Document downloaded from:

http://hdl.handle.net/10251/176202

This paper must be cited as:

Ballester-Bolinches, A.; Kamornikov, SF.; Pedraza Aguilera, MC.; Pérez-Calabuig, V. (2020). On sigma-subnormality criteria in finite sigma-soluble groups. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 114(2):1-9. https://doi.org/10.1007/s13398-020-00824-4

The final publication is available at https://doi.org/10.1007/s13398-020-00824-4

Copyright Springer-Verlag

Additional Information

On σ -subnormality criteria in finite σ -soluble groups

A. Ballester-Bolinches, S.F. Kamornikov, M.C. Pedraza-Aguilera, and V. Pérez-Calabuig

Abstract

Let $\sigma = {\sigma_i : i \in I}$ be a partition of the set \mathbb{P} of all prime numbers. A subgroup X of a finite group G is called σ -subnormal in G if there is a chain of subgroups

$$X = X_0 \subseteq X_1 \subseteq \dots \subseteq X_n = G$$

where for every j = 1, ..., n the subgroup X_{j-1} normal in X_j or $X_j/Core_{X_j}(X_{j-1})$ is a σ_i -group for some $i \in I$.

In the special case that σ is the partition of \mathbb{P} into sets containing exactly one prime each, the σ -subnormality reduces to the familiar case of subnormality.

In this paper some σ -subnormality criteria for subgroups of σ soluble groups, or groups in which every chief factor is a σ_i -group, for some $\sigma_i \in \sigma$, are showed.

Mathematics Subject Classification (2010): 20D10, 20D20

Keywords: finite group, σ -solubility, σ -nilpotency, σ -subnormal subgroup, factorised group.

1 Introduction and statements of results.

All groups considered in this paper are finite.

The results of this article are based on a paper of Skiba [15]. There he generalised the concepts of solubility, nilpotency and subnormality introducing σ -solubility, σ -nilpotency, and σ -subnormality in which σ is a partition of the set \mathbb{P} , the set of all primes. Hence $\mathbb{P} = \bigcup_{i \in I} \sigma_i$, with $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$.

We note that in the special case that σ is the partition of \mathbb{P} containing exactly one prime each, the definitions below reduce to the familiar case of soluble groups, nilpotent groups and subnormal subgroups.

From now on let σ denote a partition of \mathbb{P} . Given a natural number n, we denote by $\sigma(n)$ the set of all elements of σ including the primes dividing n. Two natural numbers m and n are called σ -coprime if $\sigma(m) \cap \sigma(n) = \emptyset$. We say that n is σ -primary if $|\sigma(n)| = 1$, that is, if its prime factors all belong to the same member of σ .

A group G is called σ -primary if |G| is a σ -primary number.

Definition 1. A group G is said to be σ -soluble if every chief factor of G is σ -primary. G is said to be σ -nilpotent if it is a direct product of σ -primary groups.

Note that if π is a set of primes and $\sigma = \{\pi, \pi'\}$, then a group G is σ soluble if and only if G is π -separable. In this case, G is σ -nilpotent if and only if G is π -decomposable. If $\pi = \{p_1, \dots, p_n\}$, and $\sigma = \{\{p_1\}, \dots, \{p_n\}, \pi'\}$, then G is σ -soluble if and only if G is π -soluble, and G is σ -nilpotent if and only if G has a normal Hall π' -subgroup and a normal Sylow p_i -subgroup, for all $i = 1, \dots, n$.

Many normal and arithmetical properties of soluble groups still hold for σ soluble groups (see [15]). In particular, every σ -soluble group has a conjugacy class of Hall σ_i -subgroups and a conjugacy class of Hall σ'_i -subgroups, for every $\sigma_i \in \sigma$.

The role of the class \mathcal{N}_{σ} of all σ -nilpotent groups in σ -soluble groups is analogous to that of nilpotent groups in soluble groups. In particular, \mathcal{N}_{σ} is a subgroup-closed saturated Fitting formation ([15, Corollary 2.4 and Lemma 2.5]) that is closely related to the subgroup embedding property of σ -subnormality.

Definition 2. Given a partition σ of the set of prime numbers, a subgroup X of a group G is called σ -subnormal in G if there exists a chain of subgroups

$$X = X_0 \le X_1 \le \dots \le X_n = G,$$

with X_{i-1} normal in X_i or $X_i/Core_{X_i}(X_{i-1})$ σ -primary for every $1 \leq i \leq n$.

To know that a non- σ -nilpotent group possesses a non-trivial proper σ subnormal subgroup is equivalent to know that the group is not simple. Therefore criteria for the σ -subnormality of a subgroup may have some importance in the study of the normal structure of a group. The close relationship between σ -subnormal subgroups and direct decompositions of a group strongly supports that claim. The significance of the σ -subnormal subgroups in σ -soluble groups is apparent since they are precisely the \mathcal{N}_{σ} -subnormal subgroups, and so they are a sublattice of the subgroup lattice of G. They are also important to analyse the structural impact of some permutability properties (see [15]).

In this paper, which is a natural continuation of [3], extensions of some well-known subnormality criteria are presented. For instance, according to a result of Wielandt (see [10, Theorem 7.3.3]), a subgroup X of a group G is subnormal in G if and only if X is subnormal in $\langle X, X^g \rangle$ for all $g \in G$.

In [11, Question 19.84] (see also [18]), Skiba asked whether it is enough to know that X is σ -subnormal in $\langle X, X^g \rangle$ for all $g \in G$ to deduce that X is σ -subnormal in G. It is certainly true in the soluble universe by virtue of [2, Proposition 6.1.10 and Theorem 6.2.17] (see [3, Lemma 2]). Our first main result shows that the answer is also affirmative for σ -soluble groups.

Theorem A. Suppose that G is a σ -soluble group and X is a subgroup of G that is σ -subnormal in $\langle X, X^g \rangle$ for all $g \in G$. Then X is σ -subnormal in G.

Theorem A is not true for arbitrary groups. Therefore Question 19.84 in [11] is answered.

Example 1. Let $\pi = \{2, 3\}$ and $\sigma = \{\pi, \pi'\}$. The simple group $G = \text{PSL}_2(7)$ of order $168 = 2^3 \cdot 3 \cdot 7$ has a unique conjugacy class of elements of order 2. Let x be an element of this class. Given $g \in G$, the group $\langle x, x^g \rangle$ is isomorphic to C_2 , to $C_2 \times C_2$, to Σ_3 or to D_8 . Therefore $X = \langle x \rangle$ is σ -subnormal in $\langle X, X^g \rangle$ for all $g \in G$ but X is not σ -subnormal in G.

Another important subnormality criterion asserts that if G = AB is a group which is the product of the subgroups A and B and X is a subgroup of G contained in $A \cap B$ that is subnormal in A and B, then X is subnormal in G. This result was proved by Maier in [12] for soluble groups and then for arbitrary groups by Wielandt [19]. Applying Theorem A, we show that Maier-Wielandt's result also holds for σ -subnormal subgroups not only in the soluble universe, but also in the σ -soluble one.

Theorem B. Let the σ -soluble group G be the product of two subgroups A and B. If X is a subgroup of $A \cap B$ which is σ -subnormal in both A and B, then X is σ -subnormal in G.

Theorem B does not hold in general as the following example shows (see [8]).

Example 2. Let $\pi = \{2, 5\}$ and $\sigma = \{\pi, \pi'\}$. The alternating group of degree five A_5 is the product of the subgroups A and B, where A is the alternating group of degree 4 and B is a dihedral group of order 10. Then $A \cap B$ is σ -subnormal in both A and B, but $A \cap B$ is not σ -subnormal in A_5 .

On the other hand, Wielandt [19] conjectured that if X is a subgroup of G such that X is subnormal in $\langle X, X^g \rangle$ for all $g \in A \cup B$, then X is subnormal in G.

Wielandt's conjecture was proved to be true in the soluble universe by Maier and Sidki [13] for subgroups X of prime power order and then for every subgroup X of a soluble group by Casolo in [4].

In [3, Theorem A], we show that the following σ -version of the aforementioned result holds.

Theorem 1. Assume that G is a soluble group factorised as a product of the subgroups A and B. Let X be a subgroup of G such that X is σ -subnormal in $\langle X, X^g \rangle$ for all $g \in A \cup B$. Then X is σ -subnormal in G.

A natural question to ask is now whether Theorem 1 holds for σ -soluble groups. Unfortunately we have been unable to answer this question; however, our third main result could be regarded as a significant step to solve it.

Theorem C. Assume that G is a σ -soluble group factorised as a product of the subgroups A and B. Let X be a subgroup of G such that X is σ -subnormal in $\langle X, X^g \rangle$ for all $g \in A \cup B$. Then X is σ -subnormal in G if one of the following conditions is true:

- (i) |G:A| and |G:B| are σ -primary.
- (ii) |G:A| is σ -primary and |G:A| and |G:B| are σ -coprime.

The proof of Theorem C strongly depends on the following extension of [6, Theorem 3].

Theorem D. Let G be a σ -soluble group, and A and X two subgroups of G such that X is σ -subnormal in $\langle X, X^a \rangle$ for all $a \in A$. If |G : A| is σ -primary, then X is σ -subnormal in $\langle X, A \rangle$.

We shall adhere to the notation and terminology of [2] and [5].

2 Preliminaries

Our first lemma collects some basic properties of σ -subnormal subgroups which are very useful in induction arguments.

Lemma 1 ([15]). Let H, K and N be subgroups of a group G. Suppose that H is σ -subnormal in G and N is normal in G. Then the following statements hold:

- 1. $H \cap K$ is σ -subnormal in K.
- 2. If K is a σ -subnormal subgroup of H, then K is σ -subnormal in G.
- 3. If K is σ -subnormal in G, then $H \cap K$ is σ -subnormal in G.
- 4. HN/N is σ -subnormal in G/N.
- 5. If $N \subseteq K$ and K/N is σ -subnormal in G/N, then K is σ -subnormal in G.
- 6. If $L \leq K$ and K is σ -nilpotent, then L is σ -subnormal in K.
- 7. If |G:H| is a σ_i -number, then $O^{\sigma_i}(H) = O^{\sigma_i}(G)$.
- 8. If N is a σ_i -subgroup of G, then $N \leq N_G(O^{\sigma_i}(H))$.

A standard induction argument using Lemma 1 allows us to prove the following result.

Lemma 2. Let X be a subgroup of a σ -soluble group G. Then X is σ -subnormal in G if and only if X is \mathcal{N}_{σ} -subnormal in G, that is, there exists a chain of subgroups

$$X = X_0 \le X_1 \le \dots \le X_n = G,$$

such that X_{i-1} is a maximal subgroup of X_i and $X_i/Core_{X_i}(X_{i-1}) \in \mathcal{N}_{\sigma}$, for $1 \leq i \leq n$.

The fact that σ -subnormal subgroups are \mathcal{N}_{σ} -subnormal in the σ -soluble universe allows us to prove some relevant properties of these subgroups which are crucial in the proof of our main results.

Lemma 3. Let X be a subgroup of a group G.

- 1. ([2, Lemma 6.1.9 and Proposition 6.1.10]) If X is σ -subnormal in G, then the \mathcal{N}_{σ} -residual $X^{\mathcal{N}_{\sigma}}$ of X is subnormal in G.
- 2. ([2, Lemma 6.1.9]) If X is subnormal in G, then X is σ -subnormal in G.
- 3. ([2, Lemmas 6.3.11 and 6.3.12 and Example 6.3.13])) \mathcal{N}_{σ} is a lattice formation, that is, the set of all σ -subnormal subgroups of a σ soluble group G forms a sublattice of the subgroup lattice of G.
- 4. ([2, Theorem 6.3.3]) If X is a σ -subnormal σ -nilpotent subgroup of a σ -soluble group G, then X is contained in $F_{\sigma}(G)$, the \mathcal{N}_{σ} -radical of G. In particular, if X is σ_i -group, then $X \leq O_{\sigma_i}(G)$.
- 5. ([2, Theorem 6.5.46]) If $G = \langle A, B \rangle$ is a a σ -soluble group generated by two σ -subnormal subgroups A and B, then $G^{\mathcal{N}_{\sigma}} = \langle A^{\mathcal{N}_{\sigma}}, B^{\mathcal{N}_{\sigma}} \rangle$.

Note that by Lemmas 1 (2) and 3 (2), subnormal subgroups of σ -subnormal subgroups of a group G are σ -subnormal in G. This fact will be applied in the sequel without further reference.

Our third lemma shows that the residual associated with the class of all σ_i -groups (also called σ_i -residual) respects the σ -subnormal generation of σ -soluble groups.

Lemma 4. Let $\sigma_i \in \sigma$. If A and B are σ -subnormal subgroups of a σ -soluble group $G = \langle A, B \rangle$, then $O^{\sigma_i}(G) = \langle O^{\sigma_i}(A), O^{\sigma_i}(B) \rangle$.

Proof. Assume the result is false and let G be a counterexample of least order. Denote $H = \langle O^{\sigma_i}(A), O^{\sigma_i}(B) \rangle$ and $X = O^{\sigma_i}(G)$. Clearly $1 \neq X$. Let N be a minimal normal subgroup of G such that $N \leq X$. Since G is σ -soluble, it follows that N is σ_j -group for some $\sigma_j \in \sigma$. The minimality of G yields X = HN and $Core_G(H) = 1$.

On the other hand, by Lemma 3 (5), we have that $G^{\mathcal{N}_{\sigma}} = \langle A^{\mathcal{N}_{\sigma}}, B^{\mathcal{N}_{\sigma}} \rangle \leq \langle O^{\sigma_i}(A), O^{\sigma_i}(B) \rangle = H$. Since $G^{\mathcal{N}_{\sigma}}$ is normal in G and $Core_G(H) = 1$, it follows that G is σ -nilpotent.

Then $G = X \times Y$ with $Y = O_{\sigma_i}(G)$. If $Y \neq 1$, then by the minimal choice of G, we have that $G = X \times Y = H \times Y$, and therefore X = H. Thus Y = 1and so $G = O^{\sigma_i}(G)$, $A = O^{\sigma_i}(A)$ and $B = O^{\sigma_i}(B)$. This contradiction proves the lemma.

Lemma 5. Let H^* denote either the \mathcal{N}_{σ} -residual or the σ_i -residual of a subgroup H of a σ -soluble group G, for $\sigma_i \in \sigma$. Let A be a subgroup of G. If H is a σ -subnormal subgroup of $\langle H, H^a \rangle$ for all $a \in A$, then H normalises $(H^*)^A$.

Proof. Let $a \in A$. Since H is a σ -subnormal subgroup of $\langle H, H^{a^{-1}} \rangle$, it follows that H^a is σ -subnormal in $\langle H^a, H \rangle = \langle H, H^a \rangle$. By Lemmas 3 (5) and 4, we have $\langle H, H^a \rangle^* = \langle H^*, (H^a)^* \rangle = \langle H^*, (H^*)^a \rangle$, thus

$$[H, (H^*)^a] \le [H, \langle H, H^a \rangle^*] \le \langle H, H^a \rangle^* \le (H^*)^A.$$

Lemma 6. Let G be a σ -soluble group, X a σ_i -subgroup of G and H a Hall σ_i -subgroup of G. If X is σ -subnormal in $\langle X, X^h \rangle$ for all $h \in H$, then $X \leq H$.

Proof. Suppose that the result is false. Let G be a counterexample of the smallest possible order. Clearly the hypotheses of the lemma hold in $G/O_{\sigma_i}(G)$. Therefore, if $O_{\sigma_i}(G) \neq 1$, we have that $XO_{\sigma_i}(G)/O_{\sigma_i}(G) \leq H/O_{\sigma_i}(G)$ by minimality of G. Hence $X \leq H$, contrary to supposition. Thus $O_{\sigma_i}(G) = 1$. Let N be a minimal normal subgroup of G. Then N is a σ_j -group for some $j \neq i$. Since $X \leq HN$ by the minimal choice of G, there exists $n \in N$ with $X^n \leq H$. Let $x \in X$ and $h = x^{-n} \in H$. Then $[x,h] = [x,n][x^{-1},n] \in N$ and $[x,h] = x^{-1}x^h \in \langle x, x^h \rangle$. Hence $[x,h] \in N \cap \langle x, x^h \rangle$. Then X is σ -subnormal in $\langle X, X^h \rangle$ by hypothesis. Since X is a σ_i -subgroup, we have that $X \leq O_{\sigma_i}(\langle X, X^h \rangle)$ by Lemma 3 (4). Therefore, $\langle X, X^h \rangle = O_{\sigma_i}(\langle X, X^h \rangle)X^h$ is a σ_i -subgroup of HN. Thus $[x,h] \in N \cap \langle X, X^h \rangle = 1$ and [x,h] = 1. In particular, $[x,n] = [x^{-1},n]$ is a σ_i -element. Since N is a $(\sigma_i)'$ -group and $[x,n] \in N$, it follows that [x,n] = 1 and $X^n = X \leq H$.

Lemma 7. Let H be a subgroup of a σ -soluble group G such that $O^{\sigma_i}(H) = H$ for some $\sigma_i \in \sigma$. Assume K is a normal σ_i -subgroup of G and $k \in K$ such that H is a σ -subnormal subgroup of $\langle H, H^k \rangle$. Then k normalises H.

Proof. Denote $L = \langle H, H^k \rangle$. Let Z denote the normal closure of H in L. By Lemma 4, $O^{\sigma_i}(Z) = Z$. Since $O^{\sigma_i}(L/Z) = L/Z$, it follows that $L = O^{\sigma_i}(L)Z$. By [2, Proposition 6.5.5], it follows that $O^{\sigma_i}(L) = O^{\sigma_i}(L)O^{\sigma_i}(Z) = O^{\sigma_i}(L)Z = L$.

On the other hand, $L = L \cap HK = H(L \cap K)$. By Lemma 4, $L = O^{\sigma_i}(L) = O^{\sigma_i}(H)O^{\sigma_i}(L \cap K) = H$. Thus L = H and $H^k = H$.

3 Proofs of the main theorems

Proof of Theorem A. Suppose the result is not true and let G be a counterexample with |G|+|X| minimal. Then $G^{N_{\sigma}} \neq 1$. Let N be a minimal normal subgroup of G contained in $G^{N_{\sigma}}$. Then N is a σ_i -group for some $\sigma_i \in \sigma$. Note that XN/N is σ -subnormal in G/N by the minimality of the pair (G, X). If XN were a proper subgroup of G, then X would be σ -subnormal in XN. By Lemma 1, X would be σ -subnormal in G, contrary to our assumption. Hence G = XN. Assume that X is a σ_i -group. Then G is a σ_i -group, and X is σ -subnormal in G. This contradiction implies that X is not a σ_i -group, and so $O^{\sigma_i}(X) \neq 1$.

Assume that $O^{\sigma_i}(X) < X$. By minimality of (G, X), it follows that $O^{\sigma_i}(X)$ is σ -subnormal in G. By Lemma 1 (8), N normalises $O^{\sigma_i}(O^{\sigma_i}(X)) = O^{\sigma_i}(X)$. Hence $O^{\sigma_i}(X)$ is a normal subgroup of G. The minimal choice of G implies that $X/O^{\sigma_i}(X)$ is σ -subnormal in $G/O^{\sigma_i}(X)$ and then X is σ -subnormal in G by Lemma 1 (5). This is not possible. Thus $X = O^{\sigma_i}(X)$.

If $n \in N$ then X is σ -subnormal in $U_n = \langle X, X^n \rangle = (U_n \cap N)X$ by hypothesis. By Lemma 1 (7), we have that

$$O^{\sigma_i}(U_n) = O^{\sigma_i}((U_n \cap N)X) = O^{\sigma_i}(X) = X.$$

In particular, X is normal in U_n . Consequently, X is normal in $V = \langle X^n : n \in N \rangle$. Since V is normal in G, we have X is subnormal in G, and we have reached the desired contradiction.

Proof of Theorem B. Assume the result is false and let G be a counterexample such that |G:A|+|X| is minimal. Suppose that M is a maximal subgroup of G containing A. Then $M = A(M \cap B)$ and X is σ -subnormal in both A and $M \cap B$ by Lemma 1 (1). By minimality of G, X is σ -subnormal in M. On the other hand, G = MB. If |G:M| < |G:A|, we have X is σ -subnormal in G, which is a contradiction. Therefore A = M is a maximal subgroup of G. Let $K = \operatorname{Core}_G(A)$. If $K \neq 1$, then XK/K is σ -subnormal in G/K by the minimal choice of G. By Lemma 1 (5), XK is σ -subnormal in G. Moreover $X \leq XK \leq A$. Thus X is σ -subnormal in XK by Lemma 1 (1). Thus X is σ -subnormal in G. This contradiction yields K = 1 and G is a primitive group. By Lemma 3 (1), $X^{N_{\sigma}}$ is a subnormal subgroup of A and B. Applying the result of Maier-Wielandt, we have that $X^{N_{\sigma}}$ is a subnormal subgroup of G. By [10, Lemma 7.3.16], $X^{N_{\sigma}} \leq \operatorname{Core}_G(A) = 1$. Hence X is σ -nilpotent. By Lemma 1 (6), every subgroup of X is σ -subnormal in X. Therefore every proper subgroup of X is σ -subnormal in A and B by Lemma 1 (2). The minimal choice of X implies that every proper subgroup of X is σ -subnormal in G. By Lemma 3 (3), X is cyclic of prime power order. Assume X is a σ_i -group. Since X is σ -subnormal in A, by Lemma 3 (4), X is contained in $O_{\sigma_i}(A)$. Then X^A , the normal closure of X in A, is a σ_i -group. Analogously, X^B is a σ_i -group. According to [1, Lemma 1.3.2], there exist Hall σ_i -subgroups A_{σ_i} of A and B_{σ_i} of B such that $A_{\sigma_i}B_{\sigma_i}$ is a Hall σ_i -subgroup of G. Then $\langle X^A, X^B \rangle$ is a σ_i -group because it is contained in $A_{\sigma_i}B_{\sigma_i}$. Let $g = ab \in G$ with $a \in A$ and $b \in B$. Then

$$\langle X, X^g \rangle = \langle X^{b^{-1}}, X^a \rangle^b \le \langle X^B, X^A \rangle^b.$$

Consequently $\langle X, X^g \rangle$ is a σ_i -group and then X is σ -subnormal in $\langle X, X^g \rangle$ for every $g \in G$ by Lemma 1 (6). Applying Theorem A, X is σ -subnormal in G, a contradiction.

Proof of Theorem D. Suppose that the result is false. We choose a counterexample G with |G| + |X| minimal and proceed to derive a contradiction. The minimal choice of G and Theorem A show that $G = \langle X, A \rangle$ and X is not contained in A. Suppose that |G : A| is a σ_i -number for some $\sigma_i \in \sigma$. Then A contains a Hall σ'_i -subgroup of G.

If $C = \operatorname{Core}_G(A) \neq 1$, then XC is a σ -subnormal subgroup of G by minimality of G. Moreover, by Theorem A, X is σ -subnormal in XC. Thus X is σ -subnormal in G by Lemma 1 (2). This contradiction shows that $\operatorname{Core}_G(A) = 1$.

Let N be a minimal normal subgroup of G. Then N is a σ_j -group for some $\sigma_j \in \sigma$. If $i \neq j$, then N is contained in every Hall σ'_i -subgroup of G. In particular, N is contained in A, a contradiction. Therefore N is a σ_i -group, $O_{\sigma_i}(G) \neq 1$, and $O_{\sigma_i}(G) = 1$.

Suppose that X is not σ -nilpotent. Then $1 \neq X^{\mathcal{N}_{\sigma}}$ is a proper subgroup of X which is σ -subnormal in $\langle X, X^a \rangle$ for all $a \in A$. The choice of the pair (G, X) yields that $X^{\mathcal{N}_{\sigma}}$ is σ -subnormal in $\langle X^{\mathcal{N}_{\sigma}}, A \rangle$. Hence $X^{\mathcal{N}_{\sigma}}$ is σ -subnormal in $(X^{\mathcal{N}_{\sigma}})^A$. By Lemma 5, X normalises $(X^{\mathcal{N}_{\sigma}})^A$. Therefore $(X^{\mathcal{N}_{\sigma}})^A$ is a normal subgroup of G and $X^{\mathcal{N}_{\sigma}}$ is a σ -subnormal subgroup of G. Since X is not a σ_i -group, it follows that $1 \neq O^{\sigma_i}(X)$. Moreover, since $1 \neq X^{\mathcal{N}_{\sigma}}$ is a σ -soluble group, it follows that $F_{\sigma}(X^{\mathcal{N}_{\sigma}}) \neq 1$. Thus $F_{\sigma}(X^{\mathcal{N}_{\sigma}}) \neq 1$ is a σ -nilpotent σ -subnormal subgroup of G. By Lemma 3 (4), $F_{\sigma}(X^{\mathcal{N}_{\sigma}}) \leq F_{\sigma}(G) = O_{\sigma_i}(G)$ and then $1 \neq O_{\sigma_i}(X^{\mathcal{N}_{\sigma}}) \leq O_{\sigma_i}(G)$. Hence $Z = X \cap O_{\sigma_i}(G) \neq 1$ and Z^A is a σ -subnormal σ_i -subgroup of G. Let $a \in A$. Then X is σ -subnormal in $\langle X, Z^a \rangle$ and so $O_{\sigma_i}(\langle X, Z^a \rangle)$ normalises $O^{\sigma_i}(X)$ by Lemma 1 (8). Since $Z^a \leq O_{\sigma_i}(\langle X, Z^a \rangle)$, it follows that Z^a normalises $O^{\sigma_i}(X)$. Therefore Z^A normalises $O^{\sigma_i}(X)$.

Applying Lemma 5, it follows that X normalises $(O^{\sigma_i}(X))^A$. Hence $(O^{\sigma_i}(X))^A$ is a normal subgroup of G. Assume that $O^{\sigma_i}(X)$ is a proper subgroup of X. By minimality of the pair (G, X), we have that $O^{\sigma_i}(X)$ is a σ -subnormal subgroup of $\langle O^{\sigma_i}(X), A \rangle$. Therefore $O^{\sigma_i}(X)$ is a σ -subnormal subgroup of $(O^{\sigma_i}(X))^A$, and so $O^{\sigma_i}(X)$ is σ -subnormal in G. By Lemma 1 (8), $O_{\sigma_i}(G)$ normalises $O^{\sigma_i}(O^{\sigma_i}(X)) = O^{\sigma_i}(X)$ and hence $XO_{\sigma_i}(G)$ normalises $O^{\sigma_i}(X)$. Then $X/O^{\sigma_i}(X)$ is σ -subnormal in $XO_{\sigma_i}(G)/O^{\sigma_i}(X)$. Thus X is σ -subnormal in $XO_{\sigma_i}(G)$ which is σ -subnormal in G by minimality of G and Lemma 1 (5). Lemma 1 (2) yields that X is σ -subnormal in G, contrary to assumption. Hence $O^{\sigma_i}(X) = X$ and so Z^A normalises X. In addition, $[Z^A, X] \leq [N_G(X) \cap O_{\sigma_i}(G), X] \leq X \cap O_{\sigma_i}(G) = Z \leq Z^A$. Hence Z^A is normalised by X and so it is a normal subgroup of G. Again the minimality of G and Lemma 1 (5) imply that XZ^A is σ -subnormal in G. Since X is normal in XZ^A , we have that X is σ -subnormal in G. This contradiction shows that X is σ -nilpotent.

Suppose that $O^{\sigma_i}(X) \neq 1$. Since X is σ -nilpotent, it follows that either X is a σ'_i -group or $O^{\sigma_i}(X)$ is a proper subgroup of X. Assume that X is a σ'_i -group. Then, by Lemma 6, X is contained in A. Hence G = A and X is σ -subnormal in G by Theorem A, which is not possible. Suppose that $O^{\sigma_i}(X)$ is a proper subgroup of X. By minimality of (G, X), $O^{\sigma_i}(X)$ is σ -subnormal in $\langle O^{\sigma_i}(X), A \rangle$, and, by Lemma 5, X normalises $(O^{\sigma_i}(X))^A$. Therefore $O^{\sigma_i}(X)$ is a σ -subnormal subgroup of $O^{\sigma_i}(X)^A$ which is a normal subgroup of G. Consequently $O^{\sigma_i}(X)$ is a σ -subnormal of $F_{\sigma}(G) = O_{\sigma_i}(G)$. Hence X is a σ_i -group, contrary to supposition.

Consequently, $O^{\sigma_i}(X) = 1$ and X is a σ_i -group. Since every minimal normal subgroup N of G is a σ_i -group, and XN is σ -subnormal in G, it follows that X is σ -subnormal in G. This final contradiction proves the theorem.

Proof of Theorem C. Suppose that the theorem is false and let G be a counterexample for which |G|+|X|+|G:A|+|G:B| is minimal. Note that every proper σ -subnormal subgroup Z of X satisfies the hypotheses of the theorem. Therefore Z is a σ -subnormal subgroup of G by the choice of (G, X).

We proceed in a number of steps.

Step 1. If X is not contained in A, then $G = \langle A, X \rangle$ and |G:A| is not σ -primary.

Let $A_0 = \langle A, X \rangle$. We have that $A_0 = A_0 \cap AB = A(A_0 \cap B)$ and $G = A_0B$. If $A_0 \neq G$, then A_0 is not a counterexample to the theorem. Then X is σ -subnormal in A_0 , and the 4-tuple (G, X, A_0, B) satisfies the hypotheses of the theorem. The minimal choice of (G, X, A, B) implies that X is σ -subnormal in G. Consequently, $G = \langle A, X \rangle$. If |G : A| were σ -primary, then we would have X is σ -subnormal in G by Theorem D. This is not the case. Thus |G : A| is not σ -primary.

Step 2. Assume that X is contained in A and |G:A| is σ -primary. If X is not contained in B, then |G:A| and |G:B| are not σ -coprime.

Assume that X is not contained in B and |G : A| and |G : B| are σ coprime and derive a contradiction. Let $B_0 = \langle X, B \rangle = B(B_0 \cap A)$. Then B
is a proper subgroup of B_0 and $G = AB_0$. Then $(B_0, X, B_0 \cap A, B)$ satisfies
the hypotheses of the theorem. Suppose that B_0 is a proper subgroup of G.
Then the theorem holds in B_0 , and hence X is σ -subnormal in B_0 . Applying
Theorem A and Theorem B, we conclude that X is σ -subnormal in G. This
contradicts the choice of G, however, and we conclude that $G = \langle X, B \rangle$.

By hypothesis, |G : A| is a σ_i -number, for some $\sigma_i \in \sigma$. Since |G : A| and |G : B| are σ -coprime, it follows that |G : B| is a σ'_i -number. Therefore B contains a Hall σ_i -subgroup of G.

Let N be a minimal normal subgroup of G. Then N is σ -primary. Assume that N is a σ_j -group, where $j \neq i$. Since |G : A| is σ_i -number, then $N \leq A$. By the choice of G, XN is a σ -subnormal subgroup of G. Moreover, $XN \leq A$. Therefore X is σ -subnormal in XN and then in G, a contradiction. Consequently, every minimal normal subgroup of G is a σ_i -group and $F_{\sigma}(G) = O_{\sigma_i}(G)$. Moreover, $R = O_{\sigma_i}(G)$ is contained in B.

Suppose that X is not σ -nilpotent. Then $O^{\sigma_i}(X) \neq 1$. Suppose that $O^{\sigma_i}(X)$ is a proper subgroup of X. Then it is σ -subnormal in G. By Lemma 1 (8), $O_{\sigma_i}(G)$ normalises $O^{\sigma_i}(O^{\sigma_i}(X)) = O^{\sigma_i}(X)$ and hence $XO_{\sigma_i}(G)$ normalises $O^{\sigma_i}(X)$. Then $X/O^{\sigma_i}(X)$ is σ -subnormal in $XO_{\sigma_i}(G)/O^{\sigma_i}(X)$. Thus X is σ -subnormal in $XO_{\sigma_i}(G)$ which is σ -subnormal in G by minimality of G and Lemma 1 (5). Lemma 1 (2) yields that X is σ -subnormal in G, contrary to supposition. Thus $O^{\sigma_i}(X) = X$.

On the other hand, since X is not σ -nilpotent, $1 \neq X^{\mathcal{N}_{\sigma}}$ is σ -subnormal in G. Therefore $1 \neq F_{\sigma}(X^{\mathcal{N}_{\sigma}})$ is a σ -nilpotent σ -subnormal subgroup of G contained in $F_{\sigma}(G) = O_{\sigma_i}(G)$ by Lemma 3 (4). In particular, $O_{\sigma_i}(X) \neq$ 1. Applying Lemma 5, we conclude that X normalises $(O^{\sigma_i}(X))^B$. Hence $(O^{\sigma_i}(X))^B$ is a normal subgroup of G. Write $Z = X \cap O_{\sigma_i}(G)$. Then $1 \neq Z$ is a σ -subnormal σ_i -subgroup of G. Let $b \in B$. Then X is σ -subnormal in $\langle X, Z^b \rangle$ and so $O_{\sigma_i}(\langle X, Z^b \rangle)$ normalises $O^{\sigma_i}(X) = X$ by Lemma 1 (8). Since $Z^b \leq O_{\sigma_i}(\langle X, Z^b \rangle)$, it follows that Z^b normalises X. Therefore Z^B normalises X. Then $[Z^B, X] \leq X \cap O_{\sigma_i}(G) = Z \leq Z^B$ and Z^B is normal in G. By the choice of G, it follows that XZ^B is a σ -subnormal subgroup of G and then X is σ -subnormal in G, a contradiction.

Thus X is σ -nilpotent. By assumption every proper subgroup of X is σ subnormal in G. Applying Lemma 3 (3), X is a cyclic p-group for some prime $p \in \sigma_j$, for some $\sigma_j \in \sigma$. Assume that i = j. Then XN is a σ -subnormal σ_i -subgroup of G. Consequently, X is σ -subnormal in G, which contradicts our assumption that G is a counterexample. Thus $i \neq j$ and $O^{\sigma_i}(X) = X$. By Lemma 7, $R = O_{\sigma_i}(G)$ normalises X, and so X is normal in XR. Since XR is σ -subnormal in G by minimality of G and Lemma 1 (5), we conclude that X is σ -subnormal in G, which is not the case.

Step 3. We have a contradiction

Assume that either |G : A| and |G : B| are σ -primary or |G : A| is σ primary and |G : A| and |G : B| are σ -coprime. Then, by Steps 1 and 2, $X \subseteq A \cap B$. Then, by Theorem A, X is σ -subnormal in A and B. Therefore X is σ -subnormal in G by Theorem B.

Acknowledgements

The first and third authors are supported by the grant PGC2018-095140-B-I00 from the *Ministerio de Ciencia, Innovación y Universidades* and the *Agencia Estatal de Investigación*, Spain, and FEDER, European Union and Prometeo/2017/057 of Generalitat (Valencian Community, Spain). The second author was supported by the State Program of Science Researchers of the Republic of Belarus (Grant 19-54 «Convergence-2020»).

The authors are very grateful to the referees for extremely careful reading of the paper and for his numerous suggestions that have contributed to a substantial improvement of it.

References

- B. Amberg, S. Franciosi and F. De Giovanni, *Products of Groups*, Oxford Mathematical Monographs, Clarendon Press, Oxford 1992.
- [2] A. Ballester-Bolinches, L. M. Ezquerro, *Classes of finite groups*, vol. 584 of Mathematics and its Applications. Springer, New York 2006.
- [3] A. Ballester-Bolinches, S.F. Kamornikov, M.C. Pedraza-Aguilera and X. Yi, On σ -subnormal subgroups of factorised finite groups, Preprint.
- [4] C. Casolo, Subnormality in factorizable finite soluble groups, Arch. Math., 57, 12-13, (1991).
- [5] K. Doerk and T. Hawkes, *Finite Soluble Groups*, Walter De Gruyter, Berlin/New York (1992).
- [6] Francesco Fumagalli, On subnormality criteria for subgroups in finite groups, J. London Math. Soc., 76(2), 237-252, (2007).
- [7] D. Gorenstein, *Finite Groups*, Chelsea Pub. Co., New York (1980).
- [8] S. F. Kamornikov, O. L. Shemetkova, On *F*-subnormal subgroups of a finite factorised group, Problems of Physics, Mathematics and Technics, 1, 61-63, (2018).
- [9] O. H. Kegel Untergruppenverbände endlicher Gruppen, die den Subnormalteilerverband echt enthalten, Arch. Math., 30(3), 225-228, (1978).
- [10] J. C. Lennox and S. E. Stonehewer, *Subnormal subgroups of groups*, Oxford: Clarendon Press (1987).
- [11] The Kourovka notebook, Unsolved problems in group theory, E. I. Khukhro, V. D. Mazurov Editors, Institut Matematiki SO RAN, Novosibirsk, No. 19, (2018).
- [12] R. Maier, Um problema da teoria dos subgrupos subnormais, Bol. Soc. Brasil Mat., 8(2), 127-130, (1977).
- [13] R. Maier, R. Sidki, A note on subnormality in factorizable finite groups, Arch. Math., 42, 97-101, (1984).

- [14] A. N. Skiba, A generalization of a Hall theorem, J. Algebra Appl., 15(4),(13 pages), (2016).
- [15] A. N. Skiba, On σ -subnormal and σ -permutable subgroups of finite groups, J. Algebra, 436, 1-16, (2015).
- [16] A. N. Skiba, On σ -properties of finite groups I, Problems of Physics, Mathematics and Technics, 4, 89-96, (2014).
- [17] A. N. Skiba, On σ -properties of finite groups II, Problems of Physics, Mathematics and Technics, 3(24), 70-83, (2015).
- [18] A. N. Skiba, On some arithmetic properties of finite groups, Note Mat., 36, 65-89, (2016).
- [19] H. Wielandt, Subnormalität in faktorisierten endlichen Gruppen, J. Algebra, 69, 305-311, (1981).

A. BALLESTER-BOLINCHES Department of Mathematics, Guangdong University of Education 510310, Guangzhou, People's Republic of China

Departament de Matemàtiques, Universitat de València Dr. Moliner 50, 46100 Burjassot, València (Spain) e-mail: Adolfo.Ballester@uv.es

S.F. KAMORNIKOV Department of Mathematics F. Scorina Gomel State University Gomel 246019, Belarus e-mail: sfkamornikov@mail.ru

M.C. PEDRAZA-AGUILERA Instituto Universitario de Matemática Pura y Aplicada Universitat Politècnica de València, Camino de Vera, 46022, Valencia, Spain e-mail: mpedraza@mat.upv.es

V. PÉREZ-CALABUIG Departament de Matemàtiques, Universitat de València Dr. Moliner 50, 46100 Burjassot, València (Spain) e-mail: vpercal@gmail.com