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On σ-subnormality criteria in finite σ-soluble
groups

A. Ballester-Bolinches, S.F. Kamornikov, M.C. Pedraza-Aguilera, and V. Pérez-Calabuig

Abstract

Let σ = {σi : i ∈ I} be a partition of the set P of all prime numbers.
A subgroup X of a finite group G is called σ-subnormal in G if there
is a chain of subgroups

X = X0 ⊆ X1 ⊆ · · · ⊆ Xn = G

where for every j = 1, . . . , n the subgroup Xj−1 normal in Xj or
Xj/CoreXj (Xj−1) is a σi-group for some i ∈ I.

In the special case that σ is the partition of P into sets containing
exactly one prime each, the σ-subnormality reduces to the familiar
case of subnormality.

In this paper some σ-subnormality criteria for subgroups of σ-
soluble groups, or groups in which every chief factor is a σi-group,
for some σi ∈ σ, are showed.
Mathematics Subject Classification (2010): 20D10, 20D20
Keywords: finite group, σ-solubility, σ-nilpotency, σ-subnormal sub-
group, factorised group.

1 Introduction and statements of results.
All groups considered in this paper are finite.

The results of this article are based on a paper of Skiba [15]. There he
generalised the concepts of solubility, nilpotency and subnormality introdu-
cing σ-solubility, σ-nilpotency, and σ-subnormality in which σ is a partition
of the set P, the set of all primes. Hence P =

⋃
i∈Iσi, with σi ∩ σj = ∅ for all

i 6= j.
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We note that in the special case that σ is the partition of P containing
exactly one prime each, the definitions below reduce to the familiar case of
soluble groups, nilpotent groups and subnormal subgroups.

From now on let σ denote a partition of P. Given a natural number n, we
denote by σ(n) the set of all elements of σ including the primes dividing n.
Two natural numbers m and n are called σ-coprime if σ(m) ∩ σ(n) = ∅. We
say that n is σ-primary if |σ(n)| = 1, that is, if its prime factors all belong
to the same member of σ.

A group G is called σ-primary if |G| is a σ-primary number.

Definition 1. A group G is said to be σ-soluble if every chief factor of G is
σ-primary. G is said to be σ-nilpotent if it is a direct product of σ-primary
groups.

Note that if π is a set of primes and σ = {π, π′}, then a group G is σ-
soluble if and only ifG is π-separable. In this case, G is σ-nilpotent if and only
if G is π-decomposable. If π = {p1, · · · , pn}, and σ = {{p1}, · · · , {pn}, π′},
then G is σ-soluble if and only if G is π-soluble, and G is σ-nilpotent if and
only if G has a normal Hall π′-subgroup and a normal Sylow pi-subgroup,
for all i = 1, . . . , n.

Many normal and arithmetical properties of soluble groups still hold for σ-
soluble groups (see [15]). In particular, every σ-soluble group has a conjugacy
class of Hall σi-subgroups and a conjugacy class of Hall σ′i-subgroups, for
every σi ∈ σ.

The role of the class Nσ of all σ-nilpotent groups in σ-soluble groups
is analogous to that of nilpotent groups in soluble groups. In particular,
Nσ is a subgroup-closed saturated Fitting formation ([15, Corollary 2.4 and
Lemma 2.5]) that is closely related to the subgroup embedding property of
σ-subnormality.

Definition 2. Given a partition σ of the set of prime numbers, a subgroup X
of a group G is called σ-subnormal in G if there exists a chain of subgroups

X = X0 ≤ X1 ≤ · · · ≤ Xn = G,

with Xi−1 normal in Xi or Xi/CoreXi(Xi−1) σ-primary for every 1 ≤ i ≤ n.

To know that a non-σ-nilpotent group possesses a non-trivial proper σ-
subnormal subgroup is equivalent to know that the group is not simple.
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Therefore criteria for the σ-subnormality of a subgroup may have some im-
portance in the study of the normal structure of a group. The close relation-
ship between σ-subnormal subgroups and direct decompositions of a group
strongly supports that claim. The significance of the σ-subnormal subgroups
in σ-soluble groups is apparent since they are precisely the Nσ-subnormal
subgroups, and so they are a sublattice of the subgroup lattice of G. They
are also important to analyse the structural impact of some permutability
properties (see [15]).

In this paper, which is a natural continuation of [3], extensions of some
well-known subnormality criteria are presented. For instance, according to a
result of Wielandt (see [10, Theorem 7.3.3]), a subgroup X of a group G is
subnormal in G if and only if X is subnormal in 〈X,Xg〉 for all g ∈ G.

In [11, Question 19.84] (see also [18]), Skiba asked whether it is enough
to know that X is σ-subnormal in 〈X,Xg〉 for all g ∈ G to deduce that X is
σ-subnormal in G. It is certainly true in the soluble universe by virtue of [2,
Proposition 6.1.10 and Theorem 6.2.17] (see [3, Lemma 2]). Our first main
result shows that the answer is also affirmative for σ-soluble groups.

Theorem A. Suppose that G is a σ-soluble group and X is a subgroup of G
that is σ-subnormal in 〈X,Xg〉 for all g ∈ G. Then X is σ-subnormal in G.

Theorem A is not true for arbitrary groups. Therefore Question 19.84 in
[11] is answered.

Example 1. Let π = {2, 3} and σ = {π, π′}. The simple group G = PSL2(7)
of order 168 = 23 ·3·7 has a unique conjugacy class of elements of order 2. Let
x be an element of this class. Given g ∈ G, the group 〈x, xg〉 is isomorphic
to C2, to C2 × C2, to Σ3 or to D8. Therefore X = 〈x〉 is σ-subnormal in
〈X,Xg〉 for all g ∈ G but X is not σ-subnormal in G.

Another important subnormality criterion asserts that if G = AB is a
group which is the product of the subgroups A and B and X is a subgroup
of G contained in A∩B that is subnormal in A and B, then X is subnormal
in G. This result was proved by Maier in [12] for soluble groups and then
for arbitrary groups by Wielandt [19]. Applying Theorem A, we show that
Maier-Wielandt’s result also holds for σ-subnormal subgroups not only in the
soluble universe, but also in the σ-soluble one.

Theorem B. Let the σ-soluble group G be the product of two subgroups A
and B. If X is a subgroup of A ∩B which is σ-subnormal in both A and B,
then X is σ-subnormal in G.
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Theorem B does not hold in general as the following example shows (see
[8]).

Example 2. Let π = {2, 5} and σ = {π, π′}. The alternating group of degree
five A5 is the product of the subgroups A and B, where A is the alternating
group of degree 4 and B is a dihedral group of order 10. Then A ∩ B is
σ-subnormal in both A and B, but A ∩B is not σ-subnormal in A5.

On the other hand, Wielandt [19] conjectured that if X is a subgroup of G
such that X is subnormal in 〈X,Xg〉 for all g ∈ A∪B, then X is subnormal
in G.

Wielandt’s conjecture was proved to be true in the soluble universe by
Maier and Sidki [13] for subgroups X of prime power order and then for every
subgroup X of a soluble group by Casolo in [4].

In [3, Theorem A], we show that the following σ-version of the aforemen-
tioned result holds.

Theorem 1. Assume that G is a soluble group factorised as a product of the
subgroups A and B. Let X be a subgroup of G such that X is σ-subnormal
in 〈X,Xg〉 for all g ∈ A ∪B. Then X is σ-subnormal in G.

A natural question to ask is now whether Theorem 1 holds for σ-soluble
groups. Unfortunately we have been unable to answer this question; however,
our third main result could be regarded as a significant step to solve it.

Theorem C. Assume that G is a σ-soluble group factorised as a product of
the subgroups A and B. Let X be a subgroup of G such that X is σ-subnormal
in 〈X,Xg〉 for all g ∈ A ∪ B. Then X is σ-subnormal in G if one of the
following conditions is true:

(i) |G : A| and |G : B| are σ-primary.

(ii) |G : A| is σ-primary and |G : A| and |G : B| are σ-coprime.

The proof of Theorem C strongly depends on the following extension of
[6, Theorem 3].

Theorem D. Let G be a σ-soluble group, and A and X two subgroups of G
such that X is σ-subnormal in 〈X,Xa〉 for all a ∈ A. If |G : A| is σ-primary,
then X is σ-subnormal in 〈X,A〉.

We shall adhere to the notation and terminology of [2] and [5].
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2 Preliminaries
Our first lemma collects some basic properties of σ-subnormal subgroups
which are very useful in induction arguments.

Lemma 1 ([15]). Let H, K and N be subgroups of a group G. Suppose that
H is σ-subnormal in G and N is normal in G. Then the following statements
hold:

1. H ∩K is σ-subnormal in K.

2. If K is a σ-subnormal subgroup of H, then K is σ-subnormal in G.

3. If K is σ-subnormal in G, then H ∩K is σ-subnormal in G.

4. HN/N is σ-subnormal in G/N .

5. If N ⊆ K and K/N is σ-subnormal in G/N , then K is σ-subnormal
in G.

6. If L ≤ K and K is σ-nilpotent, then L is σ-subnormal in K.

7. If |G : H| is a σi-number, then Oσi(H) = Oσi(G).

8. If N is a σi-subgroup of G, then N ≤ NG(Oσi(H)).

A standard induction argument using Lemma 1 allows us to prove the
following result.

Lemma 2. Let X be a subgroup of a σ-soluble group G. Then X is σ-
subnormal in G if and only if X is Nσ-subnormal in G, that is, there exists
a chain of subgroups

X = X0 ≤ X1 ≤ · · · ≤ Xn = G,

such that Xi−1 is a maximal subgroup of Xi and Xi/CoreXi(Xi−1) ∈ Nσ, for
1 ≤ i ≤ n.

The fact that σ-subnormal subgroups are Nσ-subnormal in the σ-soluble
universe allows us to prove some relevant properties of these subgroups which
are crucial in the proof of our main results.

Lemma 3. Let X be a subgroup of a group G.
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1. ([2, Lemma 6.1.9 and Proposition 6.1.10]) If X is σ-subnormal in G,
then the Nσ-residual XNσ of X is subnormal in G.

2. ([2, Lemma 6.1.9]) If X is subnormal in G, then X is σ-subnormal in
G.

3. ([2, Lemmas 6.3.11 and 6.3.12 and Example 6.3.13])) Nσ is a lattice
formation, that is, the set of all σ-subnormal subgroups of a σ- soluble
group G forms a sublattice of the subgroup lattice of G.

4. ([2, Theorem 6.3.3]) If X is a σ-subnormal σ-nilpotent subgroup of a
σ-soluble group G, then X is contained in Fσ(G), the Nσ-radical of G.
In particular, if X is σi-group, then X ≤ Oσi(G).

5. ([2, Theorem 6.5.46]) If G = 〈A,B〉 is a a σ-soluble group generated
by two σ-subnormal subgroups A and B, then GNσ = 〈ANσ , BNσ〉.

Note that by Lemmas 1 (2) and 3 (2), subnormal subgroups of σ-subnormal
subgroups of a group G are σ-subnormal in G. This fact will be applied in
the sequel without further reference.

Our third lemma shows that the residual associated with the class of
all σi-groups (also called σi-residual) respects the σ-subnormal generation of
σ-soluble groups.

Lemma 4. Let σi ∈ σ. If A and B are σ-subnormal subgroups of a σ-soluble
group G = 〈A,B〉, then Oσi(G) = 〈Oσi(A), Oσi(B)〉.

Proof. Assume the result is false and let G be a counterexample of least
order. Denote H = 〈Oσi(A), Oσi(B)〉 and X = Oσi(G). Clearly 1 6= X.
Let N be a minimal normal subgroup of G such that N ≤ X. Since G is
σ-soluble, it follows that N is σj-group for some σj ∈ σ. The minimality of
G yields X = HN and CoreG(H) = 1.

On the other hand, by Lemma 3 (5), we have that GNσ = 〈ANσ , BNσ〉 ≤
〈Oσi(A), Oσi(B)〉 = H. Since GNσ is normal in G and CoreG(H) = 1, it
follows that G is σ-nilpotent.

Then G = X×Y with Y = Oσi(G). If Y 6= 1, then by the minimal choice
of G, we have that G = X ×Y = H ×Y , and therefore X = H. Thus Y = 1
and so G = Oσi(G), A = Oσi(A) and B = Oσi(B). This contradiction proves
the lemma.
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Lemma 5. Let H∗ denote either the Nσ-residual or the σi-residual of a
subgroup H of a σ-soluble group G, for σi ∈ σ. Let A be a subgroup of G. If
H is a σ-subnormal subgroup of 〈H,Ha〉 for all a ∈ A, then H normalises
(H∗)A.

Proof. Let a ∈ A. Since H is a σ-subnormal subgroup of 〈H,Ha−1〉, it follows
that Ha is σ-subnormal in 〈Ha, H〉 = 〈H,Ha〉. By Lemmas 3 (5) and 4, we
have 〈H,Ha〉∗ = 〈H∗, (Ha)∗〉 = 〈H∗, (H∗)a〉, thus

[H, (H∗)a] ≤ [H, 〈H,Ha〉∗] ≤ 〈H,Ha〉∗ ≤ (H∗)A.

Lemma 6. Let G be a σ-soluble group, X a σi-subgroup of G and H a
Hall σi-subgroup of G. If X is σ-subnormal in 〈X,Xh〉 for all h ∈ H, then
X ≤ H.

Proof. Suppose that the result is false. Let G be a counterexample of the
smallest possible order. Clearly the hypotheses of the lemma hold inG/Oσi(G).
Therefore, if Oσi(G) 6= 1, we have that XOσi(G)/Oσi(G) ≤ H/Oσi(G) by mi-
nimality of G. Hence X ≤ H, contrary to supposition. Thus Oσi(G) = 1.
Let N be a minimal normal subgroup of G. Then N is a σj-group for some
j 6= i. Since X ≤ HN by the minimal choice of G, there exists n ∈ N with
Xn ≤ H. Let x ∈ X and h = x−n ∈ H. Then [x, h] = [x, n][x−1, n] ∈ N
and [x, h] = x−1xh ∈ 〈x, xh〉. Hence [x, h] ∈ N ∩ 〈x, xh〉. Then X is σ-
subnormal in 〈X,Xh〉 by hypothesis. Since X is a σi-subgroup, we have that
X ≤ Oσi(〈X,Xh〉) by Lemma 3 (4). Therefore, 〈X,Xh〉 = Oσi(〈X,Xh〉)Xh

is a σi-subgroup of HN . Thus [x, h] ∈ N ∩ 〈X,Xh〉 = 1 and [x, h] = 1.
In particular, [x, n] = [x−1, n] is a σi-element. Since N is a (σi)

′-group and
[x, n] ∈ N , it follows that [x, n] = 1 and Xn = X ≤ H.

Lemma 7. Let H be a subgroup of a σ-soluble group G such that Oσi(H) = H
for some σi ∈ σ. Assume K is a normal σi-subgroup of G and k ∈ K such
that H is a σ-subnormal subgroup of 〈H,Hk〉. Then k normalises H.

Proof. Denote L = 〈H,Hk〉. Let Z denote the normal closure of H in L.
By Lemma 4, Oσi(Z) = Z. Since Oσi(L/Z) = L/Z, it follows that L =
Oσi(L)Z. By [2, Proposition 6.5.5], it follows that Oσi(L) = Oσi(L)Oσi(Z) =
Oσi(L)Z = L.

On the other hand, L = L ∩ HK = H(L ∩ K). By Lemma 4, L =
Oσi(L) = Oσi(H)Oσi(L ∩K) = H. Thus L = H and Hk = H.
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3 Proofs of the main theorems
Proof of Theorem A. Suppose the result is not true and let G be a counte-
rexample with |G|+|X|minimal. Then GNσ 6= 1. Let N be a minimal normal
subgroup of G contained in GNσ . Then N is a σi-group for some σi ∈ σ. Note
that XN/N is σ-subnormal in G/N by the minimality of the pair (G,X).
If XN were a proper subgroup of G, then X would be σ-subnormal in XN .
By Lemma 1, X would be σ-subnormal in G, contrary to our assumption.
Hence G = XN . Assume that X is a σi-group. Then G is a σi-group, and
X is σ-subnormal in G. This contradiction implies that X is not a σi-group,
and so Oσi(X) 6= 1.

Assume that Oσi(X) < X. By minimality of (G,X), it follows that
Oσi(X) is σ-subnormal in G. By Lemma 1 (8), N normalises Oσi(Oσi(X)) =
Oσi(X). Hence Oσi(X) is a normal subgroup of G. The minimal choice
of G implies that X/Oσi(X) is σ-subnormal in G/Oσi(X) and then X is
σ-subnormal in G by Lemma 1 (5). This is not possible. Thus X = Oσi(X).

If n ∈ N then X is σ-subnormal in Un = 〈X,Xn〉 = (Un ∩ N)X by
hypothesis. By Lemma 1 (7), we have that

Oσi(Un) = Oσi((Un ∩N)X) = Oσi(X) = X.

In particular, X is normal in Un. Consequently, X is normal in V = 〈Xn :
n ∈ N〉. Since V is normal in G, we have X is subnormal in G, and we have
reached the desired contradiction.

Proof of Theorem B. Assume the result is false and letG be a counterexample
such that |G : A|+ |X| is minimal. Suppose thatM is a maximal subgroup of
G containing A. Then M = A(M ∩B) and X is σ-subnormal in both A and
M ∩ B by Lemma 1 (1). By minimality of G, X is σ-subnormal in M . On
the other hand, G = MB. If |G : M | < |G : A|, we have X is σ-subnormal in
G, which is a contradiction. Therefore A = M is a maximal subgroup of G.
Let K = CoreG(A). If K 6= 1, then XK/K is σ-subnormal in G/K by the
minimal choice of G. By Lemma 1 (5), XK is σ-subnormal in G. Moreover
X ≤ XK ≤ A. Thus X is σ-subnormal in XK by Lemma 1 (1). Thus X
is σ-subnormal in G. This contradiction yields K = 1 and G is a primitive
group. By Lemma 3 (1), XNσ is a subnormal subgroup of A and B. Applying
the result of Maier-Wielandt, we have that XNσ is a subnormal subgroup of
G. By [10, Lemma 7.3.16], XNσ ≤ CoreG(A) = 1. Hence X is σ-nilpotent.
By Lemma 1 (6), every subgroup of X is σ-subnormal in X. Therefore every
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proper subgroup of X is σ-subnormal in A and B by Lemma 1 (2). The
minimal choice of X implies that every proper subgroup of X is σ-subnormal
in G. By Lemma 3 (3), X is cyclic of prime power order. Assume X is a
σi-group. Since X is σ-subnormal in A, by Lemma 3 (4), X is contained
in Oσi(A). Then XA, the normal closure of X in A, is a σi-group. Analo-
gously, XB is a σi-group. According to [1, Lemma 1.3.2], there exist Hall
σi-subgroups Aσi of A and Bσi of B such that AσiBσi is a Hall σi-subgroup
of G. Then 〈XA, XB〉 is a σi-group because it is contained in AσiBσi . Let
g = ab ∈ G with a ∈ A and b ∈ B. Then

〈X,Xg〉 = 〈Xb−1

, Xa〉b ≤ 〈XB, XA〉b.

Consequently 〈X,Xg〉 is a σi-group and then X is σ-subnormal in 〈X,Xg〉
for every g ∈ G by Lemma 1 (6). Applying Theorem A, X is σ-subnormal
in G, a contradiction.

Proof of Theorem D. Suppose that the result is false. We choose a counte-
rexample G with |G| + |X| minimal and proceed to derive a contradiction.
The minimal choice of G and Theorem A show that G = 〈X,A〉 and X is
not contained in A. Suppose that |G : A| is a σi-number for some σi ∈ σ.
Then A contains a Hall σ′i-subgroup of G.

If C = CoreG(A) 6= 1, then XC is a σ-subnormal subgroup of G by
minimality of G. Moreover, by Theorem A, X is σ-subnormal in XC. Thus
X is σ-subnormal in G by Lemma 1 (2). This contradiction shows that
CoreG(A) = 1.

Let N be a minimal normal subgroup of G. Then N is a σj-group for
some σj ∈ σ. If i 6= j, then N is contained in every Hall σ′i-subgroup of G. In
particular, N is contained in A, a contradiction. Therefore N is a σi-group,
Oσi(G) 6= 1, and Oσi

′ (G) = 1.
Suppose that X is not σ-nilpotent. Then 1 6= XNσ is a proper subgroup

of X which is σ-subnormal in 〈X,Xa〉 for all a ∈ A. The choice of the
pair (G,X) yields that XNσ is σ-subnormal in 〈XNσ , A〉. Hence XNσ is
σ-subnormal in (XNσ)A. By Lemma 5, X normalises (XNσ)A. Therefore
(XNσ)A is a normal subgroup of G and XNσ is a σ-subnormal subgroup
of G. Since X is not a σi-group, it follows that 1 6= Oσi(X). Moreover,
since 1 6= XNσ is a σ-soluble group, it follows that Fσ(XNσ) 6= 1. Thus
Fσ(XNσ) 6= 1 is a σ-nilpotent σ-subnormal subgroup of G. By Lemma 3 (4),
Fσ(XNσ) ≤ Fσ(G) = Oσi(G) and then 1 6= Oσi(X

Nσ) ≤ Oσi(G). Hence
Z = X ∩Oσi(G) 6= 1 and ZA is a σ-subnormal σi-subgroup of G. Let a ∈ A.
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Then X is σ-subnormal in 〈X,Za〉 and so Oσi(〈X,Za〉) normalises Oσi(X)
by Lemma 1 (8). Since Za ≤ Oσi(〈X,Za〉), it follows that Za normalises
Oσi(X). Therefore ZA normalises Oσi(X).

Applying Lemma 5, it follows that X normalises (Oσi(X))A. Hence
(Oσi(X))A is a normal subgroup of G. Assume that Oσi(X) is a proper
subgroup of X. By minimality of the pair (G,X), we have that Oσi(X) is a
σ-subnormal subgroup of 〈Oσi(X), A〉. Therefore Oσi(X) is a σ-subnormal
subgroup of (Oσi(X))A, and so Oσi(X) is σ-subnormal inG. By Lemma 1 (8),
Oσi(G) normalises Oσi(Oσi(X)) = Oσi(X) and hence XOσi(G) normalises
Oσi(X). Then X/Oσi(X) is σ-subnormal in XOσi(G)/Oσi(X). Thus X is
σ-subnormal in XOσi(G) which is σ-subnormal in G by minimality of G and
Lemma 1 (5). Lemma 1 (2) yields that X is σ-subnormal in G, contrary
to assumption. Hence Oσi(X) = X and so ZA normalises X. In addition,
[ZA, X] ≤ [NG(X) ∩ Oσi(G), X] ≤ X ∩ Oσi(G) = Z ≤ ZA. Hence ZA is
normalised by X and so it is a normal subgroup of G. Again the minimality
of G and Lemma 1 (5) imply that XZA is σ-subnormal in G. Since X is
normal in XZA, we have that X is σ-subnormal in G. This contradiction
shows that X is σ-nilpotent.

Suppose that Oσi(X) 6= 1. Since X is σ-nilpotent, it follows that either
X is a σ′i-group or Oσi(X) is a proper subgroup of X. Assume that X is
a σ′i-group. Then, by Lemma 6, X is contained in A. Hence G = A and
X is σ-subnormal in G by Theorem A, which is not possible. Suppose that
Oσi(X) is a proper subgroup of X. By minimality of (G,X), Oσi(X) is
σ-subnormal in 〈Oσi(X), A〉, and, by Lemma 5, X normalises (Oσi(X))A.
Therefore Oσi(X) is a σ-subnormal subgroup of Oσi(X)A which is a normal
subgroup of G. Consequently Oσi(X) is a σ-subnormal σ-nilpotent subgroup
of G. By Lemma 3 (4), Oσi(X) is contained in Fσ(G) = Oσi(G). Hence X is
a σi-group, contrary to supposition.

Consequently, Oσi(X) = 1 and X is a σi-group. Since every minimal
normal subgroup N of G is a σi-group, and XN is σ-subnormal in G, it
follows that X is σ-subnormal in G. This final contradiction proves the
theorem.

Proof of Theorem C. Suppose that the theorem is false and let G be a coun-
terexample for which |G|+ |X|+ |G : A|+ |G : B| is minimal. Note that every
proper σ-subnormal subgroup Z of X satifies the hypotheses of the theorem.
Therefore Z is a σ-subnormal subgroup of G by the choice of (G,X).
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We proceed in a number of steps.
Step 1. If X is not contained in A, then G = 〈A,X〉 and |G : A| is not

σ-primary.
Let A0 = 〈A,X〉. We have that A0 = A0∩AB = A(A0∩B) and G = A0B.

If A0 6= G, then A0 is not a counterexample to the theorem. Then X is σ-
subnormal in A0, and the 4-tuple (G,X,A0, B) satisfies the hypotheses of the
theorem. The minimal choice of (G,X,A,B) implies that X is σ-subnormal
in G. Consequently, G = 〈A,X〉. If |G : A| were σ-primary, then we would
have X is σ-subnormal in G by Theorem D. This is not the case. Thus
|G : A| is not σ-primary.

Step 2. Assume that X is contained in A and |G : A| is σ-primary. If X
is not contained in B, then |G : A| and |G : B| are not σ-coprime.

Assume that X is not contained in B and |G : A| and |G : B| are σ-
coprime and derive a contradiction. Let B0 = 〈X,B〉 = B(B0 ∩A). Then B
is a proper subgroup of B0 and G = AB0. Then (B0, X,B0 ∩ A,B) satisfies
the hypotheses of the theorem. Suppose that B0 is a proper subgroup of G.
Then the theorem holds in B0, and hence X is σ-subnormal in B0. Applying
Theorem A and Theorem B, we conclude that X is σ-subnormal in G. This
contradicts the choice of G, however, and we conclude that G = 〈X,B〉.

By hypothesis, |G : A| is a σi-number, for some σi ∈ σ. Since |G : A| and
|G : B| are σ-coprime, it follows that |G : B| is a σ′i-number. Therefore B
contains a Hall σi-subgroup of G.

Let N be a minimal normal subgroup of G. Then N is σ-primary. As-
sume that N is a σj-group, where j 6= i. Since |G : A| is σi-number, then
N ≤ A. By the choice of G, XN is a σ-subnormal subgroup of G. Moreover,
XN ≤ A. Therefore X is σ-subnormal in XN and then in G, a contradic-
tion. Consequently, every minimal normal subgroup of G is a σi-group and
Fσ(G) = Oσi(G). Moreover, R = Oσi(G) is contained in B.

Suppose that X is not σ-nilpotent. Then Oσi(X) 6= 1. Suppose that
Oσi(X) is a proper subgroup of X. Then it is σ-subnormal in G. By
Lemma 1 (8), Oσi(G) normalises Oσi(Oσi(X)) = Oσi(X) and hence XOσi(G)
normalises Oσi(X). Then X/Oσi(X) is σ-subnormal in XOσi(G)/Oσi(X).
Thus X is σ-subnormal in XOσi(G) which is σ-subnormal in G by minima-
lity of G and Lemma 1 (5). Lemma 1 (2) yields that X is σ-subnormal in G,
contrary to supposition. Thus Oσi(X) = X.

On the other hand, since X is not σ-nilpotent, 1 6= XNσ is σ-subnormal
in G. Therefore 1 6= Fσ(XNσ) is a σ-nilpotent σ-subnormal subgroup of G
contained in Fσ(G) = Oσi(G) by Lemma 3 (4). In particular, Oσi(X) 6=
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1. Applying Lemma 5, we conclude that X normalises (Oσi(X))B. Hence
(Oσi(X))B is a normal subgroup of G. Write Z = X ∩ Oσi(G). Then 1 6= Z
is a σ-subnormal σi-subgroup of G. Let b ∈ B. Then X is σ-subnormal in
〈X,Zb〉 and so Oσi(〈X,Zb〉) normalises Oσi(X) = X by Lemma 1 (8). Since
Zb ≤ Oσi(〈X,Zb〉), it follows that Zb normalises X. Therefore ZB normalises
X. Then [ZB, X] ≤ X ∩ Oσi(G) = Z ≤ ZB and ZB is normal in G. By the
choice of G, it follows that XZB is a σ-subnormal subgroup of G and then
X is σ-subnormal in G, a contradiction.

Thus X is σ-nilpotent. By assumption every proper subgroup of X is σ-
subnormal in G. Applying Lemma 3 (3), X is a cyclic p-group for some prime
p ∈ σj, for some σj ∈ σ. Assume that i = j. Then XN is a σ-subnormal
σi-subgroup of G. Consequently, X is σ-subnormal in G, which contradicts
our assumption that G is a counterexample. Thus i 6= j and Oσi(X) = X.
By Lemma 7, R = Oσi(G) normalises X, and so X is normal in XR. Since
XR is σ-subnormal in G by minimality of G and Lemma 1 (5), we conclude
that X is σ-subnormal in G, which is not the case.

Step 3. We have a contradiction
Assume that either |G : A| and |G : B| are σ-primary or |G : A| is σ-

primary and |G : A| and |G : B| are σ-coprime. Then, by Steps 1 and 2,
X ⊆ A∩B. Then, by Theorem A, X is σ-subnormal in A and B. Therefore
X is σ-subnormal in G by Theorem B.
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