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Abstract  

In order to be able to predict train interior noise, it is first important to calculate the external 

sound pressure distribution on the floor, sidewalls and roof. This can then be combined with 

the transmission loss of the train panels to determine the interior noise. Traditional techniques 

such as the finite element and boundary element (FE/BE) methods in three dimensions (3D) 

can achieve this result but are computationally very expensive. In this paper, a wavenumber-

domain boundary element (2.5D BE) approach is instead adopted to predict the propagation of 

rolling noise from the wheels, rails and sleepers to the train external surfaces. In the 2.5D 

models, only the cross-section of the vehicle is represented by using boundary elements, while 

the third direction is considered in terms of a spectrum of wavenumbers. The rail is treated 

directly in the wavenumber domain but, to include the wheel, a method of representing point 

sources in a 2.5D approach is developed. An inverse Fourier transform is applied to obtain the 

spatial distribution of the sound pressure on the train surfaces. The validity of this approach 

has been verified by comparison with experimental data. The 2.5D BE method was first used 

to predict the sound distribution on a 1:5 scale train surfaces due to a point source below the 

vehicle, and later it was used to predict the sound pressure on a full-scale metro vehicle due to 

a loudspeaker. Comparisons of predictions with measurements on the scale model and on the 

metro vehicle showed good agreements. For a point source below the vehicle, the sound 

pressure levels on the train floor were found to be around 20 dB higher than on the sides, and 

the sound pressure on the train roof was negligible. The 2.5D BE method was also used to 

predict the sound pressure on the metro vehicle surfaces in running operation, in which the 

predicted sound pressure levels on the train external surfaces agreed with measurements to 

within 3 dB and similar trends were found in terms of spectra and longitudinal distribution of 

pressure. 
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1 Introduction 

In developing new trains, one of the aspects to consider is the interior noise. With increasing 

train speeds and passenger demands, researchers and manufacturers are developing strategies 

to predict and mitigate noise transmission into the vehicles. Different approaches suitable for 

train interior noise prediction have been studied and adopted with different degrees of success. 

These include statistical energy analysis (SEA) [1, 2], a finite element (FE) method or hybrid 

FE-SEA approach [3, 4] and the ray-tracing method [5, 6]. All these methods require a good 

description of the noise sources, an estimate of the sound pressure distribution around the 

vehicle and a prediction of noise transmission through train wall structures. The aim of this 

paper is to present an approach capable of determining the exterior sound pressure distribution 

on the train walls due to rolling noise sources. 

Among the various sources that radiate noise when a train travels along a track, rolling noise 

is often the dominant one. It is radiated by the vibration of the wheels, rails and sleepers, and 

propagates to the external surfaces of the train body. Rolling noise, including the interaction 

between the wheel and the track, has been well studied in recent decades and validated models 

exist, notably TWINS [7]. More recent research on railway rolling noise has led to improved 

models for the rail radiation [8, 9].  Besides, Zhang. et al. [10] proposed a model of a discretely 

supported track based on the waveguide finite element (2.5D FE) approach in order to improve 

the predictions of the vibration of the track. Very good agreement was found between their 

predictions and the measurement results, especially for the track with soft rail pads. Of interest 

is also the effect of slab tracks [11, 12] and the influence of the rail fastener stiffness [13].  

Various strategies have been presented for determining the noise transmission through train 

wall structures, such as the SEA method and the 2.5D FE/BE approach. The SEA method can 

give understanding of how the energy flows through the complex wall structure of a train with 

high computational efficiency, which is beneficial at the early design stage. The 2.5D FE/BE 

approach is more accurate and gives a deeper understanding of the mechanism of noise 

transmission through complex walls. Both approaches can be used for both the airborne and 

the structure-borne paths. An example of the use of the SEA method to model the noise 

transmission through extruded panels was presented by Geissler and Neumann [14]; Xie et al. 

[15] also used the SEA method to predict the vibro-acoustic behaviour of aluminium extrusions. 
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Orrenius et al. [16] modelled the acoustic transmission through extruded profiles of railway 

vehicles by using SEA combined with the 2.5D FE method. Nilsson et al. [17] investigated the 

noise transmission through extruded panels using a coupled 2.5D FE/BE method. During recent 

years, new strategies for predicting the noise transmission through extruded walls with the 

influence of mean flow on the outer surface [18] and including porous materials [19] have also 

been developed. All these have increased the understanding of how sound is transmitted 

through complicated extruded structures that are commonly used in trains or aeroplanes. 

However, in addition to the sound transmission properties of the walls enclosing the interior of 

a vehicle, it is necessary to know the distribution of sound pressure on the exterior surfaces of 

the vehicle to be able to predict the interior noise.    

Zheng et al. [20] presented a comprehensive model for the interior noise of a high-speed train, 

in which all the main exterior noise sources were considered. The strength of the noise sources 

and the transmission from the sources to the train walls were obtained mainly from 

measurements or from simulations using commercial software based on boundary element 

analysis or computational fluid dynamics; however, the details of the modelling strategies of 

the sources were not given in detail. Bistagnino et al. [6] compared a Fast Multipole BEM and 

beam-tracing technique with measurements of the sound pressure on the train walls due to 

loudspeakers placed close to the wheels. The predictions from both methods agreed well with 

the measurements, but the need to deal with complicated train structures in 3D domain makes 

the procedure difficult to handle at a design stage. Kohrs et al. [21] compared different 

approaches and methods, including BEM, ray tracing and SEA to calculate the pressure field 

around the car body for either artificial sources or real operation in free field and in tunnel. 

Acceptable accuracy was achieved although various simplifications and assumptions had to be 

made and there were uncertainties in the various parameters involved. 

In this paper, the 2.5D BE method is introduced with the aim of predicting the sound pressure 

on the train external surfaces due to rolling noise. One of the first applications of the 2.5D BE 

method was made by Duhamel [22] to predict the sound pressure around a noise barrier and 

the method showed a high efficiency to solve such 3D acoustic problems with effectively 2D 

geometry. In the current work, the wheels, the rails and the sleepers are represented as noise 

sources in a 2.5D model that accounts for the train cross-section and includes the presence of 

the ground. The rail is treated directly in the wavenumber domain but, to include the wheel, a 

method of representing point sources in a 2.5D approach is developed. The numerical approach 
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is briefly described in Section 2 and methods to include fundamental sources into the 2.5D 

domain are introduced, while Section 3 explains how the rolling noise sources are represented 

in the 2.5D model. Experimental validation is presented based on both laboratory and field 

measurements. Section 4 verifies the validity of this approach by means of comparisons with 

laboratory tests on a scale model in an anechoic chamber. Section 5 presents comparisons with 

field measurements of the sound pressure on the sidewalls of a train.  

2 Numerical model  

2.1 2.5D boundary element method  

The derivation of the 2.5D BE method starts from a 3D problem. Assuming time-harmonic 

variations with dependence ei𝜔𝜔𝜔𝜔, the boundary integral for a 3D acoustic problem is [23]  

 
𝑝𝑝(𝑥𝑥′, 𝑦𝑦′, 𝑧𝑧′) = −� �i𝜌𝜌𝜌𝜌𝜌𝜌(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝜓𝜓(𝑥𝑥,𝑦𝑦, 𝑧𝑧|𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′)

𝑆𝑆

+ 𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)
𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′)

𝜕𝜕𝜕𝜕 �d𝑆𝑆 
(1) 

where S is the surface of the boundaries that represent the problem, 𝑝𝑝(𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′) is the sound 

pressure amplitude at a receiver P, ρ is the density of air, 𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑧𝑧) and 𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑧𝑧) are the 

normal velocity and pressure amplitudes on the surface and 𝜓𝜓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′) is the Green’s 

function, i is the imaginary part and 𝜔𝜔 is the angular frequency. If the geometry of the problem 

can be considered uniform and of infinite length in one direction, e.g. 𝑥𝑥, Equation (1) can be 

conveniently solved in the 2D domain for a range of wavenumbers kx in the 𝑥𝑥 direction. To 

achieve this, the Fourier transform pair for the sound pressure 𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) with respect to x is 

introduced 

 𝑝𝑝�(𝑘𝑘𝑥𝑥,𝑦𝑦, 𝑧𝑧) = � 𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
∞

−∞
ei𝑘𝑘𝑥𝑥𝑥𝑥d𝑥𝑥 (2) 

 𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
1

2π
� 𝑝𝑝�(𝑘𝑘𝑥𝑥,𝑦𝑦, 𝑧𝑧)
∞

−∞
e−i𝑘𝑘𝑥𝑥𝑥𝑥d𝑘𝑘𝑥𝑥 (3) 
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The spatial distribution of sound pressure can then be obtained from Equation (3) once 

𝑝𝑝�(𝑘𝑘𝑥𝑥,𝑦𝑦, 𝑧𝑧) is determined. This can be achieved through a 2.5D formulation of Equation (1) in 

which the pressure, velocity and Green’s function are expressed as functions of 𝑘𝑘𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 

and the boundary integrals are solved over the perimeter of the boundary region Γ in the y-z 

plane. The wavenumber domain integral equation therefore becomes: 

 
𝑝𝑝�(𝑘𝑘𝑥𝑥, 𝑦𝑦′, 𝑧𝑧′) = −� �i𝜌𝜌𝜌𝜌𝑣𝑣�(𝑘𝑘𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝜓𝜓(𝑘𝑘𝑥𝑥 ,𝑦𝑦, 𝑧𝑧|𝑦𝑦′, 𝑧𝑧′)

Γ

+ 𝑝𝑝�(𝑘𝑘𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝜕𝜕𝜕𝜕(𝑘𝑘𝑥𝑥 ,𝑦𝑦, 𝑧𝑧|𝑦𝑦′, 𝑧𝑧′)

𝜕𝜕𝜕𝜕 �dΓ 
(4) 

𝑣𝑣�(𝑘𝑘𝑥𝑥,𝑦𝑦, 𝑧𝑧) in Equation (4) is the velocity normal to the surface in the wavenumber domain, 

which is given by the Fourier transform of the normal velocity in the spatial domain, similar to 

Equation (2). In Equation (4), the wavenumber in the x direction, 𝑘𝑘𝑥𝑥, is independent of y and z 

and the Green’s function 𝜓𝜓(𝑘𝑘𝑥𝑥, 𝑦𝑦, 𝑧𝑧|𝑦𝑦′, 𝑧𝑧′) takes the same form as the 2D fundamental solution 

[22]  

 𝜓𝜓(𝑘𝑘𝑥𝑥,𝑦𝑦, 𝑧𝑧|𝑦𝑦′, 𝑧𝑧′) = −i
1
4
𝐻𝐻0

(2)((𝑘𝑘02 − 𝑘𝑘𝑥𝑥2)1/2𝑟𝑟) (5) 

with 𝐻𝐻0
(2)(𝑥𝑥)  being the Hankel function of the second kind and zero order, and  𝑘𝑘0  the 

wavenumber in air. If 𝑘𝑘𝑥𝑥 > 𝑘𝑘0 , the wavenumber in the 2D domain is imaginary, and the sound 

waves will decay exponentially with distance  𝑟𝑟 = (𝑦𝑦2 − 𝑧𝑧2)1/2.  

2.2 Ground effect  

The presence of a rigid ground can be considered by means of an image source located 

symmetrically beneath the ground. If a rigid ground is considered, the modified Green’s 

function takes the form [22]  

 𝐺𝐺 = −
i
4
𝐻𝐻0

(2)((𝑘𝑘02 − 𝑘𝑘𝑥𝑥2)1/2𝑟𝑟) −
i
4
𝐻𝐻0

(2)((𝑘𝑘02 − 𝑘𝑘𝑥𝑥2)1/2𝑟𝑟′) (6) 

where r is the distance from the actual source to the receiver, and r' is the distance from the 

image source to the receiver. The phase difference between the contributions of these two 

sources is included automatically in this equation. 
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Partially absorbing boundaries can be modelled through their surface normal impedance, which 

can be obtained by means of analytical or empirical models. In this case the corresponding part 

of the boundary is meshed using boundary elements. For simplicity the Delany-Bazley [24] 

model for the impedance is adopted in the current work to model the sound reflection from a 

partially absorbing surface.  

2.3 Fundamental sources in 2.5D 

For use in a railway noise study, this method needs to handle discrete compact sources, such 

as monopoles and dipoles, as well as extended sources, such as the rail. One of the challenges 

is to represent discrete sources in a 2.5D model, where by definition the different components 

of the model extend indefinitely in the 𝑥𝑥  direction. This is achieved by applying suitable 

wavenumber spectra to equivalent extended sources.  

2.3.1 Monopole source 

In 3D, a monopole source can be represented as a pulsating sphere, but this is not possible in a 

2.5D domain approach. To approximate a monopole, a circle is meshed in the y-z plane. The 

boundaries of the circle are assigned a unit normal velocity and a spatial window is applied in 

the 𝑥𝑥 direction with its shape set through its wavenumber spectrum. The distribution of the 

velocity is chosen to be constant in the 𝑥𝑥 direction over a length corresponding to twice the 

radius of the circle 𝑎𝑎, such that: 

 𝑣𝑣𝑛𝑛(𝑥𝑥) = �
1 𝑥𝑥 ∈ [−𝑎𝑎, 𝑎𝑎]
0 𝑥𝑥 ∉ [−𝑎𝑎,𝑎𝑎] (7) 

The corresponding velocity in the wavenumber domain is given by 

 𝑣𝑣�𝑛𝑛(𝑘𝑘𝑥𝑥) = 2
sin (𝑘𝑘𝑥𝑥𝑎𝑎)

𝑘𝑘𝑥𝑥
 (8) 

The velocity distribution in the x direction and in the wavenumber domain are plotted in Figure 

1(a) and (b) respectively. Thus, the source in the 2.5D model corresponds to a pulsating 

cylinder of radius 𝑎𝑎 and length 2𝑎𝑎. This has the same volume velocity as a pulsating sphere of 

radius a. Additionally, however, as the geometry of the source extends indefinitely in the 𝑥𝑥 

direction, the numerical model contains a cylinder that is rigid for |𝑥𝑥| > 𝑎𝑎.  
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Figure 1. (a) Velocity distribution of the monopole source in the x direction and (b) its 

wavenumber spectrum. 

To verify the validity of this representation of the source, a circular source was represented in 

the 2.5D model by 36 linear boundary elements. The sound pressure levels around the 

monopole-like source calculated by using the 2.5D model were compared with the theoretical 

results for a pulsating sphere [25]. In the 2.5D model, the volume velocity was fixed as 10-5 

m3/s and the source radius was varied from 0.001 m to 0.1 m. The frequency varies from 100 

Hz to 5 kHz. The comparisons were made in terms of the sound pressure levels at receivers on 

a circle 5 m away from the source centre, in both the x-y and y-z planes. The definition of the 

two planes is illustrated in Figure 2. A total of 72 receivers is considered in each plane, with a 

separation of 5°, but omitting the points on the x axis. 

 

Figure 2. The definition of the coordinates for the source. 
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The maximum errors between the 2.5D predictions and the analytical solutions are plotted 

against the product of the acoustic wavenumber and the radius of the source in Figure 3.  

 

Figure 3. (a) Errors for receivers in the x-y plane, (b) errors for receivers in the y-z plane. 
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of the sound pressure levels obtained from the 2.5D model compared with the analytical 

solutions at 5000 Hz for a source radius of 0.005 m (giving 𝑘𝑘0a = 0.45). In the y-z plane, the 

2.5D prediction and the analytical solution are within 0.4 dB of each other. In the x-y plane, 

the prediction has some fluctuations at around 90° and 270°, where the receivers are close to 

the cylinder, but the maximum error is less than 0.9 dB. These comparisons demonstrate that 

the 2.5D model proposed for a monopole source can be used reliably.  
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Figure 4. Sound pressure level distribution (in dB) around a pulsating sphere with volume 

velocity 10-5 m3/s and corresponding 2.5D model, radius 0.005 m, at 5000 Hz. The receivers 

are on a circle 5 m away from the source centre. (a) In y-z plane; (b) in x-y plane. 

2.3.2 Dipole source 

In a similar way, a dipole source in 3D can be represented by an oscillating sphere. In the 2.5D 

model, this velocity pattern is applied to the same circular grid: the normal velocity in the y-z 

plane is expressed as 𝑣𝑣𝑛𝑛(𝑦𝑦, 𝑧𝑧) = 𝑣𝑣 cos𝜃𝜃 , where 𝜃𝜃  is the angle relative to the direction of 

oscillation, that is the y direction,  see also Figure 2. The velocity distribution in the x-direction 

is given by   

 𝑣𝑣𝑛𝑛(𝑥𝑥) = �𝑣𝑣 cos �
2π
4𝑎𝑎

𝑥𝑥� 𝑥𝑥 ∈ [−𝑎𝑎,𝑎𝑎]

0 𝑥𝑥 ∉ [−𝑎𝑎,𝑎𝑎]
 (9) 

and the corresponding velocity in the wavenumber domain is given by 

 𝑣𝑣�𝑛𝑛(𝑘𝑘𝑥𝑥) = 𝑣𝑣 �
sin ��𝑘𝑘𝑥𝑥 + π

2𝑎𝑎� 𝑎𝑎�

𝑘𝑘𝑥𝑥 + π
2𝑎𝑎

+
sin ��𝑘𝑘𝑥𝑥 −

π
2𝑎𝑎� 𝑎𝑎�

𝑘𝑘𝑥𝑥 −
π

2𝑎𝑎
� (10) 

The representation of the velocity in the spatial domain and in the wavenumber domain is 

shown in Figure 5(a) and (b) respectively.   
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Similar to the monopole source, the 2.5D model represents approximately an oscillating 

cylinder of radius 𝑎𝑎 and length 2𝑎𝑎 for the dipole source. As the geometry of the source extends 

indefinitely in the 𝑥𝑥 direction, the numerical model again contains a cylinder that is rigid for 

|𝑥𝑥| > 𝑎𝑎 . 

 

Figure 5. (a) Velocity distribution of the dipole source in the x direction and (b) its 

wavenumber spectrum. 

As the source strength of a dipole depends on the distance between the positive and negative 

parts of the source as well as their individual strengths, its size should be taken into account in 
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 𝑄𝑄 = � (𝐕𝐕
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∙ 𝐝𝐝)d𝑆𝑆 (11) 

where d is the distance vector to the surface from its centre and S is the surface area. The dipole 

source strength of an oscillating sphere of radius a is π𝑎𝑎3𝑉𝑉 (where V is the magnitude of the 

oscillating velocity) and that of the 2.5D model is 4𝑎𝑎3𝑉𝑉. Thus, for an oscillating sphere and 

the corresponding 2.5D model of the same radius, a factor of π/4 is required between their 

velocities.  
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the maximum error between the 2.5D predictions and the analytical solutions increases with 

the product of the acoustic wavenumber and the source radius, similar to what has been found 

for the monopole case.  Figure 6 gives an example of the sound pressure levels obtained from 

the 2.5D model compared with the analytical solutions at 5000 Hz for an oscillating sphere 

with radius 0.005 m (36 linear elements were again used to represent the source in the 2.5D 

model). This shows the sound distribution at the receivers on a circle of radius 5 m around the 

dipole which has an oscillating velocity amplitude of 1 m/s. The numerically predicted sound 

distribution in the y-z plane is almost identical to the analytical values (within 0.1 dB). As 

expected, there are some fluctuations in the x-y plane when β is approaching 90° and 270°, 

which is about 1.3 dB in this case (seen from Figure 6(b)), but as the sound pressure levels at 

these angle regions are small, they will not significantly affect the validity of the 2.5D model.  

 
Figure 6. Sound pressure level distribution (in dB) around an oscillating sphere and 

corresponding 2.5D model, oscillating velocity amplitude 1 m/s, radius 0.005 m, at 5000 Hz. 

(a) In y-z plane; (b) in x-y plane. 

 

3 Rolling noise 

3.1 Wheel noise 

The sound radiation from a train wheel can be divided into two components: axial and radial 

[26]. The sound directivity of the radial component can be represented approximately as a 

monopole while that of the axial component can be approximated as a horizontal dipole. In the 
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the axial component is modelled by a dipole source using the formulation described in the 

previous section. In the boundary element calculations, the velocities of the sources are set to 

unity and the final results are re-scaled to correspond to the sound power levels calculated in 

TWINS.  

A wheel with diameter of 0.86 m is studied, and it is represented in the 2.5D model by using a 

point source located at its geometrical centre. This has been compared with a model in which 

three point sources at different heights were used to represent the wheel, but it is found that the 

sound pressure spectra at the receivers on the train side surfaces above the bogie obtained from 

the two models are similar. The difference in terms of overall sound pressure levels at those 

receivers was less than 0.5 dB. Therefore, only a single point source is used in this work to 

reduce the computational cost. 

3.2 Rail noise 

The rail is an extended source in the longitudinal direction which can be represented directly 

by its vibrating surface using the 2.5D BE method. The coordinate system of the rail as well as 

its vertical and lateral vibration are illustrated in Figure 7. The vertical vibration of the rail is 

defined in the x-z plane and the lateral vibration is defined in the x-y plane. The structural 

wavenumber 𝑘𝑘𝑥𝑥 is introduced by applying the Fourier transform to the mobility of the rail. 𝑘𝑘0 

is the acoustic wavenumber, as defined before. In Figure 7, the wavenumber arrows only 

illustrate the relation between the structural wavenumbers and the acoustic wavenumber, 

because in fact both the vertical and lateral vibration of the rail can radiate sound to the whole 

spatial domain. The noise radiation from the vertical and lateral vibration of the rail are 

considered separately.  
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Figure 7. The definition of the coordinates of the rail and the vibration direction. 
 

The response of the rail to a unit force is calculated in terms of its transfer mobility 𝑌𝑌(𝑥𝑥) at a 

distance x from the excitation point and circular frequency ω from a model of a Timoshenko 

beam on a continuous two-layer foundation [27] in which the sleepers are represented by an 

equivalent continuous layer of mass. This can be expressed as 

 𝑌𝑌(𝑥𝑥) = 𝑢𝑢1e−i𝑘𝑘𝑟𝑟|𝑥𝑥| − i𝑢𝑢2e−𝛽𝛽|𝑥𝑥| (12) 

where 𝑘𝑘𝑟𝑟 is the structural wavenumber corresponding to the predominantly propagating wave, 

𝛽𝛽 is the one corresponding to the evanescent wave and 𝑢𝑢1 and 𝑢𝑢2 are the corresponding wave 

amplitudes; these wavenumbers and amplitudes include the effect of the support layers [26]. 

The vertical and lateral mobilities of the rail are obtained using the same model. The results 

are calculated with the data shown in Table 1, which correspond to a 54E1 rail in a track with 

concrete sleepers used for validation in Section 5 below; the sleeper spacing of 1 m present at 

the test site is untypically large.  

Table 1. Parameters used to represent a railway track. 

  Vertical Lateral 

Rail bending stiffness (Nm2) 4.86 × 106 0.88 × 106 
Rail shear coefficient   0.4 0.4 
Rail loss factor   0.02 0.02 
Rail mass per length (kg/m)   54  
Cross receptance level (dB)   -7  
Pad stiffness (N/m) 800 × 106 100 × 106 

y 

z 

x 

(𝑘𝑘02 − 𝑘𝑘𝑥𝑥2)1/2 

𝑘𝑘𝑥𝑥 

𝑘𝑘0 vertical 

𝑘𝑘𝑥𝑥 
𝑘𝑘0 
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Pad loss factor    0.2 0.2 
Sleeper mass (half, kg)   150  
Distance between sleepers (m)   1.0  
Ballast stiffness (N/m) 100 × 106 35 × 106 
Ballast loss factor    1.0 2.0 

 

The real part of  𝑘𝑘𝑟𝑟 corresponds to the wavenumber of the propagating waves along the rail 

and is plotted in Figure 8(a). The acoustic wavenumber in air is shown for comparison. The 

imaginary part of 𝑘𝑘𝑟𝑟  corresponds to the decay with distance along the rail, which can be 

expressed as a track decay rate (TDR) in dB/m [26] as ∆= −8.686Im(𝑘𝑘𝑟𝑟). The decay rates of 

the rail for vertical and lateral vibration, obtained using the parameters from Table 1, are plotted 

in Figure 8(b).  

   

 Figure 8. (a) Wavenumbers of the propagating waves, (b) calculated decay rates of the rail 

for vertical and lateral vibration.  

The transfer mobility of the rail from Equation (12) is a function of x and its real and imaginary 

parts are illustrated for the vertical direction at two example frequencies in Figure 9. Figure 

9(a) shows the results at 125 Hz, where the decay rate is relatively high and the wavelength is 

long, while Figure 9(b) shows the results at 2000 Hz with a relatively low decay rate and short 

wavelength. 
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Figure 9. Rail transfer mobility for the vertical direction as a function of x in the spatial 

domain. (a) 125 Hz, (b) 2000 Hz. 

Applying a Fourier transform to the transfer mobility in the spatial domain, the velocity in the 

wavenumber domain due to a unit force at x = 0 can be expressed as 

 𝑌𝑌�(𝑘𝑘𝑥𝑥) = 𝑢𝑢1 �
1

i(𝑘𝑘𝑟𝑟 + 𝑘𝑘𝑥𝑥)
+

1
i(𝑘𝑘𝑟𝑟 − 𝑘𝑘𝑥𝑥)�

− i𝑢𝑢2 �
1

𝛽𝛽 + i𝑘𝑘𝑥𝑥
+

1
𝛽𝛽 − i𝑘𝑘𝑥𝑥

� (13) 

where 𝑘𝑘𝑥𝑥 is the wavenumber in the x direction introduced by the Fourier transform, which runs 

from -∞ to ∞. The mobilities in the wavenumber domain corresponding to Figure 9 are shown 

in Figure 10. At high enough frequency, once propagating waves have cut on in the rail, the 

wavenumber spectrum is dominated by the free wavenumber in the rail; at 2 kHz this can be 

seen as the peak at about 8 rad/m (see also Figure 8).  

   
Figure 10. Rail mobility in the wavenumber domain. (a) 125 Hz, (b) 2000 Hz. 
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When 𝑘𝑘𝑥𝑥  is smaller than the wavenumber in the air, the structural waves will produce 

propagating sound waves. In such a situation, the vibration of the rail radiates sound efficiently. 

However, when 𝑘𝑘𝑥𝑥  is greater than the wavenumber in air, near-field sound waves will be 

generated (see Equation (5)) and these structural waves radiate sound inefficiently. However, 

the near-field sound waves cannot be neglected, especially at low frequency and in the region 

relatively close to the source. Neglecting them would introduce errors in the inverse Fourier 

transform when converting the sound pressure back to the spatial domain.  

Finally, to obtain the radiation from the rail, the mobility in the wavenumber domain is applied 

as a velocity boundary condition to the boundary elements representing the rail cross-section. 

The rail cross-section is assumed to move uniformly in either vertical or lateral direction; the 

vibration in the vertical and lateral directions is dealt with separately. For simplicity, cross-

section deformation of the rail [26] is not included in this study, although it could be included 

by using a 2.5D FE model of the rail instead of the Timoshenko beam model [8, 28]. 

3.3 Sleeper noise 

The vibration of the sleepers is also required to determine their contribution to the noise in the 

2.5D model. This vibration can be derived from the vertical rail mobility and from the ratio of 

the sleeper displacement to that of the rail. This is equal to [26]  

 𝑟𝑟 =
𝑠𝑠𝑝𝑝

𝑠𝑠𝑝𝑝 + 𝑠𝑠𝑏𝑏 − 𝜔𝜔2𝑚𝑚𝑠𝑠
 (14) 

where sp is the complex rail pad stiffness in the vertical direction including damping, sb is the 

complex ballast stiffness and ms is the sleeper mass. An example result is shown in Figure 11 

for the parameters shown in Table 1.  
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Figure 11. Ratio of sleeper displacement to that of the rail.  

In ballasted track, the sleepers are embedded in ballast, so the vibrational velocity is only given 

to their top surfaces. Moreover, the 2.5D model treats the sleepers as a continuous medium in 

the x direction. To account for their discrete distribution and for the spacing between them, 

scaling factors are needed to adjust the sound power calculated from the 2.5D model. To 

calculate these scaling factors, a Rayleigh integral approach [29] was used to calculate the 

sound power of discrete sleepers. Different scaling factors were found to be necessary [30] for 

the low and high frequency regions in the 2.5D model to adjust the predictions and match the 

results obtained by using the Rayleigh integral. It was found [30] that, at high frequency where 

the acoustic wavelength is smaller than the sleeper spacing, the sound power needs to be 

adjusted by a factor corresponding to the ratio of the sleeper width to the sleeper spacing, here 

1/5. At low frequency, where the wavelength is greater than the sleeper spacing, the scaling 

factor corresponds to the square of that ratio.  

3.4 The 2.5D model 

The wheels, the rails and the sleepers are considered as separate sources in the 2.5D model and 

the different components are combined incoherently to obtain the total pressure distribution 

over the train surfaces. 

Figure 12(a) shows the cross-section of the 2.5D model used for investigation of the noise 

transmission from the wheel to the train external surfaces. The wheel contribution is modelled 

by using the monopole and dipole sources as outlined in Section 2.3. Figure 12(b) shows the 

cross-sections adopted to calculate the contribution of the rail, with the rail foot located 0.02 m 

above the ballast. The rail velocity is obtained in the wavenumber domain (Section 3.2) and is 
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assigned to the cross-section of the rail. In the 2.5D models for the wheel and the rail, the 

sleepers are omitted and the ballast is replaced by a rectangular box sitting on the ground with 

a height of 0.05 m. Its upper surface is modelled by means of its surface normal impedance 

based on the Delany-Bazley model with an equivalent flow resistivity of 50 kPa s/m2 [31]. 

The cross-section adopted to calculate the contribution from the sleepers is shown in Figure 

12(c). The velocity of the sleepers in the wavenumber domain is calculated as described in 

Section 3.3 and is assigned to their upper surface (the ballast is ignored). In these three 

numerical models, the modified Green’s function in Equation (6) is used, which presents a half-

space ground extending beyond the region modelled using boundary elements. 

 

Linear boundary elements are used to create these models. 36 elements are used to model the 

fundamental sources representing the wheel in Figure 12(a), which are modelled by using a 

circle of radius 0.005 m. 100 elements are used to model the rail cross-section in Figure 12(b). 

The rectangular box used for the ballast in Figure 12(a) and (b) and for the sleepers in Figure 

12(c), and the train body in all three models, are made of elements with size 0.02 m. As this is 

an exterior radiation problem, Five ‘CHIEF’ points are used inside the train and three are used 

in the rectangular box to overcome the non-uniqueness problem associated with resonances of 

the corresponding interior problem [32]. The train cross-section in Figure 12(a) does not 

include the side fairings whereas side fairings are present in Figures 12(b) and 12(c). Frequently, 

trains such as the one adopted in the validation tests described in Section 5 do not have fairings 

to cover the bogie area and the model approximates this by using different cross-sections for 

the models of the wheel and track components of noise.  
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Figure 12. 2.5D models for (a) the wheel, (b) the rail, (c) the sleepers. 

The 2.5D models give the sound pressure on the train cross-section in the wavenumber domain. 

After applying the inverse Fourier transform, the sound pressure distribution in the spatial 

domain is then obtained. The source strength in the 2.5D models for the wheel is based on a 

unit velocity and that for the rail is based on a unit force. The sound power of the wheel, the 

rail and the sleepers obtained from the TWINS model are used to re-scale the results from the 

2.5D model. The total sound pressure on the train surfaces is then determined from the 

incoherent sum of the contributions of the wheel radial and axial components, the rail vertical 

and lateral components, and the sleeper component.  

4 Experimental validation on scale models 

To validate the modelling approach used to predict the sound distribution on the train external 

surfaces, results from two different sets of measurements have been used. In the first of these, 

laboratory measurements were performed in an anechoic chamber at the University of 

Southampton, which are presented in this section. A 1:5 scale train model is used [33], which 

is made from dense foam that has been varnished to minimise its absorption. In addition, a 1:5 

scale track model [34] that is composed of steel rails, concrete sleepers and ballast was created. 

These were located in the anechoic chamber, as shown in Figure 13(a). The track is 2 m long 

and 0.8 m wide, and the train is 2.5 m long, 0.56 m wide and has a height of 0.45 m. The rail 

head is 0.036 m above the top of the sleepers and 0.19 m below the train floor. The model was 

located on a wooden ground plane (18 mm thick) that was 0.256 m below the rail head. With 

this arrangement, the sound pressure distribution around the scale model railway vehicle was 

determined using a point source and a vibrating rail.  
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4.1 Point source 

To evaluate the sound pressure distribution around the train body due to a point source, a horn 

driver unit driven by white noise was connected to a tube with an orifice (diameter 15 mm), 

which gives a broadly non-directional output. The source strength was determined by a free-

field measurement. It is assumed that its volume velocity is independent of the source location. 

The orifice of the source was then located beneath the train floor, directly above one of the rails 

and 0.32 m from one of its ends, see Figure 13(b). Microphones were located along the 

centrelines of the four external surfaces of the train: the floor, two walls and the roof. On each 

surface, there were 21 measurement locations with a spacing of 0.1 m; these sets of points are 

indicated as P1, P3, P4, P5 in the corresponding numerical model in Figure 14. Another set of 

microphones was placed along the upper right-hand corner on the side face, indicated as P2.  

      

Figure 13. Measurement arrangement in laboratory test for point source. (a) Overview and (b) 

source location. 

The receivers in the numerical model (Figure 14) were located at the same locations as those 

in the measurements. The source was represented in the 2.5D model by a monopole, as 

described in Section 2.3, with a radius of 0.005 m and a source strength corresponding to the 

one in the experiments. The ground was set to be rigid in the 2.5D model and the ballast and 

track bed were modelled by a rectangular box with an impedance boundary condition on its 

upper surface and with rigid condition on its sides. 

0.32 m 

(a) (b) 

x 
z 
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Figure 14. The 2.5D model used for predicting noise on train outside surfaces of the scale 

model due to a point source. 

Figure 15 shows a comparison of the predicted sound levels with the measured ones at P2 (the 

upper corner position) for four frequency bands. The distance x is shown relative to the location 

of the source. These results are shown for the 1000 Hz, 1600 Hz, 2500 Hz, and 4000 Hz one-

third octave bands for the scale train model, which correspond to 200 Hz, 315 Hz, 500 Hz and 

800 Hz at full scale. In the numerical models, results were calculated at three frequencies in 

each band and averaged to obtain the sound pressure level in the band.  
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Figure 15. Sound pressure level comparison in four one-third octave bands at the right up 

corner point, dB re 2.0×10-5 Pa. The distance x is shown relative to the location of the source. 

(a) 1000 Hz, (b) 1600 Hz, (c) 2500 Hz, (d) 4000 Hz.  

Figure 16 shows the equivalent results on the four different train surfaces. These results are 

given for the 4 kHz one-third octave band as an example; the results in the other one-third 

octave bands are similar.  
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Figure 16. Sound pressure level comparison at the four surfaces in the 4 kHz one-third octave 

band, dB re 2.0×10-5 Pa. (a) On the right side, P1, (b) on the top, P3, (c) on the left side, P4, 

(d) on the bottom, P5. 

 
From Figures 15 and 16, it can be concluded that the 2.5D BE approach is able to give 

reasonable predictions of the sound pressure levels on the train external surfaces due to a point 

source below it. The maximum errors at each measured position (predicted level minus 

measured level) and the average difference between the predictions and the measurements are 

listed in Table 2 for each frequency band. As the 2.5D model corresponds to an infinite carriage, 

the truncation at the end of the carriage may have some effect on the agreement but for 

measurement points close to the carriage wall the effect is expected to be small. When 

calculating the difference between the predictions and the measurements the two data points at 

each end are ignored. At the upper corner position P2, the average difference between the 

prediction and the measurement is less than 3 dB in most of the 1/3 octave bands. The 

maximum difference at position P2 is found in the 2000 Hz band and at the measurement 

positions located close to one of the ends of the carriage. The results in Figure 16 and Table 2 

indicate that the 2.5D model gives better predictions of the sound pressure on the bottom (P5) 

and the side surface that is closer to the source (P1). Larger errors are found at the receivers on 

the top (P3) and the side that is further from the source (P4).  

Table 2. Level differences between predictions and measurements for point source below the 

scale model train body (dB). Maximum (Max.) and average (Ave.) difference over 17 points 

at each location. 

Position 
 

Freq (Hz) 

P 1 
Near side 

P 2 
Upper corner 

P 3 
Top 

P 4 
Far side 

P 5 
Floor 

Max. Ave. Max. Ave. Max. Ave. Max. Ave. Max. Ave. 
1000 8.3 2.8 6.6 1.1 11.1 -3.8 4.6 2.0 2.9 -1.7 
1250 5.7 -1.7 5.3 -0.9 4.5 0.2 3.0 -1.2 6.3 -2.9 
1600 2.8 0.2 4.6 0.8 6.9 -0.7 5.6 2.4 4.9 1.0 
2000 8.3 3.1 7.6 2.6 6.7 -2.3 10.7 4.8 4.2 -1.5 
2500 3.5 -1.2 3.9 -0.1 10.4 -3.6 6.6 1.7 7.1 2.9 
3150 5.7 1.1 7.3 1.9 6.8 -2.6 6.4 2.6 9.0 3.6 
4000 3.6 -1.2 4.7 -0.7 4.8 -1.9 7.1 1.8 4.8 -0.3 

 

4.2 Sound radiated by the rail 

Measurements were also carried out on the 1:5 scale model to determine the sound pressure 

caused by vibration of the rail. A reciprocal approach [35] was followed to infer the sound 
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pressure distribution on the train external surfaces due to a vibrating rail. According to the 

principle of vibro-acoustic reciprocity, the transfer function between a point force 𝐹𝐹 acting on 

a structure at a point 𝐴𝐴 and the resulting sound pressure 𝑝𝑝 at a receiver 𝐵𝐵 is identical to the 

transfer function between a volume velocity 𝑄𝑄 of a point monopole located at the point 𝐵𝐵 and 

the resulting vibration velocity 𝑣𝑣 produced at the original excitation point 𝐴𝐴. Thus, if a unit 

force is acting on the rail, the resulting sound pressure on the train external surfaces can be 

obtained by placing the sound source on the train surfaces and then measuring the vibration 

velocity of the rail as excited by the sound field. The source orifice was located at various 

positions along the right-hand upper corner line and on the centreline of the bottom surface and 

the rail vibration was measured by accelerometers located on the rail, measuring in both vertical 

and lateral directions, see Figure 17. However, in the present work only the results from the 

vertical accelerometer are shown.  

        

Figure 17. (a) Measurement arrangement for the laboratory test for rail source and (b) the 

accelerometer locations on the rail.  

A numerical model was built with the same geometry as that in the measurement, see Figure 

18. The velocity of the rail under a unit force, predicted using the infinite beam model 

introduced in Section 3.2, and the resulting sleeper vibration were assigned to the boundary 

elements representing the rail and sleeper in the numerical model. The properties used for the 

track are listed in Table 3.  The velocity of the sleeper was derived using the method given in 

Section 3.3. The absorption property of the ballast was modelled by using its impedance in the 

same way as before, but it was only present on the top surface in the region outside the sleepers.  

z 

x 
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Source 
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Figure 18. The 2.5D BE model for predicting track noise on train outside surfaces. 

 

Table 3. Parameters used for vertical motion of the 1:5 scale track [31]. 

Young's modulus 2.1 × 1011 N/m2  
Rail bending stiffness 0.010 MNm2 
Rail mass per unit length 3.4 kg/m 
Rail damping loss factor 0.05 
Rail density 7850 kg/m3 
Pad stiffness 15 MN/m 
Pad damping loss factor 0.2 
Sleeper mass (half) 1.41 kg 
Sleeper spacing 0.12 m 
Ballast stiffness 1.0 MN/m 
Ballast damping loss factor 1.0 

 

The comparisons between the predictions and the measurements were made for two positions, 

P1 and P2, as indicated in Figure 18. Based on the principle of reciprocity, the results obtained 

from the measurement correspond to the ratio of the sound pressure and the force, so they are 

compared with the predicted sound pressure on the train outside surfaces due to a unit force on 

the rail. These results are shown in Figure 19 for frequency bands between 1250 and 4000 Hz 

(between 250 and 800 Hz at full scale). The spatial distribution of the rail vertical vibration is 

also plotted in the figure, from which it can be seen that the finite length leads to significant 
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spatial variations that are not captured by the model of the infinite rail but the overall decay 

with distance is mostly captured. 

 

 

 
Figure 19. Comparisons between predictions and measurements of the sound pressure level 

(SPL) on the train external surfaces in one-third octave bands, where x is relative to the force 

location, dB re 2.0×10-5 Pa. : SPL at P1, 2.5D; : SPL at P1, measured;  : SPL at 
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P2, 2.5D; : SPL at P2, measured;  : rail vibration, predicted; : rail vibration, 

measured. (a) 1250 Hz, (b) 1600 Hz, (c) 2000 Hz, (d) 2500 Hz, (e) 3150 Hz, (f) 4000 Hz. 

The predictions from the 2.5D model have similar average levels and decay trends to the 

measurements, although the measured values contain large variations. An important difference 

between the measurements and the predictions is that the 2.5D approach is based on an infinite 

rail, whereas in the measurements the rail is finite with a length of only 2 m (10 m at full scale). 

The wave reflections at the ends of the rail therefore induce spatial variations, as seen from 

Figure 19.  

5 Experimental validation using field measurements 

5.1 Measurements on a stationary train 

Field measurements [36, 37] were carried out on a metro train in Madrid, Spain, to measure 

the sound pressure distribution on the train sides when a loudspeaker was located beneath the 

train floor, see Figure 20. These measurements are used to validate the 2.5D models. The source 

was located close to a wheel, resting on the ground. The diameter of the source is 0.45 m. Five 

microphone positions were located on the train side surface directly above the loudspeaker. 

The height of the first position was 0.1 m above the bottom edge of the sidewall, and the vertical 

separation between microphone positions was 0.5 m. The result at each microphone position 

was measured twice. 

 

Figure 20. Measurements of sound pressure on a stationary train. (a) Loudspeaker location, 

(b) microphone positions, (c) separation of microphones. 
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To compare with the measured sound pressure levels, a 2.5D BE model was created to predict 

the sound distribution along the vertical direction on the train sides. The geometry of the train 

profile in the numerical model corresponds to the train in the tests but the details of the train 

floor are simplified in the model. The bogie is also omitted. The source in the numerical model 

has the same size as the loudspeaker and same location relative to the train corresponding to 

the field test. A half-space ground is considered. Although the source diameter is much larger 

than the fundamental sources considered in Section 2.3, the response is only considered here 

in the plane at x = 0 so no strong effect is expected. Five field points are set close to the side 

surface of the train to represent the microphones in the measurements. As the real source 

strength of the loudspeaker in the field test is not available, the prediction is shifted to 

correspond to the measured sound pressure levels for ease of comparison. The cross-section of 

the train and the source and the comparisons of the predicted and the measured sound pressure 

levels in one-third octave bands (averaged over three frequencies in each one-third band for 

the prediction) are shown in Figure 21. It can be seen that the sound pressure levels decrease 

with increasing height on the side surfaces and the predictions match the measurements well.  

 

Figure 21. Comparison of prediction and measurement of sound distribution on the train side 

in one-third octave bands, dB re 2.0×10-5 Pa. (a) 200 Hz, (b) 400 Hz, (c) 800 Hz, (d) 1600 

Hz. 
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5.2 Measurements on a running train 

The sound pressure distribution was measured on the external surfaces of the metro train when 

running at 50 km/h on a test track [37]. Four microphones were located on the train side above 

the bogie area, see Figure 22. They are numbered as points 1006, 1009, 1010 and 1011. 

Microphones 1006, 1009, 1011 were all 0.7 m above the bottom edge of the sidewall whereas 

microphone 1010 was 1.5 m above it. 

 

Figure 22. Field measurement positions used to measure sound distribution on the train 

outside surface.  

The numerical models are those given in Figure 12. The sound power of the rail, the wheel and 

the sleepers were calculated using the TWINS model [7], in which the rail is considered as 

discretely supported [26]. The parameters adopted in the simulation were based on a field test 

[37] and are shown in Table 1. Due to uncertainty in the roughness, these predictions have been 

adjusted to correspond to measured rail and sleeper vibration.  

To verify the validity of the prediction of the sound power, three track‐side microphones were 

set to measure the sound pressure levels when the train is passing by, see Figure 23. The sound 

pressure levels obtained from the predictions and the measurements are compared in Figure 24. 

Figure 24(a) shows the average of the mean square pressure at the two receivers M1 and M2 

and Figure 24(b) shows the result for receiver M3. From these results, it is found that the model 

can give a good prediction of the rolling noise. 
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Figure 23. Exterior pressure microphones: M1 and M2 at 4 m from the rail head, M3 at 7.5 m 

from the centreline of the track. 

 

Figure 24. Comparisons between measured and predicted noise levels after correction. (a) 

Averaged over receivers M1 and M2, (b) receiver M3. ―, Measurement; …, TWINS 

prediction with discrete supports, dB re 2.0×10-5 Pa.   

The sound power levels from one wheel and from the track vibration associated with one 

wheel/rail contact calculated from this model are shown in Figure 25. From this, it is clear that 

the sleepers are dominant at low frequency, the radiation from the wheel radial vibration 

becomes significant in the 250 Hz band and above 2000 Hz, whereas the rail component, from 

both vertical and lateral vibration, is dominant in the middle frequency range.  
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Figure 25. Sound power of the wheel, the rail and the sleepers obtained from TWINS. 

These source strengths are then used in the 2.5D predictions of the sound pressure levels at the 

four positions on the train external surfaces. The total sound pressure on the train surfaces is 

determined from the incoherent sum of the contributions of the wheel radial and axial 

components, the rail vertical and lateral components, and the sleepers. Overall A-weighted 

sound pressure levels on the train external surfaces due to a single bogie (four wheels) are 

shown in Figure 26. The length of the carriage is 17.92 m and the centre of the bogie is 2.95 m 

from the carriage end. This sound pressure distribution shows that the highest levels of sound 

are those incident on the train floor. Moreover, the presence of the fairings helps to create a 

partially reverberant enclosure below the train. However, noise can also diffract from the edge 

of the fairings to the side surfaces of the train. The sound level reduces with increasing height. 

The noise on the train roof due to the wheel and rail is less significant and is estimated to be 

around 30 dB lower than the noise impinging on the floor.   
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Figure 26. Overall sound pressure levels on the outside surfaces of a single vehicle due to 

sound sources from a single bogie, dB re 2.0×10-5 Pa. The two wheels indiate which bogie is 

considered.  

To compare the prediction with the measurements, the predicted sound pressure levels were 

calculated by including the contribution from the two bogies below the carriage on which the 

microphones were mounted and the closest bogie from the adjacent carriage on either side. The 

comparisons with the measurements are shown in Figure 27 for two positions. The agreement 

for the other two positions is similar. The predictions capture the main trend of the sound 

pressure spectra compared with the measurements. However, at low frequency, the predictions 

are lower than the measurements, whereas they are higher at high frequency. Comparison with 

Figure 25 indicates that the peak at 500 Hz is dominated by lateral motion of the rail which 

may be overpredicted due to the neglect of torsion.  

The high frequency results may be affected by the simplified consideration of the wheel 

radiation. The overall sound pressure levels from the predictions and the measurements, 

together with the relative error between them, are given in Table 4. The relative errors in terms 

of the overall sound pressure levels are less than 3 dB at these four measurement positions, 

which shows that the 2.5D model is able to predict satisfactorily the sound pressure on the train 

external surfaces in running operation. 
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Figure 27. Comparisons between the 2.5D predictions and the measurements on a running 

vehicle, dB re 2.0×10-5 Pa. (a) Point 1006, (b) point 1009. 

Table 4. Overall sound pressure levels on the train sides. 

  P 1006 P 1009 P 1010 P 1011 
Prediction (dB(A)) 83.2 83.1 79.7 82.9 
Measurement (dB(A)) 80.6 81.1 78.3 80.4 
Difference (dB(A)) 2.6 2.0 1.4 2.5 

 

5.3 Limitations of using the 2.5D method 

The experimental validation by the laboratory measurements and the field measurements 

showed that the 2.5D BE method can be used to predict the sound pressure incident on the train 

external surfaces due to rolling noise with reasonable agreement. The 2.5D BE model is also 

much more efficient compared with 3D models. However, the 2.5D method also has some 

limitations when it is applied to train noise. The wheels are discrete sources, so simplifications 

had to be made and fundamental sources were used to model them, neglecting their overall size 

and details of their directivity. As the rail is uniform along its axis, the 2.5D method could be 

applied to it in a straightforward manner. The finiteness of the train model will also have some 

effects on the agreement with the laboratory measurements where the scaled train model is 

relatively short. This is less problematic for the metro vehicle, where the train is longer, but the 

gaps between two adjacent carriages cannot be included in the model. 

In the field measurements, where the metro vehicle was running at 50 km/h, it is reasonable to 

neglect convective effects caused by the air flow. When the train is running at high speeds, 
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however, these may be important. These could be included in the 2.5D method by adjusting 

the acoustic wavenumber to allow for the flow velocity. 

A lot of equipment is mounted beneath the train floor, which causes scattering of sound below 

the vehicle. The 2.5D method is therefore less suitable for predicting the sound pressure 

incident on the train floor. For wider application, the 2.5D BE method could also be used to 

predict the exterior noise radiated into the surroundings and even the noise in tunnels.  

6 Conclusions 

A 2.5D BE approach has been developed to calculate the noise transmission from the wheels, 

rails and sleepers to the sound pressure on the external surfaces of a train. The wheel was 

modelled by using approximations to a monopole and a dipole in the 2.5D models. The rail and 

the sleepers were modelled by their cross-section in the 2D domain and their wavenumber 

spectrum in the third direction. An inverse Fourier transform was used to convert the sound 

pressure from the wavenumber domain back to the spatial domain. The TWINS model was 

used to determine the sound powers of the individual components which were then used to 

adjust the source level in the 2.5D model predictions. The overall sound pressure level on the 

train external surfaces was obtained by adding the various components incoherently. 

Comparisons were made with measurements of sound pressure levels on the external surfaces 

of a 1:5 scale model train in an anechoic chamber and on a full-scale metro train, both statically 

and in running operation. The comparisons with the laboratory tests show that the predicted 

sound pressure levels from the 2.5D model and the measured ones have a similar decay trend 

along the train axis direction and the average difference of the sound pressure levels is less than 

3 dB. For the field measurement on a stationary train, the predicted sound pressure distribution 

along the train height on the train side is close to that obtained by measurement. In the field 

measurement on a running train, the predictions and the measurements agree fairly well in 

terms of sound pressure spectrum and in terms of the overall sound pressure levels the 

differences are less than 3 dB. The 2.5D BE model can therefore be used to predict the sound 

pressure on the external surfaces of a train, which is an essential input quantity to evaluate 

interior noise. 
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