

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/176273

Barreda, M.; Dolz, MF.; Castaño Alvarez, MA.; Alonso-Jordá, P.; Quintana-Orti, ES. (2020).
Performance modeling of the sparse matrix-vector product via convolutional neural
networks. The Journal of Supercomputing (Online). 76(11):8883-8900.
https://doi.org/10.1007/s11227-020-03186-1

https://doi.org/10.1007/s11227-020-03186-1

Springer-Verlag

Noname manuscript No.
(will be inserted by the editor)

Performance Modeling of the Sparse Matrix–Vector
Product via Convolutional Neural Networks

Maria Barreda · Manuel F. Dolz ·
M. Asunción Castaño ·
Pedro Alonso-Jordá ·
Enrique S. Quintana-Ort́ı

Received: date / Accepted: date

Abstract Modeling the execution time of the Sparse Matrix-Vector multiplication
(SpMV) on a current CPU architecture is especially complex due to i) irregular
memory accesses; ii) indirect memory referencing; and iii) low arithmetic inten-
sity. While analytical models may yield accurate estimates for the total number
of cache hits/misses, they often fail to predict accurately the total execution time.
In this paper, we depart from the analytic approach to instead leverage Convo-
lutional Neural Networks (CNNs) in order to provide an effective estimation of
the performance of the SpMV operation. For this purpose, we present a high-level
abstraction of the sparsity pattern of the problem matrix and propose a blockwise
strategy to feed the CNN models by blocks of non-zero elements. The experimen-
tal evaluation on a representative subset of the matrices from the SuiteSparse
Matrix collection demonstrates the robustness of the CNN models for predicting
the SpMV performance on an Intel Haswell core. Furthermore, we show how
to generalize the network models to other target architectures to estimate the
performance of SpMV on an ARM A57 core.

Keywords Sparse Matrix-Vector Multiplication (SpMV), Performance Model-
ing, Supervised Learning, Convolutional Neural Networks (CNN).

1 Introduction

The Sparse Matrix-Vector multiplication (SpMV) is an operation of utmost impor-
tance in many scientific and engineering applications. Indeed, it is a fundamental

Maria Barreda, Manuel F. Dolz, M. Asunción Castaño
Dept. d’Enginyeria i Ciència dels Computadors, Universitat Jaume I de Castelló, Spain
E-mail: {mvaya,dolzm,castano}@uji.es

Pedro Alonso-Jordá
Depto. de Sistemas Informáticos y Computación, Universitat Politècnica de València, Spain
E-mail: palonso@upv.es

Enrique S. Quintana-Ort́ı
Depto. de Informática de Sistemas y Computadores, Universitat Politècnica de València, Spain
E-mail: quintana@disca.upv.es

2 Maria Barreda et al.

kernel, for instance, in the iterative solution of sparse linear systems associated
with partial differential equations (PDEs) arising in the analysis of the resistance
of concrete structures, the estimation of the electron orbits, or the evaluation of
the Earth’s gravitational field, among many others [1]. The SpMV kernel also
plays a fundamental role in various data-analytical processes, such as web search
engines, information retrieval, or the creation of economic models [2].

In many of these applications, the SpMV kernel is one of the most time-
consuming components, in part due to the memory-bound nature of this operation.
Estimating the execution time of SpMV is an important yet challenging problem
due to the combined effects of a number of properties intrinsic to the kernel: i)
irregular memory accesses (low temporal locality); ii) indirect memory referencing
(low spatial locality); and iii) low arithmetic intensity.1 For instance, the authors
in [3,4] found that typical sequential SpMV implementations generally achieve no
more than 10% of the machine peak floating-point rate on commodity microproces-
sors. In the best case, the arithmetic intensity of the SpMV in FP32 is 0.5, meaning
that the performance is generally bounded from above by the peak memory band-
width of the target platform. Other key elements that dictate the performance of
SpMV on a current computer architecture are the non-zero sparsity pattern and
row-density in the sparse matrix. These elements, together with the algorithm,
determine the sequence of memory accesses and, consequently, time-costly cache
misses. Over the last few years, a significant research effort has been conducted
with the purpose of modeling the performance of SpMV (see [5–7] and the ref-
erences therein). These analytical models, however, often rely on simplified cache
replacement policies and algorithmic costs which, in general, only provide theo-
retical estimations of the number of the memory-stalls and arithmetic operations,
respectively. Futhermore, they require both a deep understanding of the processor
architecture as well as a detailed analysis of the SpMV implementation [8].

On the other hand, Machine Learning (ML) is an alternative approach to ana-
lytical models for the derivation of mathematical models from sample data. Neu-
ral Networks (NNs) in particular have the ability to learn from a set of training
data and approximate linear and non-linear functions. Specifically, Convolutional
Neural Networks (CNNs) may provide a powerful means to capture spatial and
temporal dependencies using abstract representations of the sparse matrices in-
volved in the SpMV through a set of convolution filters that capture sophisticated
relations.

In this paper, we leverage CNNs as a tool to visualize and identify complex,
intricate interaction patterns and features present in the sparse matrix involved
in the SpMV operation with the goal of providing an accurate estimate of the
execution time on a CPU core. In particular, our paper makes the following con-
tributions:

– We leverage CNNs to model the execution time of the SpMV on a recent Intel
Xeon core using CSR [9] as the storage format. The approach though carries
over to any other specialized format for sparse matrices.

– We propose a blockwise realization to make the CNN model architecture-
independent of the dimensions of the sparse matrix, which helps at increasing
the amount of training/validation data.

1 The arithmetic intensity is defined as the ratio of total floating-point operations to total
data movement (in bytes).

Performance Modeling of the SpMV via Convolutional Neural Networks 3

– We evaluate the accuracy and demonstrate the robustness of the CNN-based
models using a representative subset of cases arising from real applications
collected in the SuiteSparse Matrix collection.

– We migrate the CNNs to an ARM architecture to assess the generality of the
proposed models.

The most obvious application for our offline cost estimator is that, given trained
models for a variety of processor architectures, choosing the best option among
them does not require direct access to the processors. In particular, inference can
be run offline on the (trained) models, on a single architecture different from that
which the networks reflect. Also, being able to estimate the execution cost of an
irregular and challenging operation such as SpMV paves the road toward applying
similar ML-driven techniques to modeling the cost of memory accesses for more
complex numerical kernels or even general-purpose applications.

The rest of this paper is organized as follows. Section 2 reviews some basic
concepts about SpMV and CNNs. Section 3 describes the strategy to accommo-
date the CSR format as a valid input for the CNN models and details the selected
CNN regression-based architecture. Section 4 evaluates the training process of the
proposed CNNs tuned with hyperparameter optimization; analyzes the accuracy
attained by the networks for SpMV; and migrates the models to a different ar-
chitecture. Section 5 revisits a few other works related to performance modeling
and/or linear algebra operations using NNs. Finally, Section 6 offers a few con-
cluding remarks and summarizes future research lines.

2 Background

In this section, we briefly review the SpMV kernel and some basic aspects of CNNs.
These concepts are the basis for the CNN models that are introduced in this work
to estimate the time cost of SpMV.

2.1 The sparse matrix-vector product

Consider the SpMV operation y = Ax, where A is a sparse (input) matrix of size
m × n, consisting of nnz non-zero elements; x is a dense input vector, of size n;
and y is the dense output vector, of size m. In this operation, the elements in
the matrix A are usually stored using a compressed format, such as Compressed
Sparse Row (CSR), Compressed Sparse Column (CSC), Coordinate (COO) or
Ellpack (ELL) [9]. In this work, we target CSR as this variant provides a flexible,
memory-efficient, and architecture-agnostic solution.

The CSR format stores the matrix using three arrays (vectors) that contain the
non-zero values, the row pointers, and the column index of each element, making
efficient use of the memory and permitting fast row accesses. Figure 1 provides a
simple example of a 4× 4 matrix stored in this format. There:

– The array vval, of length nnz, holds the non-zero entries of A in row-major
order.

– In the array vptr, of length n + 1, the difference between the elements i + 1
and i specifies the number of non-zero elements in the ith row of A. (2− 0 = 2
in the first row, 3− 2 = 1 in the second row, etc.)

4 Maria Barreda et al.

Algorithm 1 Realization of the SpMV algorithm using the CSR format.
Require: A→ m× n, x→ n, y → m
1: for i = 1, 2, . . . , n do
2: for j = A.vptr[i], A.vptr[i] + 1, . . . , A.vptr[i + 1]− 1 do
3: y[i] := y[i] + A.vval[j] · x[A.vpos[j]]
4: end for
5: end for

– The entries of the array vpos specify the column index of each matrix entry of
A, and hence, it is of length nnz as well. (We assume 0-based indexing.)

A =

 1 0 0 2
0 0 3 0
0 4 5 0
0 0 0 6

 vval[6] = {1, 2, 3, 4, 5, 6}
vptr[5] = {0, 2, 3, 5, 6}
vpos[6] = {0, 3, 2, 1, 2, 3}

Fig. 1: Example of a matrix (A) stored in CSR format.

Algorithm 1 shows the implementation of the SpMV kernel where the matrix
A is stored using such CSR format. There, the outer loop (indexed by i) iterates
over the matrix rows, while the inner loop (indexed by j) moves through the
entries of each row, using the vptr and vpos arrays to retrieve the proper index to
access x. Finally, vval is used to retrieve the value at the coordinate (i, j) of A.
As previously mentioned, the irregular memory accesses of this implementation
occur while retrieving the elements of the x vector, which are indirectly accessed
through the vpos array.

2.2 Convolutional Neural Networks

CNNs are a class of neural networks which are very efficient at identifying patterns
in data classification problems [10]. Indeed, CNNs are mainly used in pattern
recognition tasks with the purpose of mimicking the functionality of the receptive
fields in the human visual cortex. In general, a CNN of L layers consists of a
collection of C convolutional (CONV) layers, usually arranged in the first layers
of the network, followed by a reduced number of F = L − C fully-connected
(FC) layers in the final stages of the network. The neurons in a CONV layer l
are connected to a small subset of neurons in layer l − 1, and they are activated
according to the result of the convolution operation on n-dimensional filter or
kernel. The dimensions of this kernel in a 1D convolution, for instance, are k×cl−1,
with k being the filter size and c the number of channels in layer l−1. A CONV layer
can combine multiple filters, each responsible for detecting a complex nonlinear
feature and producing a single feature map (or channel) at layer l. The resulting
activations in such feature maps are then passed through a nonlinear function, such
as the Rectified Linear Unit (ReLU), which has reported to achieve fast training
in supervised learning of deep neural networks [11].

Many CNN architectures exhibit a common organization. For instance, the first
CONV layers aim at detecting basic patterns, while the subsequent ones try to
identify high-level complex features. To reduce the input data dimensionality, as it
is processed through the network, pooling layers are placed in-between successive

Performance Modeling of the SpMV via Convolutional Neural Networks 5

CONV layers. Pooling layers semantically merge similar information by creating
downsampled and summarized versions of the features detected by the CONV
layers. Consequently, they descrease the number of parameters and computation in
the network. Typical pooling operations are the maximum and average functions.

CNNs may also contain dropout layers, which are inserted to improve the
learning process and to counter the network overfitting. The idea underlying this
type of layers is to ignore a set of neurons that is chosen with a given probability
in a certain pass of the trainig process. This permits the co-dependency among
neurons which in turn leads to a better generalization on new input data. CNNs
may also include transformation layers, also known as “batch normalization” [12].
The purpose of these layers is to normalize the activations of a layer at each mini-
batch so that the mean activation and the standard deviation are close to 0 and 1,
respectively. This approach usually permits the use of higher learning rates while
it makes the training less sensitive to weight initialization.

Once all feature maps are processed through the set of C CONV layers, the
set of F FC layers generates a result for the CNN. An FC layer l connects each of
its neurons to all neurons in layer l − 1, following the same principles as those of
traditional multilayer perceptrons (MLPs). Depending on whether the CNN is a
realization of a classification problem or a regression model, layer L may contain
as many neurons as classes or a single one. In the former case, the neurons are
activated via non-linear functions (e.g. sigmoid, softmax or ReLU), while in the
latter a linear function activates the single neuron.

In the subsequent sections, we describe in detail the architecture of our CNNs
for modeling the execution time of SpMV based on regression.

3 Modeling SpMV using CNNs

In this section, we present our methodology to estimate the performance of Sp-
MV using CNNs. The memory-bound nature of SpMV is due to the low non-zero
densities and the irregular sparsity patterns in matrix A which, in general, dictate
a considerable volume of cache misses and DRAM memory accesses to retrieve the
entries of the x vector during the operation. Taking this into account, the vpos
array can be regarded as a key element to understand the distinct arithmetic-to-
memory access intensities and predict the global execution time of the operation.
With this idea in mind, we design a CNN where the inputs are the values of
the array vpos, from the CSR format. This vector represents a one-dimensional
image of the sparse matrix A that captures the order in which the entries of x
are retrieved from memory and the distances between consecutive accesses to this
vector. Once trained, the filters in the convolutional layers should be capable of
capturing meaningful features in the vpos array, such as patterns of distances
between non-zero entries, that yield useful estimations of the SpMV performance
via the relation between flops and cache hits/misses.

3.1 Methodology

Figure 2 depicts the methodology proposed to tackle the SpMV modeling problem.
As mentioned at the beginning of this section, the goal is to design a CNN that

6 Maria Barreda et al.

A

···

···

···vptr[n+1]

vpos[nnz]

vval[nnz]

···
···

Ttotal = b ∑ ti ≈ Treali=1

s

bs b2 b1

ts t2 t1

.

.

.

vpos

Convolutional Neural Network

· · ·

· · ·

· · ·

··· ··· ···

···
···

··· b1

b2

bs

···

Conv

FC

··· ··· ···

FC
FC

Conv
Pool

Pool

Fig. 2: Workflow for modeling the SpMV performance.

receives the vpos array as an input. However, given that sparse matrices may
present large variations on their size and number of nonzero entries (nnz), we
propose to split the vpos array into chunks (or blocks) of size b so as to obtain
a CNN design with a constant number of inputs. The main advantage of this
approach is that the CNNs can be used uniformly to predict individual execution
times of equal-sized blocks, which may belong to any sparse matrix, regardless of
its size and nnz value. Thus, considering that ti is the execution time per non-zero
element of the i-th block of A, the estimated total execution time for this matrix
can be calculated as the aggregation of the time-per-element for the dnnz/be = s
blocks multiplied by b; that is, Ttotal ≈ b

∑s
i=1 ti. Our design iteratively “feeds”

each block of vpos to the trained CNN so that the outputs provided by the network
correspond to estimates of the partial execution time (per element) of this block,
which can then be summed up in order to obtain the total execution time of the
SpMV for the matrix A. Note that if the number of nnz entries is not multiple of
b, the remaining block of size b′ < b is discarded. In our case, this is safe as the
smallest value of nnz for the selected sparse matrices is always higher than 5 M.
In consequence, with b = 5,000, only one block among 1,000 will be discarded.

The partitioning of vpos into blocks, though, forces us to implement a blockwise
version of the classic CSR-based SpMV Algorithm 1. This modification is required
to generate the training dataset for the CNNs, as each block of vpos has to be
labeled with its corresponding execution time per number of non-zero elements.
For instance, the input training data for a matrix A can be decomposed into a set
of s blocks of the vpos array along with their corresponding execution time per
non-zero element (tnnz). Algorithm 2 presents the procedure for computing the
SpMV by blocks of b non-zero elements. For each block, the algorithm computes
the product of the non-zero elements (according to vpos) by the corresponding
values of the input vector x. The result is then stored in the analogous position of
the output vector y (lines 14 and 21). Note that the algorithm includes the timing
instructions (lines 11 and 20) that gather the labels to later train the CNN.

3.2 Network architecture

Considering the proposed blockwise strategy, the next step is to design a CNN
architecture that offers accurate estimates of the execution time for SpMV. For
that purpose, we design a CNN-based regression model, where the activation of
the single output neuron is the estimated value for tnnz.

Performance Modeling of the SpMV via Convolutional Neural Networks 7

Algorithm 2 Blockwise realization of the SpMV algorithm based on the CSR
format.
Require: A→ m× n, x→ n, y → m,A.rows→ nnz, b→ block size
1: for i = 0, 1, . . . ,m− 1 do
2: for j = A.vptr[i], A.vptr[i] + 1, . . . , A.vptr[i + 1]− 1 do
3: A.rows[j] := i
4: end for
5: end for
6: start := 0
7: end := min(b, nnz)
8: while start < nnz do
9: prv := m

10: aux := 0.0
11: start timer()
12: for i = start, start + 1, . . . , end− 1 do
13: if A.rows[i] > prv then
14: y[A.rows[i− 1]] := y[A.rows[i− 1]] + aux
15: aux := 0.0
16: end if
17: aux := aux + A.vval[i] · x[A.vpos[i]]
18: prv := A.rows[i]
19: end for
20: stop timer()
21: y[prv] := y[prv] + aux
22: start := end
23: if (start + b) < nnz then
24: end := start + b
25: else
26: end := nnz
27: end if
28: end while

For the network architecture, we initially mimic the general structure of state-
of-the-art neural networks (e.g., AlexNet, LeNet or VGG), in which the common
trend is the stacking of blocks of convolutional layers combined with a pooling
layer at the end; see Section 2.2. Specifically, we opted for a sequence of one or
two convolutional layers (C), followed by a pooling layer (P), and repeated this
sequence twice. We denote these two distinct models as CPCP and CCPCCP,
respectively. We also considered the placement of dropout operators after the
pooling layers to reduce overfitting. In some cases, normalization layers were also
included between the last convolutional and pooling layers to adjust and scale the
activations among batches. For the second part of the network, we appended some
FC layers that combine the features detected in the previous convolutional stages.
Finally, the last FC layer generates the estimated output. It is important to remark
that some configuration parameters of the networks are set as hyperparameters,
e.g., the number of stacked FC layers at the end of the net, the number of neurons
per FC layer, the percentages of dropout in the corresponding layers, and the
number of kernels in the convolutional layers.

Following the previous ideas, we designed two different CNN architectures that
combine both arrangements of convolutional layers, we denote them as CNN-R1
and CNN-R2, depending on the CPCP and CCPCCP arrangement used, respec-
tively.

8 Maria Barreda et al.

Fig. 3: Evaluation workflow.

4 Experimental evaluation

In this section, we describe i) the generation of the training and testing datasets;
ii) the hyperparameter search for the proposed CNNs; iii) the training process and
analysis of the models’ performance in terms of validation accuracy and loss-related
metrics; iv) the testing evaluation with a set of sparse matrices through relative
mean errors of the SpMV execution time; and v) the migration and evaluation of
the models for estimating the SpMV execution time when executed on a distinct
target architecture. To carry out these tasks of the experimental evaluation, we
have employed the following hardware and software components:

– Hardware:
– The compute node where the networks were trained consisted of two In-

tel Xeon E5-2698, with a total of 40 cores clocked at 2.20 GHz, and four
NVIDIA Tesla P100 GPUs with 16 GB of DRAM at 1.48 GHz intercon-
nected via NVLink.

– The execution times corresponding to the SpMV operation were obtained
first on an Intel Xeon E5-2630 core at 2.40 GHz, hereafter referred to as
Haswell. To test the model migration technique, the SpMV operation
was then re-run on an ARM Cortex-A57 core at 2.00 GHz embedded on a
NVIDIA Jetson TX2, hereafter A57.

– Software: The machine learning framework for building the networks was Keras
v2.2.4 [13] on top of TensorFlow r1.10 [14]. Moreover, we employed Hyperas
v0.4.1 [15], a wrapper around Hyperopt [16] that implements an hyperparam-
eter optimization algorithm for Keras-based models that leverages Bayesian
search algorithms such as the tree of Parzen estimators [17]. Finally, the ad-
hoc SpMV benchmark was implemented in C and compiled with GCC 5.3.0
with the usual optimization flags.

The training and evaluation workflow is depicted in Figure 3. First, the training
and testing datasets for a given block size of b are built. Note that the datasets are
labeled by executing the SpMV operation on the Haswell core. Next, we obtain
the optimized versions of the models by performing a hyperparameter search.
Afterward, we train the models using the previous training dataset. Finally, we
apply them repeatedly (i.e., to each block of the sparse matrix) to estimate the
total execution times of the SpMV operation (inference) and compute the relative
errors with respect to the real execution times for each sparse matrix in the testing
dataset.

Performance Modeling of the SpMV via Convolutional Neural Networks 9

4.1 Obtaining the dataset

The training and testing datasets were obtained by realizing the blockwise Sp-
MV operation, as detailed in Algorithm 2, for the selected sparse matrices while
measuring the time-per-nonzero, tnnz, for each of the vpos blocks. For this purpose,
we selected 173 sparse matrices with a number of nonzeros ranging between 1 M
and 10 M, from the SuiteSparse Matrix Collection [18]. From these 173 matrices,
108 (63%) were selected for training, while the remaining 65 (37%) were reserved
for testing. Similarly, 80% of the training dataset was employed only for training,
and the remaining 20% was used for validation so as to prevent overfitting and
guide the training process.

To analyze the impact of the block size, i.e., the number of non-zero elements
per chunk, we also experiment with different values of b ∈ {250, 500, 750, 1,000,
3,000, 5,000}. For that purpose, we obtained different training, validation and
testing datasets for each value of b. Note that a concrete sparse matrix with nnz
nonzero entries yields dnnz/be blocks that are part of the respective dataset. In the
end, each block is labeled with its corresponding tnnz, together with the number
of rows/columns and nnz elements of the associated sparse matrix. It is important
to remark that we do not use block sizes below 250 given that their execution time
may be biased by inherent cache data locality effects.

4.2 Building and tuning the models

The proposed CNN models were implemented using Keras on top of TensorFlow,
for each of the selected block sizes (i.e., inputs to the CNN). During the model
building process, we identified a set of hyperparameters that have to be properly
set prior to perform the training phase. These hyperparameters comprise the num-
ber of kernels in CONV layers, the kernel dimensions, the number of FC layers
and number of neurons in each, the batch size, the learning rate, the dropout
percentages, and the optimization algorithm.

Setting and testing each of the hyperparameters combinations manually is
a cumbersome and prone-error process, as the search space is too large for a
complete search within a manageable amount of time. To deal with this problem,
we employed the Hyperas tool, a wrapper around Hyperopt for hyperparameter
optimization of Keras models which partially search the parameter space. To use
Hyperas, we define the range of values that the hyperparameters can take in order
to allow the algorithm to find fair configurations.

Table 1 shows the number of times, expressed in percentage, that a given
hyperparameter was chosen by Hyperas within the proposed convolutional models
and the selected block sizes. We denote this metric as percentage of choice. The
values in the tuple (k1, k2) appearing in columns of Table 1 labeled as “number
of kernels in blocks of CONV layers” stand, respectively, for the number of filters
used in the first (k1) and second (k2) block of CONV layers in both CNN-R1 and
CNN-R2 models. Note that the table cells are colored from green to red representing
percentages from 0% to 100%, respectively. Regarding the number of kernels in
the CONV layers, the preferred option consisted of 32 and 64 filters in the first
and second block of the CONV layers, respectively. With respect to the kernel
size, all tested values for the number of FC layers and the number of neurons per

10 Maria Barreda et al.

H
y
p

er
p

a
ra

m
et

er

#
o
f

k
er

n
el

s
in

b
lo

ck
s

o
f

C
O

N
V

la
y
er

s

K
er

n
el

si
ze

in
C

O
N

V
la

y
er

s

#
o
f

F
C

la
y
er

s

#
o
f

n
eu

ro
n

s
in

F
C

la
y
er

s

S
G

D
o
p

ti
m

iz
er

In
it

ia
l

le
a
rn

in
g

ra
te

B
a
tc

h
si

ze

(1
6
,

3
2
)

(3
2
,

6
4
)

3
×

1

5
×

1

7
×

1

9
×

1

1 2 3 1
0

1
0
0

1
,0

0
0

A
d

a
m

S
G

D

R
M

S
p
ro

p

0
.1

0
.0

1

0
.0

0
1

1
2
8

2
5
6

5
1
2

1
,0

2
4

CNN-R1 50.0 50.0 20.0 20.0 33.3 26.7 50.0 33.3 16.7 10.0 60.0 30.0 100.0 – – – 83.3 16.7 – 50.0 16.7 33.3

CNN-R2 83.3 16.7 25.0 12.5 31.3 31.3 33.3 66.7 – 20.0 – 80.0 66.7 16.7 16.6 – 50.0 50.0 50.0 33.3 – 16.7

Table 1: Percentages of choice for the CNN models hyperparameters.

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

250 500 750 1000 3000 5000

Lo
ss

 (M
SE

)

Block size

 CNN-R1 CNN-R2

(a) Validation loss (MSE) for varying block
sizes.

 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0.1
 0.11
 0.12

 0 5 10 15 20 25 30 35 40 45 50

Lo
ss

 (M
SE

)

Epoch

Training
Validation

(b) Progress of the training and validation ac-
curacy using the CNN-R2 model with b = 250.

Fig. 4: Validation and progress of the training for the CNN models.

FC layer are equally valid. In contrast, the preferred SGD optimizer is Adam with
an initial learning rate value of 0.001. Note that in our experiments we use an
adaptive learning rate that multiplies by 0.1 when the mean squared error (MSE)
does not improve any longer. Regarding the batch size, a generally good choice is
256.

4.3 Training process

In supervised learning, the entire training dataset is commonly divided randomly
into the training (in-sample) and validation (out-of-sample) (sub)sets. First is used
for estimating the model weights (and biases), while the second is only leveraged to
guide the training process. Although this practice is well established, the random
division of a sample collection may bias the weight estimation, affecting the per-
formance of the models. For this reason, an important step prior to the remaining
experimentation is to use a cross-validation scheme to analyze the performance
behavior among k data folds. Cross-validation is a technique to assess how the
models generalize given an unseen independent dataset [19].

In this study, we use 5-fold cross-validation, where the dataset is divided into
five equal-sized partitions, retaining a single partition as validation data and the
remaining four as training data. The process is repeated five times, with each of
the five subsamples selected exactly once as validation data. The results showed
that the training-validation partitioning does not affect the models’ performance,
as there are enough representative data in the considered partitions. Therefore,
from now on, we pick the first 20% samples of the entire training set for validation.

Performance Modeling of the SpMV via Convolutional Neural Networks 11

 0.1

 1

 10

 100

250 500 750 1000 3000 5000

Re
la

tiv
e

m
ea

n
er

ro
r (

%
)

Block size

 CNN-R1 CNN-R2

Fig. 5: Relative mean error in the execution time using different block sizes on
Haswell.

 0.01

 0.1

 1

 10

 100

n
d
3
k

s
h
i
p
s
e
c
1

J
P

s
h
i
p
s
e
c
5

s
h
i
p
s
e
c
8

s
h
i
p
_
0
0
3

t
h
r
e
a
d

s
3
d
k
q
4
m
2

s
h
i
p
_
0
0
1

s
m
t

m
s
c
2
3
0
5
2

B
e
n
E
l
e
c
h
i
1

s
3
d
k
t
3
m
2

n
d
1
2
k

D
u
b
c
o
v
a
3

p
w
t
k

v
a
n
b
o
d
y

c
r
a
n
k
s
e
g
_
1

o
i
l
p
a
n

m
s
c
1
0
8
4
8

c
r
a
n
k
s
e
g
_
2

b
m
w
c
r
a
_
1

D
u
b
c
o
v
a
2

r
a
e
f
s
k
y
4

q
a
8
f
m

a
p
a
c
h
e
2

c
f
d
2

c
f
d
1

n
a
s
a
s
r
b

g
y
r
o
_
k

g
y
r
o

o
l
a
f
u

c
t
2
0
s
t
i
f

p
a
r
a
b
o
l
i
c
_
f
e
m

d
e
n
o
r
m
a
l

t
h
e
r
m
o
m
e
c
h
_
d
M

b
c
s
s
t
k
3
6

o
f
f
s
h
o
r
e

e
c
o
l
o
g
y
2

2
c
u
b
e
s
_
s
p
h
e
r
e

L
a
r
g
e
R
e
g
F
i
l
e

H
a
r
d
e
s
t
y
2

A
v
e
r
a
g
e

Re
la

tiv
e

er
ro

r (
%

)

Sparse matrices

 CNN-R1, b=250 CNN-R2, b=1000

Fig. 6: Relative error in the execution time using the optimal block size on
Haswell.

The training of the proposed CNNs aims to minimize the loss function, given
the regression based nature of the model. For that, we train the optimized ver-
sions of the models according to the selected hyperparameters with the previous
datasets. Figure 4a shows the MSE validation loss metric, expressed in ns2, used
to measure the model quality for the CNN-R1 and CNN-R2 models using the col-
lection of block sizes. In the plot, we observe a clear trend for both models showing
that the MSE increases with the block size. Also, the MSE for CNN-R2 is lower
than that for CNN-R1 when small block sizes are adopted, which indicates that a
Conv-Conv-Pool pattern with small block size delivers higher accuracy. From
this analysis, we can conclude that the best choice is to employ a small block size
and the CNN-R2 model.

To gain further insights into the evolution of the MSE for the training and
validation data, Figure 4b displays the learning curves for the CNN-R2 model and
b = 250. In this case, both the training and validation MSE losses stabilize after
15 epochs, where the validation accuracy has a slightly superior loss during the 50
training epochs.

4.4 Testing the models

Once the models are trained, the next step is to evaluate them using the testing
dataset, which is composed of 65 unseen sparse matrices. For that, we use the
relative mean error (RME) as a metric to account for the average relative error

12 Maria Barreda et al.

 0.1

 1

 10

 100

250 500 750 1000 3000 5000

Re
la

tiv
e

m
ea

n
er

ro
r (

%
)

Block size

 CNN-R1 CNN-R2

Fig. 7: Relative mean error in the execution time using different block size on A57.

 0.001

 0.01

 0.1

 1

 10

 100

c
f
d
1

D
u
b
c
o
v
a
3

q
a
8
f
m

c
f
d
2

a
p
a
c
h
e
2

J
P

d
e
n
o
r
m
a
l

D
u
b
c
o
v
a
2

s
3
d
k
t
3
m
2

p
a
r
a
b
o
l
i
c
_
f
e
m

m
s
c
2
3
0
5
2

s
h
i
p
s
e
c
5

B
e
n
E
l
e
c
h
i
1

e
c
o
l
o
g
y
2

v
a
n
b
o
d
y

o
i
l
p
a
n

g
y
r
o

g
y
r
o
_
k

b
c
s
s
t
k
3
6

p
w
t
k

c
t
2
0
s
t
i
f

n
a
s
a
s
r
b

s
h
i
p
s
e
c
1

s
h
i
p
s
e
c
8

s
3
d
k
q
4
m
2

o
l
a
f
u

s
h
i
p
_
0
0
3

b
m
w
c
r
a
_
1

r
a
e
f
s
k
y
4

L
a
r
g
e
R
e
g
F
i
l
e

m
s
c
1
0
8
4
8

c
r
a
n
k
s
e
g
_
1

s
m
t

c
r
a
n
k
s
e
g
_
2

t
h
r
e
a
d

s
h
i
p
_
0
0
1

H
a
r
d
e
s
t
y
2

o
f
f
s
h
o
r
e

n
d
1
2
k

n
d
3
k

t
h
e
r
m
o
m
e
c
h
_
d
M

A
v
e
r
a
g
e

Re
la

tiv
e

er
ro

r (
%

)

Sparse matrices

 CNN-R1, b=250 CNN-R2, b=250

Fig. 8: Relative error in the execution time using the optimal block size on A57.

between the predicted and measured total execution time for all test matrices, i.e.,

RME =
1

p

p∑
i=1

|predictedi −measuredi|
measuredi

,

where p is the total number of matrices in the testing dataset.
Figure 5 reports the RME for the selected block sizes in the testing dataset.

In general, the RME metric ranges between 1% and 7%, which indicates that the
models provide fairly good estimations. Regarding the models, we do not observe
a significant difference between the alternative convolutional configurations. We
also notice that a small block size yields a lower RME. In addition, given that
the error is below 10%, the strategy of discarding the last block of vpos array
which is not entirely filled with values does not significantly affect the prediction
performance.

As a complementary experiment, Figure 6 exposes the relative error (RE) per
test matrix for the CNNs and the best block sizes (as determined in the previous
analysis). There, the matrices in the plot are sorted according to the RE value
delivered by CNN-R1. The results show that the RE is below 1% for roughly half
of the tested matrices for both model architectures.

4.5 Cross-architecture model migration

To validate the generalization of the CNNs, we migrate the models to estimate the
execution time of the SpMV operation on a different architecture. This migration

Performance Modeling of the SpMV via Convolutional Neural Networks 13

is performed in order to store previously-gained knowledge and apply it to a re-
lated problem. In our case, we preserve the model features (i.e., CNN architecture
and chosen hyperparameters), and re-train all their weights. The adopted training
and testing datasets contain the same matrix used for the Haswell architecture,
but the corresponding tnnz values included in these new datasets are those ob-
tained when the SpMV operation is realized on an ARM A57 core. It is important
to remark that both A57 and Haswell core architectures are quite different in
terms of cache hierarchy, a key feature in a memory-bound operation performance.
For instance, the Haswell core has a 32-KiB L1 and a 256-KiB L2 associative
caches with a 20-MiB L3 cache, while the A57 core is furnished with a 32-KiB
L1 cache and a 2-MiB shared L2 cache. Moreover, the degree of associativity and
replacement policies of the caches are also different. In general, thanks to this
technique, we avoid designing the CNN and calculating the hyperparameters from
scratch when the model has to predict the SpMV execution time on a different
architecture.

Figure 7 presents the RME obtained by the models and the set of block sizes
using the new dataset and the re-trained models. In general, the RME values are
higher for the CNNs than those observed for the Haswell core. This is partly due
to having inherited the optimal hyperparameters for the Haswell core. Although
the weights can converge to optimal values during the re-training process, the
hyperparameters are fixed and may not be the best options for the new target
architecture. However, the RME results, ranging between 5% and 15% in most
cases, still provide fairly good estimations. Thus, for example, the RME for the
CNN-R1 model is always below 10%. Despite the increased RME values for all
models when the target core is A57 instead of Haswell, we can observe that
the model migration approach is an appealing technique as it avoids the cost of
hyperparameter search.

Figure 8 displays the RE per sparse matrix for both models using the optimal
block sizes (according to the previous experiment) while estimating the execution
time on the A57 core. As illustrated there, the CNN-R1 and CNN-R2 attain similar
RE for all sparse matrices.

In a separated experiment, we also used a transfer learning approach [20], i.e.,
preserving all the weights except those of the last FC layer. However, the RME
values obtained by the models were much higher than those achieved re-training
all the weights.

5 Related work

CNNs are key tools in supervised learning that date back to the 1960s and 1970s,
though deep learning (i.e., machine learning via deep neural networks) has re-
cently become very popular due to the adoption of modern accelerator architec-
tures and the data deluge. In addition, tools like Keras [13] and TensorFlow [14]
have contributed to making neural networks and deep learning more accessible.
Deep learning techniques via CNNs outperform other mechanisms due to the in-
tegration of data feature extraction within the training process and the ability to
deal with large data sets. Consequently, CNNs have been successfully applied in
many machine learning-related areas [10, 21, 22]. However, the potential of deep
learning is still largely unexplored in linear algebra. In particular, only a few works,

14 Maria Barreda et al.

briefly described next, have previously addressed problems related to performance
modeling and/or the SpMV operation using the deep learning paradigm.

Götz and Anzt [23] view the matrix sparsity pattern as an image to train a
CNN that is capable of detecting strongly connected blocks in order to derive
block-Jacobi preconditioners. These preconditioners are then used to accelerate
the iterative solution of the corresponding linear system. Similarly, Zhao et al. [24]
leverage CNNs to select the most adequate storage format to store the sparse
matrix involved in the SpMV operation. They also employ transfer learning to
alleviate cross-architecture migration for CNN-based models to select the optimal
matrix storage format. Cui et al. [25] also apply CNNs to determine the best-
performing implementation of the SpMV operation from a given input sparse
matrix. Nisa et al. [26] predict the best format for SpMV by feeding the networks
with different sparsity features of the processed matrices, instead of using them
as 2D images, as it was the case in the three previous works. The neural models
adopted in this work were MLPs and had the same topology for all the experiments.

With respect to performance modeling, Tiwari et al. [27] employ MLPs to es-
timate the performance, power and energy usage of certain computational kernels.
Benatia el al. [28] train a variety of MLPs to predict the GPU performance of
the SpMV kernel for different types of matrix storage formats. The inputs of the
MLPs, in this case, are a few sparsity features, which depend on the corresponding
sparse matrix format to be evaluated. Nisa et al. [26] carry out a similar work as-
suming two different GPU architectures with simple and double-precision formats
and different sparsity features. For each of these combinations, they train an MLP
to predict the execution time of the SpMV operation for all the adopted sparse
formats and another MLP for all the formats.

All in all, the afore-mentioned performance modeling works are different to
the technique proposed in this paper in three main aspects: i) we leverage CNNs
instead of MLPs, so that our approach permits capturing spatial features of the
sparse matrices; ii) we feed the CNNs directly with the sparse matrix structure
instead of using sparse matrix-related metrics that summarize specific features;
and iii) our blockwise methodology allows creating large datasets with a reduced
number of sparse matrices.

6 Conclusions and future work

We have proposed a collection of CNNs to estimate the execution time of the
SpMV operation, a memory-bound kernel with important applications in many
scientific and engineering problems. Moreover, modeling the execution of the Sp-
MV operation plays an important role when there is no direct access to the target
platform. In this sense, the CNN models capture the complex patterns and features
of the sparse matrix (stored in CSR format), which basically dictate the irregular
accesses to the dense input vector. In order to make the CNN architecture indepen-
dent of the sparse matrix size, we leverage a blockwise strategy. Furthermore, we
tackle the performance estimation problem via regression realizations, resulting in
different alternatives for the CNN architecture. With these CNN designs, we per-
formed a hyperparameter optimization search on the number of filters in CONV
layers, the number of FC layers and neurons per layer, optimization algorithm,
and batch size, among others.

Performance Modeling of the SpMV via Convolutional Neural Networks 15

During the experimental evaluation, we trained the networks on a set blocks
of sparse matrices from the SuiteSparse matrix collection labeled with the corre-
sponding SpMV execution time on a Haswell core. The relative mean error for
the set of testing matrices for all proposed models ranges between 1% and 7%.
The results also reveal that network architectures deliver accurate results for small
block sizes. This is because, in general, small blocks reflect a small set of sparsity
patterns which, in turn, can be better captured by the CNN filters. Consequently,
having small block sizes increases the execution time variability among blocks, so
the predictions of tnnz vary in a wider interval. In contrast, working with large
block sizes leads to homogeneous execution time labels, preventing the CNN to
learn important sparsity features comprised in a single block.

Finally, we re-trained the models obtained for the Haswell architecture using
a second dataset with the block labels corresponding to the execution time of Sp-
MV on an A57 core. In this case, while the relative mean error of the re-trained
models increases to 15%, the use of this technique avoids the hyperparameter
search, demonstrating that the models can be re-trained and re-used to estimate
the execution time of the same operation on a distinct target architecture. With
this study, we also demonstrate that a simple network architecture, inspired by the
structure of well-known CNNs, such as AlexNet, LeNet or VGG, can be powerful
enough to deliver accurate execution time estimations of the SpMV kernel.

As future work, we plan to extend the CNNs to estimate the execution time
and energy consumption of the parallel implementation of the SpMV operation.
We will also analyze network architectures which can accept hardware-dependent
information, such as unchangeable constants of the target platform, e.g., cache
sizes, CPU frequency, memory bandwidth, etc. An ultimate goal is to leverage
this methodology to model the execution time and energy consumption of more
complex linear algebra operations or even building blocks employed in neural net-
work frameworks such as CONV layers.

Acknowledgments

This work was supported by project TIN2017-82972-R from the MINECO, Spain.
Manuel F. Dolz was also supported by the Plan GenT project CDEIGENT/2018/014
from the Generalitat Valenciana, Spain. Maria Barreda was also supported by the
POSDOC-A/2017/11 project from the Universitat Jaume I.

References

1. Ahmad Abdelfattah, Hatem Ltaief, and David Keyes. High performance multi-gpu SpMV
for multi-component pde-based applications. In Jesper Larsson Träff, Sascha Hunold, and
Francesco Versaci, editors, Euro-Par 2015: Parallel Processing, pages 601–612, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

2. William E Schiesser. Computational mathematics in engineering and applied science:
ODEs, DAEs, and PDEs. CRC press, 2014.

3. Richard Vuduc, James W Demmel, and Katherine A Yelick. OSKI: A library of automati-
cally tuned sparse matrix kernels. Journal of Physics: Conference Series, 16:521–530, jan
2005.

4. S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimization of
sparse matrix-vector multiplication on emerging multicore platforms. In SC ’07: Proceed-
ings of the 2007 ACM/IEEE Conference on Supercomputing, pages 1–12, Nov 2007.

16 Maria Barreda et al.

5. A. Elafrou, G. Goumas, and N. Koziris. Performance analysis and optimization of sparse
matrix-vector multiplication on modern multi- and many-core processors. In 2017 46th
International Conference on Parallel Processing (ICPP), pages 292–301, Aug 2017.

6. ShiGang Li, ChangJun Hu, JunChao Zhang, and YunQuan Zhang. Automatic tuning
of sparse matrix-vector multiplication on multicore clusters. Science China Information
Sciences, 58(9):1–14, Sep 2015.

7. Ping Guo and Liqiang Wang. Accurate crossarchitecture performance modeling for sparse
matrixvector multiplication (SpMV) on GPUs. Concurrency and Computation: Practice
and Experience, 27(13):3281–3294, 2015.

8. K. Li, W. Yang, and K. Li. Performance analysis and optimization for SpMV on GPU
using probabilistic modeling. IEEE Transactions on Parallel and Distributed Systems,
26(1):196–205, Jan 2015.

9. Victor Eijkhout and Roldan Pozo. Data structures and algorithms for distributed sparse
matrix operations. Technical report, 1994.

10. Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai,
Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, and Tsuhan Chen. Recent advances
in convolutional neural networks. Pattern Recognition, 77(C):354–377, May 2018.

11. Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks.
In Geoffrey Gordon, David Dunson, and Miroslav Dudk, editors, Proceedings of the Four-
teenth International Conference on Artificial Intelligence and Statistics, volume 15 of
Proceedings of Machine Learning Research, pages 315–323, Fort Lauderdale, FL, USA,
11–13 Apr 2011. PMLR.

12. Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. pages 448–456, 2015.

13. Keras: The Python Deep Learning library. https://keras.io/.
14. TensorFlow, an open source machine learning library for research and production. https:

//www.tensorflow.org/.
15. Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization.

http://maxpumperla.com/hyperas/.
16. James Bergstra, Dan Yamins, and David D. Cox. Hyperopt: A python library for opti-

mizing the hyperparameters of machine learning algorithms.
17. J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model search: Hyperparameter

optimization in hundreds of dimensions for vision architectures. In Proceedings of the 30th
International Conference on International Conference on Machine Learning - Volume 28,
ICML’13, pages I–115–I–123. JMLR.org, 2013.

18. SuiteSparse Matrix Collection. https://sparse.tamu.edu/.
19. Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.
20. Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Trans. on Knowl.

and Data Eng., 22(10):1345–1359, October 2010.
21. Jrgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,

61:85 – 117, 2015.
22. Yann LeCun, Y Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436–44, 05 2015.
23. Markus Götz and Hartwig Anzt. Machine learning-aided numerical linear algebra: Convo-

lutional neural networks for the efficient preconditioner generation. In Procs of ScalA18:
9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, WS at
Supercomputing 2018, 11 2018.

24. Yue Zhao, Jiajia Li, Chunhua Liao, and Xipeng Shen. Bridging the gap between deep
learning and sparse matrix format selection. SIGPLAN Not., 53(1):94–108, Feb. 2018.

25. Hang Cui, Shoichi Hirasawa, Hiroaki Kobayashi, and Hiroyuki Takizawa. A machine
learning-based approach for selecting SpMV kernels and matrix storage formats. IEICE
Transactions on Information and Systems, E101.D(9):2307–2314, 2018.

26. Israt Nisa, Charles Siegel, Aravind Sukumaran Rajam, Abhinav Vishnu, and P Sadayap-
pan. Effective machine learning based format selection and performance modeling for
SpMV on GPUs. EasyChair Preprint no. 388, EasyChair, 2018.

27. A. Tiwari, M. A. Laurenzano, L. Carrington, and A. Snavely. Modeling power and en-
ergy usage of HPC kernels. In 2012 IEEE 26th International Parallel and Distributed
Processing Symposium Workshops PhD Forum, pages 990–998, May 2012.

28. A. Benatia, W. Ji, Y. Wang, and F. Shi. Machine learning approach for the predicting
performance of SpMV on GPU. In 2016 IEEE 22nd International Conference on Parallel
and Distributed Systems (ICPADS), pages 894–901, Dec 2016.

https://keras.io/
https://www.tensorflow.org/
https://www.tensorflow.org/
http://maxpumperla.com/hyperas/
https://sparse.tamu.edu/

