Document downloaded from:

http://hdl.handle.net/10251/176210

This paper must be cited as:

Ballester-Bolinches, A.; Li, Y.; Pedraza Aguilera, MC.; Su, N. (2020). On Factorised Finite Groups. Mediterranean Journal of Mathematics. 17(2):1-7. https://doi.org/10.1007/s00009-020-1500-1

The final publication is available at https://doi.org/10.1007/s00009-020-1500-1

Copyright Springer-Verlag

Additional Information

On factorised finite groups

A. Ballester-Bolinches^{*} Y. Li [†] M.C. Pedraza-Aguilera [‡] and Ning Su \S

Abstract

A subgroup H of a finite group G is called \mathbb{P} -subnormal in G if either H = G or it is connected to G by a chain of subgroups of prime indices. In this paper some structural results of finite groups which are factorised as the product of two \mathbb{P} -subnormal subgroups are showed.

Mathematics Subject Classification (2010): 20D10, 20D25.

Keywords: finite group, factorised group, w-supersoluble group, \mathbb{P} -subnormal subgroup

1 Introduction and statement of results.

Assume that A and B are subgroups of a group G. We say that A and B permute if the product AB is a subgroup of G. If G = AB, then we say G is the product of the factors A and B. A natural question to ask is whether properties of G = AB can be deduced from properties of A and B. There is an extensive literature on this question. Many properties and further restrictions on the products have been considered (see the books [2], [4] and the seminal papers [3], [7], [8]). We want to concentrate here on some particular properties and we will consider only finite groups.

Our starting point is a series of interesting papers of Vasil'ev, Vasil'eva, and Tyutyanov, where groups which are \mathbb{P} -subnormal products were studied ([10], [11], [12], [13]).

^{*}Department of Mathematics, Guangdong University of Education, 510310, Guangzhou, People's Republic of China; Departament de Matemàtiques, Universitat de València, 46100 Burjassot, València, Spain, email: Adolfo.Ballester@uv.es

[†]Department of Mathematics, Guangdong University of Education, 510310, Guangzhou, People's Republic of China, email: liyangming@gdei.edu.cn

[‡]Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera, 46022, Valencia, Spain, email: mpedraza@mat.upv.es

[§]Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, China, email: suning3@mail.sysu.edu.cn

 \mathbb{P} -subnormality is a subgroup embedding property that naturally emerges in the study of supersolubility, and was introduced by the aforecited authors in [10].

Definition 1. A subgroup H of a group G is \mathbb{P} -subnormal in G whenever either H = G or there exists a chain of subgroups $H = H_0 \leq H_1 \leq \cdots \leq$ $H_{n-1} \leq H_n = G$ such that $|H_i: H_{i-1}|$ is a prime for every $i = 1, \ldots, n$.

Note that in the soluble universe the \mathbb{P} -subnormality is the \mathcal{U} -subnormality associated with the saturated formation \mathcal{U} of all supersoluble groups (see [5, Chapter 6]).

Vasil'ev, Vasil'eva, and Tyutyanov defined the class $w\mathcal{U}$ of widely supersoluble groups, w-supersoluble for short, as the class of all groups whose Sylow subgroups are \mathbb{P} -subnormal, and proved the following interesting result:

Theorem 2 ([10, Theorem 4.7]). Let G = AB be a group which is the product of two w-supersoluble subgroups A and B. If A and B are \mathbb{P} -subnormal in G and $G^{\mathcal{A}}$ is nilpotent, then G is w-supersoluble.

Here $G^{\mathcal{A}}$ denotes the residual of G with respect to the formation \mathcal{A} of all groups with abelian Sylow subgroups.

The proof of Theorem 2 depends on the properties of w-supersoluble groups as a class of groups showed in [10, Section 2]. It turns out that $w\mathcal{U}$ is a subgroup-closed saturated formation of soluble groups containing \mathcal{U} and it is locally defined by a formation function f such that for every prime p, f(p) is composed of all soluble groups G whose Sylow subgroups are abelian of exponent dividing p-1. Moreover, \mathcal{U} is a proper subclass of $w\mathcal{U}$ (see [10, Example 1]).

Theorem 2 was the motive behind the results of [6]. We studied there mutually sn-permutable products of w-supersoluble groups. The idea to consider these products arises naturally from [11, Lemma 4.5]: if G = AB is a product of two subgroups A and B, and B permutes with every subnormal subgroup of A and A is soluble, then B is \mathbb{P} -subnormal in G.

As a consequence, every mutually sn-permutable product is a \mathbb{P} -subnormal product. The group constructed in [10, Example 1] shows that the converse does not hold in general.

The main goal of this paper is to show some structural results of groups which are products of \mathbb{P} -subnormal subgroups. They can be regarded as \mathbb{P} -subnormal versions of the results of [6].

Our first main theorem analyses the behaviour of the abelian normal subgroups of groups which are the product of two \mathbb{P} -subnormal subgroups with respect to subgroup-closed saturated formations containing all supersoluble groups. It is a significant and useful extension of [1, Theorem A] and [6, Theorem 3].

Theorem A. Let \mathcal{F} be a subgroup-closed saturated formation containing \mathcal{U} . Let the group G = AB be the product of the \mathbb{P} -subnormal \mathcal{F} -subgroups A and B. If N is an abelian normal subgroup of G, then both AN and BN are \mathcal{F} -groups.

As Example 1 in [6] shows, the class of all *w*-supersoluble groups is not closed under taking products of \mathbb{P} -subnormal subgroups even if one of the factors is nilpotent. However, the *w*-supersolubility is guaranteed if the product G = AB is mutually sn-permutable, A is *w*-supersoluble, B is nilpotent and B permutes with the Sylow subgroups of A ([6, Theorem 4]). Our second main result shows that this result also holds under much weaker hypotheses.

Theorem B. Let G = AB be the product of the \mathbb{P} -subnormal subgroups A and B, where A is w-supersoluble and B is nilpotent. If B permutes with each Sylow subgroup of A, then the group G is w-supersoluble.

Theorem B does not hold for subgroup-closed saturated formations containing all supersoluble groups.

Example 3. Consider the subgroup-closed saturated formation \mathcal{F} of all metanilpotent groups. It is known that \mathcal{F} contains \mathcal{U} . Let G be the symmetric group of degree 4. Then G = AB, where A is the alternating group of degree 4, and B a Sylow 2-subgroup of G. It is clear that A and B are \mathbb{P} -subnormal in G. Moreover, A belongs to \mathcal{F} , B is nilpotent and permutes with every Sylow subgroup of A. However $G \notin \mathcal{F}$.

Similar arguments to those used in the proof of Theorem B allow us to prove the following

Theorem C. Let G = AB be the product of the \mathbb{P} -subnormal subgroups A and B. Suppose that A is supersoluble and B is nilpotent. If B permutes with each Sylow subgroup of A, then G is supersoluble.

Our last theorem is a \mathbb{P} -subnormal version of [6, Theorem 5].

Theorem D. Let G = AB be the product of the \mathbb{P} -subnormal w-supersoluble subgroups A and B. If $(|A/A^{\mathcal{A}}|, |B/B^{\mathcal{A}}|) = 1$, then G is w-supersoluble.

2 Proofs

Proof of Theorem A. Let F and U be the canonical local definitions of $\mathcal{F} = LF(F)$ and $\mathcal{U} = LF(U)$ respectively. Then, by [9, Proposition IV.3.11], $U(q) \subseteq F(q)$ for all primes q. Moreover, by [9, Example IV.3.4(f) and Proposition IV.3.8], $U(q) = \mathcal{S}_p \mathcal{A}_{q-1}$, where \mathcal{A}_{q-1} is the class of all abelian groups of exponent dividing q-1.

Assume the result is not true and let G be a counterexample with |G|+|N| as small as possible. Clearly we may suppose that $A < G, N \neq 1$ and $AN \notin \mathcal{F}$.

Suppose that |N| = p, p a prime number. Then $AN/C_{AN}(N)$ is cyclic of order dividing p-1 and so $AN/C_{AN}(N) \in F(p)$. Since $A \in \mathcal{F}$, we can apply [9, Remark IV.3.5(c)] to conclude that $AN \in \mathcal{F}$, which is a contradiction. Therefore, N is not of prime order.

Assume that N_1 is a non-trivial normal subgroup of G such that $N_1 \leq N$ and $|N : N_1| = q$, q a prime number. Then the assumption about the pair (G, N) gives that $AN_1 \in \mathcal{F}$. Let

$$1 = K_0 \trianglelefteq K_1 \trianglelefteq \cdots \trianglelefteq K_{m-1} = N_1 \trianglelefteq K_m = N$$

be part of a chief series of AN below N. Let $1 \leq i \leq m-1$. Since N is abelian, it follows that K_i/K_{i-1} is a chief factor of AN_1 . Since $AN_1 \in \mathcal{F} = LF(F)$, we have that $AN/C_{AN}(K_i/K_{i-1}) \cong AN_1/C_{AN_1}(K_i/K_{i-1}) \in F(p)$, where p is the prime dividing $|K_i/K_{i-1}|$, $1 \leq i \leq m-1$. Moreover, $AN/C_{AN}(N/N_1) \in$ F(q). Applying the Jordan-Hölder Theorem, we have that $AN/C_{AN}(H/K) \in$ F(p), for all chief factor H/K of AN below N, and every prime p dividing the order of H/K. We conclude that $AN \in LF(F) = \mathcal{F}$. This contradicts our choice of G. Consequently, $|N:N_1|$ is not a prime for every non-trivial normal subgroup N_1 of G contained in N.

Since A is \mathbb{P} -subnormal in G and A < G, there exists a chain of subgroups

$$A = A_0 \le A_1 \le \dots \le A_{n-1} \le A_n = G,$$

such that $|A_{i+1} : A_i|$ is a prime, for every $i = 0, 1, \dots, n-1$.

Assume that $N \not\leq A_{n-1}$. Then $G = A_{n-1}N$, and $N_1 = A_{n-1} \cap N$ is normal in G. If $N_1 = 1$, then $|G : A_{n-1}| = |NA_{n-1} : A_{n-1}| = |N : N_1| = |N|$ is a prime number. If $N_1 \neq 1$, then $|N : N_1| = |A_{n-1}N : A_{n-1}| = |G : A_{n-1}|$ is a prime. In both cases, we have a contradiction. Therefore $N \leq A_{n-1}$.

On the other hand, $A_{n-1} = G \cap A_{n-1} = AB \cap A_{n-1} = A(B \cap A_{n-1})$. It is clear that A is \mathbb{P} -subnormal in A_{n-1} and, by [11, Lemma 4.1], $B \cap A_{n-1}$ is \mathbb{P} -subnormal in A_{n-1} . Moreover $B \cap A_{n-1} \in \mathcal{F}$ because \mathcal{F} is subgroup-closed. Hence A_{n-1} satisfies the hypotheses of the theorem. The minimal choice of G yields $AN \in \mathcal{F}$. This final contradiction proves the theorem. \Box Proof of Theorem B. Assume the result is not true and let G be a counterexample with |G| as small as possible. We derive a contradiction through the following steps:

Step 1: N = Soc(G) is a minimal normal subgroup of G; N is an elementary abelian p-group, for some prime p, $N = C_G(N) = F(G) = O_p(G)$ and N is a Sylow p-subgroup of G.

Let L be a minimal normal subgroup of G. Then, by [11, Lemma 3.1], we have that G/L = (AL/L)(BL/L) is the product of the \mathbb{P} -subnormal subgroups AL/L and BL/L. Moreover, AL/L is w-supersoluble, BL/L is nilpotent and BL/L permutes with each Sylow subgroup of AL/L. The minimal choice of G implies that G/L is a $w\mathcal{U}$ -group. Since $w\mathcal{U}$ is a saturated formation, it follows that G is a primitive group. Hence N = Soc(G) is a minimal normal subgroup of G and $G/N \in w\mathcal{U}$.

Let p be the largest prime dividing the order of G. By [11, Theorem 4.4], a Sylow p-subgroup P of G is normal in G. Therefore N is a p-group and $P = N = F(G) = C_G(N) = O_p(G).$

Step 2: N is not contained in B and B is a p'-group.

Assume that N is contained in B. Since B is nilpotent, N is a Sylow p-subgroup of G and $N = C_G(N)$, we have that B = N. Hence G = ANand G is w-supersoluble by Theorem A, contrary to assumption. Therefore N is not contained in B and BN is a proper subgroup of G by Theorem A. Then every Hall p'-subgroup $A_{p'}$ of A is not trivial. Since B permutes with every Sylow subgroup of A and N is not contained in B, it follows that $A_{p'}B$ is a proper subgroup of $G = NA_{p'}B$. Hence $N \cap A_{p'}B = N \cap B$ is a normal subgroup of G. Since N is a minimal normal subgroup of G, it follows that $N \cap B = 1$. Consequently, B is a p'-group.

Step 3: The Sylow *r*-subgroups of *G* are abelian of exponent dividing p-1 for all primes $r \neq p$.

Let $r \neq p$ be a prime dividing the order of G. By Theorem A, X = AN is *w*-supersoluble. Since $O_{p'}(X) = 1$, it follows that $O_{p',p}(X) = N$ and X/N has abelian Sylow subgroups of exponent dividing p-1. Therefore the Sylow *r*-subgroups of A are abelian of exponent dividing p-1, and the same is true for B.

Let $r \neq p$ be a prime dividing the order of G. By [4, Theorem 1.1.19], there exist Sylow *r*-subgroups A_r and B_r of A and B respectively such that $G_r = A_r B_r$ is a Sylow *r*-subgroup of G. By hypothesis, BA_r^a is a subgroup of G for every $a \in A$. Let $g \in G$. Then g = ab, where $a \in A$ and $b \in B$. Thus $(BA_r^a)^b = BA_r^{ab} = BA_r^g$ is a subgroup of G for every $g \in G$. Applying [2, Lemma 2.5.1], we conclude that $[A_r, B]$ is a subnormal p'-subgroup of G. Consequently $[A_r, B] \leq O_{p'}(G) = 1$. Since A_r and B_r are abelian of exponent p-1, we have that G_r is abelian of exponent dividing p-1.

Step 4: The final contradiction.

Since G/N is *w*-supersoluble and the Sylow *r*-subgroups of *G* are abelian of exponent dividing p-1, we can apply [9, Remark IV.3.5(c)] to conclude that *G* is *w*-supersoluble, the final contradiction.

Proof of Theorem D. We prove the theorem by induction on the order of *G*. Arguing as in Step 1 of Theorem B, we may assume that *G* is a primitive soluble group. Then *G* = *NM*, where *N* is the unique minimal normal subgroup of *G*, $C_G(N) = N$ and G/N is *w*-supersoluble. Let *p* be the largest prime dividing the order of *G*. By [11, Theorem 4.4], a Sylow *p*-subgroup *P* of *G* is normal in *G*. Therefore *P* = *N*. By Theorem A, *AN* and *BN* are *w*-supersoluble. Since $O_{p',p}(AN) = O_{p',p}(BN) = 1$, we have that $A/A \cap N \simeq AN/N$ and $B/B \cap N \simeq BN/N$ have abelian Sylow subgroups of exponent dividing *p* − 1. Therefore $A^A \leq N$ and $B^A \leq N$. Hence $(|AN/N|, |BN/N|) = (|A/A \cap N|, |B/B \cap N|) = 1$. Consequently G/N = (AN/N)(BN/N) has abelian Sylow subgroups of exponent dividing *p* − 1. Applying [9, Remark IV.3.5(c)], we conclude that *G* is *w*-supersoluble, as desired.

Acknowledgements

The first and third authors are supported by the grant PGC2018-095140-B-I00 from the *Ministerio de Ciencia, Innovación y Universidades* and the *Agencia Estatal de Investigación*, Spain, and FEDER, European Union and by Prometeo/2017/057 of Generalitat (Valencian Community, Spain).

References

 M. J. Alejandre, A. Ballester-Bolinches, J. Cossey, and M. C. Pedraza-Aguilera. On some permutable products of supersoluble groups. *Rev. Mat. Iberoamericana*, 20:413–425, 2004.

- [2] B. Amberg, S. Franciosi, and F. de Giovanni. *Products of groups*. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1992. Oxford Science Publications.
- M. Asaad and A. Shaalan. On the supersolvability of finite groups. Arch. Math. (Basel), 53(4):318–326, 1989.
- [4] A. Ballester-Bolinches, R. Esteban-Romero, and M. Asaad. Products of finite groups, volume 53 of de Gruyter Expositions in Mathematics. Walter de Gruyter GmbH & Co. KG, Berlin, 2010.
- [5] A. Ballester-Bolinches and L. M. Ezquerro. Classes of Finite Groups, volume 584 of Mathematics and Its Applications. Springer, Dordrecht, 2006.
- [6] A. Ballester-Bolinches, W. M. Fakieh, and M. C. Pedraza-Aguilera. On products of generalised supersoluble finite groups. *Mediterr. J. Math.*, 16(2):Art. 46, 7, 2019.
- [7] A. Ballester-Bolinches and M. D. Pérez-Ramos. A question of R. Maier concerning formations. J. Algebra, 182(3):738–747, 1996.
- [8] A. Carocca. On factorized finite groups in which certain subgroups of the factors permute. *Arch. Math. (Basel)*, 71:257–261, 1998.
- [9] K. Doerk and T. Hawkes. *Finite soluble groups*, volume 4 of *De Gruyter Expositions in Mathematics*. Walter de Gruyter & Co., Berlin, 1992.
- [10] A. F. Vasil'ev, T. I. Vasil'eva, and V. N. Tyutyanov. On the finite groups of supersoluble type. Siberian Math. J., 51(6):1004–1012, 2010.
- [11] A. F. Vasil'ev, T. I. Vasil'eva, and V. N. Tyutyanov. On the products of P-subnormal subgroups of finite groups. *Siberian Math. J.*, 53(1):47–54, 2012.
- [12] A. F. Vasil'ev, T. I. Vasil'eva, and V. N. Tyutyanov. On K-P-subnormal subgroups of finite groups. *Math. Notes*, 95(3-4):471–480, 2014.
- [13] A. F. Vasil'ev, T. I. Vasil'eva, and V. N. Tyutyanov. Finite widely csupersoluble groups and their mutually permutable products. *Siberian Math. J.*, 51(3):476–485, 2016.