

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/176072

Palanca Cámara, J.; Terrasa Barrena, AM.; Rodriguez, S.; Carrascosa Casamayor, C.;
Julian Inglada, VJ. (2021). An agent-based simulation framework for the study of urban
delivery. Neurocomputing. 423:679-688. https://doi.org/10.1016/j.neucom.2020.03.117

https://doi.org/10.1016/j.neucom.2020.03.117

Elsevier

An agent-based simulation framework for the study of

urban delivery

J. Palancaa, A. Terrasaa, S. Rodriguezb, C. Carrascosaa, V. Juliana

aInstitut Valencià d’Investigació en Intel·ligència Artificial (VRAIN)
Universitat Politècnica de València

{jpalanca,aterrasa,carrasco,vinglada}@dsic.upv.es
bBISITE, University of Salamanca, srg@usal.es

Abstract

In recent years, cities and especially urban mobility have undergone remark-
able changes. Significant advances in technology have been translated into
new mobility services for both goods and people. One evident change has
been the transformation of traditional vehicle fleets into more open fleets,
in the sense that their members can proactively decide whether or not they
are part of a certain fleet and whether or not they perform certain services.
Fleets of this type make the decision-making process to be highly distributed,
and rule out some of the typically centralized decisions. The management
and control of this type of open fleets is severely more complex and, for this
reason, the availability of simulation tools that allow for their analysis can
be very useful. In accordance with this, the main contribution of this work
is the development of an agent-based simulation tool specifically designed
for the simulation of new urban mobility models. In this way, the tool can
simulate any type of fleet in different urban scenarios, including a solution of
the Last Mile Delivery problem, which is also included as a proof of concept
in this paper.

Keywords: multi-agent systems; coordination; smart cities

1. Introduction

Over the last few years, the increase of transportation and mobility in the
cities has become one of the main challenges facing us as a society. Urban mo-
bility is currently one of the causes of air pollution, traffic jams, problems in

Preprint submitted to Neurocomputing November 2, 2021

logistics and energy waste in current cities. Innovative solutions for commu-
nication networks, information processing and transport are currently being
developed to meet this challenge. These developments could ensure the most
efficient use of resources and provide flexible mobility solutions for citizens
and businesses [1].

Current technology for public transport in urban environments has im-
proved the quality of services offered to citizens. Existing technology provide
public transport managers with real-time information of the public transport
system. This allows service providers to manage their fleets in a more effec-
tive way [2]. In addition, these systems can provide up-to-date information
to passengers or users [3] anywhere (vehicles, stops, at home, etc.) and form
the basis of a complete Smart Transport System [4, 5].

Most urban mobility services in today’s cities have been transformed into
a new concept called “open fleet” [1]. An open fleet differs from traditional
fleets in the sense that individuals have complete autonomy and there is not
a centralized entity that governs the fleet. In an open fleet, vehicles may
interact with their environment in a Smart city, and join or leave the fleet at
any time. In any case, similarly to traditional fleets, an open fleet requires
a global regulatory entity that manages and coordinates the use of a limited
set of resources in order to provide a specific transportation service. The
efficiency of an open fleet depends on the use of appropriated coordination
and regulation mechanisms that deal with the problem of balancing global
and individual objectives. Regarding the coordination problem of urban
fleets, this has traditionally been studied for more closed fleets in different
areas, and its impact, especially in the field of emergency services [6] or, in
recent years, to the coordination of fleets for vehicle sharing [7].

According to this, urban mobility can be seen as a set of several au-
tonomous entities that will act interchangeably as offering or demanding
services. In this infrastructure, the entities will not be considered as just
black-boxes, but will also get interconnected with the global goal to improve
the coordination of the offered services. This view fits perfectly with the
definition of a multi-agent system (MAS). With this idea in mind, we pro-
pose the use of agent-based simulation tools for the study and analysis of the
more appropriated models, architectures or strategies for the management
of new urban mobility models or strategies. Agent-based simulation (ABS)
offers a way to model social systems composed of individuals that interact
with each other, learning from their experiences and adapting their behaviors
to achieve goals in the environment to which they have been destined, both

2

individually and collectively [8].
Taking these ideas into account, the main contribution of this work is

the development of an agent-based toolkit for the simulation of new models
or strategies in the urban mobility area and, specifically, for the problem of
deliveries in the urban environment, including the management of new open
fleets, as commented above. The simulation tool allows researchers or policy
makers to analyze new coordination and regulation strategies related with
urban mobility in order to obtain an efficient solution with regard to some
globally desirable parameters. This paper is an extension of a previous work
published in [9].

The rest of the paper is structured as follows. Section 2 analyzes some
previous work related with the topic. Section 3 presents the proposed sim-
ulation tool for simulating fleet scenarios; Section 4 illustrates a specific use
of the tool for the management of the last mile delivery problem. Finally,
Section 5 presents the conclusions of this paper.

2. Related Work

In the literature, there are several different approaches which try to simu-
late, or propose strategies for, the urban delivery problem. Although most of
the proposals focus on passenger mobility in the urban environment [10, 11],
there are also solutions centered on the movement of packages. In [12], a
review on transport, logistics, and mobility requirements in the Smart Cities
environments can be found.

Multi-Agent System has been one of the main technologies being used for
the development of approaches which are aimed at testing possible solutions
or strategies to the urban delivery problem. From a general perspective, the
best known simulation tools are SUMO [13] and MatSim [14]. SUMO can be
considered a traffic flow simulation platform, including vehicles, any public
transportation, and also pedestrians. It includes different tools and add-ons
which offer functionalities such as locating routes or V2X communications. It
provides multiple application programming interfaces to control the simula-
tion in many ways. On the other hand, MatSim is an agent-based simulation
framework for implementing large-scale agent-based transport simulations.
MatSim allows the design of agents formed by a set of activities that repre-
sent different transport demands. Agent’s decisions or strategies about how
to travel are scheduled before the simulation. These simulation tools are
typically oriented to general-purpose applications and their specific use to

3

design and evaluate strategies for the urban delivery problem can be highly
complex.

In this sense, there are more specific proposals. An interesting approach is
the work proposed in [15], where a MAS simulation model is introduced. This
model is capable of optimizing the distribution phase of small and medium
parcels. This proposal is based on a combination of different public transport
systems and bikes for the delivery of parcels. The work presented in [16] uses
a taxi fleet in a city in order to apply a crowdsourcing solution for the last
mile delivery problem. The proposed model is a closed approach where the
taxi drivers that are willing to deliver parcels must be first registered in the
system.

Another related approach is the work proposed in [17], which presents
another crowdsourcing approach used for library deliveries. The idea is that
citizens deliver parcels to each other along their own ways. Results of the
experiments showed a reduction of the distance needed for each delivery
by using the crowdsourced approach. Finally, regarding urban delivery so-
lutions, [18] proposes a MAS model for evaluating city logistics measures,
which tries to measure logistics efficiency in a city with congested urban
traffic conditions.

The use of delivery lockers (or similar solutions) is another, recent way
which enables carriers to reduce the number of trucks required to make de-
liveries. In [19], an agent-based simulation model is presented which aims to
reduce the number of re-deliveries through the use of delivery lockers which
will be directly used in the third attempts of deliveries. The simulation
confirms that the use of delivery lockers reduces the distance (kilometers)
traveled by trucks, and also shows how a multi-agent simulation is an appro-
priate tool for modeling urban delivery transport scenarios. Moreover, the
work in [20] tries to demonstrate the effectiveness of Urban Consolidation
Centers for urban delivery by using multi-agents systems and reinforcement
learning methods to evaluate the system under an uncertain environment of
city logistics.

Finally, another important area in urban delivery where multi-agent sys-
tems and agent-based simulations can be useful is the simulation of inter-
actions between retailers, drivers, and customers in a complex and dynamic
scenario as is a city. In [21], authors propose an agent-based simulation in
order to introduce a dynamic vehicle routing where the system tries to be
adaptive to the freight demand. The main goal of the proposed system is to
minimize the global traveled distance. The review published in [22] includes

4

more examples which try to demonstrate that agent-based simulations are
suitable for modeling urban delivery distribution scenarios, but also evidences
that the majority of the reviewed proposals are just test cases or theoretical
models without a direct application to real systems.

In this paper, we propose a specific support tool to analyze and evaluate
different models and strategies in the field of urban mobility and, specifically,
in urban delivery scenarios. The developed tool is flexible enough to support
several types of deliveries, transport companies, logistics, and many other
mobility requirements. In addition, it allows for the configuration of different
scenarios that reflect new modes of delivery such as collaborative delivery or
car-sharing solutions.

3. SimFleet: A Simulation Tool for Open Fleets

SimFleet is a simulation tool which provides MAS researchers and learners
with a convenient environment where to develop and test complex coordi-
nation and negotiation scenarios, in the context of a city containing one or
more fleets of transportation vehicles. The tool can be used to simulate any
kind of fleet where a group of vehicles transport items (goods or people) from
one location to another within the city. Examples of fleets would be, among
others, courier companies, taxi services, freight transport (by trucks), bike
rental services, etc.

The tool has been built as a multi-agent system running on top of the
SPADE platform [23], where the different actors in the fleet simulation (trans-
portation vehicles and customers requesting items to be transported) are
modeled as agents which can interact with each other by means of the SPADE
communication facilities. The tool has been designed to hide most of the
complexity of developing a multi-agent application by providing the user
with three different interaction interfaces and a consistent internal architec-
ture by which the tool can be easily adapted to the needs of a particular
simulation scenario. The following subsections detail these main aspects of
SimFleet, namely its three user interfaces, its underlying platform (SPADE),
its internal architecture, and the way to incorporate custom strategies in
order to adapt it to new fleet scenarios.

3.1. The User Interfaces

SimFleet provides the user with three different interfaces which can be
selectively used to configure the tool in order to simulate several different fleet

5

scenarios: the Graphical User Interface (GUI), the command-line execution
interface and the Application Program Interface (API). These interfaces are
now described.

The GUI is the part of the application that runs the simulator where
the transportation vehicles and items to be transported are displayed within
the city map, and where the evolution of the simulation can be observed in
real-time (it displays the initial location of the transportation vehicle and
customer agents and their movements within the city as they interact with
each other). This interface includes a limited set of interactions with the
user. In particular, the GUI includes actions for starting and stopping the
simulation and to zoom in or out in order to change the visible area, and
outputs some basic simulation statistics. The GUI can be adapted to the
needs of particular simulation scenarios by means of some features which
are specified in the simulation configuration file (which is fully described
below). First, the user can decide which city will be used for running the
fleet simulation. Both the city map and the available routes within that city
(the locations and directions of the streets) are based on open data which can
be fed to the GUI and to the Route Planner agent, which calculates a valid
route for every agent which needs to travel between any two given points
within the city (this agent is discussed below in Section 3.3). This allows for
running fleet simulations in any city where that open data is available, which
virtually includes any important city in the world. And second, the GUI can
be customized to represent each simulation agent (customer or vehicle) with
its own particular icon, encoded in Base 64 text format in the configuration
file. For agents which do not specify their own icon, the GUI incorporates a
library of default icons. In particular, there are different icons representing
people which are randomly assigned to customer agents and a predefined
icon for the most common types of vehicles (trucks, bikes, motorcycles, taxis,
drones, electric vehicles, etc.); additionally, the GUI automatically changes
the icon color of a vehicle if the simulation contains two fleets of vehicles
of the same type. Figure 1 shows two screenshots of different simulation
scenarios where these customizations can be observed: the top image shows
a simulation of drone and motorcycle delivery in Madrid, while the bottom
image shows a simulation of two cab companies in New York city.

The command-line interface is the way to specify all the parameters of a
simulation to be executed with the GUI, as well as to run simulation offline
(without the GUI). This is a very convenient way to extend the functional-
ity of the simulation tool (in general, or for a particular fleet environment)

6

Figure 1: Screenshots of two simulations of SimFleet: motorcycle and drone delivery
scenario in Madrid (left) and two cab companies scenario in New York City (right).

without having to modify the graphical interface. For the sake of simplicity,
the command-line interface basically includes the loading of a configuration
file which specifies, in a well-defined syntax, all the configurable aspects of a
simulation scenario. Among others, relevant aspects of this file include the
following:

• Fleet list. Each fleet is defined by specifying its fleet manager and,
optionally, the strategy behavior of the manager and some fleet charac-
teristics, including the fleet type (type of vehicle), along with the icon
to represent these vehicles.

• Transportation vehicles list. This list includes the properties of every
transportation vehicle to be included in the simulation: name, initial
location in the map, speed (in km/h), fleet type, in which fleet(s) will
be registered, personalized icon, and custom negotiation strategy.

• Customer list. This is the list of the customers that will interact with
the transportation fleets in the simulation. For each customer, the
following aspects can be defined: name, initial location in the maps,
type of fleet service needed, final destination of the service, personalized
icon and custom negotiation strategy.

• General simulation parameters. There are several parameters in this
group, many of them configuring minor aspects of the application, such

7

as the name or duration of the simulation. Other parameters, more rel-
evant to this description, would include the default negotiation strate-
gies for each type of simulation agent (fleet, transportation vehicle,
customer) to be used for any agent which does not specify its own cus-
tom strategy, the names of two relevant ”system” agents (route agent
and directory agents, introduced below), or the coordinates (latitude
and longitude) of the city to be used in the simulation.

The third interface is the SimFleet API. When developing a new simula-
tion scenario for a particular fleet (or set of fleets), the user typically needs
to program the specific behaviors of the different simulation actors involved
(vehicles, items, fleet managers, etc.), including their interactions and their
respective negotiation strategies. In this context, some API functions are
general, but many others may naturally be specific for the particular fleet
environment that the user is developing (package delivery, taxi service, etc.).
In order to facilitate this, the tool incorporates an abstract interface which
can be easily extended in order to adapt the API to the fleet environment
under study. This adaptation is twofold: on the one hand, the particular
agent classes representing the simulation actors in a particular scenario can
be derived from some abstract agent classes which already incorporate much
of the common behaviors of such actors; hence, the user only has to focus
on implementing the particular behavior of the scenario. On the other hand,
in a particular scenario where the actual fleet actors (agents) have been im-
plemented, SimFleet also incorporates some abstractions which assist in the
development of different negotiation strategies among such agents. Some of
these abstractions, such as a generic strategy behavior based on finite-state
machines or the Strategy Pattern to dynamically incorporate strategies to
agents without modifying the tool’s code, are explained below in Section 3.3.

3.2. The SPADE Platform

SPADE (Smart Python multi-Agent Development Environment) is a multi-
agent system (MAS) platform based on two main technologies: the XMPP1

(eXtensible Messaging and Presence Protocol) standard for messaging and
presence [24], and the Python programming language. These technologies
offer many features and facilities that assist in the construction of MAS,
such as an existing communication channel, the concepts of users (agents)

1http://xmpp.org

8

and servers (platforms) and an extensible communication protocol based on
XML (eXtensible Markup Language).

Extensible Messaging and Presence Protocol (XMPP) is an open, XML-
inspired protocol for near-real-time, extensible instant messaging (IM) and
presence information. The protocol is built to be open and free, asyn-
chronous, decentralized, secure, extensible and flexible. The latter two fea-
tures allow XMPP not only to be an instant messaging protocol, but also to
be extended and used for many tasks and situations, such as IoT (Internet of
Things), WebRTC2 (Web Real-Time Communication), social, etc. SPADE
itself uses some XMPP extensions to provide extended features to its agents,
such as remote procedure calls between agents (Jabber-RPC3), file transfer
(In-Band Bytestreams4), and so on.

The internal components of the SPADE agents that provide their intel-
ligence are the behaviors. A behavior is a task that an agent can run using
some pre-defined repeating pattern. For example, the most basic behavior
type (pattern) is the so-called cyclic behavior, which repeatedly executes the
same method over and over again, indefinitely. This is the way to develop
typical behaviors that wait for a perception, reason about it and finally exe-
cute an action, and then wait for the next perception.

One of the most distinctive characteristics of SPADE as a multi-agent
platform is the availability of an instant presence notification system, which
is defined by the XMPP protocol, and provided by the XMPP server on
which the platform is supported. This indirect communication mechanism
is provided on a subscription basis, where the agents which are interested
in the presence status of a particular agent can subscribe to it, and then be
notified by the platform whenever that agent changes its status. Therefore,
this notification system can be used by any SPADE agent in order to inform
other agents about its own current, domain-dependent, status. For example,
in the fleet domain, this system could be used in order to notify customers
about the availability status of taxis or rental bikes, to inform a fleet manager
whether each of its cargo trucks are in delivery or going to pick up packages,
etc.

SPADE also provides a facility which helps the development (implementa-

2https://www.w3.org/TR/webrtc/
3https://xmpp.org/extensions/xep-0009.html
4https://xmpp.org/extensions/xep-0047.html

9

tion and debugging) of multi-agent applications from the perspective of each
individual agent. In SPADE, each agent is provided with its own graphi-
cal interface, which is offered via web in a particular URL defined by the
agent. The interface that SPADE provides by default to every agent con-
tains a graphical representation of some internal information about the agent
(including its message log, its active behaviors, its contact list, etc.) which
can be consulted in real-time as the agent runs. In addition, SPADE al-
lows agents to use this functionality in order to create other web graphical
interfaces and to offer them as new URLs. In particular, SPADE proposes
the Model-View-Controller (MVC) design pattern5 for agents to define such
interfaces. This is a very convenient way, for example, to develop the GUI
of a multi-agent application in SPADE.

Finally, SPADE has been designed and implemented with scalability as a
primary goal. In this sense, although the platform allows agents of the same
multi-agent application to run in different processes on the same or different
nodes over the internet, it also permits to efficiently execute several hun-
dred agents within the same process in a single node. This is accomplished
by implementing agents with Python’s asynchronous programming library
(called AsyncIO) and by optimizing the synchronization and communication
facilities of SPADE for the case of agents residing in the same process.

3.3. The SimFleet Architecture

Internally, SimFleet is structured in four layers, which have been designed
in order to separate the tool functionality and to make it easy to adapt it
to particular fleet and/or negotiation and coordination scenarios. Figure 2
depicts this architecture, including the four layers (the simulator, the fleet,
the agents, and their respective strategies), which are now described.

The simulator is the agent controlling the simulation process and serving
the GUI. By means of the simulation configuration file, described above, it
can be configured to locate the simulation display in a particular city. The
simulator is also in charge of creating the rest of application agents in the
simulation. Among these agents, there are two supporting agents which are
also logically located in this layer: the Route Planner agent and the Directory
agent.

The Route Planner agent is the agent in charge of calculating valid routes

5http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/mvc.html.

10

on the city streets for the vehicles traveling from one point to another within
the city. This agent internally runs a routing engine provided by the Project
OSRM6 (Open Source Route Machine). It interacts with any agent requiring
a valid route within the city (typically, the Transporter agents) by means of
a particular performative called “ROUTE”, by which the requesting agent
sends the origin and destination coordinates, and the Route Planner replies
with the best of the valid routes which it can find between these points (in
GeoJSON format), along with the route length and an estimate of the travel
duration.

The Directory agent provides a typical directory service where agents
providing services can register in order to be located by other agents which
need these services dynamically during the simulation. In a typical SimFleet
scenario, fleets register themselves in the Directory at the beginning of the
simulation, and then any transporter vehicle which wants to enroll a fleet
or any customer which requires a service of a particular fleet type must first
locate the available Fleet Managers by asking this Directory agent. Some
scenarios may have other services available (e.g., gas stations to refuel taxis,
or docking stations for rental bikes) which would also use this agent.

The second layer contains the fleets which are required in any given sim-
ulation. In this context, the Fleet abstraction represents a company or in-
stitution which owns a group of vehicles which are capable of transporting
goods or people from one point to another within the city. Each vehicle
in the fleet has its own agent in the simulation, called the Transporter, de-
scribed below in the agent layer. In addition to the transporter agents, each
fleet includes another agent, called the Fleet Manager, which is in charge
of receiving the requests from the customers and (potentially) making some
decisions about how to organize the requests and to coordinate the trans-
port process of the fleet’s vehicles. The amount of coordination and decision
making of the manager depends on the strategies of both the manager and
the transporter agents, allowing for the simulation of both centralized and
decentralized fleets. As explained above, the Fleet Manager agents use the
Directory agent in order to register their respective fleet services, hence al-
lowing the Transporters and the Customers to locate these services.

At the agent layer, the tool includes an agent for the Fleet Manager and
all the Transporters of each fleet, and also an agent for every Customer which

6http://project-osrm.org

11

Fleet
Manager

Agent
Transporter

Agent
Customer

Agent

Simulator

SPADE

Manager
Strategy

Transporter
Strategy

Customer
Strategy

1

1 1

1

1

n

nn

1

n

1

1

Route
Planner
Agent

Fleet

1
1

Directory
Agent

Item

Figure 2: The SimFleet Architecture.

may issue transport requests in the simulation. A Transporter agent repre-
sents both a vehicle and its driver, and it has some attributes which may
be customized: maximum speed, cost per kilometer (or per delivery), fleet,
name of the fleet manager, initial position, and its icon (in the simulator
display). On the other hand, a Customer is an agent which may request
transport services for any available fleet, and which includes some attributes
such as the amount of money available, the list of items to be transported or
its personalized icon in the simulation. Customer agents request transport
services by sending messages to one or many Fleet Managers, the addresses
of which are obtained first by consulting the Directory agent, as explained
above. It is worth noting that the items to be transported are not repre-
sented as agents in SimFleet since all the negotiation processes are carried
out by the item’s owner, the Customer agent. For this reason, items are here
modeled as artifacts including two main attributes, its location coordinates
and its display icon. This model also allows for the case where the item to

12

be transported is also the customer (for example, when a customer requests
a taxi service), by linking the customer’s location to the item’s location.

The fourth layer comprises the coordination and negotiation strategies
that the simulation agents apply in order to request, select, organize and
coordinate the transport services. Each agent incorporates its own strategy,
implemented as a SPADE behavior, according to its role in the simulation
environment (Customer, Transporter or Fleet Manager) and its own partic-
ular goals. The tool provides a basic, default strategy for each of these three
roles, which can be changed for each fleet scenario; but even in the same fleet
scenario, it is also possible to define a particular strategy of each individual
agent, hence allowing for much more sophisticated simulations. This layer
has been designed by using the so-called Strategy Pattern [25], which is the
best practice when an application incorporates different alternative versions
of an algorithm and the user wants to be able to select for execution any
of these versions at run time. SimFleet uses this design pattern in order
to dynamically attach new, custom negotiation behaviors for the simulation
agents (customers, transporters, managers) at run time. In particular, the
files containing the code of those behaviors can be specified at the simula-
tion configuration file when a simulation is launched, and therefore there is
no need to modify the tool’s code files. The next section describes how to
implement the code of these behaviors.

3.4. Developing Custom Strategies with SimFleet

The SimFleet architecture provides a well-defined API in order to define
the negotiation strategies of the simulation agents. In particular, each agent
includes a specific SPADE behavior (defined in Section 3.2), which imple-
ments the code establishing the negotiation goals and interactions with the
relevant counterpart agents. The tool provides two alternative ways to imple-
ment such strategy behaviors, depending on their complexity and the devel-
oper preferences. Specifically, strategies can either be built by using a basic,
cyclic behavior (inherited from the SimFleet StrategyBehaviour class) or
they can be internally structured as finite-state machines (inherited from the
SimFleet FSMStrategyBehaviour class). In this latter case, the strategy is
implemented in a way in which each state represents a possible situation in
the agent’s negotiation strategy (and implements the actions to be executed
in that situation), and each transition represents a possible change from one
situation to another within the strategy. The FSMStrategyBehaviour is
best suited for complex negotiation scenarios in which embedding the entire

13

strategy into a single (StrategyBehaviour) class could be difficult. This
way, the tool offers a consistent framework for designing and developing ne-
gotiation strategies of different complexity levels, where the actual code to
be implemented is very little.

For the sake of simplicity, this section will focus on the StrategyBehaviour
case. Following the strategy pattern described in the previous section, when
defining a new fleet scenario, developers need only to implement three classes
provided by SimFleet which define the strategies of the three simulation
agent types: the fleet manager’s FleetManagerStrategyBehaviour, the cus-
tomer’s CustomerStrategyBehaviour and the transporter’s TransportStrategyBehaviour.
These are cyclic SPADE behaviors, inherited from the SimFleet default
StrategyBehaviour class, that run in an infinite loop until the agent stops.
Each one has a coroutine called async def run(self) where the code that
defines the strategy behavior of the agent must be placed. An example of
this is shown in Listing 1.

1 from simfleet.fleetmanager import

FleetManagerStrategyBehaviour

2 from simfleet.customer import CustomerStrategyBehaviour

3 from simfleet.transport import TransportStrategyBehaviour

4

5 class MyFleetManagerStrategy(FleetManagerStrategyBehaviour):

6 async def run(self):

7 # Your code here

8

9 class MyTransportStrategy(TransportStrategyBehaviour):

10 async def run(self):

11 # Your code here

12

13 class MyCustomerStrategy(CustomerStrategyBehaviour):

14 async def run(self):

15 # Your code here

Code Listing 1: An example of the strategy development in SimFleet.

Developers have plenty of freedom when implementing such behaviors.
They can use any intelligent algorithm, send and receive messages by using
the SPADE communication facilities, or even create additional agent behav-
iors if needed. In addition, SimFleet provides a set of tools and helpers
that facilitate the development of the strategies. Among others, there are
methods which facilitate interactions related to the transport domain (like
accept_transport(transport_id), refuse_transport(transport_id) or

14

send_request(transport_id)), and some which deal with well-known prob-
lems related to working with geo-located data (like are_close(coord1,

coord2, tolerance), which confirms whether two coordinates are close
within a particular tolerance range, or distance_in_meters(coord1, coord2

), which computes the distance between two coordinates).
Overall, these development facilities allow for the creation of a wide range

of fleet scenario simulations located in different cities around the world, and
to consistently implement and test alternative negotiation and coordination
strategies in such scenarios.

4. Case of Example: Last Mile Delivery

This section presents the application of SimFleet to the so-called Last
Mile Delivery (LMD) problem [26]. The LMD is the main problem which
needs to be dealt by logistics and distribution processes in a city, that is,
to plan the delivery of items to their final destination within the city. In
this sense, the adaptation of SimFleet to this problem will include the agent
roles and their interaction protocol, along with the way agents behave and
the different strategies used to assign Customer agents (with a parcel to be
sent) to Transporter agents. The rest of the section is devoted to explain
such adaptations, which will show how SimFleet is suited for a complex case
of use like the one described here.

There are different approaches which may tackle the LMD problem. This
section explains first how SimFleet could be used to simulate three of them
(named Traditional Fleets, Open Fleets and Crowdsourcing Fleets) individu-
ally, and then presents a simulation scenario where these three alternatives
are combined in order to present a solution for this problem.

In a Traditional Fleet scenario, each logistic fleet comprises a set of Trans-
porter Agents and has a Fleet Manager agent associated to it. Each Cus-
tomer Agent with a parcel to be sent will issue a delivery service request to
the Fleet Manager agent, providing a pickup point and a final destination for
the parcel. Then, the Fleet Manager will assign a Transporter Agent from
its own logistics company (or fleet) to take the parcel and carry it to that
final destination. Figure 1-left shows an example of such simulation scenario
using SimFleet, in this case with two logistic fleets.

Open Fleets present an specially interesting case in Logistics Fleets. In
an open fleet scenario, Transporter Agents do not belong to a logistic fleet,
but on the contrary, they may enter and leave any of the logistics fleets at

15

will, whenever they want. In this case, Transporter Agents are paid by the
parcels they deliver, which as usual are requested by Customer Agents. This
approach can be easily simulated in SimFleet, as any new Transporter Agent
may ask the Directory Agent for the identifiers of the Fleet Managers, and
then send messages to such Fleet Manager agents to enroll the fleet that they
prefer.

The third basic type of fleet described here is based on a crowdsourcing
approach. One of the important aspects in LMD logistics is the cost asso-
ciated to these delivery operations. This cost includes, but it is not limited
to, the cost related to sustainability. That is, all the transportation vehicles
which are moving through the city have an direct impact in the city pollu-
tion. In [26], there is a new approach to LMD problem which considers such
sustainability cost, based on a crowdsourcing solution. In a Crowdsourcing
Fleet scenario, the solution would be based on an open fleet with temporary
Transporter Agents, where such Transporter Agents do not take a specific
route to deliver each parcel from the Customer’s pickup point to the final
destination, but on the contrary, they make use of their usual routes in order
to carry a parcel, either to its final destination or to a point where another
Transporter Agent can pick it up and continue with the delivery process.

Fleet
Manager

Agent

Transporter
Agent

1 1

1 n

Fleet

Open
Fleet

Manager
Agent

Freelance
Transporter

Agent

1 1

1 n

Open Fleet

Crowdsourcing
Open Fleet
Manager

Agent

Crowdsourcing
Transporter

Agent

1 1

1 n

Crowdsourcing
Open Fleet

Car
Crowdsourcing

Transporter
Agent

Public
Transport

Crowdsourcing
Transporter

Agent

Bike
Crowdsourcing

Transporter
Agent

Figure 3: Fleet taxonomy in the Last Mile Delivery example.

With all this, we have made a simulation to test a solution of the LMD
problem which uses such Crowdsourcing Fleets, where we have a Crowd-

16

sourcing Open Fleet, a normal Open Fleet and a Traditional Fleet located
in the city of London. Figure 3 shows the taxonomy of the different fleets
used in the example. Each one of these fleets has its own Fleet Manager, so
there is a Crowdsourcing Open Fleet Manager, an Open Fleet Manager and
a Fleet Manager. Also, there are three different types of Transporter Agents :

• Transporter Agents : the ones modeling traditional transporters who
work for a fleet company as a full-time job. The movements through
the city of these transporters are always in order to carry parcels from
their pickup points to their destinations.

• Freelance Transporter Agents : the ones modeling transporters that may
accept delivery services from an Open Fleet company for some time (or
number of deliveries), and after that they “leave” the company.

• Crowdsourcing Transporter Agents : the ones modeling people that may
enter a Crowdsourcing Open Fleet through a mobile app, by giving
their usual routes and availability. While they are logged on in the app,
they can accept to be assigned parcels to be carried along their usual
routes, typically if they do not have to modify that route significantly.
In this simulation, there will be different Crowdsourcing Transporter
Agents according to the transport vehicle they use: car, bike or public
transport.

When the Crowdsourcing Fleet Manager receives a message from a Cus-
tomer Agent requesting to carry a parcel from an origin location to a desti-
nation point, the following process is carried out:

• It tries to make a valid path using the routes of the Crowdsourcing
Transporter Agents currently logged in this fleet. The idea is to use
these routes as much as possible, having the best solution if the parcel
can be carried by only a single Crowdsourcing Transporter Agent, but
otherwise also being a valid solution if the transport can be made by
combining the routes of several of these agents.

• If it is not possible to use only those agents for the transport, the
Crowdsourcing Fleet Manager would try to contract a Freelance Trans-
porter Agent to contract with this second fleet the part(s) of the route
not covered by Crowdsourcing Transporter Agents in the previous step.

17

• If there are still parts of the delivery route for the parcel which are not
covered, the Crowdsourcing Fleet Manager attempts to subcontract a
traditional fleet company to carry the parcel over such route parts.
This is done by negotiating with the Fleet Managers of such fleets, by
using a First-price sealed-bid auction. In fact, there will be one auction
for each non-covered route parts. So, the Crowdsourcing Fleet Man-
ager sends a Call-For-Proposals message to the active Fleet Managers
in the system with the origin and destination positions of this non-
covered part, along with the estimated arrival time of the parcel to the
part’s initial position. The Fleet Managers will send their proposals,
composed of a cost and the estimated time for the parcel to arrive to
the destination point. In each case, the Crowdsourcing Manager will
resolve the auction and will answer the winning Fleet Manager with an
agree message (and cancel the others).

Figure 4 shows an snapshot of the simulation presented above, where
there is a Crowdsourcing Open Fleet that has sent a parcel to be carried out
by three different Transporter Agents, being the first two ones Crowdsourc-
ing Transporter Agents, and the last one a traditional Transporter Agent,
working for a traditional Fleet Manager that has been subcontracted by the
Crowdsourcing Open Fleet Manager. In the Figure you can see a blue line
marking the bike Transporter Agent route, a red line marking the public
transport Transporter Agent route, and a yellow line marking the route of
the the traditional Transporter Agent. It can also be observed, in dotted
lines, the delivery route followed by the parcel, using the usual routes of the
two first Transporter Agents and the ad-hoc route of the traditional Trans-
porter Agent for the last part of the delivery.

This example has illustrated how to adapt SimFleet to a simulation sce-
nario with some specific fleet types (in this case a traditional fleet, an open
fleet and a crowdsourcing open fleet) and which elements would be necessary
to design. Once the tool has been adapted to such scenario, many different
strategies for each agent type (Fleet Manager, Transporter, Customer) could
be implemented and tested in any number of simulations.

5. Conclusions

Urban mobility has changed dramatically in recent years with the emer-
gence of new modes of transport and with technological advances. In this

18

Figure 4: Crowdsourcing Open Fleet example.

sense, the evaluation of new models or strategies is very complex since it is
difficult to determine in advance their adequate performance and their pos-
sible improvements against other alternatives. It is for this reason that this
paper presents a tool called SimFleet which has been specifically designed to
simulate and evaluate new models of urban mobility in current cities. The
main goal of SimFleet is to allow users for the development and test of new
models or policies of mobility management in the urban environment, as well
as to analyze possible new coordination strategies and regulatory mechanisms
of vehicle fleets that can improve the efficiency in the distribution of people
or goods in urban environments.

The SimFleet tool has been designed and implemented over the SPADE
platform, which allows the development of multi-agent systems in Python. In
this way, the simulation is designed by generating an agent for each of the dif-
ferent actors involved in the process (vehicles, passengers, parcels, managers,
etc.). The tool has been designed to facilitate the aggregation of new models
and strategies to the agents that are running in the simulation, so that agents
can dynamically change their strategies and adapt to the context. On the
other hand, SimFleet allows for the definition of different simulation scenar-
ios and, also, the definition of appropriate metrics to analyze and compare
the different strategies, models or policies that have been defined.

Finally, the paper illustrates the use of the tool with a proof of concept
that simulates a crowdsourcing approach to address the LMD problem by

19

using fleets of different types. As future work, the tool will incorporate the
concept of artifact in order to model static entities into the simulation, such
as elements of the city infrastructure (traffic lights, sensors, etc.).

Acknowledgment

This work was partially supported by MINECO/FEDER RTI2018-095390-
B-C31 of the Spanish government.

References

[1] H. Billhardt, A. Fernández, M. Lujak, S. Ossowski, V. Julián, J. F.
De Paz, J. Z. Hernández, Towards Smart Open Dynamic Fleets, in:
Multi-Agent Systems and Agreement Technologies, Springer, 2015, pp.
410–424 (2015).

[2] O. S. Lujak M., Giordani S., Route guidance: Bridging System and User
Optimization in Traffic Assignment, Neurocomputing 151 (1) (2015)
449–460 (2015).

[3] E. Adam, E. G.-L. Strugeon, R. Mandiau, MAS architecture and knowl-
edge model for vehicles data communication, ADCAIJ: Advances in Dis-
tributed Computing and Artificial Intelligence 1 (1) (2012) 23–31 (2012).

[4] P. Chamoso, F. de la Prieta, Swarm-Based Smart City Platform: A
Traffic Application, ADCAIJ: Advances in Distributed Computing and
Artificial Intelligence Journal 4 (2) (2015) 89–97 (2015).

[5] A. F. Isabel, R. F. Fernandez, Simulation of Road Traffic Applying
Model-Driven Engineering, ADCAIJ: Advances in Distributed Comput-
ing and Artificial Intelligence Journal 4 (2) (2015) 1–24 (2015).

[6] L. Aboueljinane, E. Sahin, Z. Jemai, A review on simulation models ap-
plied to emergency medical service operations, Computers & Industrial
Engineering 66 (4) (2013) 734–750 (2013).

[7] R. Nair, E. Miller-Hooks, R. C. Hampshire, A. Bušić, Large-scale vehicle
sharing systems: analysis of vélib’, International Journal of Sustainable
Transportation 7 (1) (2013) 85–106 (2013).

[8] C. M. Macal, M. J. North, Tutorial on agent-based modelling and sim-
ulation, Journal of Simulation 4 (3) (2010) 151–162 (Sep 2010).

20

[9] J. Palanca, A. Terrasa, C. Carrascosa, V. Julián, SimFleet: A New
Transport Fleet Simulator Based on MAS, in: International Conference
on Practical Applications of Agents and Multi-Agent Systems, Springer,
2019, pp. 257–264 (2019).

[10] G. Gentile, K. Noekel, Modelling public transport passenger flows in the
era of intelligent transport systems, Gewerbestrasse: Springer Interna-
tional Publishing (2016).

[11] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, D. Rus, On-
demand high-capacity ride-sharing via dynamic trip-vehicle assignment,
Proceedings of the National Academy of Sciences 114 (3) (2017) 462–467
(2017).

[12] P. Neirotti, A. D. Marco, A. C. Cagliano, G. Mangano, F. Scorrano,
Current trends in Smart City initiatives: Some stylised facts, Cities 38
(2014) 25 – 36 (2014).

[13] D. Krajzewicz, J. Erdmann, M. Behrisch, L. Bieker, Recent development
and applications of sumo-simulation of urban mobility, International
Journal On Advances in Systems and Measurements 5 (3&4) (2012).

[14] A. Horni, K. Nagel, K. W. Axhausen, The multi-agent transport simula-
tion MATSim, Ubiquity Press London, 2016 (2016). doi:10.5334/baw.

[15] C. Rajeshwari, Optimizing last mile delivery using public transport with
multiagent based control, Master’s thesis, LUT University (2016).

[16] C. Chen, S. Pan, Using the crowd of taxis to last mile delivery in e-
commerce: a methodological research, in: Service Orientation in Holonic
and Multi-Agent Manufacturing, Springer, 2016, pp. 61–70 (2016).

[17] H. Paloheimo, M. Lettenmeier, H. Waris, Transport reduction by crowd-
sourced deliveries – a library case in Finland, Journal of Cleaner Pro-
duction 132 (2016) 240 – 251 (2016).

[18] O. Wangapisit, E. Taniguchi, J. S. Teo, A. G. Qureshi, Multi-agent
systems modelling for evaluating joint delivery systems, Procedia-Social
and Behavioral Sciences 125 (2014) 472–483 (2014).

21

https://doi.org/10.5334/baw

[19] R. Alves, R. da Silva Lima, D. Custódio de Sena, A. Ferreira de Pinho,
J. Holgúın-Veras, Agent-based simulation model for evaluating urban
freight policy to e-commerce, Sustainability 11 (15) (2019).

[20] N. Firdausiyah, E. Taniguchi, A. Qureshi, Modeling city logistics using
adaptive dynamic programming based multi-agent simulation, Trans-
portation Research Part E: Logistics and Transportation Review 125
(2019) 74–96 (2019).

[21] B. M. Sopha, A. Siagian, A. M. S. Asih, Simulating dynamic vehicle
routing problem using agent-based modeling and simulation, in: 2016
IEEE International Conference on Industrial Engineering and Engineer-
ing Management (IEEM), IEEE, 2016, pp. 1335–1339 (2016).

[22] A. Nuzzolo, L. Persia, A. Polimeni, Agent-based simulation of urban
goods distribution: A literature review, Transportation research proce-
dia 30 (2018) 33–42 (2018).

[23] M. Escrivà, J. Palanca, G. Aranda, A jabber-based multi-agent system
platform, in: Proceedings of the 5th int. joint conference on Autonomous
agents and multiagent systems, ACM, 2006, pp. 1282–1284 (2006).

[24] P. Saint-Andre, Extensible messaging and presence protocol (XMPP):
Core, RFC 6120 (2011).
URL https://tools.ietf.org/html/rfc6120

[25] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: ele-
ments of reusable object-oriented software, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA., 1995 (1995).

[26] A. Giret, C. Carrascosa, V. Julian, M. Rebollo, V. Botti, A crowdsourc-
ing approach for sustainable last mile delivery, Sustainability 10 (12)
(2018).

22

https://tools.ietf.org/html/rfc6120
https://tools.ietf.org/html/rfc6120
https://tools.ietf.org/html/rfc6120

