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Received: date / Accepted: date

Abstract In this paper we present a Silverman-Ho algorithm-based method
to obtain a realization of a polynomial matrix. This method provides the final
formulation of a minimal realization directly from a full rank factorization of
a specific given matrix. Also, some classical problems in control theory such
as model reduction in singular systems or the positive realization problem in
standard systems are solved with this method.
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1 Introduction

A matrix with polynomial entries, or equivalently a polynomial with matrix
coefficients is called a polynomial matrix. Polynomial matrices can be found
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in a large variety of applications in science and engineering. For instance,
second degree polynomial matrices arise in the control of large flexible space
structures, earthquake engineering problems, control of mechanical multi-body
systems, stabilization of damped gyroscopic systems, robotics and vibration
control in structural dynamics. Third degree polynomial matrices are often
used in aero-acoustics, and quartic polynomial matrices appear in fluid me-
chanics when studying the spatial stability of the Orr-Sommerfeld equation
[9].

Given a polynomial matrix P (s) ∈ Rm×p,

P (s) = W0 +W1s+ · · ·+Wt−1s
t−1 (1)

where Wi ∈ Rm×p, i = 0, 1, . . . , t − 1, there exist matrices N , B and C,
with N nilpotent, such that P (s) = C(sN − I)−1B [7, Lemma 2-6.2]. Matri-
ces (N, I,B,C) are known as a realization of P (s). The Silverman-Ho algo-
rithm was originally employed to compute a minimal realization of rational
transfer matrices (further details can be found in references [10] and [16] or
in [1]), where minimal means that the realization has the minimum dimen-
sion. Later, the Silverman-Ho algorithm was adapted to compute a minimal
realization (N, I,B,C) of polynomial transfer matrices [7, pp. 63]. This algo-
rithm is applied to an unspecified full rank factorization FG of a block matrix
M0 ∈ Rtm×tp consisting of matrices Wi (see Section 2). Matrices F and G are
used to computed the nilpotent matrix N by means of products of these ma-
trices, their transpose matrices and inverse matrices of some of these products,
which, from a numerical point of view, could make this method quite unstable
and lead to a non-nilpotent matrix.

In this paper a direct method to derive a realization of P (s) that com-
putes the nilpotent matrix N directly from a specific full rank factorization
is developed, avoiding the computation of inverse matrices and products, this
being the main disadvantage of the Silverman-Ho algorithm. The method pre-
sented in this paper is applied to an initial block upper triangular matrix
W = M0P , where P is a block permutation matrix reversing the order of the
column blocks of M0, and obtains a full rank factorization ḠŪ , considering its
reduced echelon form (that can be obtained by using different methods such
as the Gaussian elimination method with partial or complete pivoting [8]).

Our full rank factorization W = ḠŪ satisfies that Ū is an upper reduced
echelon form given by

Ū =


Ir1 Ū (1,1) O Ū (2,1) · · · O Ū (t,1)

O O Ir2 Ū (2,2) · · · O Ū (t,2)

...
...

...
...

...
...

O O O O · · · Irt Ū (t,t)

 . (2)

Finally, selecting in a specific way certain columns of Ū , matrices B and
N can be constructed, while matrix C is the submatrix formed by the first m
rows of G. Therefore, the main advantage of the proposed method over the
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Silverman-Ho algorithm is its simplicity for obtaining a realization of P (s)
with a lower computational cost.

Also, it is worth noting that polynomial matrices also appear in the input-
output representation of singular systems, since any rational matrix may be
represented by the sum of a strictly proper rational matrix and a polynomial
matrix [7].

The realization problem of strictly proper rational matrices has been widely
studied and, specifically in the positive case, it has been proved that it is not
always possible to find a positive realization with the known algorithms [5,11,
13]. Hence, an alternative method is here presented giving the conditions to
compute a positive realization.

Throughout this work, given a matrix A ∈ Rn×m, A(i1 : i2, j1 : j2) will
denote the submatrix of A with rows {i1, i1 + 1, i1 + 2, . . . , i2} and columns
{j1, j1 + 1, j1 + 2, . . . , j2}. If the submatrix has all rows (resp. columns) of A,
then it is denoted by A(:, j1 : j2) (resp. A(i1 : i2, :)).

2 Preliminaries and previous results

First in this section, the Silverman-Ho algorithm is introduced.

Algorithm 1.
Consider the polynomial matrix P (s) ∈ Rm×p of order t−1 given by equation
(1).

Step 1. Define the matrices

M0 =


−W0 −W1 · · · −Wt−2 −Wt−1

−W1 −W2 · · · −Wt−1 O
...

...
...

...
−Wt−2 −Wt−1 · · · O O
−Wt−1 O · · · O O

 ∈ Rtm×tp

M1 =


−W1 −W2 · · · −Wt−1 O
−W2 −W3 · · · O O
...

...
...

...
−Wt−1 O · · · O O

O O · · · O O

 ∈ Rtm×tp

Step 2. Consider a full rank decomposition M0 = FG, where F ∈ Rtm×n and
G ∈ Rn×tp have full column and full row rank, respectively.

Step 3. Matrix B and C are equal to the first p columns of G and the first m
rows of F , respectively. Finally, N = (FTF )−1FTM1G

T (GGT )−1.

Matrices (N, I,B,C) determine a realization of P (s).
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Now, a procedure to obtain a full rank factorization ḠŪ of certain singular
block upper triangular matrix is presented, in such a way that Ū has the
structure given by (2).

Procedure 1.

Consider the following block upper triangular matrix

M =


M11 M12 · · · M1t−1 M1t

O M11 · · · M1t−2 M1t−1

...
...

...
...

O O · · · M11 M12

O O · · · O M11

 ∈ Rtm×tp

with rank(M) = q.

Step 1. Obtain R, the reduced echelon form of M .
Step 2. Obtain the full rank factorization M = GU such that G is the

matrix formed by the linearly independent columns of M and G is
the matrix formed by the nonzero rows of R. If U has the shape of
(2), then Ḡ = G, Ū = U and P = I. Otherwise, go to the following
step.

Step 3. Find a permutation matrix P = diag(P1 P1 . . . P1) ∈ Rtp×tp such
that the matrix UP has the leading 1’s in the first columns of each
column blocks. If UP has the shape of (2), then MP = ḠŪ , where
Ḡ = G and Ū = UP . In other case, go to the following step.

Step 4. Find a permutation matrix Z such that Ū = ZUP follows the struc-
ture (2). Then, MP = ḠŪ , where Ḡ = GZT and Ū = ZUP .

Concluding, this procedure computes the permutation matrices P and Z,
and two matrices Ḡ and Ū , such that MP = ḠŪ , where Ḡ ∈ Rtm×q, Ū ∈
Rq×tp is an upper reduced echelon matrix with the same form than (2) and
rank(Ḡ) = rank(Ū) = q.

Example 1 Consider the block matrix

M =

M1 M2 M3

O M1 M2

O O M1

 =



0 1 2 1 2 6 1 2 3
0 2 4 0 1 4 2 1 0
0 1 2 1 0 2 1 0 2
0 0 0 0 1 2 1 2 6
0 0 0 0 2 4 0 1 4
0 0 0 0 1 2 1 0 2
0 0 0 0 0 0 0 1 2
0 0 0 0 0 0 0 2 4
0 0 0 0 0 0 0 1 2


.



Factorization of a polynomial matrix and applications 5

Its reduced echelon form is

R =



0 1 2 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 1 2 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


.

Therefore, the full rank factorization M = GU is given by

M =



1 1 2 1 2 3
2 0 1 2 1 0
1 1 0 1 0 2
0 0 1 1 2 6
0 0 2 0 1 4
0 0 1 1 0 2
0 0 0 0 1 2
0 0 0 0 2 4
0 0 0 0 1 2




0 1 2 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 1 2 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

 = GU.

Since U has not the shape of (2), we need to permute some of its columns.

Consider the permutation matrix P = diag(P1 P1 P1) where P1 =

0 1 0
1 0 0
0 0 1

.
Then,

Ũ = UP =


1 0 2 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 1 0 2 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1

 .

Note that U still does not have the structure of (2). Let Z = [e1 e3 e2 e5 e4 e6],
being ei, i = 1, 2, . . . , 6, the canonical vectors. With the matrices

Ḡ = GZT =



1 2 1 2 1 3
2 1 0 1 2 0
1 0 1 0 1 2
0 1 0 2 1 6
0 2 0 1 0 4
0 1 0 0 1 2
0 0 0 1 0 2
0 0 0 2 0 4
0 0 0 1 0 2


, Ū = ZUP = ZŨ =


1 0 2 0 0 1 0 0 0
0 0 0 1 0 2 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

 ,
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we have the full rank factorization

MP =
(
GZT

)
(ZUP ) = ḠŪ

where Ū follows the structure (2).

3 Factorization of polynomial matrices

Given a polynomial matrix P (s) ∈ Rm×p, in this section we present a construc-
tive procedure to determine a realization of P (s), namely, matrices N ∈ Rn×n,
B ∈ Rn×p and C ∈ Rm×n, such that

P (s) = C(sN − I)−1B = −CB − CNBs− . . .− CN t−1Bst−1

where N is a nilpotent matrix with nilpotent index equal to t. As mentioned in
the introduction, the method presented here can be considered as an interest-
ing improvement of the Silverman-Ho algorithm [7, pp. 63]. We can suppose,
without loss of generality, that m ≥ p. In other case, we can work with the
polynomial transfer matrix PT (s), in such a way that if (N, I,B,C) is a real-
ization of P (s), then (NT , I, CT , BT ) is a realization of PT (s).

Procedure 2.

Let P (s) = W0 + W1s + . . . + Wt−1s
t−1 ∈ Rm×p with Wi ∈ Rm×p, i =

0, 1, . . . , t− 1 be a polynomial matrix.

Step 1. Compute the block matrix W given by

W =


−Wt−1 −Wt−2 · · · −W1 −W0

O −Wt−1 · · · −W2 −W1

...
...

...
...

O O · · · −Wt−1 −Wt−2

O O · · · O −Wt−1

 ∈ Rtm×tp

Step 2. Apply Procedure 1 to obtain the full rank factorization

WP = ḠŪ =


Ḡ1

Ḡ2

...
Ḡt−1

Ḡt


[
Ū1 Ū2 · · · Ūt−1 Ūt

]
,

where Ḡi ∈ Rm×n and Ūi ∈ Rn×p for i = 1, 2, . . . , t, with n = rank(W )
and Ū is an upper reduced echelon form with the same structure
than (2).
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Step 3. Define

B = Ū(:, (t− 1)p+ 1 : tp), C = Ḡ(1 : m, :)

qt−1 = rank(Ū(:, 1 : p))

qt−i = rank(Ū(:, 1 : ip))− rank(Ū(:, 1 : (i− 1)p)), for i = 2, 3, . . . , t.

N = [On×qt−1
Ū(:, 1 : qt−2) Ū(:, p+ 1 : p+ qt−3) . . .

. . . Ū(:, (t− 2)p+ 1 : (t− 2)p+ q0)]

Step 4. - If P = I then, (N, I,B,C) constitutes a minimal realization of
P (s).

- If P = diag(P1 P1 . . . P1) then, (N, I,BPT
1 , C) constitutes a

minimal realization of P (s).

Remark 1 It bears noting that:

1. The subindexes qt−i, i = 1, 2, . . . , t, are directly obtained from the number
of leading 1’s of the corresponding blocks of Ū . Hence, if Ū ∈ Rn×pt is the
matrix

Ū =



Iqt−1
Ū (1,1) O Ū (2,1) · · · O Ū (t−1,1) O Ū (t,1)

O O Iqt−2 Ū (2,2) · · · O Ū (t−1,2) O Ū (t,2)

O O O O · · · O Ū (t−1,3) O Ū (t,3)

...
...

...
...

...
...

...
...

O O O O · · · Iq1 Ū (t−1,t−1) O Ū (t,t−1)

O O O O · · · O O Iq0 Ū (t,t)


.

Ḡ is given from the n linearly independent columns of W , which are qt−1

from the first column block, qt−2 from the second column block, and so on
until the last q0 linearly independent columns from the last column block
of W . Note that qt−1 + qt−2 + · · ·+ q0 = n. Consequently, we only need to
save the column indexes of Ū with leading 1’s.

2. By construction N is nilpotent, with nilpotent index equal to t.

Proposition 1 The matrices N , I, B and C given by Procedure 2 constitute
a minimal realization of the polynomial transfer matrix P (s) = W0 +W1s +
. . .+Wt−1s

t−1, where Wi ∈ Rm×p, i = 0, 1, . . . , t− 1.

Proof First suppose that P = I. Then, from the structure of matrices B, C
and N , these equations are satisfied:

CB = −W0, CN iB = −Wi i = 1, 2, . . . , t− 1.

Hence (N, I,B,C) is a realization of P (s) and it will be minimal if the cor-
responding system is controllable and observable [7]. A system is controllable
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if the rank of its controllability matrix is equal to the dimension n of the
realization. For i = 1, 2, . . . , t− 1 we have

N iB =



O Ū (t−i,1)(:, 1 : qi−1 − qi) ⋆
O Ū (t−i,2)(:, 1 : qi−1 − qi) ⋆
...

...
...

Iqi Ū (t−i,t−i)(:, 1 : qi−1 − qi) ⋆
O O O
...

...
...

O O O


,

where the partition by rows is given by qt−1, qt−2, . . . , qi, qi−1, . . . , q0. Then

rank([B NB N2B . . . N t−1B]) = q0 + q1 + q2 + · · ·+ qt−2 + qt−1

= rank(Ū) = n.

Therefore, the system given by (N, I,B,C) is controllable.

On the other hand, a system is observable if the rank of its observability
matrix O is also equal to n. Since

O =



C
CN
CN2

...
CNt−2

CNt−1


and

CN i =



On×qt−1

...
On×qt−i

Ḡ1(:, 1 : qt−1)
⋆

Ḡ1(:, qt−1 + 1 : qt−1 + qt−2)
⋆
...

Ḡ1(:,
∑t−i+1

j=1 qt−i + 1 :
∑t−i

j=1 qt−j)

⋆



T

rank(O) = n, and the system given by (N, I,B,C) is observable. Consequently,
this realization is minimal.
Now, suppose that P = diag(P1 P1 . . . P1) and consider the transfer matrix

P̄ (s) = P (s)P1 = (W0P1) + (W1P1)s+ · · ·+ (Wt−1P1)s
t−1

= W̄0 + W̄1s+ · · ·+ W̄t−1s
t−1
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and the block matrix W̄ = WP . Applying Procedure 2 we have the full rank
factorization

W̄ P̄ = ḠŪ

where P̄ = I and Ū has the structure given by (2). From this factorization
we obtain matrices (N, In, B, C), which compose a minimal realization of the
polynomial matrix P̄ (s), as just demonstrated. As, for i = 0, 1, . . . , t− 1, it is
verifies

CN iB = −W̄i = −WiP1 =⇒ CN iBPT
1 = −Wi

then (N, In, BPT
1 , C) is a minimal realization of P (s). �

Remark 2 It is worth noting that if the complete quasi-Gauss elimination pro-
cess is used to obtain the initial full rank factorization, it is possible for ill-
conditioned matrices to have a range greater than it should have. In this case
a minimal realization is not obtained, since Ū will have more leading 1′s than
it really should have, overestimating some of the parameters qi. As B and N
are directly obtained from Ū , the corresponded realization will be controllable
by construction but, an overestimated parameter qi implies that some of the
linear dependent columns of W are being selected for computing Ḡ and hence
C, implying that this realization will not be observable.

Let us look at an example where the matrices of coefficients of the polynomial
transfer matrix P (s) are obtained from Hilbert matrices. Remind that, in
linear algebra, a Hilbert matrix is a square matrix with entries being the unit
fractions

Hij =
1

i+ j − 1
.

The Hilbert matrices are canonical examples of ill-conditioned matrices, being
notoriously difficult to use in numerical computation. Therefore, the follow-
ing purely academic example has the purpose to just highlight the previous
remark.

Example 2 Consider the polynomial matrix P (s) = W0 +W1s+W2s
2, with

W0 = −(hilb(15)− 0.1 · ones(15, 15) + 0.2 · I15)
W1 = −(hilb(15) + 0.2 · ones(15, 15)− 0.1 · I15)
W2 = −hilb(15)

where hilb(n) denotes the n×n Hilbert matrix, ones(m,n) is the m×n matrix
with all entries equal to one and In is the identity matrix. Following Procedure
2, we compute the 45 × 45 matrix W . The rank of this matrix is 36 but its
reduced row echelon form R obtained by the corresponding MATLAB function
[14] has 42 leading 1’s. Hence, rank(R)=42 and consequently the realization
will not be minimal. In fact, by applying Procedure 1, W = GU with

G = [W (:, 1 : 11) W (:, 13) W (:, 16 : 45)] ∈ R45×42

U =


I11 V1 O11×1 V2 V3 O11×15 O11×15

O1×11 0 1 ⋆ ⋆ O1×15 O1×15

O15×11 O15×1 O15×1 O15×1 O15×1 I15 O15×15

O15×11 O15×1 O15×1 O15×1 O15×1 O15×15 I15

 ∈ R42×45
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where Vi ∈ R11×1, i = 1, 2, 3, and the stars mean nonzero entries.
But U has not the structure given by (2). We need to permute the columns

twelve and thirteen by means of the permutation matrix P = diag(P1 P1 P1)
where P1 = [e1 e2 . . . e11 e13 e12 e14 e15] and then, the rows twenty four
and twenty five and the rows thirty-nine and forty premultiplying by Z =
[e1 e2 . . . e23 e25 e24 e26 . . . e38 e40 e39 e41 e42]. Hence, we calculate matrices
Ḡ = GZT and

Ū = ZUP =


I11 O11×1 V1 V2 V3 O11×15 O11×15

O1×11 1 0 ⋆ ⋆ O1×15 O1×15

O15×11 O15×1 O15×1 O15×1 O15×1 I15 O15×15

O15×11 O15×1 O15×1 O15×1 O15×1 O15×15 I15

 ,

such that WP = ḠŪ . Now, by Procedure 2, we compute the realization
(N, I,B,C) with

B =


O11×15

O1×15

O15×15

I15

 · PT
1

C = Ḡ(1 : 15, :)

N =


O11×12 I11 O11×1 V1 V2 V3 O11×15

O1×12 O1×11 1 0 ⋆ ⋆ O1×15

O15×12 O15×11 O15×1 O15×1 O15×1 O15×1 I15
O15×12 O15×11 O15×1 O15×1 O15×1 O15×1 O15×15

 .

This realization represents a system whose controllability matrix has rank 42
but its observability matrix has rank 36. Therefore, this system is controllable
but not observable. Thus, the realization is not minimal.

However, note that this fact, despite being important from a numerical
point of view, it is irrelevant if we consider the implementation objectives.
Indeed, it is intended to be applied to solve two classical problems in control
theory: the model reduction problem in singular systems and the positive
realization problem in linear control systems, being impossible for both of
them to reach the minimum structure. Nevertheless, reducing the number of
system variables or to obtaining a positive realization can lead to a significant
improvement and reduction in the number of calculations.

Finally, taking into account the following nilpotent matrix of nilpotent
index t:

Jt,α =


O O . . . O O
Iα O . . . O O
O Iα . . . O O
...

...
...

...
O O . . . Iα O

 ∈ Rtα×tα

from Procedure 2, the next result can be deduced.



Factorization of a polynomial matrix and applications 11

Proposition 2 Consider P (s) = W0 +W1s+ · · ·+Wt−1s
t−1 ∈ Rm×p(s).

(1) If rank(Wt−1) = p then a minimal realization (N, Itp, B, C) of P (s) with a
nilpotent matrix N ∈ Rtp×tp, B ∈ Rtp×p and C ∈ Rm×tp is given by

N = Jt,p, B =


Ip
O
...
O

 and C = [−W0 −W1 · · · −Wt−2 −Wt−1].

(2) If rank(Wt−1) = m then a minimal realization (N, Itm, B, C) of P (s) with
a nilpotent matrix N ∈ Rtm×tm, B ∈ Rtm×p and C ∈ Rm×tm is given by

N = JT
t,m, B =


−W0

−W1

...
−Wt−2

−Wt−1

 and C = [Im O · · · O O].

Example 3 Consider the polynomial matrix

P (s) = −

 s+ 1 s2 + 2s+ 2 2s2 + 6s+ 3
2 2s2 + s+ 1 4s2 + 4s

s+ 1 s2 2s2 + 2s+ 2

 =

= −

1 2 3
2 1 0
1 0 2

−

 1 2 6
0 1 4
1 0 2

 s−

0 1 2
0 2 4
0 1 2

 s2 =

= W0 + W1 s + W2 s
2.

To compute a minimal realization of P (s) we define the matrix

W =

W2 W1 W0

O W2 W1

O O W2

 , with m = p = t = 3.

Note that W is the matrix M of Example 1. Then, by using matrices

P = diag(P1 P1 P1), with P1 =

0 1 0
1 0 0
0 0 1

 and

Z = [e1 e3 e2 e5 e4 e6],
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we obtain the full rank factorization of WP ,

WP =



1 2 1 2 1 3
2 1 0 1 2 0
1 0 1 0 1 2
0 1 0 2 1 6
0 2 0 1 0 4
0 1 0 0 1 2
0 0 0 1 0 2
0 0 0 2 0 4
0 0 0 1 0 2




1 0 2 0 0 1 0 0 0
0 0 0 1 0 2 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

 = ḠŪ .

Consequently, by Procedure 2

B =

[
O3×3

I3×3

]
, C =

1 2 1 2 1 3
2 1 0 1 2 0
1 0 1 0 1 2

 , N =


0 1 0 0 0 1
0 0 0 1 0 2
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

and (N, I,BPT
1 , C) is a minimal realization of the polynomial matrix P (s).

4 Application to Singular Systems

Singular systems have been one of the principal research topics in control
theory for the last 50 years by their applications in many different areas such
as the Leontief dynamic model, computer network, electrical, mechanical or
communication systems and even, in biological systems. They are also called
as descriptor systems, differential-algebraic systems or generalized state-space
systems in the literature [3,17].

A singular system can be represented by the next space-state model{
Eẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(3)

where ẋ(t) = dx(t)
dt , t is the time, x(t) ∈ Rn is the vector of internal variables,

u(t) ∈ Rp is the vector of control inputs and y(t) ∈ Rm is the vector of outputs
and E ∈ Rn×n is a singular matrix. If E = In the identity matrix, we have a
standard system.

But singular systems can also be defined by an input-output model given
by a rational matrix G(s). Both models are interchangeable. The matrices
E,A ∈ Rn×n, B ∈ Rn×p and C ∈ Rm×n such that

G(s) = C (sE −A)
−1

B

constitute a realization of G(s), which is denote by (E,A,B,C). The size of
A is called the dimension of the realization that is minimal if it has minimum
dimension.
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Theorem 1 [7, pp 60] Any m×p rational matrix G(s) may be represented as
G(s) = H(s) + P (s) where H(s) is a strictly proper rational matrix and P (s)
is a polynomial matrix.

Theorem 1 implies that system (3) is equivalent to the canonical forward-
backward form given by

{
Ē ˙̄x(t) = Āx̄(t) + B̄ū(t)

ȳ(t) = C̄x̄(t)

with Ē = diag(In1
, N), Ā = diag(A1, In2

), n1+n2 = n, where n1 is the degree
of polynomial det(sE − A), A1 ∈ Rn1×n1 and N ∈ Rn2×n2 is a nilpotent
matrix with index t; B̄ = B1 ⊕ B2 with B1 ∈ Rn1×p and B2 ∈ Rn2×p, and
C̄ = C1⊕C2 with C1 ∈ Rm×n1 and C2 ∈ Rm×n2 . Therefore, its transfer matrix
is the sum of the strictly proper rational matrix

H(s) = C1(sIn1 −A1)
−1B1

and the polynomial matrix

P (s) = C2(sN − In2)
−1B2.

So, Procedure 2 could be useful for singular systems. Two direct applica-
tions of this method are shown below.

4.1 Model reduction

As mentioned earlier, an application of singular systems is found in the study
of electrical systems. Specifically, the dynamics of an electrical system can
be described in terms of the differential equations (3), which are obtained by
applying Kirchoff’s laws. However, the matrices E, A, B and C usually have
large sizes and are quite sparse, which means that some of the corresponding
equations are redundant Unfortunately, for large-scale linear systems, the de-
termination of a minimum set of equations and, therefore, a minimum number
of variables, can be computationally non-trivial.

Procedure 2 can help us with the model reduction problem, as shown in
the following example.

Example 4 Let the linear RLC circuit (a circuit with linear resistors, inductors
and capacitors, see [7] for details) given by (3) where E = (eij) ∈ R11×11 is
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the zero matrix except for e22 = e99 = 1,

A =



−1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0
0 0 −1 0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 0 0 0 −1
0 1 0 0 0 0 0 0 0 0 −3
0 0 1 0 0 0 0 0 0 0 −1
0 0 0 1 0 0 0 0 0 0 −1
0 0 0 0 1 0 0 0 0 0 −1
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 −1 −3 −1 −1 −1 0


∈ R11×11

B = (bij) ∈ R11×2 is the zero matrix except for b11 = b10,2 = 1 and C = I11 is
the identity matrix.

It is easy to see that this system can be reduced, since E, A and B are
sparse matrices. For model reduction, we compute its transfer matrix and
try to obtain a minimal realization. According to Theorem 1, G(s) can be
represented as follows:

G(s) = C̄
[
sĒ − Ā

]−1
B̄ = G1(s) +G2(s) =

= 1
s

[
0 0 0 0 0 1 −1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0

]T
+

+

[
1 3 1 1 1 6s+ 1 −3s− 1 3s+ 2 0 0 1
0 0 0 0 0 1 −1 1 0 1 0

]T
.

By [4], a minimal realization (A1, B1, C1) of G1(s) is

A1 = [0] B1 = [1 0] C1 =
[
0 0 0 0 0 1 −1 1 1 0 0

]T
,

and by Procedure 2, a minimal realization (N, I,B2, C2) of G2(s) is computed.
Let

G2(s) = W1s+W0 =

= s

[
0 0 0 0 0 6 −3 3 0 0 0
0 0 0 0 0 0 0 0 0 0 0

]T
+

+

[
1 3 1 1 1 1 −1 2 0 0 1
0 0 0 0 0 1 −1 1 0 1 0

]T
.

The matrix W =

[
−W1 −W0

O −W1

]
has the following full rank factorization

W = G ∗ U = [W (:, 1) W (:, 3 : 4)]

1 0 0 0
0 0 1 0
0 0 0 1

 ,
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where U is a basic upper block matrix. Therefore, applying Procedure 2 we
obtain

B2 = U(:, 3 : 4) =

 0 0
1 0
0 1



C2 = G(1 : 11, :) =

 0 0 0 0 0 −6 3 −3 0 0 0
−1 −3 −1 −1 −1 −1 1 −2 0 0 −1
0 0 0 0 0 −1 1 −1 0 −1 0

T

qt−1 = q1 = 1, qt−2 = q0 = 2, then N = [O3×1 U(:, 1 : 2)] =

0 1 0
0 0 0
0 0 0

 .

From (A1, B1, C1) of G1(s) and (N, I,B2, C2) of G2(s), a minimal realiza-
tion (E,A,B,C) of G(s) is set up where

E = diag(1, N) ∈ R4×4 A = diag(A1, I) ∈ R4×4

B =

[
B1

B2

]
∈ R4×2 C =

[
C1 C2

]
∈ R11×4.

It must be noted that we have started with a space-state representation
of order 11 but we have found a minimal realization of order 4, significantly
reducing the number of variables of this electrical circuit.

4.2 An interesting contribution to the positive realization problem

The importance of the positive realization problem in standard systems is
well documented in diverse applicative fields. It appears, for instance, in the
identification of compartmental systems, in the filtering of data generated by
hidden Markov sequences or in the design of digital filters [2,4,6,12,15]. It is
formulated as follows: Let H(s) ∈ Rm×p(s) be a rational transfer matrix. It
is said to admit a positive realization (A,B,C) if we find a Metzler matrix
A ∈ Rn×n, and nonnegative matrices B ∈ Rn×p, C ∈ Rm×n such that H(s) =

C (sI −A)
−1

B. Moreover, this realization is minimal if it has the minimum
dimension.

In this section we show how Procedure 2 can be used to obtain positive
realizations for rational transfer matrices with multiple real poles. In order to
do so, the rational transfer matrix must be rewritten based on a polynomial
matrix and then apply Proposition 2.

Proposition 3 Let H(s) be the rational matrix

H(s) =

t−1∑
i=0

Mi

(s− a)i+1
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with rank(Mi) = p or rank(Mi) = m. If Mi ∈ Rm×p
+ , for i = 0, 1, . . . , t − 1

then H(s) admits a positive realization.

Proof Let us recall that we want to find a Metzler matrix A and nonnegative

matrices B, C, such that H(s) =
t−1∑
i=0

Mi

(s−a)i+1 = C(sI −A)−1B.

However, any transfer matrix can be reformulated as follows:

H(s) = C(sI −A)−1B = C((s− a)︸ ︷︷ ︸
h

I − (A− aI)︸ ︷︷ ︸
N

)−1B = C(hI −N)−1B =

= C

(
h

(
I − 1

h
N

))−1

B =
1

h︸︷︷︸
q

C

(
I − 1

h
N

)−1

B =

= qC(I − qN)−1B = −qC(qN − I)−1B = −qP (q)

with N a nilpotent matrix of index t and where P (q) is a polynomial matrix.
As rank(Mi) = p or rank(Mi) = m, and Mi ∈ Rm×p

+ , for i = 0, 1, . . . , t − 1,
by Proposition 2 we can obtain a realization (N, I,B,C) of P (q) with N ≥ O,
B ≥ O and C ≥ O. Therefore, A = N + aI is a Metzler matrix and (A,B,C)
a positive realization of H(s) for all a ∈ R. �
Example 5 Consider the transfer matrix

H(s) =
1

(s− 3)3

 s2 − 4s+ 4 s2 − s+ 1
s− 2 s

s2 + 3s− 5 s2 + s− 5

 =

=
1

s− 3

1 1
0 0
1 1

+
1

(s− 3)2

 2 5
1 1
9 7

+
1

(s− 3)3

 1 7
1 3
13 7

 .

This transfer matrix admits a positive realization by Proposition 3. Fol-
lowing the proof of this proposition, we are going to be able to construct this
realization. Hence, considering q = 1

s−3 , we can write H(s) by means of a
polynomial matrix P (q), that is:

H(s) = −q

−1 −1
0 0

−1 −1

+ q

−2 −5
−1 −1
−9 −7

+ q2

 −1 −7
−1 −3

−13 −7

 =

= −q(W0 + qW1 + q2W2).

Now, by Proposition 2, the realization (N,B,C) with

B =

[
I2×2

O4×2

]
, C = [W0 W1 W2], N =


0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
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is obtained and finally, taking

A = N + 3I =


3 0 0 0 0 0
0 3 0 0 0 0
1 0 3 0 0 0
0 1 0 3 0 0
0 0 1 0 3 0
0 0 0 1 0 3

 ,

the positive realization (A,B,C) of H(s) is computed.

Remark 3 When a transfer matrix has different multiple real poles it is possible
to obtain a positive realization if it can be decomposed in as many rational
matrices that satisfied Proposition 3 as different poles.
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