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Abstract 
 
Alpha integration is a family of integrators that encompasses many classic fusion operators (e.g., mean, product, 
minimum, maximum) as particular cases. This paper proposes vector score integration (VSI), a new alpha integration 
method for late fusion of multiple classifiers considering the joint effect of all the classes of the multi-class problem. 
Theoretical derivations to optimize the parameters of VSI for achieving the minimum probability of error are 
provided. VSI was applied to two classification tasks using electroencephalographic signals. The first task was the 
automatic stage classification of a neuropsychological test performed by epileptic subjects and the second one was 
the classification of sleep stages from apnea patients. Four single classifiers (linear and quadratic discriminant 
analysis, naive Bayes, and random forest) and three competitive fusion methods were estimated for comparison: 
mean, majority voting, and separated score integration (SSI). SSI is based on alpha integration, but unlike the 
proposed method, it considers the scores from each class in isolation, not accounting for possible dependencies 
among scores corresponding to different classes. VSI was able to optimally combine the results from all the single 
classifiers, in terms of accuracy and kappa coefficient, and outperformed the results of the other fusion methods in 
both applications. 
 

 
1. Introduction  

Recent advances in data acquisition and machine 
learning methods are paving the way for the 
optimal integration or fusion of complementary 
data modalities and/or classification methods in a 
wide variety of applications [1,2,3,4,5]. Data fusion 
is intended to exploit complementary properties of 
the results of several single modalities or 
classification methods, derived from different 
bases, in order to improve over their separate 
results. In addition, fusion can enable or enhance 
the approximation to more complex structured 
results (e.g., path trees and topological networks) 
[6,7]. This broad field of research has been named 
in different ways, such as: sensor data fusion; 
decision fusion; multimodal fusion; mixture of 
experts; and classifier combiners [8,9]. 

Particularly, the fusion of the scores of multiple 
classifiers is an interesting problem that has been 
increasingly studied as a suitable method for many 
complex problems, e.g., improving cardiovascular 
event prediction by combining genetic data and 
longitudinal health records [10] and classification 
of text documents [11]. The goal is to produce a 
new fused distribution in the score range for every 
class from the different score distributions, derived 
from different bases, of the single classifiers. The 
fusion of scores from multiple classifiers has been 
shown to improve classification performance, 
obtaining more stable and reliable results [8]. The 
fusion of scores is also known as late fusion, since 
it is made at the output of the classification process 
using the results before the decision of the single 
classifiers, i.e., the posterior probability (score) 
assigned to each class for the available testing 
records. Fusion can also be performed at the input 
of the classification process by combining the 
features estimated for classification (early fusion), 

or after the decision for each of the classifiers (late 
hard fusion). 

There are many methods that have been proposed 
to perform late fusion, including functions whose 
parameters are learned to optimize a defined cost 
function under some criterion. This approach is 
followed in alpha integration, which was first 
proposed by Amari for integrating multiple 
stochastic models by minimizing their alpha 
divergence [12,13]. It has also been used to perform 
optimal integration of scores in binary classification 
(detection) problems [14]. Essentially, alpha 
integration is a family of integrators that 
encompasses many existing combinations as special 
cases of the alpha parameter. For instance, setting 
α=-1 would result in the average of the integrated 
measurements; α=1 would result in the product of 
the integrated measurements; and very high (low) 
values of α would result in the minimum 
(maximum) rule. The parameters of alpha 
integration can be learned by optimizing the least 
mean squared error (LMSE) or the minimum 
probability of error (MPE) criterion [14,15,16,17]. 

Recently, alpha integration was extended for 
integrating multi-class classifiers by considering the 
scores from each class in isolation in a method 
called separated score integration (SSI) [15]. Alpha 
integration was performed separately on the scores 
assigned to each class by all the classifiers. In this 
paper, we propose a new approach of alpha 
integration to late fusion of scores from multiple 
classifiers in a multi-class problem that we called 
vector score integration (VSI). In VSI, the joint 
effect of the scores of all classes of multiple 
classifiers is considered. Unlike SSI, the alpha 
parameters of VSI are applied jointly on all classes, 
and thus, the effect of the parameters is spread 
across all classes. We extend the minimum 
probability of error (MPE) criterion proposed in 
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[14] for binary classification to the multi-class 
classification problem. Thus, derivations to 
optimize the parameters of VSI for achieving MPE 
are provided. 

The performance of VSI was tested on two 
applications using real electroencephalographic 
(EEG) signals. The first application consisted on 
classifying the samples of EEG signals from 
epileptic subjects while they were taking a 
neuropsychological visual memory test in three 
stages: stimulus display, retention interval, and 
subject response. The second application was the 
classification of EEG signals from apnea patients in 
three stages of sleep: wake, REM (rapid eye 
movement), and nREM (not REM). Four single 
classifiers were implemented: linear discriminant 
analysis (LDA), naive Bayes (NB), quadratic 
discriminant analysis (QDA), and random forests 
(RDF). Those methods were selected because of 
their performance and their widespread use in many 
applications. VSI was used to optimally combine 
the results from the single classifiers, improving 
classification performance. Besides, the results of 
VSI were compared with those of fusion using the 
mean, majority voting, and SSI. 

The rest of this paper is organized as follows. 
Section 2 includes a review of the alpha integration 
method for binary classification, and Section 3 
extends alpha integration to multi-class 
classification. Section 4 presents the results of the 
proposed method on two sets of real data. The 
paper is closed by the conclusions and future work. 

2. Alpha integration for binary classification 

Let us assume that a set of D detectors (binary 
classifiers) is available, each returning a different 
score si, i=1…D, for every input observation. We 
will assume that these scores are normalized 
between 0 and 1, with higher values denoting that 
the positive class is more likely than the negative 
class. Alpha integration is the weighted alpha 
mixture of  these scores [12]:  
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normalization constant to ensure the result of alpha 
integration is a probability distribution. Alpha 
integration has been shown to be the optimal 
integration of the considered scores under alpha 
risk [13].  

Most simple soft fusion functions can be 
obtained as particular selections of the parameters 
of alpha integration. For instance, α can be set to 
obtain the arithmetic mean  1   , the geometric 
mean  1  , and the harmonic mean  3  . 

Similarly,    (-∞) is equivalent to 
computing the minimum (maximum) of the scores. 
In general, however, the parameters of alpha 
integration are optimized to satisfy some criterion 
(e.g., the least mean square error [14,17]).  

One such criterion is the minimization of the 
probability of error (MPE), which was introduced 
in [14]. Let us assume we have a set of couples 
 ,j jys , 1...j N , where 1[ ... ]j T

Ds ss  is the vector of 
scores provided by the D  detectors when jy is the 
corresponding known binary decision ( 1jy   for the 
positive class and 0jy   for the negative class). The 
minimization of the probability of error is 
equivalent to the maximization of the probability of 
obtaining correct decisions, cP , through the whole 
set of couples  ,j jys , 1...j N : 
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The derivatives of (3) with respect to the 
parameters of alpha integration are 
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And the derivative of the alpha representation h  
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. Equations (4) to (7) 

can be used to optimize the parameters of the 
model, for instance, using gradient descent. 

3. Vector score integration (VSI) 

In the following, we propose a vector score 
integration (VSI) method that generalizes alpha 
integration to multi-class classification  2K   and 
accounts for cross dependencies among scores from 
different classes. We also present a learning 
algorithm to optimize the parameters of VSI with 
respect to the minimum probability of error 
criterion. 

Let us assume we have a set of scores from D  
classifiers working on a classification problem with 
K  classes. Each classifier with produce a vector of 
scores for each class, 1[ ... ]T

i i Kis ss , 1...i D , which 

are normalized to unit sum,  
1

1
K

kik
s


 . All the 
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scores are joined in matrix 1[ ... ]DS s s . The mth row 
of this matrix is denoted by 1[ ... ]m m mDs sr . The true 
class is denoted by a class identifier vector, 

1[ ... ]T
Ky yy , where 

 
1 if the true class is 

0 otherwisek

k
y


 


 (8) 

We can obtain a vector of integrated scores for 
each class, 1[ ... ]

k k k

T
Ks s  s , using alpha integration 

(1): 
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In VSI, we have K sets of alpha integration 
parameters ( k  and weights 1[ ... ]T

k k kDw ww ) that are 
applied on the scores for each of the K classes, 
resulting in a [ ]K K matrix. Once we have the 
vectors of integrated scores 

k
s , 1...k K , 

classification is performed by choosing the vector 
that is closest to an ideal output ( )ky  (1 in class k 

and 0 otherwise). In this work, we considered the 
Euclidean distance, thus arriving to 
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With ( )ky  denoting a class identifier vector (8) 

whose true class is k. The fused scores provided by 
the method are those corresponding to the chosen 
class, 

k
s . 

The differences between the proposed VSI and 
SSI [15] can be understood by comparing the 
differences between the alpha integration function 
for VSI, see equation (9), and that of SSI: 
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Note the differences in the subindices of SSI (11) 
and VSI (9). Both methods have the same 
parameters, k  and kiw , 1...k K , 1...i D . However, 
in SSI, the alpha parameters of the kth class are 
applied on the scores for that same kth class, 

1...k K , resulting in K fused scores. In VSI, the 
alpha parameters of each class are applied on the 
scores for all classes, resulting in K fused scores per 
class, for a grand total of K2 fused scores. In SSI, 
the scores provided by the classifiers are integrated 
separately for each class. This simplifies the 
optimization procedure, but it also means that 
possible dependencies between the scores assigned 
to different classes are not taken into account. 
Conversely, cross dependencies are considered in 

VSI since the alpha parameters are applied 
jointly on all classes. 

The optimization of the alpha integration 
parameters of class k will be performed using the 
subset of the whole training set where the true class 
is k. We denote this subset by  ( ) ( ),j j

k kS y , 1... kj N , 
where Nk is the number of training couples in the 
subset. As per the definition of y  in (8), since all 
values in this subset belong to class k, ( ) 1j

k ky   and 
( ) 0j
k my  , m k .  

Given these definitions, the MPE cost function 
for class k is: 
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The derivatives of (12) with respect to the 
parameters of class k are: 
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where  
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And the derivatives with respect to the weights 
kiw  are 
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Using these derivatives, we can estimate the 
parameters that optimize the MPE criterion, for 
instance, with a gradient descent algorithm. 
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4. Experiments on real data 

4.1. Experiment on EEG data from epileptic 
subjects 

The proposed multi-class alpha integration 
method was tested on a set of real EEG data of four 
epileptic patients undergoing a neuropsychological 
test. The tests were carried out in a clinical 
environment to evaluate the learning and short-term 
memory capabilities of the patients. The EEG 
signals was captured on 18 bipolar EEG channels 
set according to the 10-20 system (see Figure 1), 
sampled at 500 Hz and band-pass filtered between 
0.5 and 30 Hz with the help of the Neurology and 
Neurophysiology Units at Hospital Universitari i 
Politècnic La Fe, Valencia (Spain). 

a)

EEG
channels

b)

Display

Retention

Response

 
Figure 1. Example of the data captured for one of the 

subjects. 
 
The implemented neuropsychological test was 

the Barcelona test (BT, [18]), a visual short-term 
memory task. During each trial of the BT, the 
subject is shown a probe item for 10 seconds, and 
after a 10-second retention interval, they attempt to 
recognize the probe item among a set of four 
similar items. The BT contains 10 trials that 
become progressively harder, and scoring is 
determined by the total number of correct 
responses. Each trial of the BT was divided in three 
stages: stimulus display (SD), retention interval 
(RI), and subject response (SR) corresponding to 
the 3 classes for classification. The problem was to 
assign one of those classes to every sample of the 
part of the EEG signals used for testing.  

In order to perform classification, the following 
features were extracted from each EEG signal 
window (epoch) of 0.25 seconds: average, mean 
absolute value, centroid frequency, and power in 
the following frequency bands: delta (0.5-4 Hz), 
theta (4-8 Hz), alpha (8-13 Hz) and beta (13-30 
Hz). As was commented above, four single 
classifiers were implemented: LDA, QDA, NB, and 
RDF. The scores returned by the single classifiers 
were fused using majority vote (late hard fusion), 
mean, SSI, and the proposed VSI. First, the 
classification procedure split the epochs equally 
into three datasets: training, validation, and testing. 
In order to preserve the prior probabilities, the 
observations of each class were randomly 
distributed as evenly as possible across the three 

datasets. The single classifiers were trained 
using the training dataset, and both alpha 
integration methods were trained using the scores 
obtained by the single classifiers on the validation 
dataset. The parameters of alpha integration were 
optimized with respect to the MPE criterion using 
an interior point method (IPM, [19]) for constrained 
optimization of the cost function. The derivatives 
developed in Section 3 were used for VSI. Finally, 
all classifiers were compared by their performance 
on the testing dataset. The results for each method 
were obtained as the average of 100 iterations. 

An example of the obtained classification for one 
of the subjects in shown in Figure 2. VSI returned 
the result closest to the ground truth, even better 
than the result of SSI. Conversely, classical fusion 
methods returned worse results than alpha 
integration and, in this case, than some single 
classifiers. For instance, the first trial (seconds 0 to 
10 in Figure 2) was incorrectly classified by LDA, 
NB, QDA, and the fusions; RDF and SSI yielded a 
more accurate classification; and VSI achieved a 
result that was almost identical to the ground truth.  

0 5 10 15 20 25 30 35 40 45 50
Time (s)

LDA

NB

QDA

RDF

Maj.vote

Mean

SSI

VSI

Ground truth        

Trial #1 Trial #2 Trial #3 Trial #4 Trial #5 Trial #6
SR
RI
SD

 
Figure 2. Classification returned by all methods for 

one of the subjects. 
 
The average results of the experiment are shown 

in Figure 3. We considered two performance 
indices, the accuracy (Figure 3.a) and Cohen’s 
kappa coefficient (Figure 3.b), the latter being more 
robust with respect to the different prior 
probabilities between classes. In accordance with 
the results of Figure 2, the best result was yielded 
by VSI for both indicators, and SSI yielded the 
second-best result. Two single classifiers, LDA and 
RDF, yielded better results than the considered 
classical fusion techniques. These results show that 
classical fusion techniques were unable to improve 
the results of the single classifiers, whereas the 
fusion returned by alpha integration was able to 
optimally combine all four single classifiers. 
Furthermore, the increased flexibility of the 
proposed VSI method yielded an even better 
combination than the less-flexible SSI. 
Numerically, VSI achieved an average 7.63% more 
accuracy and 10.69% more kappa than the best 
performing classical fusion (mean); 5.11% more 
accuracy and 8.36% more kappa than the best 
performing single classifier (RDF); and 1.47% 
more accuracy and 3.26% more kappa than SSI. 
Moreover, the results yielded by VSI were also 
more stable than those yielded by other methods, as 



5 
seen by the smaller standard deviation bars in 
Figure 3. The standard deviation of VSI was the 
smallest, followed by those of SSI and two single 
classifiers, LDA and QDA. The standard deviation 
of VSI was 0.65% for accuracy and 0.97% for 
kappa; conversely, the standard deviation of the 
best performing classical fusion (mean) was 1.14% 
for accuracy and 1.68% for kappa; and the standard 
deviation of the best performing single classifier 
(RDF) was 1.03% for accuracy and 1.65% for 
kappa. 

a)

b)

Figure 3. Average and standard deviation results of 
the experiment: a) accuracy; b) kappa coefficient. 

 
4.2. Experiment on EEG data from patients with 
apnea 

To further verify the performance of the 
proposed vector score integration method, a second 
experiment was performed on a publicly available 
dataset of real polysomnograms (PSG) from the St 
Vincent’s University Hospital / University College 
Dublin Sleep Apnea Database in Physionet [20]. 
The database contains PSG from 25 adult subjects 
(21 male, 4 female) with suspected apnea, taken 
during a night of sleep. The PSG is a multimodal 
biomedical record that includes many kinds of 
physiological signals, but in this work, we 
considered the two available bipolar 
electroencephalographic channels: C3-A2 and C4-
A1. The EEG signals were sampled at 128 Hz and 
band-pass filtered between 0.5 and 30 Hz. The data 
provided 30-second epoch split and each epoch was 
labeled by an expert into one of seven classes: 
wake, rapid eye movement (REM) sleep, sleep 
stages 1 through 4, artifacts, and indeterminate. For 
this experiment, three classes were considered: 
wake, REM sleep, and non-REM sleep (sleep 
stages 1 through 4). Samples belonging to artifacts 

and indeterminate classes were removed 
prior to the experiment. An example of the 
available signals is shown in Figure 4. The epochs 
corresponding to artifacts and indeterminate were 
eliminated. 

a)

EEG
channels

C3-A2

C4-A1

b)

nREM

REM

Wake

 
Figure 4. Example of the EEG data (a) and the classes 

(b) from one of the subjects. 
 
In order to perform classification, the following 

features were extracted from each EEG signal in 30 
second epochs: power in the delta (0-4 Hz), theta 
(5-7 Hz), alpha (8-12 Hz), sigma (13-15 Hz) and 
beta (16-30 Hz) frequency bands; and the activity, 
mobility and complexity of the signal [21]. These 
features are typically used in the literature on sleep 
staging [22]. We considered the same classification 
methods used for the experiment in Section 4.1. 
Each subject was classified independently from the 
rest. Similar to the previous experiment, the data 
were split into three datasets: training, validation 
and testing. In order to preserve the prior 
probabilities, the observations of each class were 
randomly distributed as evenly as possible across 
the three datasets. For some subjects, however, this 
meant that the single classifiers were trained using 
less observations than variables, which led to 
stability issues. For such subjects, the class 
containing insufficient observations was simply 
eliminated from the data. The considered single 
classifiers were trained on the training dataset, the 
proposed alpha integration methods were trained on 
the scores of the single classifiers on the validation 
dataset, and the performance of all methods was 
estimated on the testing dataset. The results for 
each subject were obtained as the average of 100 
iterations. 

An example of the classification obtained for one 
of the patients is shown in Figure 5. It can be seen 
that VSI yielded classes that more closely 
resembled the ones provided by the expert, 
particularly at the beginning and the end of the 
window shown in Figure 5 (00:28 to 02:11AM). 
The labels yielded by VSI tended to oscillate less 
than those provided by the other considered 
methods (including SSI alpha integration) resulting 
in less false alarms. For instance, VSI was the only 
method without false sleeping periods close to 
00:35AM or false wake periods right before 
2:00AM. 
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The average accuracy and kappa values for all 25 

patients are shown in Figure 6, where the vertical 
lines displaying the standard error of the result. 
These values are similar to those in the literature for 
this dataset, e.g., [23,24]. Results are largely in 
accordance with those of the previous experiment 
(see Figure 3), albeit with an overall better 
performance, owing to the greater number of 
subjects. The best result was yielded by VSI, 
followed by SSI. Furthermore, the considered 
classical fusion techniques were consistently unable 
to outperform the best-performing single classifier 
(RDF). Numerically, VSI achieved an average 
1.39% more accuracy and 2.12% more kappa than 
the best performing classical fusion (majority vote); 
1.28% more accuracy and 2.13% more kappa than 
the best performing single classifier (RDF); and 
0.14% more accuracy and 1.53% more kappa than 
SSI. Moreover, the results yielded by VSI were also 
more stable than those yielded by other methods, as 
seen by the smaller standard deviation bars in 
Figure 6. The standard deviation of VSI was the 
smallest, followed by those of SSI, majority vote, 
and RDF. The standard deviation of VSI was 
0.61% for accuracy and 1.14% for kappa; 
conversely, the standard deviation of the best 
performing classical fusion (majority vote) was 
0.66% for accuracy and 1.20% for kappa; and the 
standard deviation of the best performing single 
classifier (RDF) was 0.66% for accuracy and 1.22% 
for kappa. 

 
Figure 5. Classification returned by all methods for 

one of the subjects. 
 

a)

b)

Figure 6. Average and standard deviation results of 
the experiment: a) accuracy; b) kappa coefficient. 

5. Discussion and conclusions 

The results show the proposed method VSI 
overcome the performance of all the other methods. 
The most competitive method was SSI, which is 
also based on alpha integration. The differences 
between VSI and SSI were 1.47% and 3.26% 
(Figure 3, neuropsychological test staging) and 
0.14% and 1.53% (Figure 6, sleep apnea detection) 
for precision and kappa, respectively. Cohen’s 
Kappa coefficient has shown to be more sensitive 
to differences in classification, given that it 
considers a priori probabilities of the classes. Both 
applications had unbalanced a priori probabilities 
for three-class classification, i.e., (41.22%, 22.34%, 
36.43%) and (22.67%, 14.52%, 62.81%) for 
neuropsychological test staging and sleep apnea 
detection, respectively. This unbalance increased 
the difficulty of classification; it could be alleviated 
by augmentation of the sample size using replicates 
or surrogate samples estimated from the original 
data [25,26]. 

In addition, cross dependencies between a 
posteriori probabilities provided by the single 
classifiers for the different classes can affect cost 
function optimization for fusion-based methods, 
and thus affect the performance difference between 
them. From a practical standpoint, relatively small 
differences in classification might be important 
when diagnosing the patient's condition (e.g., 
memory and learning capabilities and sleep 
disorder degree) and therefore the clinical treatment 
to be followed. 

Notice that in both experiments we have 
considered the fusion of 4 different classifiers, 
namely, LDA, NB, QDA and RDF. This covers a 
reasonable number of representative classifiers, 
although more classifiers could be added to the 
fuser. Predicting the optimum number D of 
classifiers in a particular experiment is an 
interesting but very complex problem. Assuming 
we had knowledge of the separate performance of 
every classifier, we would also need to define some 
type of multivariate statistical dependence model of 
the whole set of classifiers (much the same as it is 
done in [27] for the hard fusion of dependent 
detectors). Given that dependence model, we 
should consider the nonlinear soft fusion implicit in 
alpha integration in an effort to predict the fuser 
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performance dependence on D. This is hardly 
approachable. Moreover, the defined dependence 
model is to be estimated from training data so, 
ultimately, a more practical approach is to 
successively incorporate a new classifier and 
testing if the performance improves or not. In our 
experiments, we have verified that VSI fusing 4 
classifiers improves not only with respect to every 
single classifier (as shown in Figures 3 and 6), but 
also with respect to VSI fusing only two or three 
classifiers. Notice that, unlike mean and majority 
voting, VSI implements optimum fusion. Thus, for 
example, if the new classifier is poor, the method 
learns to give it little relevance. One expected result 
of this optimization is that incorporating a new 
classifier will never worsen the performance. 
Furthermore, the amount of possible improvement 
would depend on the statistical dependence with the 
rest of classifiers. 

Finally, the conclusions of this work are as 
follows. The performance of VSI has been tested on 
two sets of real biomedical data. The first set 
consisted of electroencephalographic data from four 
epileptic subjects that were performing a 
neuropsychological visual memory test. The data 
were classified into the three stages of the test 
(display, retention, and response). Four single 
classifiers were considered: linear discriminant 
analysis, naive Bayes, quadratic discriminant 
analysis, and random forests. The single classifiers 
were combined using two classical fusion 
techniques (majority vote and score mean), 
separated score integration (SSI), and the proposed 
VSI method. The second set of biomedical data 
consisted of a public database of polysomnographic 
data from subject with suspected apnea. These data 
were classified into three sleep stages (wake, REM 
sleep, and non-REM sleep) using the same methods 
as for the first set. The results showed that both 
problems were difficult and classical fusion 
techniques were unable to improve the results over 
those of the best single classifier. Conversely, VSI 
was able to combine the scores from all classifiers 
and return an improved combined score that 
resulted in better accuracy and kappa coefficient in 
both experiments. These results demonstrate the 
capability of the proposed method to exploit the 
scores to improve performance in cases where 
dependencies are complex. 

Notice that, ultimately, we face a problem of 
computing a posterior probability (score) from a 
multidimensional random variable: a matrix formed 
by the K×D scores to be fused. A Bayesian 
approach to the problem implies modelling the 
class conditional probabilities of the 
multidimensional random variable. In SSI, this is 
faced by assuming that the multidimensional 
probability density (MPD) conditioned to the kth 
class only depends on the kth row elements of the 
matrix (scores provided by every single classifier). 
Hence, the scores are separately integrated for 
every class. In VSI, however, the class conditioned 
MPD is assumed to depend on all the elements of 
the matrix by columnwise integration of the vector 
scores provided by every single classifier. This may 

explain the improved results of VSI. 
Certainly, columnwise integration is not the most 
general option to fuse all the scores; a more general 
alpha integration could apply an individual 
coefficient to every element of the matrix, but this 
would dramatically increase the number of 
parameters to be estimated. Thus, VSI is a good 
compromise between general modelling and 
computational burden. 
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