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Abstract: In this paper we perform an analysis of the conductance probes used in two-phase flow 
applications especially for two-phase flow tomography of annular flow, to measure the waves 
produced in the interface with different boundary conditions without perturbing the flow, and in 
addition we examine the holdup applications as measuring the average void fraction in a given 
region. The method used to obtain the detector conductance between the electrodes is to solve 
analytically the generalized Laplace equation in 3D with the boundary conditions of the problem, 
and then to obtain the average potential difference between the detector electrodes. Then, dividing 
the current intensity circulating between the emitter and the receiver electrodes by the average 
potential difference yields the probe conductance, which depends on the geometric and physical 
characteristics of the measured system and the probe. This conductance is then non-
dimensionalized by dividing by the conductance of the pipe full of water. In this way a set of 
analytical expression have been obtained for the conductance of two-plate sensors with different 
geometries and locations. We have performed an exhaustive comparison of the results obtained 
using the equations deduced in this paper with the experimental data from several authors in 
different cases with very good agreement. In some cases when the distribution of bubbles is not 
homogeneous, we have explored the different alternatives of the effective medium theory (EMT) in 
terms of the self-consistent EMT and the non-consistent EMT. 

Keywords: conductance probes; two-phase flow sensors; liquid fraction determination from relative 
conductance; two-phase flow tomography 

 

1. Introduction 

Two-phase flow appears in a wide variety of applications in the chemical and petrochemical 
industries, energy industries like nuclear or concentrated solar power, civil engineering and so on. 
Different liquid and vapor flow patterns are found in the applications, which denote different 
topologies or configurations of the liquid and vapor distribution inside the pipe, channel or vessel 
containing the two-phase flow [1]. Notice that each flow pattern corresponds also to a characteristic 
distribution of the interfaces between the fluid phases. Each flow pattern depends on a set of conditions 
such as: pressure, superficial velocities of the liquid and vapor phases, temperature of each phase, heat 
flux through the walls, and geometry [2]. One of the more important flow regimes found in the 
applications is annular flow, which is characterized by a thin liquid film flowing adjacent to the walls 
of the pipe while a gas flow that usually transport entrained drops flows through the central part of the 
pipe. Usually, waves of different kinds are formed at the interface of this liquid film with the vapor or 
steam [3–5]. In addition, in many engineering applications the determination of the liquid fraction in 
two- and three-phase systems such as some fluidized beds is very important [6–8]. 
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The main goal of this paper is to study the different types of conductance probes analytically 
and to compare these analytical results with numerical results and experiments of different authors 
to apply them to two-phase flow tomography and hold-up applications. The advantage of developing 
analytical models in 3D is that they allow a good design of the conductance probe selecting the most 
convenient size of the electrodes, distance between them, and type such as ring or plate. However, 
the developed models must be checked experimentally to ensure their ability to performs good 
experimental predictions. Once their prediction capability has been checked, they can be used to 
compare different conductance probes with different geometries and characteristics.  

The main advantage of the flush-mounted conductance probes is that the two-phase flow, 
assuming perfect device manufacturing, is not perturbed by the probe. This issue is important for the 
analysis of annular two-phase flows, especially when the film thickness is very thin. In this case, the 
sensor design should not perturb the waves produced at the film surface, since a small disturbance 
would introduce appreciable percent errors in the experimental measurements. There exist different 
types of conductance probes that have been designed for different applications in the past: the first 
one is the ring electrode probe formed by two ring shape electrodes, which are mounted along the 
circumference of the pipe perpendicular to the flow direction; this type of electrode has been studied 
by Fossa [8], and Tsochatzidis et al. [7]. There exist also four-ring electrode probes that have been 
used by Lina and Yingwei [9] to measure the water fraction in oil-water annular two-phase flow 
where the oil circulates through the core region of the pipe and the water flows close to the wall 
forming an annulus. Coney [10] measured the thickness of a rapidly varying wavy film by using a 
probe consisting in two parallel rectangular electrodes of length 𝑙 ≫ 2𝑎 , being 2a the distance 
between the electrodes. These electrodes are surface mounted in the pipe to not perturb the flow and 
are parallel to the flow direction. Also, Coney developed the three electrode probes segmenting the 
receiving electrode in two parts and measuring the ratio of the intensities flowing from the emitter 
electrode to the two receiver electrodes; this design has the advantage of compensating for changes 
in conductivity due to temperature. Recently Lee et al. [11] used the three-electrode probe, based on 
the ratio of the currents, to measure the film thickness under temperature-varying conditions because 
of the ratio of intensities is independent of the fluid conductivity changes with the temperature. In 
addition, Fossa [8] also performed measurements with two plate electrodes of 3mm diameter, flush 
mounted with a separation of 9 mm in the pipe axial direction. Finally, Ko et al. [12] and Lee et al. 
[13] designed recently improved electrical conductance sensors to perform void fraction 
measurements. Normally a high frequency alternating current (AC) is applied to the emitter electrode 
to avoid high gradients of ions and redox electrochemical reactions in the electrodes, which will 
degrade them. 

The main novelty of this paper is that we have developed analytical expressions for the absolute 
and the relative conductance of two-plate conductance probes when the two sensors are mounted 
parallel to the flow direction or orthogonal to the flow direction in a 3D geometry with the goal of 
improving the results given by the Coney expression [10]. In addition, we computed the electric 
potential distribution generated by the two-plate electrode sensors in the film annulus. Moreover, 
other goal of the paper is to validate the new analytical expressions with experimental data and 
numerical calculations from different authors to know their limitations and potential range of 
applications.  

There exist also numerical methods for sensor design by solving numerically the generalized 
Laplace equation using the finite element method (FEM) as shown by Lee et al. [13], and Ko et al. [12]. 
These authors use the commercial program COMSOL Multiphysics to perform numerical 
calculations. 

The paper has been organized as follows, first in Section 2.1, we deduce the expression for the 
electric potential and the relative conductance for ring conductance probes. In Section 2.2 we deduce 
the expressions for the electric potential and the relative conductance for two-plate conductance 
probes in two cases when the plate electrodes are located in the direction of the flow and when they 
are mounted orthogonal to the flow along the inner circumferential direction of the pipe. In Section 
3.1 we perform the comparison of the expressions deduced in this paper for two-plate conductance 
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probes with the experiments of Fossa [8], using two-plate electrodes along the flow direction. In 
Section 3.2 we perform a comparison of the variations of the relative conductance with the fraction 
of liquid (hold-up) for homogeneous bubbly flow with the experimental results of Fossa [8], and we 
discuss the influence of the effective-conductivity calculation on the results. In addition, in Section 
3.3 we compare the results obtained using the expression deduced in this paper with the experimental 
results obtained by Coney [10] for the relative conductance, when changing the liquid fraction and 
using electrodes of different lengths that are parallel to the flow direction. Additionally, also in this 
section, we compare the results obtained with Coney formulas for two electrode probes of infinite 
electrode length with the results of our analytical expression when the length of the electrodes 
becomes large. In addition, in Section 3.4 we compare the experimental results obtained by Ko et al. 
[12] and Lee et al. [13] using static experiments in annular flow 4. Finally, in Section 4 we discuss the 
main results and findings of this paper. 

2. Conductance Probes 

2.1. The Two-Ring Conductance Probe 

To compute the electric field between the electrodes when a high-frequency electric field is 
applied to the emitting electrode, one must consider the displacement current density in addition to 
the normal current. In this way, applying the operator (𝜵. ) to the Henry law in the frequency 
domain yields [13,14]: 𝜵. (𝜵 × 𝑯) = 𝜵. (𝒋 + 𝒋஽) = 𝜵. (𝜎𝑬 + 𝑖𝜔𝑫) = −𝜵. (𝜎 + 𝑖𝜔𝜀). 𝜵𝜙=0 (1) 

where 𝒋, and 𝒋𝑫 , are the current and displacement current densities respectively, 𝜎 is the electric 
conductivity, E is the intensity of the electric field between the electrodes, 𝜔 is the angular frequency, 𝑫 is the electric displacement; 𝜀 is the dielectric constant and finally 𝜙 the electric field potential. It 
is necessary to avoid electrode polarization that will degrade the electrodes and produce capacitance 
effects. The way to achieve this is by applying a high-frequency alternate-current voltage source to 
the emitter electrode. The term of Equation (1), which contains 𝜔 is normally very small compared 
with the term containing the electric conductivity because of the electric permittivity is very small so 
we can neglect it and write Equation (1) as follows [13]: 𝜵. σ𝜵𝜙=0 (2) 

In the interface between the conducting fluid film and the gas phase or the dielectric when we 
have a dielectric in the central part of the pipe, the continuity condition of the current density at both 
sides of the interface holds, i.e., we can set the following condition using cylindrical coordinates (𝑟, 𝜃, 𝑧) for the pipe geometry at the interface of radius 𝑅௜௡: ൤−𝜎௪ 𝜕𝜙𝜕𝑟 ൨௥ୀோ೔೙ = ൤−𝜎௚ 𝜕𝜙𝜕𝑟 ൨௥ୀோ೔೙ (3) 

being 𝜎௪ and 𝜎௚ the conductivities of the water and gas phases, respectively. For the case in which 
we have a dielectric of conductivity 𝜎ௗ௜௘௟ , and radius 𝑅௜௡  as displayed in Figure 1b we must 
substitute 𝜎௚, by 𝜎ௗ௜௘௟ in Equation (3). 

In addition, we must set the boundary conditions at the pipe walls. In this case, the boundary 
conditions depend on the type of the electrodes that are being used, the number of electrodes, and 
the current density or the electric potential in these electrodes. If we have two ring electrodes flush 
mounted as displayed in Figure 1a then the boundary conditions at the pipe inner surface of radius 
R, are: ൤−𝜎௪ 𝜕𝜙𝜕𝑟 ൨௥ୀோ = 𝑗, 𝑓𝑜𝑟 (𝐷௘ − 𝑠௭)/2 ≤ 𝑧 ≤ (𝐷௘ + 𝑠௭)/2 (4) ቂ−𝜎௪ డథడ௥ ቃ௥ୀோ = −𝑗, for − ஽೐ା௦೥ଶ ≤ 𝑧 ≤ −(𝐷௘ − 𝑠௭)/2, (5) 
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being 𝐷௘ the distance between the central parts of the electrodes, and 𝑠௭ the width of the electrodes 
in the axial direction. In addition, the current density 𝑗 in the pipe boundaries, where there are no 
electrodes, is assumed to be zero.  

 

 

Figure 1. (a) Two rings conductance probe configuration with the pipe full of water; (b) two-ring 
conductance probe with an inner dielectric cylinder inside the pipe. 

The probe conductance G is defined as: 𝐺 = 𝐼𝛿𝜙 = 𝐼〈𝜙ா〉 − 〈𝜙ோ〉 (6) 

where I denotes the intensity circulating through the electrodes E and R and 𝛿𝜙  the difference 
between the average values of the electric potential at the emitter and receiver electrodes. We must 
note that we are approximating the electrode voltage as the average voltage over the electrode; this 
approximation has been used by Wang et al. [15], and Tsochatzidis [7]. The reason because of this 
approximation works in the present study is due to the small size of the two electrodes, which are 
mounted in the experimental systems that uses conductance probes. 〈𝜙ா〉 and 〈𝜙ோ〉 in Equation (6) 
are the average values of the potential at the emitter and receiver electrodes, respectively. These 
average values are computed by means of the expressions: 〈𝜙௜〉 = 1𝑆௘,௜ න 𝜙(𝒓)𝑑𝑆ௌ೐,೔  (7) 

where 𝑆௘,௜ denotes the area of the i-th electrode and 𝜙(𝒓) is the electric potential value at the point 
defined by the position vector 𝒓 of the electrode surface. Also, it is assumed, as in the paper by 
Tsochatzidis et al. [7], that for small electrodes the distribution of current density 𝑗 is constant over 
the electrode. With these previous assumptions Equation (6) can be written for a two-ring electrode 
probe of the same area 𝐴௘ = 𝐴ா = 𝐴ோ as that described in Figure 1a: G = 𝑗𝐴௘ቀ 1𝐴௘ ׬ 𝜙(𝑅, 𝑧)𝑑𝑆 − 1𝐴௘ ׬ 𝜙(𝑅, 𝑧)஺ೃ஺ಶ 𝑑𝑆ቁ (8) 
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where we assumed that the electrode is at radial position r = R, and the axial coordinate can vary 
between the limits of the conductance sensors, being 𝑑𝑆 = 𝜋𝐷 𝑑𝑧. Normally the results are expressed 
in terms of a dimensionless conductance 𝐺∗ which is usually defined as: 𝐺∗ = 𝐺/(𝜎௪𝑙) (9) 

where 𝑙 is the characteristic length of the sensor, and 𝜎௪ the medium conductivity in this case water. 
The first researchers to obtain an analytical solution of G for the two-ring probe were Tsotchatzidis 
et al. [7]. Some authors prefer to express the results in terms of a relative conductance, that is normally 
expressed as the ratio of the conductance for a given case and the maximum conductance, that is 
normally achieved when the pipe is full of liquid. Therefore, we can write: 𝐺௥௘௟∗ = 𝐺∗/𝐺௠௔௫∗  (10) 

The expression for the relative conductance can be obtained if one knows the electric potential 𝜙(𝑅, 𝑧) at the pipe inner surface. This requires solving the Laplace Equation (2), with the boundary 
conditions of the problem, and then applying Equation (8) to obtain the conductance’s 𝐺 and 𝐺௠௔௫(see Appendixes A and C). The result, for the symmetric case i.e., when the sensor probe is at 
the center of the cylinder of height H (Figure 1) and with the same amount of water above than below 
the sensor, is (see Appendixes A and C for more details): 

𝐺௥௘௟∗ = 𝐺∗𝐺௠௔௫∗ = ∑ 1(2𝑛 + 1)ଷ  𝑏௡ ଶ 𝐼଴(𝛾௡𝑅)𝐼ଵ(𝛾௡𝑅)ஶ௡ୀ଴∑ 1(2𝑛 + 1)ଷ  𝑏௡ଶ 𝑓(𝛾௡𝑅௜௡, 𝛾௡𝑅)ஶ௡ୀ଴  (11) 

where the following magnitudes have been defined in Equation (11): 𝑏௡ = cos ൬𝛾௡ ቀ஽೐ା௦௭ଶ ቁ൰ − cos ൬𝛾௡ ቀ஽೐ି௦௭ଶ ቁ൰ with 𝛾௡ = (ଶ௡ାଵ)గு  (12) 

where n is any integer positive number n = 0,1,2,3…and  𝑓(𝛾௡𝑅௜௡, 𝛾௡𝑅) = ூబ(ఊ೙ோ)ூభ(ఊ೙ோ) ቊଵା௔ೝ(ఊ೙ோ೔೙) ಼బ(ം೙ೃ) ಺బ(ം೙ೃ)ଵି௔ೝ(ఊ೙ோ೔೙)಼భ(ം೙ೃ)಺భ(ം೙ೃ) ቋ with 𝑎௥(𝛾௡𝑅௜௡) = ூభ(ఊ೙ோ೔೙) ௄భ(ఊ೙ோ೔೙)  (13) 

where the functions  𝐼଴(𝑥), 𝐼ଵ(𝑥), 𝐾଴(𝑥) , and 𝐾ଵ(𝑥)  that appear in Equations (11) and (13) with 
arguments 𝑥 = 𝛾௡𝑅௜௡ and 𝑥 = 𝛾௡𝑅 are the modified or hyperbolic Bessel functions of zero, and first 
orders denoted by the subscripts 0 and 1, respectively. The functions 𝐼଴(𝑥), 𝐼ଵ(𝑥) are the modified 
Bessel function of the first class, while 𝐾଴(𝑥), and 𝐾ଵ(𝑥) denote the modified Bessel functions of the 
second class. Notice, that the factor 𝑎௥(𝛾௡𝑅௜௡), which depends on the internal radius, considers the 
effect of the internal dielectric cylinder on the dimensionless conductance 𝐺∗ for two-ring 
conductance electrodes. 

In the next case, we assume that the height of liquid above and below the sensor is different, and 
denoting by 𝐻ଵ, the height of liquid below the two rings sensor and by 𝐻ଶ the height of liquid above 
the sensor, being 𝐻 = 𝐻ଵ + 𝐻ଶ. Then on account of the boundary conditions for this problem, the 
solution for the electric potential can be obtained as explained in Appendix A. Then, substituting the 
result for the potential in Equation (8) and after some calculus to compute 𝐺∗ and 𝐺௠௔௫∗ yields for the 
relative conductance the following result: 

𝐺௥௘௟∗ = 𝐺∗𝐺௠௔௫∗ = ∑ 1𝑛ଷ  𝑎௡ ଶ 𝐼଴(𝛾௡∗𝑅)𝐼ଵ(𝛾௡∗𝑅)ஶ௡ୀଵ∑ 1nଷ  𝑎௡ଶ 𝑓(𝛾௡∗𝑅௜௡, 𝛾௡∗𝑅)ஶ௡ୀଵ  (14) 

where we have defined: 𝑎௡ = sin ൬𝛾௡∗ ቀ𝐻ଵ + ஽೐ା௦௭ଶ ቁ൰-sin ൬𝛾௡∗ ቀ𝐻ଵ + ஽೐ି௦௭ଶ ቁ൰ + sin ൬𝛾௡∗ ቀ𝐻ଵ −஽೐ା௦௭ଶ ቁ൰ − sin ൬𝛾௡∗ ቀ𝐻ଵ − ஽೐ି௦௭ଶ ቁ൰ 
(15) 

With 
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𝛾௡∗ = ௡గு  𝑛 = 1,2,3 … (16) 

The function 𝑓(𝛾௡∗𝑅௜௡, 𝛾௡∗𝑅) is the same defined previously by Equation (13), while 𝐼଴(𝑥), 𝐼ଵ(𝑥) 
are the modified Bessel functions of zero and first order respectively and first class. More details can 
be found in Appendix A. 

2.2. The Two-Plate Electrodes Conductance Probe 

In this case, as mentioned earlier in the introduction, the electrodes can be flush mounted 
orthogonal to the flow (Figure 2) or parallel to the flow direction as displayed in Figure 3. This kind 
of electrodes have a good sensitivity for very small fluid thicknesses, but the signal saturates for 
larger thicknesses. In this section we will study the analytical solution of this problem. The details 
can be found in Appendix B.  

 
Figure 2. (a) Conductance probe of two plate electrode configuration with the pipe full of water; (b) 
notation and location of the electrodes in cylindrical coordinates. 

It is assumed that the current density in the electrodes is constant. This assumption yields good 
results for small-size electrodes. The first step to solve this problem is to compute the electric potential 𝜙(𝑟, 𝜃, 𝑧) that now is a function of the three spatial coordinates (𝑟, 𝜃, 𝑧). To obtain 𝜙(𝑟, 𝜃, 𝑧), we must 
solve the Laplace Equation (2), in cylindrical coordinates by the separation of variables method on 
account of the boundary conditions. If there is a dielectric inner cylinder of radius 𝑅௜௡ inside the pipe 
and the water is located between both cylinders of radius 𝑅௜௡ and 𝑅 respectively, then we consider 
that the current at the interface between the dielectric inner cylinder and the water is zero i.e., ቂ𝜎௪ డథడ௥ ቃ௥ୀோ೔೙ = 0 . In addition, at the inner surface of the pipe and with this arrangement of the 

electrodes, the boundary conditions at the interface between the electrodes and the fluid are given 
by: ൤−𝜎௪ 𝜕𝜙𝜕𝑟 ൨௥ୀோ = −𝑗 = 𝐼𝐴௘ , 𝑓𝑜𝑟 𝜃ଵ ≤ θ ≤ 𝜃ଶ 𝑎𝑛𝑑 − 𝑠௭/2 ≤ 𝑧 ≤ s௭/2 (17) 

and 



Sensors 2020, 20, 7042 7 of 29 

 

൤−𝜎௪ 𝜕𝜙𝜕𝑟 ൨௥ୀோ = 𝑗 = 𝐼𝐴௘ , 𝑓𝑜𝑟 − 𝜃ଶ ≤ θ ≤ −𝜃ଵ𝑎𝑛𝑑 − 𝑠௭/2 ≤ 𝑧 ≤ s௭/2 (18) 

where [𝜃ଵ, 𝜃ଶ],  and [−𝜃ଵ, −𝜃ଶ] are the angular limits of the emitter and receiver electrodes, 
respectively, and 𝑠௭ the height of the electrodes in the axial direction. In addition, the current density 
in the pipe boundaries where we have no electrodes is assumed to be zero. Also, we have the 
boundary condition (3) at the interface between the water and the gas or the dielectric.  

The Laplace equation for the electric potential can be solved as explained in Appendix B, for the 
different cases. The result is then substituted in Equation (6), to obtain the conductance, and dividing 
this conductance by the maximum conductance i.e., when the pipe is full of liquid, we get after some 
simplifications the following result for the relative conductance in the symmetric case, i.e., when the 
height of water above and below the sensor is the same:  

𝐺௥௘௟∗ = 𝐺∗𝐺௠௔௫∗ = 𝐶ଵ ∑ 𝑎௠ଶ𝑚ଷ  + ∑ ∑ 𝑐௠,௡ଶ𝑚ଶ𝑛ଷ 𝐼௠(𝛾௡ᇱ 𝑅)𝐼௠ᇱ (𝛾௡ᇱ 𝑅)ஶ௠ୀଵஶ௡ୀଵஶ௠ୀଵ
𝐶ଵ ∑ 𝑎௠ଶ𝑚ଷ   ൬1 + ቀ𝑅௜௡𝑅 ቁଶ௠൰   ൬1 − ቀ𝑅௜௡𝑅 ቁଶ௠൰ + ∑ ∑ 𝑐௠,௡ଶ𝑚ଶ𝑛ଷ 𝑓௠(ஶ௠ୀଵஶ௡ୀଵஶ௠ୀଵ 𝛾௡ᇱ 𝑅௜௡, 𝛾௡ᇱ 𝑅) 

(19) 

where we have defined: 𝐶ଵ = ଶగయ௦೥మோுయ     and 𝛾௡ᇱ = ଶ௡గு  (20) 

The constant 𝐶ଵ  depends on the geometric characteristics of the sensor and the pipe. Being 𝑐௠,௡ given by the following expression: 𝑐௠,௡ = 𝑎௠(𝜃ଵ, 𝜃ଶ) 𝑠𝑖𝑛 ቀఊ೙ᇲ ௦೥ଶ ቁ with 𝑎௠(𝜃ଵ, 𝜃ଶ) = cos(𝑚𝜃ଶ) − cos(𝑚𝜃ଵ) (21) 

The function 𝑓௠(𝛾௡ᇱ 𝑅௜௡, 𝛾௡ᇱ 𝑅) that appears in the denominator of Equation (21) is given by the 
expression: 𝑓௠(𝛾௡ᇱ 𝑅௜௡, 𝛾௡ᇱ 𝑅) = ூ೘൫ఊ೙ᇲ ோ൯ି௔೘,೙൫ఊ೙ᇲ ோ೔೙൯ ௄೘(ఊ೙ᇲ ோ)ூ೘ᇲ ൫ఊ೙ᇲ ோ൯ି௔೘,೙൫ఊ೙ᇲ ோ೔೙൯ ௄೘ᇲ (ఊ೙ᇲ ோ)    with    𝑎௠,௡(𝛾௡ᇱ 𝑅௜௡) = ூ೘ᇲ ൫ఊ೙ᇲ ோ೔೙൯ ௄೘ᇲ (ఊ೙ᇲ ோ೔೙) (22) 

where 𝐼௠(𝑥), 𝐾௠(𝑥), 𝐼௠ᇱ (𝑥), 𝐾௠ᇱ (𝑥), are first and second class modified Bessel functions of order m and 
their derivatives. Also, the two-plate conductance probe can be built as displayed in Figure 3, with 
the two electrodes located in the direction of the flow i.e., the direction of the axis of the cylinder.  

It is important to discuss the physical meaning of Equation (19), the numerator of this equation 
gives the contribution to the relative conductance, of the conductance of the pipe full of water, while 
the denominator gives the contribution to 𝐺௥௘௟∗  of the conductance of the pipe containing the inner 
dielectric cylinder. It is important to notice that when the radius 𝑅௜௡ of the inner cylinder is equal to 
zero then the first term of the denominator of Equation (19) becomes equal to the first term of the 
numerator. Also, this same behavior is observed in the second term of the denominator. When 𝑅௜௡ =0 , then 𝑎௠,௡(0) = 0 , and 𝑓௠(0, 𝛾௡ᇱ 𝑅) = 𝐼௠(𝛾௡ᇱ 𝑅)/ 𝐼௠ᇱ (𝛾௡ᇱ 𝑅) , and therefore the second term of the 
denominator becomes equal to the second term of the numerator. Therefore, the overall effect is that 
when 𝑅௜௡ = 0, then 𝐺௥௘௟∗ = 1. 
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Figure 3. Two-plate electrode probe along the direction of the pipe axis. 

In this case the boundary conditions for the potential 𝜙(𝑟, 𝜃, 𝑧) are according to Figure 3: ൤−𝜎௪ 𝜕𝜙𝜕𝑟 ൨௥ୀோ = −𝑗 = 𝐼𝐴௘ , 𝑓𝑜𝑟 − 𝑠௪2𝑅 ≤ θ ≤ 𝑠௪2𝑅  𝑎𝑛𝑑 − 𝐷௘ + 𝑠௭2 ≤ 𝑧 ≤ − (𝐷௘ − s௭)2  (23) 

and ൤−𝜎௪ 𝜕𝜙𝜕𝑟 ൨௥ୀோ = 𝑗 = 𝐼𝐴௘ , 𝑓𝑜𝑟 − 𝑠௪2𝑅 ≤ θ ≤ 𝑠௪2𝑅 𝑎𝑛𝑑 𝐷௘ − 𝑠௭2 ≤ 𝑧 ≤ (𝐷௘ + 𝑠௭)2  (24) 

Also, the current density in the pipe boundaries where we have no electrodes is assumed to be 
zero as previously. In this case the emitter electrode is the lower one and the receiver electrode is the 
upper one. The dimensions of each electrode are 𝑠௪ in the azimuthal direction and 𝑠௭ in the axial 
direction. The distance between the center of the electrodes is 𝐷௘. 

The Laplace equation, for the electric potential for the two-plate electrodes flush mounted in the 
flow direction as displayed in Figure 3, is solved as explained in the second part of Appendix B. The 
result for the potential is then substituted in Equation (6), to obtain the conductance, and dividing 
this conductance by the maximum conductance i.e., when the pipe is full of liquid, we obtain after 
some simplifications the following result for the relative conductance in the symmetric case, i.e., 
when the height of water above and below the sensor is the same: 𝐺௥௘௟∗ = 𝐺∗𝐺௠௔௫∗

= 𝐶ଵᇱ ∑ 𝑏௡ଶ(2𝑛 + 1)ଷ  𝐼଴(γ௡𝑅)𝐼ଵ(γ௡𝑅)  + ∑ ∑ 𝑒௠,௡ଶ(2𝑛 + 1)ଷ𝑚 𝐼௠(γ௡𝑅)𝐼௠ᇱ (γ௡𝑅)ஶ௠ୀଵஶ௡ୀ଴ஶ௡ୀ଴𝐶ଵᇱ ∑ 𝑏௡ଶ(2𝑛 + 1)ଷ  𝑓(γ௡𝑅௜௡, γ௡𝑅) + ∑ ∑ 𝑒௠,௡ଶ(2𝑛 + 1)ଷ𝑚 𝑓௠(ஶ௠ୀଵஶ௡ୀ଴ஶ௡ୀ଴ γ௡𝑅௜௡, γ௡𝑅) 
(25) 

where we have defined: 𝐶ଵᇱ = ୼஘మସ , and 𝛾௡ = (ଶ௡ାଵ)గு , (26) 

being ∆𝜃 = ௦ோೢ  and  𝑒௠,௡ = 𝑏௡𝑠𝑖𝑛 ቀ௠୼ఏଶ ቁ with 𝑏௡ = cos ቀ𝛾௡ ஽೐ା௦೥ଶ ቁ − 𝑐𝑜𝑠 ቀ𝛾௡ ஽೐ି௦೥ଶ ቁ (27) 

Finally, the functions 𝑓(γ௡𝑅௜௡, γ௡𝑅)  and 𝑓௠(γ௡𝑅௜௡, γ௡𝑅)  are the same as those defined by 
expressions (13) and (22) but with arguments γ௡𝑅௜௡ and γ௡𝑅. 

In addition, we programmed in MATLAB the previous Equations (19) and (25), deduced in this 
paper, to obtain the relative conductance for the two-plate conductance probes see the 
Supplementary Material S1. The number of modes we recommended to have good convergence in 
the results is 𝑛௠௔௫ = 95, and 𝑚௠௔௫ = 95, which is equivalent to truncating the number of terms of the 
series appearing in the numerator and the denominator of these equations to a maximum of 9025 
terms per series. Also, we have checked that the contribution of the remaining terms was negligible. 
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3. Comparison of the Analytical Results for the Relative Conductance with the Experimental 
Results of Different Authors 

In this section we check the capability of the previous expressions, developed for different types 
of conductance probes, to perform predictions of different magnitudes of interest in two-phase flow 
applications, and liquid fractions. 

3.1. Comparison of the Analytical Formulas for the Relative Conductance with the Experimental Results for 
Two-Plate Electrodes 

Fossa performed a set of experiments with ring-shape and plate electrodes and compared his 
results with the available theoretical expressions at that time. For plate electrodes no analytical 
expressions were available at the time Fossa wrote his paper [8]. Fossa performed four type B tests 
with two-plate electrodes named B1, B2, B3 and B4. For annular flow conditions, the results of test B3 
were very similar to the previous ones and are not displayed at Figure 4 because they cannot be 
distinguished in the graphics from the previous ones. Each one of the electrodes had a diameter of 
3mm, and were located 9 mm apart in the direction of the pipe axis, so that the distance between the 
center of the electrodes in Fossa experiments was 𝐷௘ = 9 mm + 3 mm = 12 mm. Fossa [8] measured 
the relative conductance for annular flow i.e., 𝐺௥௘௟ = 𝐺/𝐺௠௔௫ with respect to the conductance of the 
pipe full of liquid denoted as 𝐺௠௔௫. Obviously, this ratio is equal to the dimensionless conductance 
ratio 𝐺∗/𝐺௠௔௫∗ . The ratio values measured by Fossa in tests B1, B2, B4 versus the liquid fraction are 
displayed in Figure 4 and represented by the blue crosses (x). The pipe internal diameter in these 
experiments was 14 mm.  

To perform the calculations of the relative conductance for different liquid fractions, we used 
the same distance between the center of the electrodes as in Fossa’s paper i.e., 𝐷௘ = 12 mm, and we 
also used the same area for both electrodes i.e., 7.0685 mmଶ. We assume in the calculations displayed 
in Figure 4 that the electrodes have a square shape being 𝑠௪ = 𝑠௭ = 2.6586 mm. The square was 
centered at the same point as the circular electrode. The calculations were performed using Equation 
(25), and this Equation was programmed in MATLAB. The number of modes used for each 
calculation was (mmax = 95 and nmax = 95), this involves around 10ସ different terms. As shown in 
Figure 4, for small liquid fractions the experimental results are very similar to the theoretical ones 
(inverted green triangles) computed with the formula deduced in this paper for plate probes. In 
addition, for higher liquid fraction the agreement was also very good. The advantage of using plate 
electrodes is the good sensitivity to small liquid fraction variations. We have confirmed theoretically 
this result found experimentally by Fossa. 

In addition, we have computed the case of a rectangular electrode centered at the same point as 
the circular electrodes but with upper and lower sides crossing through the circumference point 
forming a 45° degrees angle with the x-axis. In this case the height of the electrodes was 𝑠௭ =3 cos 45° = 2.12 mm, and 𝑠௪  is obtained from the condition of maintaining the same area as the 
circular electrode that yields 𝑠௪ = 3.3 mm. In this last case, the results, the red squares, are a slightly 
worse for very low liquid fractions (𝛼௟ < 0.05) but slightly better than the previous case for higher 
liquid fractions (𝛼௟ > 0.05) as displayed also in Figure 4. The number of modes used in both cases 
was the same one i.e., mmax = 95 and nmax = 95. 
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Figure 4. Theoretical versus experimental (blue x) results for the experiments performed by Fossa [8] 
with a sensor with two-plate electrodes inside a tube with 14mm ID. For the green inverted triangles, 
the calculations were performed with a square electrode of the same area (a). For the red squares, the 
calculations were performed with the electrode displayed in figure (b), of equal surface area than the 
circular electrode. 

It can be shown experimentally that there is not a significant difference using plate electrodes if 
they are mounted in the axial or the azimuthal direction if the distance between the center of the 
electrodes and their geometry is the same when the radius of the pipe is large enough.  

3.2. Comparison of the Changes of the Relative Conductance with the Liquid Fraction for Homogeneous 
Bubbly Flow with the Experimental Results of Fossa 

To obtain the fraction of liquid from measurements of the relative conductance performed with 
flush-mounted two-ring electrode probes in two-phase flow homogeneous mixtures, we use the 
expression obtained in Appendix C (Equation (A40)) for the relative conductance of a two-ring 
electrode. Assuming a homogeneous two-phase mixture as, for instance, homogeneous bubbly flow, 
one obtains: 𝐺௥௘௟ = ீഀீ೗ = ఙ೐೑೑ఙ೗  , (28) 

where 𝐺ఈ  is the conductance for the two-phase homogeneous mixture with void fraction 𝛼, and 𝐺௟ the conductance when the pipe is full of liquid, 𝜎௘௙௙ is the effective electrical conductivity for the 
two-phase mixture and 𝜎௟ is the liquid electrical conductivity. The effective medium theory (EMT) 
replaces the heterogeneous media properties by a homogeneous or effective medium having the same 
response to the excitations. Two assumptions can be made to deduce the effective expression for the 
conductivity, the first being known as the “non-consistent” hypothesis is to assume that the host 
phase is one of the phases of the mixture. In this case if one considers that the host phase is one of the 
phases of the mixture and that all the inclusions except the host have spherical geometry, then 
assuming that the liquid is the carrying phase it is found that the expression that gives the effective 
conductivity is [16]: 𝜎௘௙௙ − 𝜎௟𝜎௘௙௙ + 2𝜎௟ = ෍ 𝛼௜௜ୀ௟,௚

𝜎௜ − 𝜎௟𝜎௜ + 2𝜎௟ (29) 

where 𝛼௟, and 𝛼௚ are the liquid and gas volumetric fractions, respectively. Because the conductivity 
of the gas is negligible compared with the liquid phase conductivity, then we can assume in Equation 
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(29) that 𝜎௚ ≅ 0, and one deduces from Equation (29) Maxwell equation for the effective conductivity 
[17]: 𝜎௘௙௙𝜎௟ = 2𝛼௟3 − 𝛼௟ (30) 

The other assumption is to consider that the hosting substance has an effective conductivity. 
This is equivalent to consider that the bubbles are embedded in an effective medium with 
conductivity 𝜎௘௙௙which is the same for all the bubbles [16,18,19]. This assumption yields the self-
consistent EMT result, and the expression for this approximation is obtained taking in Equation (29), 𝜎௘௙௙ = 𝜎௟, which yields when the diluted entities are spherical gas bubbles: 𝛼௚ 𝜎௚ − 𝜎௘௙௙𝜎௚ + 2𝜎௘௙௙ + 𝛼௟ 𝜎௟ − 𝜎௘௙௙𝜎௟ + 2𝜎௘௙௙ = 0, (31) 

where 𝜎௟, 𝜎௚, 𝜎௘௙௙ are the electric conductivities, of the liquid, the gas and the two-phase mixture. 
Then, Equation (31) when we assume that the gas conductivity is zero simplifies to the following 
expression for 𝛼௟ > 1/3: 𝜎௘௙௙𝜎௟ = 1.5 𝛼௟ − 0.5 (32) 

Other expressions commonly used are: the Begovich and Watson equation [6], not shown here 
because does not predicts well the experimental data of Fossa for bubbly flow, and the Bruggeman 
expression that is given by [20]: ఙ೐೑೑ఙ೗ = 𝛼௟ଷ/ଶ (33) 

Fossa performed a set of experiments using a two-electrodes ring conductance probe, with a 
pipe diameter of 70 mm, width 6 mm and two distances between the centers of the electrodes 𝐷𝑒 =30 mm, and 20 mm. The measurements were performed inside a cylindrical pipe of 48 cm height. We 
display in Figure 5 the comparison with the Fossa results for the 𝐷𝑒 = 30 mm test using bubbly flow 
conditions. It is observed that for liquid fractions above 0.85 all the expressions predict very well the 
experimental data. Below 𝛼௟ = 0.85 the expression that better predicts the experimental data is EMT 
theory using the non-consistent hypothesis which yields the Maxwell equation [17], and the worst is 
the EMT with the self-consistent hypothesis (EMT-SC). 

Recently Wang et al. developed a new empirical model, valid for churn flow and slug flow, 
which relates the water holdup with the relative conductance of the two-phase mixture [21]. 

 
Figure 5. G(Bubbly)/G(liquid) versus liquid fraction for experimental data (blue rhomboids) 
Bruggeman formula (green squares), Maxwell formula or effective medium theory (EMT) non-
consistent (grey triangles), EMT self-consistent (orange X). 
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3.3. Comparison with Coney Experiments 

In this section we discuss the results obtained using the expressions deduced in Section 2.2 for 
the conductance ratio 𝐺/𝐺௠௔௫, using different geometric characteristics of the conductance probe, 
and comparing them with the experimental results obtained by Coney [10]. This author made the 
conductance probe of two electrodes parallel to the axis of the pipe, being the distance between the 
electrode edges denoted by 2𝑎, with 𝑎 approximately 1 mm, see Figure 6a. The electrodes were 
made of stainless steel, and Coney used two kinds of electrode for the probe the first one denoted in 
this paper as Coney-short had an overall length along the axis of 𝑙଴ = 8.3 mm, while the electrode 
denoted as Coney-long had an overall length of 𝑙଴ = 26.7 mm. The receiver electrode for both probes 
was divided in three segments, with the central one having a length of approximately 2.7 mm for the 
short probe and 2.88 mm for the long probe, while each one of the two outer segments in the short 
probe had a length of 2.7 mm while in the long probe this length was 11.9 mm. The individual 
segments of the receiver electrode were insulated with paper impregnated with Perspex cement 
producing a separation of 0.1 mm between segments, as displayed at Figure 6b. The electrodes had a 
width of 2 mm along the pipe circumference in the short probe and 2.15 mm in the long probe which 
determined the angular position of the electrodes. The internal diameter of the pipe was 2.54 cm, and 
the electrode surfaces were machined to have a curved surface of 2.54 cm diameter. 

 
Figure 6. (a) Conductance probe with two parallel rectangular electrodes, (b) similar probe with one 
of the electrodes segmented as designed by Coney [10]. 

Coney used a Perspex disc with its surface machined into steps of different radius so different 
film thickness can be created by moving the disc. Then, Coney measured 𝐺/𝐺௠௔௫ in terms of the 
water thickness 𝛿 and expressed these measurements in terms of 𝛿/𝑎, for both probes being 2𝑎 the 
separation between the two electrodes in Coney experiments [10]. Because the half distance was 
approximately a = 1 mm, this was equivalent to expressing the relative conductance of the probe in 
terms of the water thickness in mm. Figure 7 displays the results obtained with Equation (19) for the 
relative conductance of the probe in Coney experiments using the total length of the electrodes and 
their geometric characteristics. The theoretical results match the experimental ones very well when 
using the total length of the electrodes i.e., 𝑙଴ = 26.7 mm for the longest one and 𝑙଴ = 8.3 mm for the 
shortest. 
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Figure 7. 𝐺/𝐺௠௔௫ versus 𝛿/𝑎, for the experiments performed by Coney with the conductance probe, 
with only one of the electrodes segmented, and long and short electrodes and the results of the 
calculations with the formulas of Section 2.2. 

However, if the separation of the electrodes is not small compared with their length as happens 
when we consider two electrodes with length equal to the central segment length 𝑙 = 2.88 mm, then 
the discrepancy with the experimental data slightly increases as displayed in Figure 8. The theoretical 
results obtained in this case with Equation (19) are given by the upper curve of Figure 8. In this case 
the calculations were performed assuming that both electrodes have a length of 2.88 mm, and the 
rest of characteristics remain the same as in the experiment. However, Coney found experimentally 
that when one of the electrodes is segmented into three parts by very small (0.1 mm) insulating 
strings, then the outer segments act as a guard ring. Consequently, the current to the central segment 
is close to the theoretical prediction of the Coney formula without segmenting assuming very long 
electrodes with 𝑙 ≫ 𝑎, which allows to neglect edge electric field effects at the end of the electrodes. 
Obviously in this case because the separation among the electrodes is 2a = 2 mm, edge effects are 
important and cannot be neglected. Therefore, if we use the total length of the electrode we approach 
with Equation (19) the experimental results, obviously this does not happen with Coney formula 
because it is 2D, and he assumes a very long electrode in the axial direction. For very long electrodes, 
the Coney formula gives the results displayed in the lower curve of Figure 8.  

There remains a question to be investigated: if Equation (19) is correct then if we make both 
electrodes very long, for instance 60 mm, the edge effects will be small and our results using Equation 
(19) should be close to the results obtained with Coney equation. We have represented in Figure 9 
the results obtained using a probe with an electrode length equal to 60 mm, separation between 
electrodes of 2 mm, and with electrodes having a width of 2.15 mm. Both the Coney equation, which 
assume an infinite length of the electrodes, and the 3D formula deduced in this paper yields results 
which are very close that confirm the validity of Equation (19).  
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Figure 8. 𝐺/𝐺௠௔௫ versus 𝛿/𝑎, for different cases explained in the text. The upper curve grey line has 
been computed with Equation (19) for G/Gmax and 𝑙 = 2.88 mm, the lower green line has been 
computed with the Coney formula which assumes 𝑙 ≫ 𝑎. 

 
Figure 9. G/Gmax versus δ computed with Coney formula valid for 𝑙 ≫ 𝑎 with the characteristics of 
the previous experiments (green-triangles) and the 3D formula obtained in this paper’s Equation (19) 
using large 𝑙 = 60 mm ≫ 𝑎 = 1 mm (rhomboids).  

3.4. Comparison with Ko et al. Data and Lee et al. Data 

In this section we compare the results of the analytical formulas deduced previously and 
programmed in MATLAB with the experimental results of Ko et al. [12], and Lee et al. [13]. These 
authors performed several static experiments with annular flow. The goal was to verify 
experimentally the sensor design that they obtained with the program COMSOL, which uses the 
finite element method (FEM) to solve the Laplace equation with the appropriate boundary conditions 
imposed by the electrodes at the inner surface of the pipe and the boundary conditions of zero current 
at the rest of the surfaces. They fabricated a conductance sensor mounted as displayed in Figure 10, 
with an inner diameter of 40 mm and three electrodes A, B, C flush located along the inner 
circumferential direction of the tube. Two of the electrodes A and B, have the same length and span 



Sensors 2020, 20, 7042 15 of 29 

 

of 2.54 radians each, and the third one, the C span, has 0.3 radians with two insulator sections of 0.2 
radians at both sides; in the bottom there was a section of insulator spanning 0.5 radians.  

 
Figure 10. Schematic diagram of the sensor system used by Ko et al. [12]. The sensor has three 
electrodes (A–C) and the measurements can be performed using electrodes (A,B) or (A,C). 

Then, Ko et al. [12] performed a set of measurements of the potential drop between the electrodes 
A and B, or alternatively A and C. The annular flow was achieved inserting acrylic rods of different 
diameters in the pipe containing the sensor. They measured the conductance G , between the 
electrodes A and B, for different radius of the rods, and also the conductance G୪ for the pipe full of 
liquid, obtaining the ratio 𝐺௥௘௟ = G G୪ൗ  or relative conductance. The results obtained by these authors 
are displayed in the upper line of Figure 11a, and the relative conductance shows a small difference 
with the linear-conductance response 𝐺௥௘௟ = 𝛼௟ = 1 − 𝛼  around +0.06 on average or +6% when 
expressed in percent. We computed using Equation (19) and Equation (A39) the relative conductance 
for this same case, and we obtained the results displayed as the lower line (blue) displayed at Figure 
11a, which deviates −1% from the linear-conductance response.  

The next issue was to compare the results obtained by Lee et al. [13] with the analytical results 
and the linear-conductance response. The experiments performed by Lee et al. [13] were similar to 
those performed by Ko [12] et al., the geometrical configuration of the sensor was the same but in this 
case the inner diameter of the sensor was 45 mm instead of 40 mm as in the previous case. The results 
obtained by Lee et al. are displayed in the upper line of Figure 11b (blue), and the results show a 
difference of +5.7% with respect to the linear-conductance response denoted as the Begovich–Watson 
line (green), which is the middle line. Finally the results obtained using Equations (19) and (C7), are 
displayed in the lower line of Figure 11b, and show a difference with the linear-conductance response 
of −1%, and for the void fractions that are below 0.3 this difference is practically zero. 
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(a) (b) 

Figure 11. (a) G/Gmax versus the void fraction for the experiments performed by Ko et al. [12], 
displayed in the upper line and the calculations performed with Equation (19), displayed in the lower 
line. (b) G/Gmax versus the void fraction for the experiments performed by Lee et al. [13], upper-line 
and the calculations performed with Equation (19), lower line, the middle line are the results obtained 
using the Begovich and Watson equation [6]. 

4. Discussion of Results, their Interpretation and Implications, Future Trends, and Final 
Conclusions 

In this paper we have deduced the analytical expressions for the relative conductance and the 
potential difference for two plate-electrode conductance probes in two configurations: the first one is 
when the electrodes are flush mounted in the flow direction i.e., along the z direction of the pipe axis 
as displayed in Figure 3, and the second one is when the electrodes are flush mounted along the 
circumferential direction of the pipe as displayed in Figure 2a,b. All these expressions are fully 3D 
and have been deduced solving the 3D Laplace equation with a proper boundary condition, as shown 
in the Appendices B and C, assuming that the current density is constant over each electrode and that 
the frequency is high enough to neglect capacitive effects. Also, we have assumed an average 
potential over each electrode, that have been obtained using Equation (7), so the potential difference 
between the electrodes has been calculated as the difference between the averaged electric potential 
over each separate electrode. Previously Coney [10] obtained a very well-known expression for a 
conductance probe consisting in two flush-mounted parallel electrodes of unequal widths and 
infinite length and separated by an insulator. The expression deduced by Coney was checked 
experimentally by many authors such as Fossa [8], Tsochatzidis et al. [7], and Coney himself [10]. 
Because Coney used parallel finite length electrodes flush-mounted inside a pipe, his experimental 
results approach the value deduced by himself for the relative conductance in terms of the liquid 
fraction but never attains the analytical results. We have checked this in this paper, because the 
analytical expression is fully 3D as a result of the analytical Equation (19) obtained in this paper, that 
the relative conductance in terms of the liquid fraction exactly matches the experimental results 
obtained by Coney with smaller electrodes as displayed in Figure (7). In addition, we have found that 
Equation (19) for the relative conductance between two plate parallel electrodes approach the result 
of the expression obtained by Coney as the electrode lengths becomes large, as can be observed in 
Figure 9. Also, it is deduced using the new expression, as displayed in Figure 8, that when the height 
of the electrodes becomes smaller the relative conductance attains faster the saturation value and the 
slope of the curve increases. This means that the measurements are more sensitive to small variations 
of liquid thickness. However, the liquid film thicknesses we can measure are smaller. 

In addition, Fossa performed a set of experiments with two-plate electrodes, with the electrodes 
located along the flow direction, and at 12 mm distance between the electrode centers. For this case 
Fossa measured the relative conductance for different liquid fractions and obtained the results 
displayed at Figure 4 (blue x), with electrodes that had a circular shape. We have made the 
calculations with square electrodes of the same area using Equation (25), and the results are 
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represented by the green inverted triangles that agree with the experimental data for liquid fractions 
below 0.1, and show a very small difference above 0.1. Then we performed the calculations assuming 
that the electrodes have the same area than the circular electrodes and were centered at the same 
point as displayed in Figure 4b, but the upper and lower sides of each electrode crossed through the 
circular electrode point that formed a 45° angle with the x-axis; in this case the experimental results 
matched exactly the analytical ones obtained with Equation (25). The total number of modes used to 
perform the calculations was 10ସ, and the solution is obtained in a few seconds with a PC, having 
programmed the equation in MATLAB. Therefore, we conclude that the shape of the electrodes 
(circular, square or rectangle) can have some influence on the results but this influence is small if the 
area and the location of the electrode centers are the same and the relation of the length to the height 
of the electrode dimensions are within the following limits (1 ≤ 𝑠௪ 𝑠௭⁄ ≤ 1.6). 

Another question to be discussed is the influence of the number of modes in the results, and 
what are the optimal values of 𝑛௠௔௫ and 𝑚௠௔௫. To answer this question at Table 1 we compare the 
results obtained for the relative conductance of the case displayed as the upper curve of Figure 8, 
using 𝑛௠௔௫ = 95, and 𝑚௠௔௫ = 95, with the same case performed using 𝑛௠௔௫ = 100, and 𝑚௠௔௫ =100. The difference in the number of terms contributing to the result in the numerator and the 
denominator of Equation (19) for both cases is 980. It is observed that the influence of adding these 
extra terms on the results is always smaller than 0.0012. 

Table 1. Relative conductance 𝐺/𝐺௠௔௫, computed with 𝑛௠௔௫ = 95, and 𝑚௠௔௫ = 95, and wit 𝑛௠௔௫ =100, and 𝑚௠௔௫ = 100 for different values of 𝛿/𝑎, for the case of curve grey line of Figure 8. 𝜹/𝒂 𝑮/𝑮𝒎𝒂𝒙 𝟗𝟓 × 𝟗𝟓 
𝑮/𝑮𝒎𝒂𝒙 𝟏𝟎𝟎 × 𝟏𝟎𝟎 

0.4  0.2694 0.2703 
0.7 0.4442 0.4454 
1.0 0.5850 0.5861 
1.3 0.6923 0.6933 
1.6 0.7715 0.7723 
1.9 0.8291 0.8298 
2.2 0.8708 0.8714 
2.5 0.9012 0.9016 
2.8 0.9234 0.9237 
3.1 0.9399 0.9402 
3.4 0.9522 0.9525 
3.7 0.9616 0.9618 
4.0 0.9688 0.9690 
4.3 0.9745 0.9746 

We have seen that diminishing the length of the electrodes in the Coney experiments, as 
displayed in Figure 8, increases the relative conductance 𝐺/𝐺௠௔௫ versus delta, for a fixed distance 2𝑎 between the electrodes. In Figure 8 the distance between the electrodes was fixed at 2 mm, and 
the electrode length varied from the smaller one (2.88 mm) for the upper curve “𝐺/𝐺௠௔௫  versus 
delta”, to the largest one of the lower curve. So, it is concluded that when the length of the electrodes 
or their guard electrode lengths diminishes, then the relative conductance increases faster especially 
for lower values of delta. This means that the two-plate detector attains faster the saturation for 
smaller electrode sizes in the axial direction. What happens when we maintain fixed the length of the 
electrodes and we increase the distance between the electrodes? The response to this question is 
displayed in Figure 12. We have performed the calculation of the relative conductance for two parallel 
electrodes with 𝑠௭ = 2.88 mm, a pipe diameter of 5.08 cm, and 𝑠௪ = 2.15 mm. Then we changed the 
distance 2𝑎 between the electrodes, and performed the following cases 𝑎 = 0.6 mm, 𝑎 = 0.8 mm, 𝑎 =1 mm, 𝑎 = 1.2 mm. The results for the relative conductance are displayed in Figure 12. The results of 
this figure tell us that diminishing the distance between the electrodes for fixed values of their sizes 
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increases the slope of the curve ீீ௠௔௫ versus delta. The quantitative effect on the slope is small and, 
therefore, the effect on the saturation is small. 

 
Figure 12. ீீ೘ೌೣ  versus 𝛿 , for different distances between the electrodes. 2𝑎 = 1.2 mm, 2𝑎 =1.6 mm, 2𝑎 = 2 mm, 𝑎𝑛𝑑 2𝑎 = 2.4 mm. 

In addition, to the previous comparisons with two plate electrodes, we performed a comparison 
with the sensor designs of Ko et al. [12], and Lee et al. [13], that consisted in two plate electrodes 
orthogonal to the flow, and spanning 2.54 radians each electrode and with different separation at 
both sides 0.7 radians, and 0.5 radians, respectively. The sensor designs of both authors were very 
similar, the only difference being the internal radius, which was slightly different. These designs were 
performed to obtain a response as close as possible to the linear conductance response, where the 
linear response was set to 𝐺௥௘௟ = 𝐺ఈ/𝐺௟ = 1 − 𝛼, being 𝐺ఈ the conductance for a void fraction 𝛼, and 𝐺௟  the conductance when the pipe was full of liquid. The conductance for a void fraction 𝛼 was 
achieved by these authors inserting small rods of an acrylic non-conducting material, and then they 
measured the conductance ratio for different radius of the acrylic inner cylinder. Then they obtained 
the results displayed in Figure 11a,b for the annular flow, which are slightly above (6%) the linear 
behavior, denoted as Begovich–Watson, as can be observed in Figure 11b. The results obtained using 
Equation (19), deduced in this paper are slightly below (1%) the linear behavior curve, and are also 
displayed in Figure 11a,b. At this point, it is convenient to remark that the electrical signals of a sensor 
based on the electric-impedance between two electrodes depends not only on the fraction of liquid 
or the void fraction in the sensor region but in addition of the liquid distribution inside the pipe which 
in turn depends on the flow regime (bubbly, slug, annular…) that we have in that region as will be 
discussed below. 

The next issue to be discussed is the measurement of the liquid fraction (𝛼௟) and the void fraction 
(𝛼 = 1 − 𝛼௟) from measurements of the relative conductance performed with flush-mounted two-
ring electrode probes in two-phase flow homogeneous mixtures. In this case assuming a 
homogeneous two-phase mixture as for instance homogeneous bubbly flow, one obtains as deduced 
in Appendix C, Equation (A40), which shows that the ratio of the conductance of the two-phase 
mixture to the conductance of the pipe full of water is equal to the ratio of the conductivities of the 
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mixture and the water 𝐺௥௘௟ = 𝐺ఈ 𝐺௪ = 𝜎௘௙௙⁄ /𝜎௪. 𝜎௘௙௙ is the effective conductivity of the two-phase 
mixture, which depends not only on the void fraction but also on the two-phase distribution. For 
homogeneous bubbly flow distribution, as in the experiments performed by Fossa [8], the best 
prediction of the relative conductance in term of the liquid fraction is obtained using the Maxwell 
formula. However, Yang and Kim [22] measured the relative resistance 𝑅௪௔௧௘௥ 𝑅ଶథି௠௜௫௧௨௥௘⁄ , using 
different types of conductance probes, for type II probes, which are two-electrode probes formed by 
two electrodes A, and B spanning less than pi radians of each electrode, with a radius of 6 cm and a 
height of 6 cm. Moreover, the frequency used in their experiments was 100 kHz so the capacitive part 
of the impedance was small and we can write 𝑅௪௔௧௘௥ 𝑅ଶథି௠௜௫௧௨௥௘⁄ ≅ 𝐺ఈ 𝐺௪ = 𝜎௘௙௙⁄ /𝜎௪ . In the 
experiments of Yang and Kim [22], the air–water mixture was not homogeneous as in Fossa 
experiments, as it is deduced observing the figures of the void distribution of their paper [22]. The 
results obtained by Yang and Kim with probe II for the relative resistance are displayed in Figure 13 
of this paper. It is observed in this case that the best prediction of the experimental data is obtained 
with the self-consistent EMT theory, in this approach of the effective medium theory, one assumes 
that the bubbles are embedded in an effective medium with conductivity 𝜎௘௙௙, which is the same for 
all the bubbles as explained in Section 3.2. These results are different from those obtained with the 
Fossa experiments where the Maxwell formula gives the best predictions. We must consider that for 
the case displayed in Figure 13, the bubbly flow is not homogeneous, contrary to the case displayed 
in Figure 5, where it is homogeneous. Therefore, for Yang and Kim experiments the self-consisting 
EMT theory gives the best predictions for the non-homogeneous bubbly flow that the non-consistent 
EMT (Maxwell equation). This result is coherent because of the Maxwell equation for the mixture 
conductivity is based on the hypothesis of homogeneity. 

 

Figure 13. Non-dimensional resistance ratio (𝑅௪ 𝑅௠௜௫௧௨௥௘ൗ ), versus liquid fraction for probe II, of Yang 

and Kim experiments [21], and comparison with Maxwell results (squares), EMT self- consistent 
(triangles), and Bruggeman (Saint Andrew crosses). 

To finish we conclude that the formulas obtained in this paper for the two electrode conductance 
probes in cylindrical geometry predict the relative conductance very well in terms of the liquid 
fraction for different set of experiments and different sizes and geometries of the sensors, and the 
results can be obtained in a few seconds using 10ସ modes. 
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We have seen that when using the sensors for holdup applications to predict the average void 
fraction in a region, the results depend not only on the void fraction but also on the two-phase 
distribution. Therefore, in the simple case of bubbly flow as in Fossa experiments, which uses a 
homogeneous flow, the experimental results show that the Maxwell equation is the best suited to 
predict the void fraction. However, for bubbly but not homogeneous flow, the self-consistent EMT 
equation is that which most approaches the experimental data obtained by Yang and Kim [22]. Future 
research directions could study the influence of wall peak and core peak void fraction distribution 
for bubbly flow on the conductance or resistance ratios. Also, an interesting question that is now 
becoming relevant is if we can get the liquid fraction from relative conductance measurements using 
conductance probes for slug and churn turbulent flows i.e., for low water holdup structures. This 
question has been addressed recently by Wang et al. [21,23] and Yang et al. [24]. These authors arrive 
from the experimental data, by a fitting procedure, to the result that this relation is given for this type 
of flow by: 𝛼௟ = (𝐺௥௘௟)௡ 𝑤𝑖𝑡ℎ 𝑛 = 1.5016  or 𝛼௟ ≅ (𝐺௥௘௟)ଷ/ଶ (34) 

For more general flow Yang et al. [24] propose a general expression that it is a weighting average 
of Maxwell expression for bubbly flow and the Wang et al. [21] equation for slug flow and they write: 𝛼௟ = 𝑤௛ 3𝐺௥௘௟2 + 𝐺௥௘௟ + 𝑤௟(𝐺௥௘௟)ଵ.ହ଴ଵ଺ (35) 

where, according to these authors, 𝑤௛ is the weight of the high-water holdup structures, and 𝑤௟ is 
the weight of the low water holdup structures. These authors determine these weights experimentally 
counting the number of sampling points 𝑁௛ of signals of high-water holdup structures, and the 
number of sampling points of signals 𝑁௟of low water holdup structures. Then 𝑤௟ = 𝑁௟/𝑁, and 𝑤௛ =𝑁௛/𝑁. 𝑁, is the total number of sampling points. 

Supplementary Materials: The following are available online at www.mdpi.com/1424-8220/20/24/7042/s1, 
Supplementary Material S1: scripts of the programs with input and output examples. 
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Appendix A. The Electric Potential for a Two-Ring Electrode Sensor in Cylindrical Geometry 

In this appendix we deduce analytically the electric potential for the two-ring conductance probe 
when the pipe has a dielectric inside of radius 𝑅௜௡, solving the Laplace equation. The solution will be 
obtained for the following cases: (i) symmetric case when the height of water above the two-ring 
probe is the same as that below, (ii) non-symmetric case i.e., when the height of water above the 
sensor is different as that below, and (iii) when the pipe is full of water for both previous cases. 

The first step is to solve the Laplace Equation (2) by the separation of variables method for the 
non -symmetric case, with the boundary conditions given by Equations (3)–(5), with the additional 
boundary condition at the top 𝐻ଶ and bottom −𝐻ଵof the pipe: 
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ቂ𝜎௪ డథడ௭ ቃ௭ୀுమ = 0, and ቂ𝜎௪ డథడ௭ ቃ௭ୀିுభ = 0, (A1) 

The separation of variables method because of the boundary conditions given by Equations (3) 
and (A1) yields for the potential the following solution: 

𝜙(𝑟, 𝑧) = ෍ 𝐸௡ cos (𝛾௡∗(𝐻ଵ + 𝑧ஶ
௡ୀଵ )) (𝐼଴(𝛾௡∗𝑟) + 𝑎ଵ(𝛾௡∗𝑅௜௡)𝐾଴(𝛾௡∗𝑟)) (A2) 

where 𝛾௡∗ = ௡గு  with n = 1,2,… and 𝑎ଵ(𝛾௡∗𝑅௜௡) given by: 𝑎ଵ(𝛾௡∗𝑅௜௡) = 𝐼ଵ(𝛾௡∗𝑅௜௡)𝐾ଵ(𝛾௡∗𝑅௜௡) (A3) 

To obtain the coefficients 𝐸௡ first we write the boundary conditions at r = R as follows: 

ቂ−𝜎௪ డథడ𝒓ቃ௥ୀோ = 𝑗(𝑅, 𝑧) = ⎩⎨
⎧− ூ஺೐ ; 𝑓𝑜𝑟 − (𝐷௘ + 𝑠௭)/2 ≤ 𝑧 ≤ −(𝐷௘ − s௭)/2ூ஺೐ ;   𝑓𝑜𝑟 (𝐷௘ − 𝑠௭)/2 ≤ 𝑧 ≤ (𝐷௘ + s௭)/20 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑟𝑒𝑠𝑡 𝑜𝑓 𝑝𝑜𝑠𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑟 = 𝑅 , (A4) 

where 𝐴௘ = 2𝜋𝑅 𝑠௭ the electrode area, and I the intensity entering or leaving the electrodes. Then we 
expand the current density 𝑗(𝑅, 𝑧), in Fourier series of the coordinate z, obtaining: 𝑗(𝑅, 𝑧) = ଶூగ஺೐ ∑ ଵ௡ஶ௡ୀଵ  𝑎௡ cos (𝛾௡∗(𝐻ଵ + 𝑧)) (A5) 

with, 𝑎௡ = sin ൬𝛾௡∗ ቀ𝐻ଵ + ஽೐ା௦௭ଶ ቁ൰-sin ൬𝛾௡∗ ቀ𝐻ଵ + ஽೐ି௦௭ଶ ቁ൰ + sin ൬𝛾௡∗ ቀ𝐻ଵ −஽೐ା௦௭ଶ ቁ൰ − sin ൬𝛾௡∗ ቀ𝐻ଵ − ஽೐ି௦௭ଶ ቁ൰ 
(A6) 

The coefficients of the expansion 𝐸௡ are obtained substituting 𝜙(𝑟, 𝑧) in the boundary condition 
(A4) and using the expansion of 𝑗(𝑅, 𝑧) in Fourier series. Equating the terms at both sides of the 
resulting equation, we obtain the expression for these coefficients. Finally, the expression obtained 
for the potential for the two-ring probe with asymmetric condition is: 

𝜙(𝑟, 𝑧) = − 2𝐼 𝐻𝜋ଶ𝜎௪𝐴௘ ෍ a௡𝑛ଶ  𝑓(𝛾௡∗  𝑅௜௡, 𝛾௡∗r) cos (𝛾௡∗(𝐻ଵ + 𝑧ஶ
௡ୀଵ ))  (A7) 

where we have defined the function: 𝑓(𝛾௡∗  𝑅௜௡, 𝛾௡∗r) = ூబ(ఊ೙∗ ୰)ା௔భ(ఊ೙∗  ோ೔೙)௄బ(ఊ೙∗ ୰)ூభ(ఊ೙∗ ୖ)ି௔భ(ఊ೙∗  ோ೔೙)௄భ(ఊ೙∗ ୖ), with 𝑎ଵ(𝛾௡∗  𝑅௜௡) = ூభ(ఊ೙∗  ோ೔೙)௄భ(ఊ೙∗  ோ೔೙) (A8) 

For the symmetric case i.e., when 𝐻ଵ = 𝐻ଶ, instead of Equation (A7) we obtained, using the same 
method, the following result: 

𝜙(𝑟, 𝑧) = − 4𝐼 𝐻𝜋ଶ𝜎௪𝐴௘ ෍ b௡(2𝑛 + 1)ଶ  𝑓(𝛾௡ 𝑅௜௡, 𝛾௡r) sin(𝛾௡𝑧ஶ
௡ୀ଴ ) (A9) 

with, b௡ = cos(𝛾௡ ஽೐ା௦೥ଶ ) − cos(𝛾௡ ஽೐ି௦೥ଶ ) and 𝛾௡ = (ଶ௡ାଵ)గு  (A10) 

Equation (A10) is the same equation obtained by Lina and Yingwei [8] for the electric potential 
in the symmetric case of two-ring electrodes. 

Appendix B. The Electric Potential for Two-Electrode Plate Sensor in Cylindrical Geometry 

In this appendix we obtain first the electric potential, for the two-plate electrodes case displayed 
in Figure 2a,b, by solving the Laplace Equation (2) with the boundary conditions (17) and (18), for the 
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symmetric case. In this case the electrodes have a height 𝑠௭ in the axial direction, and a length of 𝑠௪ 
in the circumferential direction. In addition, we assume that at the top and bottom of the pipe the 
conductivity is zero and therefore we have the boundary condition: ൤𝜎௪ 𝜕𝜙𝜕𝑧 ൨௭ୀ±ு/ଶ = 0 (A11) 

Next, we develop the current density boundary condition at r=R in double Fourier series of the 
variables 𝜃, and z, assuming that the current density is constant in the electrodes. The boundary 
conditions at r = R are: 

൤−𝜎௪ 𝜕𝜙𝜕𝒓൨௥ୀோ = 𝑗(𝑅, 𝜃, 𝑧) = ⎩⎪⎨
⎪⎧ − 𝐼𝐴௘ ; 𝑓𝑜𝑟  𝜃ଵ ≤ θ ≤ 𝜃ଶ 𝑎𝑛𝑑 − 𝑠௭/2 ≤ 𝑧 ≤ s௭/2𝐼𝐴௘ ;   𝑓𝑜𝑟 − 𝜃ଶ ≤ θ ≤ −𝜃ଵ𝑎𝑛𝑑 − 𝑠௭/2 ≤ 𝑧 ≤ s௭/20 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑟𝑒𝑠𝑡 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑟 = 𝑅  (A12) 

We notice that the function 𝑗(𝑅, 𝜃, 𝑧) is an odd function of 𝜃, when z remains fixed and is an 
even function of z, when 𝜃 is fixed. Therefore, it can be developed in double Fourier series as follows: 

𝑗(𝑅, 𝜃, 𝑧) = ෍ 𝑑଴,௠ஶ
௠ୀଵ sin(𝑚𝜃) + ෍ ෍ 𝑑௡,௠ sin(𝑚𝜃) cos(𝛾௡ᇱ 𝑧) ,ஶ

௠ୀଵ
ஶ

௡ୀଵ  (A13) 

where the coefficients of the expansion are given by the expressions: 𝑑଴,௠ = 4 𝐼 𝑠௭𝜋 𝐻𝐴௘𝑚 (cos(𝑚𝜃ଶ) − cos (𝑚𝜃ଵ)) (A14) 

and, 𝑑௡,௠ = 4𝐼𝜋ଶ𝐴௘𝑚𝑛 (cos(𝑚𝜃ଶ) − cos (𝑚𝜃ଵ)) sin(𝛾௡ᇱ 𝑠௭2 ), (A15) 

being I the intensity entering or leaving the electrode of area 𝐴௘; 𝑠௭ is the height of the electrode in 
the axial direction; 𝜃ଵ and 𝜃ଶ, are the azimuthal angles limiting each sensor, and 𝛾௡ᇱ = 2𝑛𝜋/𝐻. 
To compute the electric potential 𝜙(𝑟, 𝜃, 𝑧)we solve the Laplace equation in cylindrical coordinates 
by the separation of variables method on account of the boundary conditions. If there is a dielectric 
inner cylinder of radius 𝑅௜௡ inside the pipe and the water is located between both cylinders of radius 𝑅௜௡ and 𝑅 respectively, then we consider that the current at the interface between the dielectric inner 
cylinder and the water is zero i.e., ቂ𝜎௪ డథడ௥ ቃ௥ୀோ೔೙ = 0. The solution obtained for the Laplace equation 

considering all the boundary condition is after a lengthy calculation given by: 

𝜙(𝑟, 𝜃, 𝑧) = ෍ 𝐴଴௠(ஶ
௠ୀଵ 𝑟௠ + 𝑅௜௡ଶ௠𝑟ି௠) sin(𝑚𝜃)

+ ෍ ෍ 𝐴௡,௠(𝐼௠(𝛾௡ᇱ 𝑟) −   𝑎௠,௡ஶ
௠ୀଵ

ஶ
௡ୀଵ 𝐾௠(𝛾௡ᇱ 𝑟)) sin (𝑚𝜃) cos (𝛾௡ᇱ 𝑧), (A16) 

being 𝐼௠(𝑥), and 𝐾௠(𝑥) the modified Bessel functions of first and second class, m-th order and 
argument x. In addition, we have defined: 𝑎௠,௡ = ቂ ூ೘ᇲ (௫)௄೘ᇲ (௫)ቃ௫ୀఊ೙ᇲ ோ೔೙with 𝐼௠ᇱ (𝑥) = ௗௗ௫ 𝐼௠(𝑥), (A17) 

and the coefficients of the expansion 𝐴଴,௠ , and 𝐴௡,௠  are obtained substituting  𝜙(𝑟, 𝜃, 𝑧)  in the 
boundary condition (A12) and using the expansion of 𝑗(𝑅, 𝜃, 𝑧) in a double Fourier series. Equating 
the terms, it is obtained that: 𝐴଴௠ = − ସ ூ(ୡ୭ୱ(௠ఏమ)ିୡ୭ୱ (௠ఏభ))∆ఏ ఙೢ గ ௠మ ு ோ೘ ቆଵିቀೃ೔೙ೃ ቁమ೘ቇ, (A18) 
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and 

𝐴୬,୫ = − 4 𝐼 (cos(𝑚𝜃ଶ) − cos (𝑚𝜃ଵ)) 𝑠𝑖𝑛 ቀ𝛾௡ᇱ 𝑠௭2 ቁ∆𝜃 𝜎௪ 𝜋ଶ 𝑅 𝑚𝑛 𝑠௭ 𝛾௡ᇱ  ൫𝐼௠ᇱ (𝑥) − 𝑎௠,௡𝐾௠ᇱ (𝑥)൯௫ୀఊ೙ᇲ ோ (A19) 

The next step is to obtain an expression for the potential 𝜙(𝑟, 𝜃, 𝑧) with two electrodes when the 
pipe is full of water, we have denoted this solution by the full sub-index i.e., 𝜙௙௨௟௟(𝑟, 𝜃, 𝑧). In this case 
the Laplace equation is solved by the separation of variables method as in the previous case, and also 
expanding the boundary condition in the double Fourier series, but now the modified Bessel 
functions of the second class cannot be the solution of this equation because they become infinite at 𝑟 = 0. Proceeding as in the previous case, when we have two-plate electrodes, the solution is: 

𝜙௙௨௟௟(𝑟, 𝜃, 𝑧) = ෍ 𝐴଴௠ஶ
௠ୀଵ 𝑟௠ sin(𝑚𝜃) + ෍ ෍ 𝐴௡,௠ 𝐼௠(𝛾௡ᇱ 𝑟)ஶ

௠ୀଵ
ஶ

௡ୀଵ  sin (𝑚𝜃) cos (𝛾௡ᇱ 𝑧), (A20) 

where the coefficients of the expansion are for this case: 𝐴଴௠ = − 4 𝐼 (cos(𝑚𝜃ଶ) − cos (𝑚𝜃ଵ))∆𝜃 𝜎௪ 𝜋 𝑚ଶ 𝐻 𝑅௠  (A21) 

We notice that this coefficient can be obtained from the previous one, given by Equation (A9), setting 𝑅௜௡ = 0. The coefficient 𝐴୬,௠ is given by: 

𝐴୬,୫ = − 4 𝐼 (cos(𝑚𝜃ଶ) − cos (𝑚𝜃ଵ)) 𝑠𝑖𝑛 ቀ𝛾௡ᇱ 𝑠௭2 ቁ∆𝜃 𝜎௪ 𝜋ଶ 𝑅 𝑚𝑛 𝑠௭ 𝛾௡ᇱ   (𝐼௠ᇱ (𝑥)))௫ୀఊ೙ᇲ ோ  (A22) 

To verify that this equation for the electric potential between two plate electrodes is correct we 
have obtained the limit of Equation (A20) when the size of the electrodes tends toward zero, i.e., 𝑠௭ →0 and ∆𝜃 → 0. This limiting case has been solved by Ider et al. [23]. Performing this limit in Equation 
(A20), because of (A21) and (A22), it yields the same expression obtained by these authors. 

In addition, we have computed the potential for a two-plate electrode when the electrodes are 
located along the z-axis as displayed in Figure 3. In this case we must solve the Laplace equation for 
the potential with the boundary conditions given by Equations (23) and (24), and the boundary 
condition (A11), at the top and bottom of the pipe. Also, we assume that the current density in the 
pipe boundaries where we have no electrodes is zero. Then we solve the Laplace Equation (2) by the 
separation of variables method, on account of the imposed boundary conditions, and we expand the 
current density at the boundary 𝑗(𝑅, 𝜃, 𝑧) in the double Fourier series of the variables 𝜃 and 𝑧. We 
notice that because of the boundary conditions of this case are different from the previous one in this 
appendix that this expansion yields: 

𝑗(𝑅, 𝜃, 𝑧) = ෍ 𝑑௡଴ sin(𝛾௡𝑧) + ෍ ෍ 𝑑௡,௠ cos 𝑚𝜃 sin(𝛾௡𝑧)  ஶ
௠ୀଵ

ஶ
௡ୀ଴

ஶ
௡ୀ଴  (A23) 

where 𝛾௡ = (2𝑛 + 1)/𝐻, with 𝑛 = 0,1,2, …., and the coefficients of the expansion for this case are: 𝑑௡଴ = − 4𝐼Δθ𝜋𝐻𝐴௘𝛾௡  ቆ𝑐𝑜𝑠 ൬𝛾௡ 𝐷௘ + 𝑠௭2 ൰ − 𝑐𝑜𝑠 ൬𝛾௡ 𝐷௘ − 𝑠௭2 ൰ቇ (A24) 

and 𝑑௡௠ = − 8𝐼𝜋𝐻𝐴௘𝑚𝛾௡ 𝑠𝑖𝑛 ൬𝑚Δ𝜃2 ൰ ቆ𝑐𝑜𝑠 ൬𝛾௡ 𝐷௘ + 𝑠௭2 ൰ − 𝑐𝑜𝑠 ൬𝛾௡ 𝐷௘ − 𝑠௭2 ൰ቇ (A25) 

where Δ𝜃 = 𝑠௪/𝑅, is the angle subtended by each electrode of the probe in the azimuthal direction, 𝐷௘ is now the distance in the axial direction between the centers of both electrodes, 𝑠௭ is the height 
of the electrode in the axial direction. The solution of the Laplace equation when the pipe is full of 
water is obtained by the separation of variables method that yields on account of the boundary 
conditions the result: 
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𝜙௙௨௟௟(𝑟, 𝜃, 𝑧) = ෍ 𝐴௡଴𝐼଴(𝛾௡𝑟) sin(𝛾௡𝑧) + ෍ ෍ 𝐴௡,௠ 𝐼௠(𝛾௡𝑟)cos 𝑚𝜃 sin(𝛾௡𝑧)  ஶ
௠ୀଵ

ஶ
௡ୀ଴

ஶ
௡ୀ଴  (A26) 

The coefficients 𝐴௡଴ and 𝐴௡,௠ are obtained applying the boundary condition at r = R given by 
Equations (23) and (24) and using the double Fourier expansion given by Equation (A23), this yields: 

൤−𝜎௪ 𝜕𝜙𝜕𝒓൨௥ୀோ = 𝑗(𝑅, 𝜃, 𝑧) = ෍ 𝑑௡଴ sin(𝛾௡𝑧) + ෍ ෍ 𝑑௡,௠ cos 𝑚𝜃 sin(𝛾௡𝑧)  ஶ
௠ୀଵ

ஶ
௡ୀ଴

ஶ
௡ୀ଴  (A27) 

Substituting in the previous equation 𝜙(𝑟, 𝜃, 𝑧) by its expression (A26), computing its derivative at r 
= R and equating terms, we obtained the coefficients of the Fourier expansion (A26), which are: 𝐴௡଴ = 4𝐼Δθ𝜎௪𝐼ଵ(𝛾௡𝑅)𝜋𝐻𝐴௘𝛾௡ଶ  ቆ𝑐𝑜𝑠 ൬𝛾௡ 𝐷௘ + 𝑠௭2 ൰ − 𝑐𝑜𝑠 ൬𝛾௡ 𝐷௘ − 𝑠௭2 ൰ቇ (A28) 

and 𝐴௡௠ = 8𝐼𝜎௪𝐼௠ᇱ (𝛾௡𝑅)𝜋𝐻𝐴௘𝑚𝛾௡ଶ 𝑠𝑖𝑛 ൬𝑚Δ𝜃2 ൰ ቆ𝑐𝑜𝑠 ൬𝛾௡ 𝐷௘ + 𝑠௭2 ൰ − 𝑐𝑜𝑠 ൬𝛾௡ 𝐷௘ − 𝑠௭2 ൰ቇ (A29) 

when we have a dielectric inner cylinder and the current density from the water to the dielectric is 
approximately zero then we have in the inner cylinder boundary ቂ𝜎௪ డథడ௥ ቃ௥ୀோ೔೙ = 0. Then, solving the 

Laplace equation for the electric potential in this case, yields after some calculus the following result: 

𝜙(𝑟, 𝜃, 𝑧) = ෍ 𝐴௡଴ᇱ ൭𝐼଴(𝛾௡𝑟) + 𝐼ଵ(𝛾௡𝑅௜௡)𝐾ଵ(𝛾௡𝑅௜௡) 𝐾଴(𝛾௡𝑟)൱ sin(𝛾௡𝑧)ஶ
௡ୀ଴ + ෍ ෍ 𝐴௠௡ᇱ ൭𝐼୫(𝛾௡𝑟) − 𝐼௠ᇱ (𝛾௡𝑅௜௡)𝐾௠ᇱ (𝛾௡𝑅௜௡) 𝐾୫(𝛾௡𝑟)൱ cos 𝑚𝜃 sin(𝛾௡𝑧)  ஶ

௠ୀଵ
ஶ

௡ୀ଴  
(A30) 

where the coefficients 𝐴௡଴ᇱ  and 𝐴௠௡ᇱ  are given by the expressions: 

𝐴௡଴ᇱ = 4𝐼Δθ𝜎௪𝜋𝐻𝐴௘𝛾௡ଶ  ቆ𝑐𝑜𝑠 ቀ𝛾௡ 𝐷௘ + 𝑠௭2 ቁ − 𝑐𝑜𝑠 ቀ𝛾௡ 𝐷௘ − 𝑠௭2 ቁቇ
ቆ𝐼ଵ(𝛾௡𝑅) − 𝐼ଵ(𝛾௡𝑅௜௡)𝐾ଵ(𝛾௡𝑅௜௡) 𝐾ଵ(𝛾௡𝑅)ቇ  (A31) 

and 

𝐴௡୫ᇱ = 8𝐼sin(𝑚Δθ2 )𝜎௪𝜋𝐻𝐴௘𝑚 𝛾௡ଶ  ቆ𝑐𝑜𝑠 ቀ𝛾௡ 𝐷௘ + 𝑠௭2 ቁ − 𝑐𝑜𝑠 ቀ𝛾௡ 𝐷௘ − 𝑠௭2 ቁቇ
ቆI௠ᇱ (𝛾௡𝑅) − I௠ᇱ (𝛾௡𝑅௜௡)K௠ᇱ (𝛾௡𝑅௜௡) K௠ᇱ (𝛾௡𝑅)ቇ  (A32) 

Appendix C. Calculation of the Conductance and the Relative Conductance for Different Sensors 

Appendix C.1. Ring Sensors 

First, we deduce the simplest case that is for a two-electrode ring detector with 𝐻ଵ = 𝐻ଶ. In this 
case on account of the symmetry of the problem, we have because of equation (A9), 𝜙(𝑟, −𝑧) =−𝜙(𝑟, 𝑧). Therefore, the expression for the conductance (8) simplifies to: G = 𝐼ቀ 1𝐴௘ ׬ 𝜙(𝑅, 𝑧)𝜋𝐷𝑑𝑧 − 1𝐴௘ ׬ 𝜙(𝑅, 𝑧)𝜋𝐷𝑑𝑧(஽௘ା௦௭)/ଶ(஽௘ି௦௭)/ଶି(஽௘ି௦௭)/ଶି(஽௘ା௦௭)/ଶ ቁ= 𝐼ቀ− 2𝐴௘ ׬ 𝜙(𝑅, 𝑧)𝜋𝐷𝑑𝑧(஽௘ା௦௭)/ଶ(஽௘ି௦௭)/ଶ ቁ      (A33

) 

The denominator of Equation (A33), yields because of Equation (A9) for the potential: 
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𝛿𝜙 = 〈𝜙ா〉 − 〈𝜙ோ〉 = − 2𝐴௘ න 𝜙(𝑅, 𝑧)𝜋𝐷𝑑𝑧஽௘ା௦௭ଶ஽௘ି௦௭ଶ=  8𝐼 𝐻ଶ 𝐷𝜋ଶ𝜎௪𝐴௘ଶ ෍ 𝑏௡ଶ(2𝑛 + 1)ଷ  𝑓(𝛾௡𝑅௜௡, 𝛾௡R) ஶ
௡ୀ଴  

(A34
) 

Being b௡ and 𝛾௡ defined by the expressions: b௡ = cos(𝛾௡ ஽೐ା௦೥ଶ ) − cos(𝛾௡ ஽೐ି௦೥ଶ ), and 𝛾௡ = (ଶ௡ାଵ)గு , (A35
) 

and the function 𝑓(𝛾௡𝑅௜௡, 𝛾௡𝑅) is the same one defined in (A8) with different arguments. The next 
step is to substitute Equation (A34) in the denominator of (A33), which gives for the conductance G 
the result: G = 𝜋ଶ𝜎௪𝐴௘ଶ8𝐻ଶ𝐷 ∑ 𝑏௡ଶ(2𝑛 + 1)ଷ  𝑓(𝛾௡𝑅௜௡, 𝛾௡𝑅) ஶ௡ୀ଴  (A36

) 

For the non-dimensional conductance 𝐺∗, the following expression is obtained from (A36) for 
the symmetric case i.e., 𝐻 = 2𝐻ଵ because of the electrode area is 𝐴௘ = 𝜋𝐷𝑠௭: 𝐺∗ = 𝐺𝜎௪𝜋𝐷 = 𝜋ଷ32 ൬ 𝑠௭𝐻ଵ൰ଶ 1∑ 𝑏௡ଶ(2𝑛 + 1)ଷ  𝑓(𝛾௡𝑅௜௡, 𝛾௡R) ஶ௡ୀ଴  (A37

) 

Equation (A37) is the same as that obtained by Tsochatzidis et al. (1992) for the non-dimensional 
conductance. When the pipe is full of water the conductance attains its maximum value 𝐺௠௔௫∗ and 
following the same steps as previously yields the following result: 𝐺௠௔௫∗ = 𝐺𝜎௪𝜋𝐷 = 𝜋ଷ32 ൬ 𝑠௭𝐻ଵ൰ଶ 1∑ 𝑏௡ଶ(2𝑛 + 1)ଷ  𝐼௢(𝛾௡𝑅)𝐼ଵ(𝛾௡𝑅) ஶ௡ୀ଴  (A38

) 

where 𝐼଴(𝑥) and 𝐼ଵ(𝑥) are the hyperbolic Bessel functions of zero and first order, respectively. From 
Equations (A36)–(A38) the relative conductance for annular flow is obtained when we have a 
homogeneous liquid such as water between the radius 𝑅௜௡ and the internal radius of the pipe 𝑅. 𝐺𝐺௠௔௫ = 𝐺∗𝐺௠௔௫∗  (A39

) 

If we have a homogeneous two-phase mixture one can obtain the relative conductance of the 
pipe full of a two-phase mixture as bubbly flow that we denote by 𝐺ఈ, to that of the pipe full of water 
denoted by 𝐺௠௔௫, in this case one must consider the effective conductivity 𝜎௘௙௙ for the homogeneous 
two-phase mixture instead of the conductivity of the water and from Equations (A37) and (A38), we 
obtain: 𝐺ఈ𝐺௠௔௫ = 𝜎௘௙௙𝜎௪  (A40

) 

Another case that can be found in the applications is when we have annular flow with a solid 
packed bed in the space between 𝑅௜௡and 𝑅; in this case if the solid particles of the bed are not 
conducting and the liquid conduces the electricity, one must use the effective conductivity 𝜎௘௙௙ for 
the packed bed mixture. In this case from expressions (A37), with 𝜎௘௙௙ instead of 𝜎௪, and (A38), one 
obtains the following result for the ratio of conductivities of the homogeneous mixture: 𝐺௕௘ௗ𝐺௠௔௫ = 𝐺௕௘ௗ∗𝐺௠௔௫∗  𝜎௘௙௙𝜎௟  (A41

) 

where 𝜎௟ is the conductivity of the liquid phase, and 𝜎௘௙௙ the effective conductivity of the packed 
bed mixture. 
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Appendix C.2. Two-Plate Sensors 

First, we compute the ratio of conductance’s when the electrodes are located as in Figure 2a i.e., 
orthogonal to the flow direction. The conductance G is computed by means of the following 
expression: 𝐺 = 𝐼〈𝜙ா〉 − 〈𝜙ோ〉 = 𝐼1𝐴ா ׬ 𝜙(𝑅, 𝜃, 𝑧)𝑑𝑆 − 1𝐴ோ ׬ 𝜙(𝑅, 𝜃, 𝑧)஺ೃ஺ಶ 𝑑𝑆 (A42) 

Note that now the potential depends on the three spatial coordinates (𝑅, 𝜃, 𝑧), and we have 
assumed that the electrode surfaces are located at the radial coordinate 𝑟 = 𝑅, for the two plate 
electrodes. First, we compute the denominator of Equation (A42), when we have an inner dielectric 
cylinder of radius 𝑅௜௡, and second the case when we have the pipe full of water i.e., when 𝑅௜௡ = 0. 
The average potential difference between the emitter and receiver electrodes is: 𝛿𝜙 = 〈𝜙ா〉 − 〈𝜙ோ〉 = 1𝐴௘ න 𝑑𝑧௦೥/ଶ

ି௦೥/ଶ න 𝜙(𝑅, 𝜃, 𝑧)𝑅𝑑𝜃 − 1𝐴௘ න 𝑑𝑧௦೥/ଶ
ି௦೥/ଶ න 𝜙(𝑅, 𝜃, 𝑧)𝑅𝑑𝜃ିఏభିఏమ

ఏమఏభ  (A43) 

We notice that the average potential difference between the electrodes because of the symmetry 
relation of the potential for this case 𝜙(𝑅, 𝜃, −𝑧) = 𝜙(𝑅, 𝜃, 𝑧), and because also of the antisymmetric 
relation 𝜙(𝑅, −𝜃, 𝑧) = −𝜙(𝑅, 𝜃, 𝑧), which follows from Equation (A16), this can be written in the 
form: 𝛿𝜙 = 2𝐴௘ න 𝑑𝑧 න 𝜙(𝑅, 𝜃, 𝑧)𝑅𝑑𝜃ఏమఏభ

௦೥/ଶ
ି௦೥/ଶ  (A44) 

Substitution of the potential given by Equation (A16) in Equation (A44) yields after some 
calculus: 

𝛿𝜙 = ଼ூ௦೥ோఙೢగ஺೐ு୼ఏ ∑ ௔೘మ௠యஶ௠ୀଵ ቆଵାቀோ೔೙ ோൗ ቁమ೘ቇ
ቆଵିቀோ೔೙ ோൗ ቁమ೘ቇ + ସூுమఙೢగర஺೐௦೥∆ఏ ∑ ∑ ௖೘,೙మ௠మ௡యஶ௠ୀଵஶ௡ୀଵ 𝑓௠(𝛾௡ᇱ 𝑅௜௡, 𝛾௡ᇱ 𝑅), (A45) 

where 𝑐௠,௡ and 𝑓௠(𝛾௡ᇱ 𝑅௜௡, 𝛾௡ᇱ 𝑅), are defined by the expressions: 𝑐௠,௡ = 𝑎௠sin ቀ𝛾௡ᇱ ௦೥ଶ ቁ with 𝑎௠ = cos (𝑚𝜃ଶ)-cos(m𝜃ଵ) (A46) 

𝑓௠(𝛾௡ᇱ 𝑅௜௡, 𝛾௡ᇱ 𝑅) = ൤ூ೘(௫)ି௔೙,೘(ఊ೙ᇲ ோ೔೙)௄೘(௫)ூ೘ᇲ (௫)ି௔೙,೘(ఊ೙ᇲ ோ೔೙)௄೘ᇲ (௫)൨௫ୀఊ೙ᇲ ோ, with 𝑎௡,௠(𝛾௡ᇱ 𝑅௜௡) = ூ೘ᇲ ൫ఊ೙ᇲ ோ೔೙൯௄೘ᇲ (ఊ೙ᇲ ோ೔೙) (A47) 

being 𝛾௡ᇱ = 2𝑛𝜋/𝐻  and 𝐴௘ = 𝑠௭ 𝑅∆𝜃  the electrode area. Finally, 𝐼௠(𝑥), 𝐾௠(𝑥) are the hyperbolic 

Bessel functions of order m and first and second class, respectively, and 𝐼௠ᇱ (𝑥) = 𝑑 𝐼௠(𝑥) 𝑑𝑥ൗ  and 𝐾௠ᇱ (𝑥) = 𝑑 𝐾௠(𝑥) 𝑑𝑥ൗ . When the pipe is full of liquid i.e., when 𝑅௜௡ = 0, the potential difference attains 
its minimum value and therefore the conductance attains its maximum value. In this case substituting 
in Equation (A44), the potential given by Equation (A20) and performing the integration yields: 

𝛿𝜙௙௨௟௟ = 8𝐼𝑠௭𝑅𝜎௪𝜋𝐴௘𝐻Δ𝜃 ෍ 𝑎௠ଶ𝑚ଷஶ
௠ୀଵ + 4𝐼𝐻ଶ𝜎௪𝜋ସ𝐴௘𝑠௭∆𝜃 ෍ ෍ 𝑐௠,௡ଶ𝑚ଶ𝑛ଷஶ

௠ୀଵ
ஶ

௡ୀଵ
𝐼௠(𝛾௡ᇱ 𝑅௜௡)𝐼௠ᇱ (𝛾௡ᇱ 𝑅௜௡) (A48) 

Defining the non-dimensional conductance 𝐺∗, for the annular case and 𝐺௙௨௟௟∗  for the full of 
water case in the usual form:  𝐺∗ = ఙீೢ௟ = ூఋథఙೢ௟, and 𝐺௙௨௟௟∗ = ீ೑ೠ೗೗ఙೢ௟ = ூఋథ೑ೠ೗೗ఙೢ௟, (A49) 

where 𝑙 is the electrode length. Dividing 𝐺∗ by 𝐺௙௨௟௟∗  because of Equations (A45) and (A48) and 
after some simplifications gives the equation for the relative conductance 𝐺௥௘௟∗ : 



Sensors 2020, 20, 7042 27 of 29 

 

𝐺௥௘௟∗ =  𝐺∗𝐺௙௨௟௟∗ = 𝐶ଵ ∑ 𝑎௠ ଶ𝑚ଷ  ஶ௠ୀଵ + ∑ ∑ 𝑐௠,௡ଶ𝑚ଶ𝑛ଷஶ௠ୀଵஶ௡ୀଵ 𝐼௠(𝛾௡ᇱ 𝑅௜௡)𝐼௠ᇱ (𝛾௡ᇱ 𝑅௜௡)
𝐶ଵ ∑ 𝑎௠ଶ𝑚ଷஶ௠ୀଵ ൬1 + ቀ𝑅௜௡ 𝑅ൗ ቁଶ௠൰൬1 − ቀ𝑅௜௡ 𝑅ൗ ቁଶ௠൰ + ∑ ∑ 𝑐௠,௡ଶ𝑚ଶ𝑛ଷஶ௠ୀଵஶ௡ୀଵ 𝑓௠(𝛾௡ᇱ 𝑅௜௡, 𝛾௡ᇱ 𝑅) 

(A50) 

where all the magnitudes have been defined previously and the constant 𝐶ଵ  depends on the 
geometric characteristics of the probe and the pipe and is given by 𝑐ଵ = 2 𝑠௭ଶ𝑅𝜋ଷ𝐻ଷ  (A51) 

If the two plate electrodes are located along the flow direction in the inner pipe surface with 
boundary conditions given by Equations (23) and (24). Then, we assume that the distance between 
the center of the electrodes in the axial direction is 𝐷௘, as displayed in Figure 3, that both electrodes 
have the same area 𝐴௘ that the height of each electrode is 𝑠௭, and that each electrode has a wide 
length 𝑠௪, along the circumferential direction. Then the average potential difference between the 
emitter and receiver electrodes is given by: 𝛿𝜙 = 〈𝜙ா〉 − 〈𝜙ோ〉

= 1𝐴௘ න 𝑑𝑧ି ஽೐ି௦೥ଶ
ି ஽೐ା௦೥ଶ

න 𝜙(𝑅, 𝜃, 𝑧) 𝑅 𝑑𝜃∆ఏ/ଶ
ି∆ఏ/ଶ

− 1𝐴௘ න 𝑑𝑧 ஽೐ା௦೥ଶ
 ஽೐ି௦೥ଶ

න 𝜙(𝑅, 𝜃, 𝑧) 𝑅 𝑑𝜃∆ఏ/ଶ
ି∆ఏ/ଶ  

(A52) 

Then, because of Equation (A30), the electric potential verifies the following symmetry and 
antisymmetric relations, 𝜙(𝑅, 𝜃, 𝑧) = 𝜙(𝑅, 𝜃, 𝑧), and 𝜙(𝑅, 𝜃, −𝑧) = −𝜙(𝑅, 𝜃, 𝑧) (A53) 

Because of (A53), the average difference of potential between the electrodes simplifies to: 

𝛿𝜙 = 〈𝜙ா〉 − 〈𝜙ோ〉 = 4𝐴௘ න 𝑑𝑧ି ஽೐ି௦೥ଶ
ି ஽೐ା௦೥ଶ

න 𝜙(𝑅, 𝜃, 𝑧) 𝑅 𝑑𝜃∆ఏ/ଶ
଴  (A54) 

Substituting Equation (A30) for the electric potential in Equation (A54), followed by integration 
yields after some calculus the following result: 𝛿𝜙 = ଼ூோ(∆ఏ)మఙೢగு஺೐మ ∑ ௕೙మఊ೙యஶ௡ୀ଴  𝑓(𝛾௡𝑅௜௡, 𝛾௡𝑅) + ଷଶூோఙೢగு஺೐మ ∑ ∑ ௘೘,೙మఊ೙య ௠ஶ௠ୀଵஶ௡ୀ଴ 𝑓௠(𝛾௡𝑅௜௡, 𝛾௡𝑅) (A55) 

where 𝑓(𝛾௡𝑅௜௡, 𝛾௡𝑅) is defined by Equation (A8), but with different arguments, and 𝑓௠(𝛾௡𝑅௜௡, 𝛾௡𝑅) 
is defined by Equation (A47), finally 𝑒௠,௡ is defined by the equation: 𝑒௠,௡ = 𝑏௡ 𝑠𝑖𝑛 ቀ௠∆ఏଶ ቁ, with 𝑏௡ = 𝑐𝑜𝑠(𝛾௡ ஽೐ା௦೥ଶ ) − 𝑐𝑜𝑠(𝛾௡ ஽೐ି௦೥ଶ ), and 𝛾௡ = (ଶ௡ାଵ)గு  (A56) 

In the case that the pipe is full of liquid, we substitute Equation (A26) for the potential in Equation 
(A54), and after integration over the electrode area yields: 𝛿𝜙௙௨௟௟ = ଼ூோ(∆ఏ)మఙೢగு஺೐మ ∑ ௕೙మఊ೙యஶ௡ୀ଴  ூబ(ఊ೙ோ)ூభ(ఊ೙ோ) + ଷଶூோఙೢగு஺೐మ ∑ ∑ ௘೘,೙మఊ೙య ௠ஶ௠ୀଵஶ௡ୀ଴ ூ೘(ఊ೙ோ)ூ೘ᇲ (ఊ೙ோ) (A57) 

Defining the non-dimensional conductance 𝐺∗ , for the annular case and  𝐺௙௨௟௟∗  the non-
dimensional conductance for the full of water case as in Equation (A49), and dividing the expressions 
for 𝐺∗ and 𝐺௙௨௟௟∗  because of Equations (A55) and (A57) yields after some simplifications: 
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𝐺௥௘௟∗ = 𝐺∗𝐺௙௨௟௟∗
= (∆𝜃)ଶ4 ∑ 𝑏௡ଶ(2𝑛 + 1)ଷஶ௡ୀ଴  𝐼଴(𝛾௡𝑅)𝐼ଵ(𝛾௡𝑅)  + ∑ ∑ 𝑒௠,௡ଶ(2𝑛 + 1)ଷ 𝑚  ஶ௠ୀଵஶ௡ୀ଴ 𝐼௠(𝛾௡𝑅)𝐼௠ᇱ (𝛾௡𝑅)(∆𝜃)ଶ4 ∑ 𝑏௡ଶ(2𝑛 + 1)ଷஶ௡ୀ଴  𝑓(𝛾௡𝑅௜௡, 𝛾௡𝑅)  + ∑ ∑ 𝑒௠,௡ଶ(2𝑛 + 1)ଷ 𝑚ஶ௠ୀଵஶ௡ୀ଴ 𝑓௠(𝛾௡𝑅௜௡, 𝛾௡𝑅) 

(A58) 

Equation (A58) gives the relative value of the non-dimensional conductance for a two-plate 
electrode with respect to the conductance for the pipe full of liquid, when the electrodes are located 
along the z-axis in the flow direction.  

For holdup applications, one can consider a two-plate electrode conductance sensor and a 
homogeneous two-phase mixture in the space volume of the pipe crossed by the electric field lines 
that go from the emitter to the receiver electrode and with an effective conductivity 𝜎௘௙௙ . Then, from 
the previous expressions we can obtain the relative conductance, in that region, for the pipe full of 
the two-phase mixture 𝐺ఈ, to that of the pipe full of water denoted by 𝐺௠௔௫. In this case considering 
the effective conductivity 𝜎௘௙௙ for the two-phase mixture in that region and because of Equations 
(A48) and (A49), we obtain: 𝐺ఈ𝐺௠௔௫ = 𝜎௘௙௙𝜎௪  (A59) 

where we must notice that for two-plate sensors we are measuring the relative conductance in the 
region crossed by the electric field lines that go from the emitter to the receiver electrodes, which 
depends on the average value of the void fraction in that specific volume. Therefore, if one wants to 
have an average value in a cross-sectional volume of the pipe, one must perform an average of the 
results of several opposite two-plate sensors. For this reason, to measure the holdup Yang et al. [25] 
used four two-plate sensors, each one of which has its emitter and receiver electrodes forming 180°, 
and each detector forms an angle of 45° with the following one. The relative conductance is obtained 
as the average of the relative conductance of the four sensors. 
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