall state, which can
then transition to a topological insulator in the presence of strong coupling
effects. It is possible to transition between these two phases by tuning the ap-
plied electric field [241]. In the presence of strong RSOC, and for sufficiently
short-range electron-electron interactions, the system minimises its energy by
adopting broken-symmetry states (mostly those which break rotational sym-
metry) in the limit of low densities [242]. These instabilities occur due to the
energy dispersion having a minimum in a region of momentum-space which is
bounded by two concentric circles with finite radius (annuli) [243]. Moreover,
distortions to the Fermi surface, resulting from a momentum-space change in
the Fermi radius (a Pomeranchuk instability) can reduce the lattice symmetry
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and lead to spontaneous longitudinal currents [243]. Another stacking arrange-
ment of BL graphene, which coexists with the AB stacking, is the AA structure
where the carbon atoms are positioned directly above each other in consecu-
tive layers. The electronic properties differ from those of AB-BLG due to the
stacking arrangement. The AA stacking has been experimentally observed in
disordered or pregraphitic carbon, also known as turbostratic graphite, and can
be distinguished from ML graphene by so-called tilting experiments [244, 245].
However, as the space groups of AA-BLG and MLG are the same (P6/mmm),
similarities between the two are difficult to predict. Between the two stacking
environments, the AB stacking is the most energetically favourable form, and is
separated from the AA stacking by a small energy barrier. Despite its instabil-
ity, AA-BLG has started to receive significant attention. The AA configuration
shows unusual electronic properties, with two degenerate electronic and hole
bands crossing at the Fermi energy [246]. This electronic structure supports
several electron and electron-phonon instabilities, which include, among others,
a shear-shift instability [246]. It has further been observed that small pertur-
bations can destabilize the degenerate spectrum and generate an excitonic gap
[246, 247]. While the AB-BLG system is well studied both experimentally and
theoretically, comparatively less attention has been given to the AA stacking.
In the present work, we aim to provide more insight into the electronic and
vibrational properties of biased AA-BLG, and to make a comparison to the
AB-system, by employing first-principles simulation techniques. We find that
while the AB system presents variations on the electronic densities as a func-
tion of the applied bias, we observe that the AA system remains unaltered
when an electric field is applied. SOC effects are also considerable for the
biased AB-system, with the band-gap presenting different scaling behaviours
according to the field intensities. The phonon dispersions of the biased AB
system shows instabilities of the out-of-plane acoustic and optic modes, when
compared to the stability of these modes for the unbiased system. On the other
hand, phonon dispersions of the AA system remain stable under bias, but the
phonon spectrum exhibits a zone-centre imaginary mode resulting form the
shear-mode instability.

II. Theoretical Framework

We study the electronic structure of the two different stacking environments of
the BLG system (crystal structure of AB- and AA-BLG presented in Fig. 7.1)
using density-functional theory (DFT) with the Local-Density Approximation
(LDA) functional. An external electric field is applied in the direction of the
interlayer plane with variable magnitude. Lattice dynamics are performed
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Figure 7.1: Supercell of the AB- (space group , n. 164; a) and AA-BLG (space group
P6/mmm, n. 191; b) systems, where the black line shows the unit-cell. BLG consists of
two coupled monolayers of carbon atoms, each with a honeycomb crystal structure. In order
to satisfy the translational and symmetry properties of the Bravais lattice, the honeycomb
lattice can be seen as two triangular sublattices, mathematically labelled as inequivalent A
and B lattices, each of which contains two atoms in the unit cell within each C sheet, with
atom [a1, a2] ∈ A and [b1,b2] ∈ B for layer 1 and 2. The layers of the AB-BLG are arranged
in such a way that one of the atoms from the lower-layer b1 is directly below atom a2 from
the upper layer, and the remaining two atoms, a1 and b2, are shifted from each other by a
vector displacement [237]. For the AA-BLG, the carbon atoms are aligned in the consecutive
layers, directly above/below each other (a1 with a2 and b1 with b2).

within the harmonic approximation, which yields phonon frequencies and the
constant-volume terms in the free energy from lattice vibrations.

II.1 Density Functional Theory

Electronic-structure calculations were performed within the pseudopotential
plane-wave density-functional theory (DFT) framework, as implemented in
the Vienna Ab-initio Simulation Package [248, 249, 250] code. The Ceper-
ley and Alder form of the Local-Density Approximation (LDA) functional,
parameterized by Perdew and Zunger [72] was used in conjunction with pro-
jector augmented-wave (PAW) pseudopotentials [69, 251]. We selected the
LDA functional because it is known to perform well at capturing the interlayer
distance in graphite and multi-layer graphene allotropes, as well as the essen-
tial physics of the electronic structure, and also performs well for calculating
interatomic force constants and phonon frequencies [252, 253]. A plane-wave
cut-off of 800 eV was applied in all calculations; although convergence of the
electronic structure was attained at a lower cut-off of 600 eV, a higher value
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was chosen to improve the description of the structural parameters and forces,
which is important for accurate lattice-dynamics calculations [254]. The Bril-
louin zone (BZ) was sampled with Γ-centred Monkhorst-Pack meshes [255]
with 44×44×1 and 90×90×1 subdivisions for AA- and AB-BLG respectively.
It was found necessary to employ the denser k-point mesh for the AA-BLG
model due to differences in the DFT electronic band structure relative to the
spectra expected from tight-binding theory [230, 256]. The vacuum spacing
between periodic images along the Z direction was set to 15

◦

A for both config-
urations, and dipole corrections to the potential were applied to avoid interac-
tions between periodic images. Lattice-dynamics calculations were carried out
using the Parlinski-Li-Kawazoe supercell finite-displacement method [81, 82],
which is implemented in the Phonopy [257, 258] package; a detailed descrip-
tion of the theoretical implementation can be found in Refs. [254] and [83].
The interatomic force constants were obtained by performing single-point force
calculations on a series of symmetry-inequivalent displaced structures and fit-
ting the resulting force/displacement curves to a harmonic function. VASP was
used as the force calculator [82] and the calculations were performed on 4×4×1
supercells using a reduced k-point sampling mesh of 12×12×1 for both phases.
For the calculations under bias, the electric field was applied during the force-
constant calculations. To construct the phonon density of states, the phonon
frequencies were sampled on an interpolated 48×48×1 q-point mesh. A non-
analytical correction (NAC) was applied when computing the phonon-band
dispersion [259] to correct for long-range Coulomb interactions. The requisite
Born effective-charges and static dielectric constant were computed using the
density-functional perturbation theory (DFPT) routines implemented in VASP
[260]. Convergence of these quantities required increasing the k-point mesh for
the AB system up to 80×80×1, whereas for the AA system the 90×90×1 mesh
was found to be sufficient. A bias was applied in the calculations as an external
electrostatic field in the Z direction and geometries were re-optimised with dif-
ferent intensities of the field. Born effective-charges and dielectric tensors were
calculated by considering the field perturbations. For the lattice-dynamics
calculations, the bias was also applied during the calculations of the force con-
stants.
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Figure 7.2: Low-energy DFT-LDA electronic band-structure of bilayer graphene with AB
(a) and AA (b) stacking arrangements. Each dispersion is shown at different applied field
intensities (label units given in eV/

◦
A).

III. Results and Discussion

The lattice parameters obtained within the LDA are a0=2.42
◦

A and c0=6.69
◦

A for
the AB system, and a0=2.45

◦

A and c0=6.67
◦

A for the AA system. The intra-
layer distance (C-C bond lengths) are on the order of 1.41

◦

A in both stacking
environments, and the interlayer distance was calculated to be 3.35

◦

A and
3.34

◦

A for the AB and AA configurations, respectively. The parameters for
AB-BLG are in agreement with those discussed in Ref. [261], where the calcu-
lations were also performed with DFT-LDA (intra-layer distance of 1.41

◦

A and
interlayer distance of 3.31

◦

A). The present interlayer parameters also compare
well to experimental results, where for the Bernal graphite the value of 3.35

◦

A
[262] was observed. However, for the AA-BLG the present interlayer distance
is found to be slightly lower than results found in literature: 3.59

◦

A from DFT-
LDA calculations [261], and 3.55

◦

A from experimental observations on the AA
graphite structure [263].

III.1 Electronic Spectrum from a Density-Functional Perspective

To study the electronic structure, we calculated the low-energy band disper-
sions using LDA-DFT with three intensities of applied electric field. The re-
sults are presented in Fig. 7.2. For the AB-BLG configuration (Fig. 7.2.a),
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Figure 7.3: Isosurfaces (value defined at 0.016) of the electron charge densities around the
Fermi energy for the AB-BLG system without (a) and with (b) an applied bias (electric field
intensity of 0.05 eV/

◦
A).

when E=0 eV/
◦

A, a zero-gap parabolic dispersion around the K-point is ob-
served. The LDA-DFT electronic dispersion for the AB system shows similar
features to the band-structure obtained from the tight-binding Hamiltonian
[256]. When a finite electric-field is applied perpendicular to the graphene lay-
ers in AB-BLG, the two layers are subject to inequivalent potentials. This effect
breaks the inversion symmetry, resulting in the opening of a single-electron gap
[230] at the K-point, which can be tuned up to mid-infrared energies (∼300
meV) [202]. A spontaneous translation symmetry breaking also occurs, result-
ing in a charge separation between the inequivalent sublattices with spatial
in-plane charge inhomogeneities [238, 9]. Fig. 7.3 plots the electron charge
densities of AB-BLG in the vicinity of the Fermi energy, inspection of which
reveals differences between the isosurfaces without (a) and with (b) a bias ap-
plied. In the unbiased system (Fig. 7.3.a), the charge densities show hexagonal
symmetry, indicating homogeneous electron delocalisation between the sublat-
tices. On the other hand, when an interlayer electric field is applied (Fig.
7.3.b), redistribution of electron densities leads to charge separation between
the A and B sublattices, leading to in-plane charge inhomogeneities [238].

The AA-stacking environment differs from the Bernal system by having a lin-
ear dispersion with two bands crossing each other at the Fermi energy [237].
Application of an external field does not alter the width of the band gap, and
electronic structure remains qualitatively the same. This single-electron prop-
erty seems to be quite stable to external bias both in the LDA calculations
and also with a tight-binding Hamiltonian [237]. These results are consistent
with the electronic dispersion calculated with the tight-binding method [256],
although, as noted above, obtaining a fully-converged dispersion from the DFT
calculations required very dense k-point sampling. This is because the band
crossing does not occur at a high-symmetry k-point, and thus a dense mesh
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Figure 7.4: Low-energy DFT-LDA electronic band-structure of AB-stacked bilayer
graphene. (a) Dispersions with different intensities of an applied external interlayer electric
field, calculated with spin-orbit coupling. (b) Dispersions of a biased system (E=0.20eV/

◦
A)

with and without spin-orbit coupling included. Field strengths are given in eV/
◦
A.

is required in order to include sufficient sampling around the feature to ac-
curately represent the bands in the vicinity of the Fermi energy. Under bias,
the dispersion relations of the AB system show a "Mexican hat" structure
[230, 264]. With increasing field intensity, the width of the gap increases and
the radius of the hat feature widens, with the two minima getting progres-
sively further apart from the K-point [230]. This behaviour is consistent with
the results from Ref. [238], which suggest that regions of the dispersion should
exhibit different scaling behaviour as a function of momentum [238]. More-
over, controlling the magnitude of the gap through additional screening with
a transverse electric field will afford control over the density of electrons [214].
Fig. 7.4.a shows the electronic band-structure when spin-orbit coupling (SOC)
is included in the calculations. In the present study, we find that the bulk
gap decreases when SOC is turned on, and then increases gradually for in-
creasing field intensities (Fig. 7.4.a) under large filed intensities (∼0.4 eV/

◦

A),
the energy dispersion recovers the Mexican hat structure, since the instability
occurring at the Fermi-surface competes with the SOC interaction; the energy
interaction between the layers balances the coupling interaction. Moreover,
Ref. [231] reported that the gap vanished as the SOC parameter increases,
and that on further increasing the coupling parameter it then reopens with
a behaviour characteristic of a band inversion, thus suggesting a topological
phase transition [241]. However, since the model employed in [241] is different
from the computations carried out for the presented work, a direct comparison
between the two sets of results is not straightforward.
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Figure 7.5: Relative free energy (Helmoltz) of the two graphene stacking environments,
AB and AA (no external electric-bias is applied). The AB arrangement is calculated to be
the most energetically-stable structure up to 800 K.

III.2 Structural Instabilities of Bilayer Graphene - Lattice-Dynamics

Fig. 7.5 shows the constant-volume (Helmoltz) free energy of the AB and AA
bilayer systems calculated without an applied bias. The energies are referenced
to the lowest energy structure, which in the present calculations is the AB
system. Our calculations indicate that the AA system is energetically unstable
with respect to the AB phase up to approx. 800 K, above which the AA
stacking becomes lower in energy. The calculated in-plane phonon dispersion
agrees well with the experimental measurements on graphite presented in [265],
apart from a small shift of the higher-frequency TO and LO modes. LDA
calculations frequently overestimate the energies of higher-frequency phonons,
but despite this difference the characteristic features of the phonon dispersion
are well reproduced. Fig. 7.6 compares the phonon dispersions of the two
stacking modes. Both stacking configurations have similar mode characters,
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although differences emerge at the zone-centre. For both systems and at low
q-vectors, the in-plane transverse acoustic (TA) and longitudinal acoustic (LA)
modes show linear dispersions (Fig. 7.6) [256, 266]. Moreover, the AB-system
presents a doubly-degenerate LA mode has zero frequency at the Γ-point, the
TA mode (also known as the shear-mode) has a non-zero frequency at the zone-
center [266] (ν=0.82 THz) (Fig. 7.6). The ZA mode is the flexural acoustic
mode, which corresponds to out-of-plane, in-phase atomic displacements. In
contrast to the TA and LA modes, the ZA branch shows a parabolic dispersion,
i.e. ∼q2 (Fig. 7.6) [256, 266, 267, 268], close to the Γ-point, indicating a low
group velocity [267] and being a characteristic feature of layered materials
[266, 267]. The existence of a flexural mode is also a signature of 2D systems,
and in particular is a mode which is typically found in graphene-like systems.
Since the long-wave flexural mode has the lowest frequency, it is the easiest to
excite [268]. At slightly higher frequencies, the out-of-plane ZO’ mode (Fig.
7.6) can be observed, which corresponds to interlayer motion along the Z-axis
(a layer-breathing mode). The other out-of-plane optic modes are characterised
by the doubly degenerate ZO branch. At the Γ-point, the interlayer coupling
causes the LO and TO modes to split into two doubly-degenerate branches,
both of which correspond to in-plane relative motion of atoms. With the
exception of the ZA and ZO’ modes, all the frequency branches have symmetry-
imposed degeneracy at Γ. For the AA system, a small phonon instability is
observed at the Γ-point, which is denoted by an imaginary mode (ν = ı 1.04
THz). This indicates that the AA-system is dynamically unstable, and prefers
to adopt the AB-stacking configuration, in accordance with the free energies of
Fig. 7.5. As expected, the imaginary mode is a TA branch, which corresponds
to the shear displacement of the layers with respect to one another. The ZA
mode also shows instabilities in the vicinity of the zone-center, but has zero
frequency at Γ. The ZO’ breathing mode of AA-stacked bilayer graphene is
located in a similar frequency range to the corresponding mode in AB graphene,
at ν=2.16 and ν=2.25 THz, respectively. The biggest frequency differences
are observed for the TO modes, which in the AB system occurs at higher
frequency than in the AA configuration, with 0.72 THz of difference. This
is partly because the LO/TO is larger in the AA than the AB system (0.57
and 0.18 THz, respectively). Table 7.1 presents a summary of the zone-centre
frequencies for the two stacking configurations. We note that the AA phonon
dispersion does not correspond to that in Ref. [269], where, in contrast to
the present results, imaginary frequencies are not observed (with calculations
carried out using the Born-von-Karman model of lattice dynamics for in-plane
atomic coupling and the Lennard-Jones potential for interlayer coupling [269]).
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Table 7.1: Frequencies (THz) of the Γ-point phonon modes in AB- and AA-stacked bilayer
graphene.

Mode ZA ZO’ TA LA ZO TO LO
AB 0.00 2.25 0.82 0.00 26.72 47.86 48.04
AA 0.00 2.16 ı 1.04 0.00 26.82 47.14 47.71

The branches which originate from the out-of-plane modes at the Γ-point, i.e.
ZA, ZO’ and ZO, become degenerate at the K-point (Fig. 7.6). The in-plane
LO and LA phonon branches also meet at the K-point, giving rise to a doubly-
degenerate phonon band. It is also noteworthy that the dispersions of the
out-of-plane modes behave linearly around the K-point in AA-BLG, whereas
those in AB-BLG show a parabolic-like dispersion similar to that suggested in
[269]. Features in the electronic spectra near the K-point in the two BLG sys-
tems are therefore also reflected in the phonon spectra (c.f. Figs. 7.2 and 7.6).
Further lattice-dynamics calculations were carried out to investigate the effect
of electric fields on the phonon dispersions (Fig. 7.7). Non-analytical correc-
tions to the dynamical matrix at q→ 0 were considered in all calculations. We
find that the dispersion of the AA system is relatively insensitive to the applied
external bias, and that for all applied fields the Γ-point instability persists. In
comparison, the low-frequency branches of the AB band-structure show a sig-
nificant response to the field (Figure 7.7). This effect results from the inclusion
of non-analytical corrections; when these corrections are not included, the dis-
persions are relatively unaffected by the bias. The layer-breathing mode (ZO’)
displays a discontinuity at the Γ-point, with different frequencies for different
directions of approach. Moreover, the flexural-acoustic (ZA) mode shows insta-
bilities in the vicinity of the zone-centre, but continue to show zero frequency
at the Γ-point. Since the long-wave flexural mode has the lowest frequency,
it is the easiest to excite [268] and is therefore more sensitive to the bias. At
the K-point (Figure 7.7, inset), as occurs for the electronic band-structure the
degeneracy of the out-of-plane modes split, with the magnitude of the splitting
depending on the size of the applied bias.
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Figure 7.6: Phonon dispersions of the AB- and AA-stacked bilayer graphene systems
computed with the harmonic approximation (blue solid and red dashed lines, respectively).
The right-hand panel shows the dispersion along the K-Γ path. The phonon branches are
denoted by the symbols of the Γ-point phonons, several of which become degenerate at the
K-point.
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IV. Conclusions

In summary, we have performed a detailed first-principles study of the effect
of applied fields on the electronic structure and lattice dynamics of bilayer
graphene. Application of an external field to the AB-stacked bilayer graphene
system leads to drastic changes in the electronic properties, leading to the open-
ing of the gap and asymmetry in the dispersion. This in turn induces in-plane
inhomogeneities in the charge distribution on the sublattices, and the Coulomb
interaction between electrons will thus cause a potential difference between the
layers. Our results therefore show that the electron density can be controlled
by tuning the band-gap width and dispersion asymmetry. Spin-orbit coupling
has a significant effect on the dispersion as short-range electron-electron cor-
relations become important. The Mexican-hat structure disappears under low
bias, and the energy gap decreases. At larger field strength, the asymmetry
in the dispersion persists, since the energy scale set by the Fermi-surface in-
stability is minimized. On the other hand, the electronic structure of the AA
system is relatively stable under bias. As for its electronic structure, applied
fields cause the phonon dispersions of the AB-stacked system to change sig-
nificantly when non-analytical corrections for long-range Coulomb interactions
are taken into account. These corrections mainly affect the lower-frequency
out-of-plane ZA and ZO’ modes. The phonon dispersion of the AA system
shows degenerate imaginary modes at the point, indicating the presence of a
phonon instability. The dispersion of this stacking configuration is relatively
insensitive to bias and does not change significantly in response to an ap-
plied field. In order to obtain better consistency with available literature, we
would need to go beyond LDA functional. The ground-state is likely to have
additional broken-symmetry configurations, and the lifting of spin and valley
degeneracies may depend on long-range fluctuations, effects which are not well
captured by local DFT functionals. For example, in the literature it has been
observed that the AA stacking configuration may be stabilised by an excitonic
gap [246]. To study such effects, one would need to resort to the two-body
Green’s function method (Bethe-Salpeter equation), a possibility which we are
currently exploring.
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Chapter 8

Conclusions and General
Discussion of the Thesis Results

8.1 High Critical Temperature Superconductivity

The first three articles presented in this thesis (chapters three, four and five) are
based mainly on the study of the electronic, optical, and transport properties
when introducing disordered impurity centers into specific layered crystalline
structures with the goal to study the high critical temperature superconduc-
tors. Moreover, we have seen that introducing such type of perturbations may
change the electronic and optical properties by including a number of features
that enrich our understanding of this general field in condensed matter physics.

In the first article we study the quasiparticle spectrum of d -wave superconduc-
tors with finite concentration of impurity centers. We demonstrated that the
restructuring of the spectrum shows similarities to that previously established
for point-like impurity perturbations; although some unique features of the
extended nature of the perturbation also emerge. We found that the effects
on the quasiparticle DOS and on the SC order parameter result from differ-
ent irreducible representations of the point symmetry group of the impurity
center. Compared to the case of spin-dependent extended perturbation, the
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suppression of SC order close to the considered impurity is much weaker. A
generalization of the method of GEs for quasiparticle self-energy is obtained
for the extended impurity centers. The self-consistent procedure is developed,
generalizing the known SCTMA formulation for point-like centers, and a qual-
itative similarity with that case is demonstrated.

The second article emphasis the formation of impurity localized levels within
the SC gap of SC iron pnictides, by considering local and nonmagnetic im-
purities. By increasing the impurity concentration, we show that these levels
develop towards specific bands of extended quasiparticle states.By employing
different types of GEs for a self-energy matrix, we show that the different en-
ergy states within the SC gap reveal a complex oscillatory structure of indirect
interactions between impurity centers, showing crossovers between localized
and extended states. The proposed theoretical methodology employed in this
work can be further adapted for more involved types of impurity perturbations
of SC iron pnictides; these include magnetic and nonlocal perturbations.

In the third article we study the effects of local and nonmagnetic impurities
on the electronic transport properties of SC iron pnictides. Similarly to what
had been considered in the second article, we observe a modification of the
quasiparticle spectra in the doped compound - theses consist of the formation
of localized in-gap impurity states and their development into specific narrow
bands of impurity quasiparticles at impurity concentrations above a critical
value, c0. The main conclusions taken from this work shows that the transport
properties of the studied systems are mainly affected by the impurity band-
like states that can be very strongly pronounced, either for high-frequency and
for static transport processes. The experimental verification of the predictions
taken from the presented work, would be of evident interest, since these can
open perspectives for important practical applications, e.g., in narrow-band
microwave devices or advanced low-temperature sensors.

Following the theoretical framework employed on the study of the electronic
quasiparticle spectra, with the two-time Green’s functions technique in pres-
ence of randomly distributed impurity centers, we can describe the physical
parameters and use these for practical calculations of observable physical prop-
erties of the disordered systems.

The results obtained from the general framework of disordered systems con-
sider the excitation spectra as divided into extended and localized states, with
the existence of border points between states and known as mobility edges.
Therefore, by changing the parameters of disorder (i.e. impurity concentra-
tion, impurity perturbation strength and symmetry) or by applying an exter-
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8.2 Graphene-Based Systems

nal perturbation, it is possible to induce changes onto the parameters of the
electronic spectrum.

For disordered systems, the Anderson model of disorder is usually applied. The
Anderson transition considers that two mobility edges collapse at a certain
critical strength of disorder (randomly fluctuating at each lattice site) so that
the range of extended states disappears and in the spectrum only localized
states emerge. Other types of similar electronic topological transitions can be
considered when disorder by impurity perturbation is identical at randomly
distributed sites. This is known as the Lifshitz model, and corresponds to the
so-called coherent restructuring of spectrum when the impurity concentration
reaches in average the level of overlap between the next-neighbor impurity
states.

In conclusion, the distinction between two types of excitation states can be
characterized by considering the above mentioned group expansions of Green’s
functions: the first which are the fully renormalized, and more adequate for
extended states; or the second type, which are non-renormalized and best
suited for localized states.

8.2 Graphene-Based Systems

With respect to the bilayer graphene system, we have shown the possibility
of tuning the electrical conduction through variations of applied potential, by
employing two different theoretical methodologies.

In the first study, we have considered the Green’s function techniques adapted
for a multiband electronic system and studied the effects of localized on-site
perturbations by disperse impurities on a AB-stacked bilayer graphene sys-
tem under the applied electrical bias between the layers. The conditions for
different types of localized impurity levels appearing within the bias-induced
band gap and respective extension of these levels into specific narrow energy
bands at impurity concentrations above certain characteristic values have been
demonstrated. Some specifics of the studied system were shown to be consid-
erably bias dependent of the impurity bands and of critical concentrations for
their formation. These dependencies can be further analysed to provide some
specific phase diagrams with respect to "bias concentrations", and similarly to
what had been considered for antiferromagnetic insulators [132]. A practical
application of the described electronic band structure is suggested in a form of
highly sensitive bias control on the conductivity of the studied system through
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the impurity subband when brought close to a regime of bias-controlled Mott
metal-insulator transition.

In the second study, we have considered application of an external field both to
the AB- and AA-stacked bilayer graphene system by employing density func-
tional theory. We have shown that such a perturbation on the AB system leads
to drastic changes in the electronic properties, leading to the opening of the
gap. This in turn induces in-plane inhomogeneities in the charge distribution
on the sublattices, and the Coulomb interaction between electrons will thus
cause a potential difference between the layers. Our results therefore show
that the electron density can be controlled by tuning the band-gap width. As
for the phonon properties of the AB system, applied fields cause the phonon
dispersions to change significantly when non-analytical corrections for long-
range Coulomb interactions are taken into account. These corrections mainly
affect the lower-frequency out-of-plane ZA and ZO’ modes. On the other hand,
the electronic structure of the AA system is relatively stable under bias. The
phonon dispersion of this latter system shows degenerate imaginary modes at
the zone-centre, indicating the presence of a phonon instability. The disper-
sion of this stacking configuration is relatively insensitive to bias and does not
change significantly in response to an applied field.

8.3 Future Perspectives

The Green’s function analysis of the quasiparticle spectra in a SC iron pnictide
with local and nonmagnetic impurities (simplest perturbation type) allows one
to describe the formation of impurity localized levels within SC gap and, with
increasing impurity concentration, the evolution of the localized states into
bands of extended quasiparticle states. The developed spectral characteristics
are used as a prediction for several observable impurity effects. The theoretical
treatment employed in these works can be further adapted for analysis of more
involved types of impurity perturbations of SC iron pnictides; these include
magnetic and nonlocal perturbations. Moreover, work can be extended by
considering the higher order terms of group expansions, which may allow one
to obtain a more complete picture of different symmetry types of impurity
effects on the SC material.

The considered theoretical model, used in the presented work, can also be
broadened to include a more realistic multiorbital structures of the initial iron
pnictide system and more general types of impurity perturbations, as already
considered earlier for the d-wave cuprate systems [199]. Such application for
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8.3 Future Perspectives

iron pnictides can lead to some quantitative modifications of the results; how-
ever the main qualitative features regarding the possibility of forming new
narrow in-gap quasiparticle bands and related sharp resonant peaks in trans-
port coefficients should be still be evidneced.

The work carried so far on graphene was to consider monolayer or bilayer sys-
tems for which the sheets have been considered to be a 2D flatland. However,
and taking into account that the monolayer graphene sheet is not a simple
plane; in reality the sheet suffers certain ripples and curvatures, forming topo-
logical defects described by lattice deslocations. The Dirac cones of graphene
can be deformed in different forms, depending on the way that deformations
may modify the lattice. Strains, curvature, and topological defects influence
the electronic states near the Dirac cones. Therefore, we intend to pursue this
problematic by employing the well-known methods of Quantum Field Theory
in Curved Space (QFTC). This method is well adapted to the study of the
monolayer sheet under the influence of geometric deformations, since the elec-
tronic dynamics is already described to be of relativistic-type. In curved space
one needs to work the problem with the level of QFTC.

Within the framework of the quantum field theory in curved space, and by
adopting a low-energy effective Dirac equation by considering a curved space
metric, we expect to obtain a geometry-induced field to describe the graphene
deformation. We envisage that from a specific out-of-plane deformation, which
satisfies the buckled honeycomb structure, it is possible to arrive at the Dirac
harmonic oscillator equation, where the pseudo-magnetic field naturally ap-
pears. As a consequence of the Dirac harmonic oscillator, it is possible to ad-
dress the physics of the Landau levels. Through mechanical strain, induced on
the graphene lattice structure it is possible to tune the dynamics of the charge
carriers. The electro-mechanical coupling yields very large pseudo-magnetic
fields for small strain fields, which offer new scientific opportunities which are
not possible to perform with ordinary laboratory magnets.

The study of geometric deformation on graphene had been studied recently in
works carried out by Chaves et al.[94]. However, we intend to pursue a distinct
geometric deformation considering a more natural curvature that satisfies the
lattice symmetry of the system. Moreover, such a curvature is a generalization
of the works presented in the theoretical framework in subsection 2.6.4, which
we envisage a future manuscript for publication.

The geometric language to describe electronic properties of graphene will be
explored. In-plane and out-of-the plane displacements of graphene are ex-
pected to be formulated as curvature and the corresponding Dirac equation
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derived for a general geometry. A simple periodic out-of-the plane ripple is to
be formulated and investigated, and we expect that the ripple will induce a
mass gap on the electronic a band structure, due to breaking of the sublattice
symmetry of the graphene sheet.

Perturbations to the system (deformation, defects, disorder) are usually stud-
ied by means of Tight-Binding methodologies; or through continuum models
by employing quantum field theory in curved spacetime. Currently atomistic
computational methodologies applied to solid state physics or chemistry, come
as an alternative since these are quite robust and efficient to compute several
observables. Therefore, another future research perspective will be to perform
ab-initio density functional theory calculations on different deformed graphene
sheets with different applied strain fields, where the deformation amplitude
and modulation frequency (lattice parameter; supercell size) should satisfy the
symmetry of the buckled honeycomb structure.

The hexagonal unit-cell of the pristine single-sheet graphene is composed by
two atoms. However such a small unit-cell is not sufficient to simulate the
deformation potential, and such has to be modelled by the use of supercells.
However heavier computational resources are required to perform the desired
calculations. Therefore one has to find a compromise between the size of the
system and the available resources.

Another prospect that we intend to pursue as continuation of the work carried
out on the AB- and AA-BLG systems under applied electric fields, is to com-
pute the lattice thermal conductivity (κ) for each system, by employing third-
order phonon-phonon interactions. We expect that by increasing the external
bias, κ will decrease. Since the electric field induces the opening of an elec-
tronic band gap for the AB system, evidencing a semimetal-to-semiconductor
phase transition, this effect will thus affect κ. On the other hand, the lattice
thermal conductivity will tend to decrease due to disorder introduced in the
system thus altering the scattering rate of the phonon-phonon collisions.

Graphene is a very promising material for electronic devices. Moreover from
straintronics, it is possible to engineer the electronic and optical properties
to ensure that the system can be employed for the desired applications. For
example, bilayer graphene system which by applying external bias (chapter 5
and 6) one can modify the electronic band gap.
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