Document downloaded from:

http://hdl.handle.net/10251/176205

This paper must be cited as:

Ballester Bolinches, A.; Kamornikov, SF.; Pedraza Aguilera, MC.; Yi, X. (2020). On sigmasubnormal subgroups of factorised finite groups. Journal of Algebra. 559:195-202. https://doi.org/10.1016/j.jalgebra.2020.05.002

The final publication is available at https://doi.org/10.1016/j.jalgebra.2020.05.002

Copyright Elsevier

Additional Information

On σ -subnormal subgroups of factorised finite groups

A. Ballester-Bolinches, S.F. Kamornikov, M.C. Pedraza-Aguilera and X. Yi

Abstract

Let $\sigma = {\sigma_i : i \in I}$ be a partition of the set \mathbb{P} of all prime numbers. A subgroup X of a finite group G is called σ -subnormal in G if there is chain of subgroups

$$X = X_0 \subseteq X_1 \subseteq \dots \subseteq X_n = G$$

with X_{i-1} normal in X_i or $X_i/Core_{X_i}(X_{i-1})$ is a σ_i -group for some $i \in I, 1 \leq i \leq n$.

In the special case that σ is the partition of \mathbb{P} into sets containing exactly one prime each, the σ -subnormality reduces to the familiar case of subnormality.

If a finite soluble group G = AB is factorised as the product of the subgroups A and B, and X is a subgroup of G such that X is σ -subnormal in $\langle X, X^g \rangle$ for all $g \in A \cup B$, we prove that X is σ subnormal in G. This is an extension of a subnormality criteria due to Maier and Sidki and Casolo.

Mathematics Subject Classification (2010): 20D10, 20D20 Keywords: finite group, soluble group, σ -subnormal subgroup, σ -nilpotency, factorised group.

1 Introduction and statements of results.

All groups considered in this paper are finite.

An important subnormality criterion asserts that if G = AB is a group which is the product of the subgroups A and B and X is a subgroup of Gcontained in $A \cap B$ that is subnormal in A and B, then X is subnormal in G. This result was proved by Maier in [5] for soluble groups and then for arbitrary groups by Wielandt [11]. In the same paper, Wielandt conjectured that if X is a subgroup of G such that X is subnormal in $\langle X, X^g \rangle$ for all $g \in A \cup B$, then X is subnormal in G.

Wielandt's conjecture was proved to be true in the soluble universe by Maier and Sidki [6] for subgroups of prime power order and then for arbitrary soluble groups by Casolo in [2].

Theorem 1. Let the soluble group G = AB be the product of the subgroups A and B. If X is a subgroup of G such that X is subnormal in $\langle X, X^g \rangle$ for all $g \in A \cup B$, then X is subnormal in G.

Recently, Skiba [7] has generalised the concept of subnormality, introducing σ -subnormality, in which σ is a partition of the set \mathbb{P} , the set of all primes. Hence $\mathbb{P} = \bigcup_{i \in I} \sigma_i$, with $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$.

A group G is σ -primary if the prime factors, if any, of its order all belong to the same member of σ .

Definition 1. A subgroup X of a group G is called σ -subnormal in G if there is chain of subgroups

$$X = X_0 \subseteq X_1 \subseteq \dots \subseteq X_n = G$$

with X_{i-1} normal in X_i or $X_i/Core_{X_i}(X_{i-1})$ σ -primary for $1 \leq i \leq n$.

In the special case that σ is the partition of \mathbb{P} into sets containing exactly one prime each, the σ -subnormality reduces to the familiar case of subnormality.

Skiba [7] has also extended the concept of nilpotency, introducing σ -nilpotency.

Definition 2. A group G is said to be σ -nilpotent if it is a direct product of σ -primary groups.

He proved that the class \mathcal{N}_{σ} of all σ -nilpotent groups is a subgroup-closed saturated Fitting formation ([7, Corollary 2.4 and Lemma 2.5]).

Note that a subgroup X of a group G is σ -subnormal in G if and only if it is K- \mathcal{N}_{σ} -subnormal in G in the sense of [1, Definition 6.1]. This characterisation allows us to deduce that the set of all σ -subnormal subgroups of a group G forms a sublattice of the subgroup lattice of G ([1, Lemmas 6.3.11 and 6.3.12

and Example 6.3.13]). This will be used in the paper without any further reference.

Skiba [7] showed that the set of all σ -subnormal subgroups has a strong influence on the structure of σ -soluble groups, that is, groups in which every chief factor is σ -primary. Therefore it is natural and interesting to investigate which of remarkable theorems about subnormal subgroups have analogs when we consider σ -subnormal subgroups of σ -soluble groups.

Our objective in this paper is to present a σ -subnormal version of Theorem 1. We prove:

Theorem A. Assume that G is a soluble group factorised as a product G = AB of the subgroups A and B. Let X be a subgroup of G such that X is σ -subnormal in $\langle X, X^g \rangle$ for all $g \in A \cup B$. Then X is σ -subnormal in G.

Theorem 1 is just Theorem A for the partition of \mathbb{P} into sets containing exactly one prime each.

We shall adhere to the notation and terminology of [1] and [3].

2 Preparatory lemmas

In this section we collect some results which will be used in the proof of our main theorem.

Our first lemma collects some basic properties of σ -subnormal subgroups.

Lemma 1 ([7]). Let H, K and N be subgroups of a group G. Suppose that H is σ -subnormal in G and N is normal in G. Then the following statements hold:

- 1. $H \cap K$ is σ -subnormal in K.
- 2. If K is a σ -subnormal subgroup of H, then K is σ -subnormal in G.
- 3. If K is σ -subnormal in G, then $H \cap K$ is σ -subnormal in G.
- 4. HN/N is σ -subnormal in G/N.
- 5. If $N \subseteq K$ and K/N is σ -subnormal in G/N, then K is σ -subnormal in G.

- 6. If $K \subseteq H$ and H is σ -nilpotent, then K is σ -subnormal in G.
- 7. If H is a σ_i -group, where $\sigma_i \in \sigma$, then $H \leq O_{\sigma_i}(G)$.

According to a result of Wielandt (see [4, Theorem 7.3.3]), given a subgroup X of a group G, it is enough to know that X is subnormal in the subgroup generated by $\langle X, X^g \rangle$ for all $g \in G$ to deduce that X is subnormal in G. This result still holds for σ -subnormal subgroups of soluble groups and it is a direct consequence of [1, Proposition 6.1.10 and Theorem 6.2.17]. We include a proof here for the sake of completeness.

Lemma 2. Suppose that G is a soluble group and X is a subgroup of G such that it is σ -subnormal in $\langle X, X^x \rangle$ for all $x \in G$. Then X is σ -subnormal in G.

Proof. We argue by induction on |G|. If G is σ -nilpotent, then X is σ subnormal in G by Lemma 1 (6). Hence we may assume that G is not σ -nilpotent so that the σ -nilpotent residual L of G is non-trivial. Let N be a minimal normal subgroup of G such that $N \leq L$. By inductive hypothesis, XN/N is σ -subnormal in G/N and so XN is σ -subnormal in G by Lemma 1 (5). If XN were a proper subgroup of G, then X would be σ -subnormal in XN by the inductive hypothesis. Applying Lemma 1 (2), it follows that X is σ -subnormal in G. Hence we can suppose that G = XNand $G \neq X$. Since N is abelian, X is a maximal subgroup of G. If X is normal in G, then it is σ -subnormal in G. If X is not normal in G, there exists an element $g \in G$ such that $X \neq X^g$. Then $G = \langle X, X^g \rangle$ and X is σ -subnormal in G. The proof is now complete. \Box

Our next lemma is crucial in the proof of our main result. It confirms that Theorem A holds for σ -primary subgroups.

Lemma 3. Let the soluble group G = AB be the product of the subgroups Aand B. Let X be a σ -primary subgroup of G such that X is σ -subnormal in $\langle X, X^g \rangle$ for all $g \in A \cup B$, then X is σ -subnormal in G.

Proof. Suppose that the result is false. We choose a counterexample G of minimal order and proceed to derive a contradiction. Without loss of generality, we may assume that X is a σ_1 -group. We deduce

1. $O_{\sigma_1}(G) = 1.$

Suppose that $T = O_{\sigma_1}(G) \neq 1$. Observe that XT/T satisfies the hypothesis of the lemma in G/T = (AT/T)(BT/T) by Lemma 1 (4). By the minimality of G we have that XT/T is σ -subnormal in G/T. Applying Lemma 1 (5), we have that XT is σ -subnormal in G. Since XT is a σ_1 -group, X is σ -subnormal in G by Lemma 1 (2) and (6), which is not the case.

2. There exists a prime $p \notin \sigma_1$ such that G is a $(\sigma_1 \cup \{p\})$ -group.

Since G is soluble and $O_{\sigma_1}(G) = 1$, there exists a prime $p \notin \sigma_1$ such that $O_p(G) \neq 1$. Let N be a minimal normal subgroup of G contained in $O_p(G)$. Then XN/N satisfies the hypothesis of the lemma in G/N = (AN/N)(BN/N) by Lemma 1 (4). By minimality of G, XN/N is σ -subnormal in G/N. Since XN/N is a σ_1 -group, we can apply Lemma 1 (7) to conclude that $XN/N \leq O_{\sigma_1}(G/N) = O/N$. Clearly O is a normal $(\sigma_1 \cup \{p\})$ -subgroup of G containing X. Thus $X \leq O \leq O_{\sigma_1 \cup \{p\}}(G)$. Let A_1 and B_1 be Hall $(\sigma_1 \cup \{p\})$ -subgroups of A and B respectively such that $H = A_1B_1$ is a Hall $(\sigma_1 \cup \{p\})$ -subgroup of G. Since $O_{\sigma_1 \cup \{p\}}(G)$ is normal in G, we have that $O_{\sigma_1 \cup \{p\}}(G) \leq H$. If H is a proper subgroup of G, then the minimality of G implies that X is σ -subnormal in H. By Lemma 1 (1), X is σ -subnormal in $O_{\sigma_1 \cup \{p\}}(G)$. Since $O_{\sigma_1 \cup \{p\}}(G)$ is σ -subnormal in G, it follows that X is σ -subnormal in G by Lemma 1 (2), which is not so by hypothesis. Hence G = H is a $(\sigma_1 \cup \{p\})$ -group.

3. G has a unique minimal normal subgroup.

Suppose that G has two different minimal normal subgroups, N_1 and N_2 say. Arguing as in Step 2, XN_2/N_2 is σ -subnormal σ_1 -group of G and $XN_2/N_2 \leq O_{\sigma_1}(G/N_2) = K/N_2$. Assume that $[X, N_1] \neq 1$. Since $[X, N_1] \leq [XN_2, N_1] \leq K \cap N_1$, it follows that $N_1 \leq K$. Therefore N_1 is a σ_1 -group, which is not so by Step (1). Thus we may assume that $[X, N_1] = [X, N_2] = 1$. Then X is a normal subgroup of XN_2 which is a σ -subnormal subgroup of G by Lemma 1 (5). Applying Lemma 1 (2), it follows that X is σ -subnormal in G, which is not the case.

4. G is a primitive group. Therefore $N = \text{Soc}(G) = C_G(N) = F(G) = O_p(G)$ is the unique minimal normal subgroup of G which is complemented by a core-free maximal subgroup of G.

Let $N = \operatorname{Soc}(G)$ be the unique minimal normal subgroup of G. Write $O_{\sigma_1}(G/N) = K/N$. Suppose that $N \leq \Phi(G)$, it follows by [3, A, Lemma 13.2], that $K = N \times K_{\sigma_1}$, where K_{σ_1} denotes the Hall σ_1 -subgroup of K. Arguing as in Step 3, we have that $XN \leq K$. Hence $X \leq K_{\sigma_1}$. But K_{σ_1} is a subnormal σ_1 -subgroup of G. By Lemma 1 (7), $K_{\sigma_1} \leq O_{\sigma_1}(G) = 1$. This is a contradiction. Therefore $\Phi(G) = 1$, G is primitive and N is complemented by a core-free maximal subgroup of G. By [1, Theorem 1.1.7], $N = C_G(N) = F(G)$. By Steps 1 and 2, $N = O_p(G)$.

5. $N \cap A = N \cap B = 1$.

Assume that $N \cap A \neq 1$ and let $1 \neq t \in N \cap A$. Then $\langle X, X^t \rangle = [t, X]X$. Since X is σ -subnormal in $\langle X, X^t \rangle$, we have that X^t is σ -subnormal in $\langle X, X^t \rangle^t$. But $\langle X, X^t \rangle^t = ([t, X]X)^t = [t, X]^t X^t = [t, X]X^t \leq [t, X][t, X]X = [t, X]X$. Therefore $\langle X, X^t \rangle^t = \langle X, X^t \rangle$ and X^t is also a σ -subnormal subgroup of $\langle X, X^t \rangle$. Then, X and X^t are σ -subnormal σ_1 -subgroups of $\langle X, X^t \rangle$. By Lemma 1 (7), $\langle X, X^t \rangle \leq O_{\sigma_1}(\langle X, X^t \rangle)$. Thus $\langle X, X^t \rangle$ is a σ_1 -group. Furthermore, $[t, X] \leq [N, X] \leq N$ is a p-group. Therefore [t, X] = 1 and $X \leq C_G(N \cap A) \leq N_G(N \cap A) = H$. Hence $N \cap A \neq N$ by Step 4 and so $H = A(H \cap B)$ is a proper subgroup of G. The minimal choice of G implies that X is σ -subnormal in H. By Lemma 1 (7), $X \leq O_{\sigma_1}(H)$. Since $N \leq H$ and N is a σ_1 '-group, we have that X centralizes N, which is not so by Step 4.

6. Let P be a Sylow p-subgroup of G such that $P = (P \cap A)(P \cap B)$. Then $|N| \leq |P \cap A|$.

Since $N(P \cap B) \leq P$, and $N \cap B = 1$, we have

$$N||(P \cap B)|/|N \cap (P \cap B)| = |N||(P \cap B)|$$

and

$$|N||(P \cap B)| \le |(P \cap A)||(P \cap B)|/|P \cap A \cap B| \le |P \cap A||P \cap B|.$$

Thus $|N| \leq |P \cap A|$.

7. We have a contradiction.

By Step 6, $|N| \le |P \cap A|$ and, by Step 5, $|N||(P \cap A)| \le |P|$. Therefore $|N|^2 \le |P|$.

Let M be a core-free maximal subgroup of G such that G = NM and $N \cap M = 1$. Then $P = NM_p$, where $M_p = P \cap M$ is a Sylow p-subgroup of M. It is clear that N is a faithful and irreducible M-module over the finite field of p-elements. Applying [12, Corollary 1.9], we have that $|M_p| \leq |N|/2$. Thus $|P| \leq |N|^2/2$. Consequently, $2|N|^2 \leq 2|P| \leq |N|^2$, which is not the case.

3 Proof of Theorem A

Proof. Suppose that the theorem is false and let G be a counterexample for which |G| + |X| is minimal. Since the join of σ -subnormal subgroups is again σ -subnormal, it follows by Lemma 3 that X is not σ -nilpotent. Let $1 \neq X^{\mathcal{N}_{\sigma}}$ be the \mathcal{N}_{σ} -residual of X and let $S/X^{\mathcal{N}_{\sigma}}$ be a maximal subgroup of $X/X^{\mathcal{N}_{\sigma}}$. Then, by Lemma 1 (5) and (6), S is a maximal subgroup of Xand S is σ -subnormal in X. By Lemma 1 (1) and (2), S is σ -subnormal in $\langle S, S^g \rangle$ for all $g \in A \cup B$. By the minimal choice of the pair (G, X), we have that S is σ -subnormal in G. Suppose that $T/X^{\mathcal{N}_{\sigma}}$ is another maximal subgroup of $X/X^{\mathcal{N}_{\sigma}}$. Then T is is σ -subnormal in G and therefore X = $\langle S, T \rangle$ is σ -subnormal in G, contrary to supposition. Therefore $X/X^{\mathcal{N}_{\sigma}}$ has a unique maximal subgroup and so $X/X^{\mathcal{N}_{\sigma}}$ is a cyclic p-group for some prime p. Without loss of generality we may assume that $p \in \sigma_1$.

By [1, Lemma 6.1.9(1)], $X^{\mathcal{N}_{\sigma}}$ is subnormal in $\langle X, X^g \rangle$ for all $g \in A \cup B$. Hence $X^{\mathcal{N}_{\sigma}}$ is subnormal in $\langle X^{\mathcal{N}_{\sigma}}, (X^{\mathcal{N}_{\sigma}})^g \rangle$ for all $g \in A \cup B$. Applying Theorem 1, we conclude that $X^{\mathcal{N}_{\sigma}}$ is subnormal in G.

Assume that $X \leq A$. Then, by Lemma 2, X is σ -subnormal in A. In particular, $A \neq G$. Let M be a maximal subgroup of G containing A. Then $M = M \cap AB = A(M \cap B)$ and M satisfies the hypotheses of the theorem. By the choice of G, X is σ -subnormal in M. Write $K = \operatorname{Core}_G(M)$. Observe that XK/K satisfies the hypothesis of the theorem in G/K = (AK/K)(BK/K)by Lemma 1 (4). If $K \neq 1$, the minimality of G implies that XK/K is σ subnormal in G/K. By Lemma 1 (5), XK is σ -subnormal in G. Since $X \leq$ $XK \leq M$, it follows that X is σ -subnormal in XK by Lemma 1 (1). Hence X is σ -subnormal in G by Lemma 1 (2), contrary to assumption. Therefore K = 1 and so G is a primitive group. Then $N = \operatorname{Soc}(G) = F(G)$ is the unique minimal normal subgroup of G and there exists a maximal subgroup M of G such that G = NM and $N \cap M = 1$. In particular $N \cap X^{\mathcal{N}_{\sigma}} \leq N \cap M = 1$. Since $X^{\mathcal{N}_{\sigma}}$ is subnormal in G, we have that $F(X^{\mathcal{N}_{\sigma}}) \leq F(G) = N$. Therefore $F(X^{\mathcal{N}_{\sigma}}) = 1$. Since $X^{\mathcal{N}_{\sigma}}$ is soluble, $X^{\mathcal{N}_{\sigma}} = 1$. Thus X is a σ -nilpotent group, a contradiction.

Suppose that X is not contained in A. Let $A_0 = \langle A, X \rangle$. Then $A_0 = A_0 \cap AB = A(A_0 \cap B)$ and A_0 satisfies the hypotheses of the theorem. If $A_0 \neq G$, then X is σ -subnormal in A_0 by the choice of G. Let $g \in A_0 \cup B$. If $g \in B$, then X is σ -subnormal in $\langle X, X^g \rangle$. If $g \in A_0$, then $X \leq \langle X, X^g \rangle \leq \langle A, X \rangle = A_0$. Since X is σ -subnormal in A_0 , it follows that X is σ -subnormal in $\langle X, X^g \rangle$ by Lemma 1 (1). Hence X is σ -subnormal in $\langle X, X^g \rangle$ for all $g \in A_0 \cup B$. Then the above reasoning implies that X is σ -subnormal in G, which is a contradiction. Thus we may assume that $G = \langle A, X \rangle$. Let q be a prime dividing the order of $F(X^{\mathcal{N}_{\sigma}})$ and denote $R = O_q(G)$. Since $F(X^{\mathcal{N}_{\sigma}})$ is subnormal in G, we have that $1 \neq O_q(X^{\mathcal{N}_{\sigma}}) \leq R$.

Suppose that $q \in \sigma_1$. Let N be a minimal normal subgroup of G contained in R. Then XN/N satisfies the hypothesis of the theorem in G/N = (AN/N)(BN/N) by Lemma 1 (4). By minimality of G, XN/N is σ -subnormal in G/N. Then XN is σ -subnormal in G by Lemma 1 (5). Since $X^{\mathcal{N}_{\sigma}}$ is subnormal in G, we have that $N \leq N_G(X^{\mathcal{N}_{\sigma}})$ by [3, Lemma A.14.3]. Then $X^{\mathcal{N}_{\sigma}}$ is normal in XN and $XN/X^{\mathcal{N}_{\sigma}} = (X/X^{\mathcal{N}_{\sigma}})(NX^{\mathcal{N}_{\sigma}}/X^{\mathcal{N}_{\sigma}})$ is a σ_1 -group. Applying Lemma 1 (6), we conclude that $X/X^{\mathcal{N}_{\sigma}}$ is a σ -subnormal subgroup of $XN/X^{\mathcal{N}_{\sigma}}$. By Lemma 1 (2), X is a σ -subnormal subgroup of G, a contradiction.

Then $q \notin \sigma_1$. We may assume that $q \in \sigma_2$. Denote $W = R \cap X^{\mathcal{N}_{\sigma}}$. Since $1 \neq O_q(X^{\mathcal{N}_{\sigma}}) \leq R$, it follows that $W \neq 1$. Moreover W is a subnormal subgroup of G by [3, Corollary A.14.2]. Let $g \in A$. Then X is σ -subnormal in $\langle X, X^g \rangle$. In particular X is σ -subnormal in $\langle X, W^g \rangle$ by Lemma 1 (1). Therefore there exists a chain of subgroups

$$X = X_0 \subseteq X_1 \subseteq \dots \subseteq X_n = \langle X, W^g \rangle$$

such that either X_{i-1} is normal in X_i or $X_i/\operatorname{Core}_{X_i}(X_{i-1})$ is σ -primary for all $i = 1, 2, \ldots, n$. On the other hand, $X \leq \langle X, W^g \rangle \leq XR^g = XR$. Hence $|\langle X, W^g \rangle : X|$ is a *q*-number. Then either X_{i-1} is normal in X_i and X_i/X_{i-1} is a *q*-number or $X_i/\operatorname{Core}_{X_i}(X_{i-1})$ is a σ_2 -group for all $1 \leq i \leq n$.

We prove that $O^{\sigma_2}(\langle X, W^g \rangle) = O^{\sigma_2}(X)$. First we see that $O^{\sigma_2}(\langle X, W^g \rangle) = O^{\sigma_2}(X_{n-1})$. Clearly $O^{\sigma_2}(X_{n-1}) \leq O^{\sigma_2}(\langle X, W^g \rangle) = O^{\sigma_2}(X_n)$. Assume that X_{n-1} is a normal subgroup of X_n . Then $O^{\sigma_2}(X_{n-1})$ is a normal subgroup of

 X_n . Therefore $X_n/O^{\sigma_2}(X_{n-1})$ is a σ_2 -group and we have that $O^{\sigma_2}(X_{n-1}) = O^{\sigma_2}(X_n)$. Assume that $X_n/\operatorname{Core}_{X_n}(X_{n-1})$ is σ_2 -group. Then it follows that $(X_n/O^{\sigma_2}(\operatorname{Core}_{X_n}(X_{n-1})/\operatorname{Core}_{X_n}(X_{n-1}))/O^{\sigma_2}(\operatorname{Core}_{X_n}(X_{n-1}))$ is isomorphic to $X_n/\operatorname{Core}_{X_n}(X_{n-1})$. Hence $X_n/O^{\sigma_2}(\operatorname{Core}_{X_n}(X_{n-1}))$ is a σ_2 -group. This implies that $O^{\sigma_2}(X_n) \leq O^{\sigma_2}(\operatorname{Core}_{X_n}(X_{n-1})) \leq O^{\sigma_2}(X_{n-1})$. Consequently, $O^{\sigma_2}(\langle X, W^g \rangle) = O^{\sigma_2}(X_n) = O^{\sigma_2}(X_{n-1})$. Arguing by induction we have that $O^{\sigma_2}(\langle X, W^g \rangle) = O^{\sigma_2}(X_0) = O^{\sigma_2}(X) \leq X$.

Since $X/O^{\sigma_2}(\langle X, W^g \rangle)$ is σ -nilpotent, $X^{\mathcal{N}_{\sigma}} \leq O^{\sigma_2}(\langle X, W^g \rangle)$. Since $X/X^{\mathcal{N}_{\sigma}}$ is a *p*-group, and $p \notin \sigma_2$, we have that $O^{\sigma_2}(\langle X, W^g \rangle) = X$ and then Xis a normal subgroup of $\langle X, W^g \rangle$. Since it holds for every element of A, we have that X is a normal subgroup of XW^A . Hence $[X, W^A] \leq X$. Moreover $[X, W^A] \leq [X, R] \leq R$. Therefore $[X, W^A] \leq X \cap R$. Since $(X \cap R)X^{\mathcal{N}_{\sigma}}/X^{\mathcal{N}_{\sigma}} = 1$ (notice that it is a *p*-group, with $p \in \sigma_1$, and a *q*-group, with $q \in \sigma_2$), we have that $X \cap R = X^{\mathcal{N}_{\sigma}} \cap R = W$. Thus $[X, W^A] \leq W \leq W^A$ and X normalises W^A . This means that W^A is a normal subgroup of $G = \langle X, A \rangle$. On the other hand, $W^A \neq 1$ since $W \neq 1$. Since XW^A/W^A satisfies the hypothesis of the lemma in $G/W^A = (AW^A/W^A)(BW^A/W^A)$ by Lemma 1 (4), it follows that XW^A/W^A is σ -subnormal in G/W^A by the choice of G. Then XW^A is σ -subnormal in G by Lemma 1 (5). Then the normality of X in XW^A implies that X is σ -subnormal in G by Lemma 1 (2). This contradiction completes the proof.

Acknowledgements

The first and third authors are supported by Prometeo/2017/057 of Generalitat Valenciana (Valencian Community, Spain) and by the grant PGC2018-095140-B-I00 from the *Ministerio de Ciencia, Innovación y Universidades* and the *Agencia Estatal de Investigación*, Spain, and FEDER, European Union. The second author was supported by the State Program of Science Researchers of the Republic of Belarus (Grant 19-54 «Convergence-2020»). The fourth author was supported by the Zhejiang Provincial Natural Science Foundation of China (Grant LY18A010028).

References

- [1] A. Ballester-Bolinches, L. M. Ezquerro, *Classes of finite groups*, vol. 584 of Mathematics and its Applications. Springer, New York 2006.
- [2] C. Casolo, Subnormality in factorizable finite soluble groups, Arch. Math., 57, 12-13, (1991).
- [3] K. Doerk and T. Hawkes, *Finite Soluble Groups*, Walter De Gruyter, Berlin/New York (1992).
- [4] J. C. Lennox and S. E. Stonehewer, *Subnormal subgroups of groups*, Oxford: Clarendon Press (1987).
- R. Maier, Um problema da teoria dos subgrupos subnormais, Bol. Soc. Brasil Mat., 8(2), 127-130, (1977).
- [6] R. Maier, R. Sidki, A note on subnormality in factorizable finite groups, Arch. Math., 42, 97-101, (1984).
- [7] A. N. Skiba $On \sigma$ -subnormal and σ -permutable subgroups of finite groups J. Algebra, 436, 1-16, (2015).
- [8] A. N. Skiba On σ -properties of finite groups I, Problems of Physics, Mathematics and Technics, 4, 89-96, (2014).
- [9] A. N. Skiba On σ -properties of finite groups II, Problems of Physics, Mathematics and Technics, 3(24), 70-83, (2015).
- [10] A. N. Skiba A generalization of a Hall theorem, J. Algebra Appl. 15 (5), 1650085, 13 pp, (2016).
- [11] H. Wielandt, Subnormalität in faktorisierten endlichen Gruppen, J. Algebra, 69, 305-311, (1981).
- [12] T. R. Wolf, Sylow p-subgroups of p-solvable subgroups of GL(n, p), Arch. Math., 43, 1-10, (1984).

A. BALLESTER-BOLINCHES Departament de Matemàtiques, Universitat de València Dr. Moliner 50, 46100 Burjassot, València, Spain e-mail: Adolfo.Ballester@uv.es

S.F. KAMORNIKOV Department of Mathematics F. Scorina Gomel State University Gomel 246019, Belarus e-mail: sfkamornikov@mail.ru

M.C. PEDRAZA-AGUILERA Instituto Universitario de Matemática Pura y Aplicada Universitat Politècnica de València, Camino de Vera, 46022, Valencia, Spain e-mail: mpedraza@mat.upv.es

X. YI Department of Mathematics Zhejiang Sci-Tech University Hangzhou 310018 Zheji, People's Republic of China e-mail: yixiaolan2005@126.com