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Abstract: In the last decade, full-waveform airborne laser scanning (ALSFW) has proven to be a
promising tool for forestry applications. Compared to traditional discrete airborne laser scanning
(ALSD), it is capable of registering the complete signal going through the different vertical layers
of the vegetation, allowing for a better characterization of the forest structure. However, there
is a lack of ALSFW software tools for taking greater advantage of these data. Additionally, most
of the existing software tools do not include radiometric correction, which is essential for the use
of ALSFW data, since extracted metrics depend on radiometric values. This paper describes and
presents a software tool named WoLFeX for clipping, radiometrically correcting, voxelizing the waves,
and extracting object-oriented metrics from ALSFW data. Moreover, extracted metrics can be used as
input for generating either classification or regression models for forestry, ecology, and fire sciences
applications. An example application of WoLFeX was carried out to test the influence of the relative
radiometric correction and the acquisition scan angle (1) on the ALSFW metric return waveform
energy (RWE) values, and (2) on the estimation of three forest fuel variables (CFL: canopy fuel load,
CH: canopy height, and CBH: canopy base height). Results show that radiometric differences in
RWE values computed from different scan angle intervals (0◦–5◦ and 15◦–20◦) were reduced, but
not removed, when the relative radiometric correction was applied. Additionally, the estimation of
height variables (i.e., CH and CBH) was not strongly influenced by the relative radiometric correction,
while the model obtained for CFL improved from R2 = 0.62 up to R2 = 0.79 after applying the
correction. These results show the significance of the relative radiometric correction for reducing
radiometric differences measured from different scan angles and for modelling some stand-level
forest fuel variables.

Keywords: LiDAR; software tool; processing tool; relative radiometric correction; forest fuel;
understory vegetation

1. Introduction

Laser scanning has been used in the last several decades for a wide range of applications, such as
climate change monitoring through biomass estimation [1,2], carbon sequestration [3,4] and wildlife
protection [5,6]. Its potential is based on the registration of a dense 3D point cloud, which is time and
cost efficient compared to traditional methods. The 3D point cloud provides geometric and spectral
data, given by the XYZ coordinates and the intensity value, respectively. In forestry applications,
laser scanning is capable of registering accurate data from the different vertical strata, providing
complementary information to other remote sensing techniques for a better characterization of forest
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structure [7]. Among laser scanning technology and within forestry applications, terrestrial laser
scanning (TLS) registers a highly dense point cloud of the low and intermediate strata due to its
proximity to the objects and ground position. Some of the applications of TLS are segmentation of the
tree branching structure and estimation of the foliage biomass [8] and leaf area density at the voxel
level [9]. On the other hand, discrete airborne laser scanning (ALSD) can register larger areas, and it
has been widely used to estimate some forest variables at stand- and individual-tree-level by tree
segmentation approaches (e.g., [10,11]). Some of them are forest structure variables such as diameter
at breast height (DBH) [12,13], basal area [14,15], stem volume [16,17], stem density [13–15], stand
volume [18,19], fractional cover/gap fraction, and leaf area index (LAI) [20,21]; forest mass variables,
such as biomass components [13,17,19]; and forest fuel variables, such as mean and dominant tree
heights [18,22], canopy base height, canopy fuel load, and canopy bulk density [19,23]. Moreover,
ALSD data have also been used in combination with multispectral or hyperspectral images to classify
tree species [24,25] and fuel types [24,26,27]. The forest fuel variables mentioned (i.e., canopy bulk
density, canopy fuel load, canopy base height, and dominant tree height) describe the forest fuel load
as well as the horizontal and vertical structure. These are key inputs for fire behavior models, since
they describe amount of fuel and its vertical and horizontal continuity [28].

Among ALS technology, full-waveform ALS (ALSFW) is a more complex data type capable of
registering the entire signal emitted by the sensor as a pulse and backscattered from the different
vertical layers and the ground [29]. This signal is represented as a waveform whose amplitude
values vary along the elapsed time depending on the physical properties of the intercepted layers [30].
As a result, a continuous analysis of the forest vertical structure can be undertaken. Among other
uses, ALSFW data have also been used to estimate forest stand variables [31], forest structure and
fuel models [30], to segment trees [32], and to classify tree species [33,34]. Hence, given that ALSFW

provides more information from the different vertical layers compared to ALSD, it has a great potential
to study the forest structure [31,35,36] and understory vegetation [37,38]. Since ALSD and ALSFW have
different data structures (i.e., based on a point cloud and waveforms, respectively), new ALSFW metrics
have been proposed in the last decade to carry out the studies mentioned above. Most of the
ALSFW metrics proposed were originally created for large-footprint ALSFW (i.e., diameter between 10
and 25 m) [39–42], and others were tested directly for small-footprint ALSFW (i.e., diameter lower than
1 m) [38,43]. Although most of the metrics were created for large-footprint ALSFW, they were also used
in several studies extracted from small-footprint ALSFW, obtaining promising results in characterizing
and modelling forest structure [30,31,38,44].

An essential pre-processing step before generating ALSFW metrics is the radiometric correction [45].
Radiometric correction or calibration is a widely used term in remote sensing imagery. The goal of this
correction is to reduce errors in the acquired digital values of the pixels due to atmospheric or sensor
factors [46]. This process is fundamental when dealing with images acquired from different sensors or
on different days [47]. Additionally, radiometric correction may involve converting digital numbers to
physical units [48]. This process is less extended for ALS data, but it is an essential step for ALSFW due
to the reliance between ALSFW metrics and amplitude values [49]. The use of ALSFW data without
radiometric correction may lead to modified ALSFW metrics, and consequently modified estimates of
forest fuel variables. In this case, the goal of the radiometric correction is to provide amplitude values
independent of the angle of incidence, range from the sensor to the target, as well as sensor and flight
day atmospheric conditions. Attending to Briese et al. [50], there are two main types of radiometric
correction of ALSFW: (i) correcting radiometric differences between flight lines without auxiliary data
(i.e., relative correction) or (ii) using a surface whose approximate reflectance values are known or
using measured reflectance values from ground targets (i.e., absolute correction). The use of any of
these corrections, which depends on the available data and the presence of well-known surfaces, has
been pointed out by some authors as a relevant pre-processing step of ALSFW data sets [49,51].

There are several processing tools available to retrieve ALSD metrics, which are further used to
predict forest fuel variables. Two well-known software tools are FUSION/LDV [52] and LAStools [53].
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Additional libraries for processing ALSD data are available in different programming languages (e.g.,
lidR in R as used by Roussel and Auty [54]; laspy in Python (http://laspy.readthedocs.io/en/latest/)),
such that users can customize their own tool for specific needs. However, due to the complexity of
the use of ALSFW data and the non-standard level of its use and application, there is a very limited
number of processing tools available for ALSFW data, both at open and commercial levels. Researchers
working on ALSFW have developed their own tools for specific purposes, while others have made their
tools available. Zhou and Popescu [55] developed an R package named waveformlidar to process and
visualize ALSFW data. This package allows for processing ALSFW data through two different strategies:
(i) by means of deconvolution or decomposition of waveforms, therefore providing ALSD point clouds
with more information (e.g., echo width); and (ii) generating dense point clouds from waveforms,
self-named as “hyper point clouds”. Furthermore, some commonly used ALSFW metrics, including
those proposed by Duong [41], may also be retrieved by voxelizing the hyper point clouds through the
waveformlidar package. Miltiadou et al. [56] created another open source software tool to process ALSFW

and hyperspectral imagery data called DASOS. This tool visualizes a polygon representation from
voxelized ALSFW data and computes ALSFW metrics at the voxel column level. Most of these metrics are
related to height, distance between voxels, and number of empty/full voxels, except for the maximum
and average intensity values of the voxel column. Another available tool for ALSFW data processing
is OPALS (Orientation and Processing of Airborne Laser Scanning data) [57]. This tool computes
an ALSFW decomposition, but not specific ALSFW metrics from the whole waveform amplitudes.
Apart from ALSD, LAStools allows for the visualization of ALSFW data through PulseWaves [58] by
representing the trajectories of the pulses. Among the software tools mentioned, only waveformlidar
and OPALS include the radiometric correction, with the relative radiometric correction being recently
included in OPALS [51]. However, more tools are needed in order to cope with a wider range of metrics
able to better characterize forest structure (e.g., understory vegetation metrics), as well as to offer
a more straightforward approach for the radiometric correction of raw ALSFW data.

In this paper, we present a new software tool named WoLFeX (Waveform Lidar for Forestry
eXtraction) that compiles a set of methods to process and analyze ALSFW data, including the extraction
of most ALSFW metrics as proposed in the literature, and new metrics focused on understory vegetation.
These metrics are crucial for modelling forest fuel variables and forest structure. The tool also allows
for the relative radiometric correction of the data, reducing the effect of the different angles of incidence
and local altitude variations during the data acquisition process. In addition, we assessed the influence
of the scan angle of ALS data acquisition and the application or not of a radiometric correction
on (i) the extraction of an ALSFW metric; and (ii) modelling three of the most relevant forest fuel
variables—canopy fuel load (CFL), canopy height (CH), and canopy base height (CBH).

2. Full-Waveform ALS Data Processing

One of the most common methodologies proposed to process ALSFW data to study and model
the three-dimensional structure of forests is the one based on the voxelization and generation of
pseudo-vertical waveforms [59]. The standard overall processing of ALSFW to extract metrics is
described in Figure 1.

http://laspy.readthedocs.io/en/latest/
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The first ALSFW processing step consists of the radiometric correction of the amplitude values 
contained in each waveform bin. This is especially critical for ALSFW, since the metrics extracted to 
create the models are directly related to the amplitude values. Our approach is based on the use of 
the relative radiometric correction—a more straightforward method than the absolute one where no 
reference ground data are needed. The relative radiometric correction consists of correcting the 
amplitude values from differences in the angle of incidence and the distance from the sensor, due to 
different orientations of the sensor and flight lines, in order to reduce the influence of these 
parameters on the final radiometric values. Equation (1), described by Kashani et al. [60], considers 
the distance from the sensor to the registered object and the angle of incidence. The angle of 
incidence depends on the scan angle, the slope, and the aspect (Figure 2). Knowing these values, we 
are able to calculate the angle of incidence for those ALSFW returns corresponding to the ground. 
However, objects present on the ground (e.g., trees) do not follow the terrain slope. As an 
assumption, trees grow vertically, and their branches grow almost horizontally. Since it is unfeasible 
to know the real angle of incidence on tree leaves and branches without accurate external data (e.g., 
terrestrial laser scanning), for the computation of the angle of incidence we assumed the terrain 

Figure 1. Overall process to extract full-waveform airborne laser scanning (ALSFW) metrics.

2.1. Radiometric Correction

The first ALSFW processing step consists of the radiometric correction of the amplitude values
contained in each waveform bin. This is especially critical for ALSFW, since the metrics extracted
to create the models are directly related to the amplitude values. Our approach is based on the use
of the relative radiometric correction—a more straightforward method than the absolute one where
no reference ground data are needed. The relative radiometric correction consists of correcting the
amplitude values from differences in the angle of incidence and the distance from the sensor, due to
different orientations of the sensor and flight lines, in order to reduce the influence of these parameters
on the final radiometric values. Equation (1), described by Kashani et al. [60], considers the distance
from the sensor to the registered object and the angle of incidence. The angle of incidence depends on
the scan angle, the slope, and the aspect (Figure 2). Knowing these values, we are able to calculate the
angle of incidence for those ALSFW returns corresponding to the ground. However, objects present
on the ground (e.g., trees) do not follow the terrain slope. As an assumption, trees grow vertically,
and their branches grow almost horizontally. Since it is unfeasible to know the real angle of incidence
on tree leaves and branches without accurate external data (e.g., terrestrial laser scanning), for the
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computation of the angle of incidence we assumed the terrain slope for ALSFW ground returns, and a
null slope (i.e., 0%) for the rest of ALSFW returns (i.e., branch and leaf returns).

AC = A×
Ri

n

Rre f
n ×

1
cosα

, (1)

where AC is the corrected amplitude; A is the original amplitude; Ri is the range from the sensor to the
ALSFW return i; Rref is the reference range, which is a constant value defined by the user to normalize
Ri; α is the local angle of incidence, and n is the power of the range.
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Figure 2. Relation between the angle of incidence at the ground (α0) and at a branch (α1), the scan
angle (β), and the range from the sensor to ALSFW return corresponding with the ground (Ri).

2.2. Denoising

After the radiometric correction, a denoising process is needed to remove the noise due to the
system registration process. We followed the process described by Hermosilla et al. [59], consisting of
first discarding noisy waveforms, and then removing noise from non-noisy waveforms. In this process,
waveforms are tagged as noisy when all the amplitudes are below a threshold defined as the mean
plus four times the standard deviation of the waveform amplitudes [61]. All these waveforms are
removed, and only the rest of waveforms (i.e., non-noisy) are used for the next step. For the remaining
waveforms, two denoising filters may be applied. First, noise, defined as 133% of the mode of the
amplitudes, is subtracted from each amplitude value of the waveform. Then, a Gaussian filter is
applied to eliminate the remaining noise.

2.3. Voxelization and Generation of Pseudo-Vertical Waveforms

The next step is the voxelization of ALSFW data, which consists of computing amplitude statistics
(i.e., maximum, mean, median, etc.) from all the waveforms crossing a voxel (i.e., a three-dimensional



Remote Sens. 2020, 12, 292 6 of 17

pixel). As a result of this step, ALSFW data are substantially reduced, and pseudo-vertical waveforms [59]
are generated. Pseudo-vertical waveforms are obtained based on the amplitude values of every voxel
column, correcting off-nadir waveforms. Pseudo-vertical waveforms allow for an easier metric
extraction process.

2.4. ALSFW Metric Extraction

Once pseudo-vertical waveforms are generated, ALSFW metrics may be extracted. In
this manuscript we propose four new ALSFW metrics (KURTOSIS, canopy distance (CD), canopy
energy (CE), and the canopy energy ratio (CER)) and perform an exhaustive compilation of those
proposed by previous recent studies [38–42]. All of them are available in the software tool. The
ALSFW metrics implemented can be divided into seven categories: height, energy, peaks, understory,
percentiles, Gaussian decomposition, and others. Table 1 describes the different ALSFW metrics
classified by category.

Table 1. Description of ALSFW metrics available in WoLFeX (adapted from Crespo-Peremarch et al. [38]).

Category Name Description Units Reference

Height

WD Waveform distance m [41]
ROUGH Roughness of outermost canopy m

HEIGHT Qn Proportion of energy at the nth
elevation quarter - [40]

Energy

RWE Return waveform energy DN (Digital
Number) [41]

MAX E Maximum energy DN

[40]
VARIANCE Variance of energy DN2

SKEWNESS Skewness of energy -

ENERGY Qn Proportion of energy at the nth
energy quarter -

KURTOSIS Kurtosis of energy - This study

Peaks

NP Number of peaks - [41]

START PEAK
Distance between the beginning of
the waveform and the height of
MAX E

m

[40]

PEAK END Distance between the height of
MAX E and the ground m

Understory

HFEV Height of the first empty voxel m

[38]

HFEVT Height of the first empty voxel
from a given thresholds m

EFEV Energy from the ground to the
first empty voxel DN

nEFEV Energy from the ground to the
first empty voxel divided by RWE -

FVU Number of filled voxels at the
understory -

NFVU
Number of filled voxels at the
understory divided by the total
number of voxels

-

Percentiles Hn Height at the nth percentiles of
energy m [39]



Remote Sens. 2020, 12, 292 7 of 17

Table 1. Cont.

Category Name Description Units Reference

Gaussian
Decomposition

N GS Number of Gaussian curves in the
waveform -

[40]
N GS
STARTPEAK

Number of Gaussian curves
between the beginning of the
waveform and the height of the
boundary

-

N GS ENDPEAK
Number of Gaussian curves
between the height of the
boundary and the ground

-

GE Ground energy extracted from the
ground Gaussian curve DN

[42]

GRR Ground return ratio: GE divided
by RWE -

CHn
Elevation of the nth quarter of
energy, excluding the ground
Gaussian curve

m

Rn CHn divided by WD -

AGS Average Gaussian curve slope -

SGS Standard deviation Gaussian
curve slope -

MSGS Modified standard deviation
Gaussian curve slope -

BC Bottom of canopy: elevation of the
first canopy Gaussian curve m

[38]BCD
Bottom of canopy distance:
distance from the beginning of the
waveform to BC

m

BCE
Bottom of canopy energy: energy
from the beginning of the
waveform to BC

DN

CD

Canopy distance: distance from
the beginning of the waveform to
the boundary between ground
and canopy

m

This study

CE Canopy energy: energy excluding
GE DN

CER Canopy energy ratio: CE divided
by RWE -

Others

HTMR Height/median ratio: HOME
divided by WD -

[41]VDR Vertical distribution ratio:
WD minus HOME divided by WD -

FS
Front slope: vertical angle from
the beginning of the waveform to
the amplitude of the first peak

º (sexagesimal)

The first of the new proposed metrics is the kurtosis of the waveform amplitudes. The others
depend on the Gaussian decomposition and metrics and concepts previously developed by Zhang et
al. [42] and Crespo-Peremarch et al. [38] (Figure 3). After applying the Gaussian decomposition to the
waveform signal, and according to Zhang et al. [42], the ground curve is identified as the one with the
highest amplitude located in the half of the waveform with the lowest heights. Next, the boundary
between ground and canopy curves is defined as the height at the ground curve plus 1.5 times its
standard deviation. In this way, CD is the distance between the beginning of the waveform and this
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boundary; CE is the energy from the beginning of the waveform to the boundary; and CER is equal to
CE normalized by the total energy of the waveform (i.e., return waveform energy, RWE).Remote Sens. 2020, 12, 292 8 of 17 
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BCE: bottom of canopy energy, CD: canopy distance, CE: canopy energy, and CER: canopy energy ratio,
which depends on RWE: return waveform energy.

As a result, each voxel column has a metric value assigned. Afterwards, the mean and the standard
deviation of each ALSFW metric contained in a given area or polygon (e.g., plot, segmented tree) are
computed to obtain the output statistics at the object level.

3. Software Tool

The software tool WoLFeX is designed to perform all the processing steps described in the previous
section, from the relative radiometric correction of ALSFW data to the extraction of ALSFW metrics for
generating either regression or classification models, which can be further applied in larger study areas.

WoLFeX is divided into five sections (Figure 4): Inputs, Radiometric correction, Voxelization
parameters, Metrics, and Execution. In the Inputs section, the user selects the ALSFW data files,
typically LAS files (version 1.3 and point format 4), the digital terrain model (DTM) for the height
normalization, and a workspace to save the outputs. In order to process a smaller area, data may be
clipped using the limits saved in shapefile format with a polygon geometry. In addition, if the clip
area is representing objects such as plots or segmented trees, an id field from the shapefile must be
selected in the Inputs section to identify the different processed objects in the output statistics. To
apply a radiometric correction of the data, the trajectory files related to the LAS files must be selected.
These trajectory files can be in *.txt or *.trj format and they are needed to compute the trajectory of
each waveform. When the format is *.txt, the user should select the fields containing the GPS time, X,
Y, and Z coordinates, and specify if there is a header in the text file. For both formats (*.txt and *.trj),
the user should introduce a range of reference and a power n as described in Equation (1). On the
other hand, WoLFeX also allows for filtering by scan angle intervals without selecting trajectory files.
This option can be used to process a narrower range of scan angles to minimize the effect of a wide
range of incidence angles on radiometric values. The third section allows for the selection of the voxel
size and the assignation value. In the Metrics section, the user can select the specific ALSFW metrics to
compute. Lastly, the Execution section allows for the selection of the different processing steps that the
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user wants to execute, as well as the output format (*.csv or *.tif) for the metrics. In addition, this is
the section where the completed steps or possible error messages are printed after the execution of
the process.Remote Sens. 2020, 12, 292 9 of 17 
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4. Case of Study: Influence of Radiometric Correction and Forest Fuel Modelling

4.1. Materials and Methods

In this application example, we tested the effect of the relative radiometric correction of ALSFW

data on modelling forest fuel variables for different scan angle intervals using the described software
tool WoLFeX. The study area was located in the Natural Park of Sierra de Espadán, 30 km west of the
Mediterranean Sea in eastern Spain (Figure 5a). This area is dominated by Aleppo and maritime pines
(Pinus halepensis and Pinus pinaster, respectively), and cork oak (Quercus suber), and it has a variable
presence of Mediterranean shrub.Remote Sens. 2020, 12, 292 10 of 17 
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Figure 5. Maps of (a) the general location of the study area in Natural Park of Sierra de Espadán
(Castellón, Spain), (b) flight stripes categorized by scan angle interval (0◦–5◦ in orange and 15◦–20◦ in
yellow), and (c) sample locations (square samples for analyzing radiometric differences in RWE are
represented in yellow, and circular samples for analyzing estimation of forest fuel variables are in blue).

ALSFW data were acquired in September 2015 over an area of 7465 ha with altitudes ranging from
300 to 1000 m using a LiteMapper 6800 sensor. The flight altitude ranged between 600 and 820 m
above ground level, with a scan angle of ±37◦ and a pulse frequency of 300 kHz, which yielded an
average pulse density of 14 pulses·m−2 and an overlap of 55%–77% between contiguous flight stripes.
Waveforms were registered in a variable number of bins (80–160–240 bins) with a gap of 0.15 m between
bins and a footprint size of about 0.24 m. ALSD data obtained from ALSFW were used to generate the
DTM of the study area.

Samples differed according to the test. Firstly, the influence of radiometric correction and scan
angle on the values of ALSFW metrics was analyzed in Test 1. To do this, 20 square samples of 75 m
side (i.e., 5625 m2) were selected in areas registered from different scan angles but with similar pulse
densities. Secondly, 22 circular samples of 15 m radius (i.e., 706.86 m2) were selected for Test 2,
where the influence of the application of the radiometric correction and scan angle on modelling forest
fuel variables was analyzed. Selected samples also needed to be registered from different scan angles
and field data to estimate the forest fuel variables. The locations of the 42 samples for both tests are
shown in Figure 5c. Ground-truth data collected from the 22 samples of Test 2 included diameter at
breast height (DBH) from trees with a value greater or equal to 5 cm, height and canopy base height



Remote Sens. 2020, 12, 292 11 of 17

from the seven trees with largest DBH, and tree species. Afterwards, allometric equations provided by
Montero et al. [62] were used to compute the reference data of three forest fuel variables: canopy fuel
load (CFL), canopy height (CH), and canopy base height (CBH).

ALSFW metrics were extracted using WoLFeX, as described in Section 2.4, for the different
combinations of scan angle intervals and relative radiometric corrections. Radiometric correction
reduces the effect of energy loss of the pulse due to different factors such as range (i.e., distance from
the sensor to the target), attenuation (because of penetration of pulse though vegetation), and angle of
incidence (slope and target orientation) [60]. Given that the return waveform energy (RWE) metric
represents the sum of the waveform amplitudes from the beginning of the canopy to the ground, it is
highly sensitive to pulse energy losses along the trajectory. For this reason, and in order to avoid
redundancies in the test, only this metric was selected as a good indicator to evaluate the influence of
scan angle and radiometric correction on ALSFW metrics. Hence, RWE metrics were extracted for the
samples of Test 1, while all the metrics from Table 1 were extracted for the samples of Test 2. The two
scan angle intervals tested were 0◦–5◦ and 15◦–20◦, in an attempt to differentiate between nadir and
off-nadir pulses, respectively. Four options were considered for the relative radiometric correction:
uncorrected data, and corrected data varying the power n of Equation (1) (i.e., n = 2, n = 3, and n = 4).
Hence, eight different data sets were computed (i.e., the combination of the two scan angle intervals
and the four options for the relative radiometric correction) for the two sets of samples (i.e., Tests 1
and 2).

In Test 1, the mean values of RWE were computed for each sample at the different combinations.
The RWE value variations were computed as the differences at sample level between two combinations.
The combinations compared had the same radiometric correction but different scan angle interval (e.g.,
uncorrected data with a scan angle interval of 0◦–5◦ and uncorrected data with a scan angle interval of
15◦–20◦). Additionally, the corrected data with a given scan angle interval were compared to their
corresponding interval of uncorrected data (e.g., uncorrected data with a scan angle interval of 0◦–5◦

and the corrected data with a power n = 2 and a scan angle interval of 0◦–5◦). Results were evaluated
using the root-mean-square error (RMSE) of these differences and the normalized RMSE (nRMSE),
computed as the RMSE divided by the range of RWE values in the sample.

4.2. Results and Discussion

Table 2 shows the RWE differences between the different scan angle intervals by means of RMSE
and nRMSE. Results show that differences in RWE values between scan angle intervals decreased when
relative radiometric correction was applied and as power (n) increased. For instance, uncorrected data
had an RMSE of 262.29, while corrected data had a value of 117.41 and 93.25 for a power n = 3 and
n = 4, respectively. This means that the influence of the scan angle on the metric value was smaller
when using radiometrically corrected data, but it was not completely removed. On the other hand,
results in Table 3 show that differences between uncorrected and corrected data increased as the power
n increased, and the effect of the radiometric correction on the metrics was more obvious at small scan
angle intervals. For instance, differences between corrected data with a power n = 2 and a scan angle
interval of 0◦–5◦ were equal to 183.86, while using the same scan angle interval and a power n = 4
differences were equal to 299.29. Moreover, using the same power n but a scan angle interval of 15◦–20◦

resulted in differences of 90.74 and 164.43, respectively. This means that the larger the power n and the
smaller the scan angle, the larger the correction that is applied to the uncorrected data. Analyzing
Equation (1), this occurred in this study since the range of reference was larger than the rest of the
ranges; otherwise, it would be the opposite.
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Table 2. RWE differences between the different scan angle intervals (0◦–5◦ and 15◦–20◦). RMSE:
root-mean-square error; nRMSE: normalized RMSE.

Radiometrically Corrected Data Power n

Differences between
0◦–5◦ and 15◦–20◦

RMSE nRMSE

No - 262.29 15.40%
Yes 2 150.71 13.32%
Yes 3 117.41 11.21%
Yes 4 93.25 11.74%

Table 3. RWE differences between the radiometrically uncorrected and corrected data.

Scan Angle Interval Power n

Differences between
Uncorrected and Corrected Data

RMSE nRMSE

0◦–5◦
2

183.86 9.98%
15◦–20◦ 90.74 5.39%

0◦–5◦
3

248.31 13.48%
15◦–20◦ 128.57 7.63%

0◦–5◦
4

299.29 16.25%
15◦–20◦ 164.43 9.76%

For the Test 2, the mean and the standard deviation of all the ALSFW metrics described in
Section 2.4 were computed at the sample level using WoLFeX. As a result, the software tool provided
a *.csv file that was used as the input file in statistical software. All possible combinations of linear
regression models with a maximum of three metrics were computed, finally selecting the model with
the minimum Akaike information criterion (AIC) [63]. Among the selected ALSFW metrics, those
proposed in the present manuscript (i.e., KURTOSIS, CD, CE, and CER) were among the most selected,
and therefore they had an influence on estimating forest fuel variables. For instance, KURTOSIS was
selected to estimate CFL and CBH, CD for CH, and CE for CBH. Afterwards, a model was obtained
for each of the three forest fuel variables (i.e., CFL, CH, and CBH), each combination of scan angle
interval (i.e., 0◦–5◦ and 15◦–20◦), and each radiometric correction type (i.e., uncorrected and corrected
data with a power n = 2, n = 3, and n = 4). The linear regression models were evaluated using
leave-one-out cross-validation and computing the adjusted coefficient of determination (R2), RMSE,
nRMSE, and coefficient of variation (CV). Table 4 shows the prediction of forest fuel variables (i.e., CFL,
CH, and CBH) using varied scan angle interval and radiometric correction. The prediction of CFL was
considerably improved when a radiometric correction was applied with a higher power n for both
scan angle intervals, varying R2 from 0.62 to 0.79 and from 0.68 to 0.85 for scan angle intervals of 0◦–5◦

and 15◦–20◦, respectively. Additionally, R2 also increased as the scan angle interval increased, except
for a power n = 2. Prediction results of CH were slightly improved when a radiometric correction
was applied, varying from 0.89 to 0.93 and from 0.91 to 0.92 for a scan angle interval of 0◦–5◦ and
15◦–20◦, respectively. However, CBH prediction results did not improve, or even slightly worsened,
when a radiometric correction was applied. In this case, differences were also smaller compared to
CFL, and as in the CH predictions, results were similar for a scan angle interval of 15◦–20◦. The test
shows that the influence of the radiometric correction was smaller in predicting height variables such
as CH and CBH than in predicting mass-related variables such as CFL. Height variables are fixed at a
specific point on the waveform, usually a maximum or minimum, while mass-related variables are
described using the complete waveform profile. Therefore, the latter are more subjected to radiometric
values. Additionally, the difference between uncorrected and corrected data for the three forest fuel
variables was smaller when the scan angle interval was 15◦–20◦ than when it was 0◦–5◦. Previous
analyses [64] found that parameters corrected by radiometric correction such as flying altitude and
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incidence angle have an influence on estimates of biophysical vegetation properties (i.e., tree height,
crown width, fractional cover, and leaf area index). However, the influence of scan angle was not as
apparent here, probably due to the use of small scan angles. Additionally, other studies also mentioned
the radiometric calibration as a key step in using backscattered measurements to estimate geophysical
vegetation properties or similar analyses [49,51].

Table 4. Prediction of forest fuel variables (i.e., CFL, CH, and CBH) using varied scan angle interval
and radiometric correction.

Forest Fuel
Variable

Scan Angle
Interval

Radiometrically
Corrected Data Power n R2 RMSE nRMSE CV

CFL

0◦–5◦

No - 0.62 4.61 1 0.15 0.20
Yes 2 0.75 3.67 1 0.12 0.16
Yes 3 0.77 3.55 1 0.11 0.15
Yes 4 0.79 3.37 1 0.11 0.15

15◦–20◦

No - 0.68 4.13 1 0.13 0.18
Yes 2 0.72 3.84 1 0.12 0.17
Yes 3 0.83 3.04 1 0.10 0.13
Yes 4 0.85 2.86 1 0.09 0.12

CH

0◦–5◦

No - 0.89 1.09 2 0.08 0.08
Yes 2 0.88 1.18 2 0.09 0.09
Yes 3 0.93 0.89 2 0.07 0.07
Yes 4 0.86 1.25 2 0.10 0.09

15◦–20◦

No - 0.91 1.02 2 0.08 0.08
Yes 2 0.90 1.05 2 0.08 0.08
Yes 3 0.91 0.99 2 0.08 0.07
Yes 4 0.92 0.95 2 0.07 0.07

CBH

0◦–5◦

No - 0.94 0.68 2 0.06 0.11
Yes 2 0.93 0.73 2 0.06 0.12
Yes 3 0.92 0.83 2 0.07 0.14
Yes 4 0.89 0.89 2 0.07 0.15

15◦–20◦

No - 0.96 0.56 2 0.05 0.09
Yes 2 0.92 0.74 2 0.06 0.12
Yes 3 0.95 0.61 2 0.05 0.10
Yes 4 0.95 0.59 2 0.05 0.10

1 Mg·ha−1; 2 m.

5. Conclusions

In this manuscript we presented and described a software tool named WoLFeX, designed to
process ALSFW data, which includes a wide range of new and previously proposed ALSFW metrics.
We assessed the influence of radiometric correction on ALSFW metrics and on estimates of forest fuel
variables through WoLFeX.

This tool allows for clipping, radiometrically correcting, and voxelizing the original
ALSFW waveforms, creating pseudo-vertical waveforms, and extracting an exhaustive set of
object-oriented metrics. These metrics are saved into a *.csv file that can be used as an input
file for generating either regression or classification models, such as forest fuel variables or fuel types,
respectively. Among these metrics, those related to the understory vegetation are the most remarkable,
since they have not been considered by other processing tools so far, and they allow for the location
and quantification of understory vegetation, which is a key parameter for the characterization of fire
behavior in Mediterranean forests. Processing ALSFW is more challenging than ALSD, since it registers
the complete return of the signal, and therefore it allows for a better detection of the lower strata.

From the case of study of WoLFeX software, different models of forest fuel variables (CFL, CH,
and CBH) were generated, varying processing parameters related to radiometric correction and scan
angle interval of ALSFW data acquisition. These tests showed that differences in metric values measured
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from nadir and off-nadir were reduced when a relative radiometric correction was applied. The
improvement of the models obtained when the relative radiometric correction of the data was applied
was noteworthy—from R2 = 0.62 up to R2 = 0.79 in the case of CFL. However, height variables
(i.e., CH and CBH) were less strongly influenced by a relative radiometric correction, presenting only
subtle differences.

The software WoLFeX, freely available for download at (http://cgat.webs.upv.es/software/),
is an alternative for processing ALSFW data in an integrated manner. It includes the relative
radiometric correction of the data, which plays an important role in reducing radiometric differences
between different scan angles and may be essential for estimating some forest fuel variables. It also
extracts multiple new and previously proposed metrics to generate models that characterize forest
structure. Among these metrics, the most remarkable are those related to understory vegetation, due
to the potential of ALSFW to register the complete vertical forest structure. This opens a wide range of
applications in environmental sciences, forestry, and fire ecology.
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