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Abstract

This article focuses on analysing and modelling geometrically a complex vault typology, known as
single-row spherical dome, which was defined in several classic stereotomy treatises. The
peculiarity of this kind of dome is that all their stone pieces are different, since there is a helical
directrix defining the upper and lower edges of the pieces. Different solutions will be compared and
analysed, both from a graphical and a mathematical point of view, by describing the spatial helixes.
The accuracy of the different methods described in the treatises for tracing the stone templates will
be also tested. To conclude, some examples of virtual 3d modelizations and 3d printed models will be
exposed.
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Introduction

The art of stone cutting applied to the construction of architectural elements, technically known as
stone stereotomy, is a discipline whose practice is virtually extinct today. However, these methods still
cause fascination, especially among geometers, mathematicians and lovers of artisanal construction
techniques. Even some researches as Fallacara & Barberio (2018) and Gadaleta (2018), promote a

rebirth of a new stereotomy adapted to present skills and techniques.

Mastering traditional stereotomy implies a great knowledge on descriptive geometry, since tracing the
shapes of the templates that are used to carry out the carving of the pieces is an example of technical
skill. The knowledge of stereotomy was transmitted with suspicion from masters to disciples in the
antiquity, but this wisdom was disseminated little by little in the Renaissance as evidenced by the
appearance of several manuscripts and stereotomy treatises, which were developed mainly in Spain
and France.

One of the first manuscripts on stereotomy was the recently attributed to the architect Pedro de Alviz
(Gémez Martinez 1998), whose completion date is estimated around 1544 (Garcia Bafio 2017). Only a
single copy of this manuscript is preserved in the National Library of Spain [mss. 12686].

The complete manuscript of the Castilian architect Alonso de Vandelvira, carried out around 1585,
is also of special relevance. Only two handmade copies of the lost original manuscript are preserved.
One of them is in the National Library of Spain [mss. 12719], while the other is in the Library of the
Higher School of Architecture of the Polytechnic University of Madrid [mss. R10]. Some facsimile
editions of this book were edited by Barbé-Coquelin (1977) and Palacios (2015).

The first published treatise including the practice of stereotomy was carried out by the French architect
Philibert De I'Orme, in the third and fourth book of L’Architecture (De L'Orme 1567), which had much
influence on successive treatises.

Stereotomy treatises often show surprising solutions, sometimes unnecessarily complex, that are a
great technical and artistic challenge. Perhaps this fact comes from one of the main motivations of the
human being, the notion of self-development and the immense satisfaction that produces to solve
complex problems or to create beautiful things. This personal improvement may imply the recognition of
others or even having a place in history. It may be this feeling what encourages human beings to
develop works that push them to the limits of their abilities. That results in many astonishing
masterpieces that surprise people by their complexity and beauty.

This article focuses on analysing and modelling geometrically one of these constructive boasts. It is a
complex spherical dome solution, which is defined in several classic stereotomy treatises. The



peculiarity of this kind of dome is that all their pieces are different, since there is a helical directrix
contained in the hemispherical surface that defines the spatial distribution of the stone pieces.

Rabasa (2013) calls them, very accurately, single-row spherical domes. They supposed a great
challenge for masonry masters, so numerous templates had to be drawn to elaborate their stone
pieces. Moreover, the tracing process of these templates was geometrically complex as well as carving
the pieces due to the complexity of the face surfaces.

Tracing and Carving Process

For a better understanding of the properness of the methods that will be discussed onwards, it is
necessary to explain some considerations about the tracing methodologies of the templates, as well
as some details about the carving process of the stone pieces.

The stone pieces of a spherical dome, technically known as voussoirs, are mostly delimited by 6 faces.
The voussoir face that is visible from the inside part of the vault is called intrados, while its opposite
face is called extrados. Both these faces are theoretically concentric spherical surfaces. Nevertheless,
the extrados face is usually not carved in detail, since this face is hidden inside the masonry. The two
lateral contact faces between voussoirs are flat and they are contained in vertical planes. The
remaining contact faces, the upper and lower one, are technically called bed faces and they transmit
most of the vertical loads over the dome by the arch effect. In the conventional case of spherical
domes, which are constructed in several horizontal rows, the beds are conical surfaces and there is
only one type of pieces per row. However, in the typology in which this article is focused, the bed faces
are ruled surfaces with helical directrices (Fig. 1).

M Spherical Surface M Conical Surface M Ruled Surface Planar Surface

Fig. 1 Voussoir sample in a Multi-Row and in a Single-Row Spherical Dome



It is important to mention that a spherical surface is a non-developable surface so, in order to obtain
the intrados templates of the voussoirs, some simplifications have to be taken into account. In the
stereotomy treatises, this problem was reduced to find the nearest developable surface. Therefore,
they assimilated cone surfaces to spherical surfaces. For instance, in the case of a conventional multi-
row spherical dome, the intrados faces of voussoirs are limited by parallels and meridians of the
sphere, forming a spherical quadrilateral. The simplification, in this case, consisted in considering the
cone portion inscribed inside the spherical quadrilateral (Fig. 2). This cone portion is limited by two of
their generatrixes that are the chords of the meridian arcs of the spherical quadrilateral. The portion
of the cone is also limited by the parallel arcs of the spherical quadrilateral, which are also contained
in the cone surface.

aeS

Fig. 2 Cone surface inscribed in a spherical quadrilateral. Development of the cone surface

The developing method consisted in tracing the border generatrixes of the cone with their same spatial
angle. Then, they were closed by two concentric circumference arcs centred in the intersection of the
traced generatrixes, which is the cone apex. This developing method was approximated, since the
length of the arcs resulted a bit underestimated, but it was accurate enough for being used as the
intrados templates for the common-sized pieces.

This single intrados template provided enough information to the stonecutters to complete the entire
voussoir, since they used two specific tools named Cercha and Baivel, in Spanish. The Cercha was a sort
of wooden rule with a curved edge with the same radius as the dome, which was made specifically to
give the right concavity to the voussoirs during the carving process. The Baivel was a tool composed
by a Cercha joined to a straight rule at right angle in one of their ends. Using this tool, the stonecutter
could carve the beds and the lateral faces of the voussoirs (Fig. 3).

The standard workflow to carve a spherical voussoirs is explained in various stereotomy manuscripts
and treatises, as explained by Rabasa (2005). Initially, one of the faces of the stone block would be
carved with the right concavity with the help of the Cercha. Then, the shape of the intrados template
would be transferred to this carved surface. In order to do so properly, the template had to be flexible
enough to be placed touching the carved surface only with the curved edges of the template. Laying
the entire template on the spherical carved surface would be problematic since, as it is a non-



developable surface, geometrical distortions would be produced. Nevertheless, they will be admissible
as long as the concavity is moderate. Finally, the stonecutter would use the Baivel, laying its inner
corner on the intrados edges, as a guide to carve the rest of the faces of the voussoir with the
appropriate angles.

Cercha Baivel

Fig. 3 Carving process of a voussoir from the intrados template using reference tools such as the Cercha and the Baivel
Single-Row Domes

The single-row spherical typology was initially described in the treatise by De L’'Orme (1567) and also
in the Vandelvira’s manuscript (ca. 1585). Nonetheless, these proposals have noticeable design
differences, as shall be discussed later.

De L'Orme refers to this vault as “voute en forme de coquille de limagcon” (snail shell-shaped vault). As
the author himself says: “Le traict est fort ingénieux et de gentil sprit” (The tracing is very ingenious
and of a gentle spirit) (De L'Orme 1567:119).

Fig. 4 shows the illustration presented by De L’'Orme. The geometrical analysis reveals the false spiral
or two centres volute that the author traced by dividing the vertical diameter of the vault into 21 equal
modules. The central circumference defining the intrados of the keystone has one module of diameter.
The centres of the arcs generating the volute are located on the vertical diameter. The radius of the
arcs increases every 180 degrees to form a 5 turns volute, which maintains a constant spire step of 2
modules.

This volute was projected orthogonally onto a hemispherical surface, thus providing a curve that is the
result of the intersection between some cylinders and the hemispherical surface. As shown in Fig. 5,
the spatial configuration of the stones is quite unbalanced, since the voussoirs located at the lower
part of the dome are much taller than the rest. De L'Orme tried to dissimulate this problem in the
auxiliary section by dividing the first voussoir into two parts. Actually, this would be a very awkward
solution in practice, as it is also mentioned by Rabasa (2003). Another aesthetical issue is the insertion
of an extra-large voussoir every turn to maintain the brickwork pattern.
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Fig. 4 Illustration in the manuscript by De L’Orme (1567:120). Proportions and geometrical modelization

The author includes a vague textual description, without any indication about the geometric
constructions. De L’'Orme excuses himself for not providing a detailed explanation that, according to
him, would be long and tedious and would bore those awake-minded readers, who will understand
the process without any difficulty after seeing the illustration:

“... ] quand je considére la longueur de leurs descriptions et démonstrations, et la confére avec ce peu
de loisir que j’ai, véritablement je crains de n’y pouvoir vaquer, car il y faudrait employer si
grandes écritures que I'explication que j’en ferais, ne me serait seulement laborieuse, mais aussi aux
bons esprits fort ennuyeuse, qui facilement concoivent les descriptions et figures qu’on leur
propose avec peu de paroles” (De L'Orme 1567:119).

The truth is that the complexity of this vault seems to surpass even the author himself, who fails to
correctly solve the intrados templates of the vault. Initially, De L’'Orme traces, with dot line, what
seems to be an auxiliary intrados shape, obtained as in the case of a conventional multi-row spherical
dome voussoir. This auxiliary voussoir would almost fit with the considered voussoir, but they would
share only one of their lateral faces. Then he attempts to obtain the intrados shape of the considered
voussoir from the auxiliary tracing. However, what would have been a good starting strategy, results
incomprehensibly in a template contour that is too far from being somewhat correct. Certainly, the
problem that arises is quite complicated, especially at a time when technical drawing procedures were
not completely defined.

Analysing the geometric problem from the present point of view is undoubtedly infinitely easier than
450 years ago, since Descriptive Geometry methodology is fully developed and CAD software can be
used to solve geometric problems directly in a three-dimensional space.



Fig. 5 Intrados face of De L’'Orme’s dome. The spatial curve generated by projecting the volute on the hemisphere

De L'Orme’s treatise had a great influence and some later authors included this typology with minor
changes, as will be exposed later. That was not the case of Vandelvira, who presented a radically
different design approach that nothing has to do with De L'Orme’s proposal. There is no evidence of
constructed domes of this kind in France (Rabasa 2003). However, there are some examples in Spain,
one of them in the Cathedral of Murcia that was constructed before De L'Orme’s Treatise. So, as
mentioned by Calvo & Alonso (2005), this case could be an influence for French authors.

Continuing chronologically with the geometric analysis of this type of domes, is the turn for the case
exposed in Vandelvira’s manuscript (ca.1585). It is important to mention that this proposal was only
exposed in one of the copies of Vandelvira Treatise, specifically, in the copy made by Bartolomé de
Sombrigo y Salcedo, preserved at the Library of the Higher School of Architecture of the Polytechnic
University of Madrid [mss. R10].

Vandelvira called this case “Capilla redonda en buelta capago”, it could be literally translated as
rounded chapel turning as a wicker basket. Vandelvira calls rounded chapel “capilla redonda” to a
spherical dome, and he refers to a wicker basket “capazo” (as it is correctly written nowadays in
Spanish) because of the helical disposition of the fibres in a basket made out of wicker.

Fig. 6 shows the illustration presented by Vandelvira, which was complemented with a complete
textual description explaining the graphical procedures. The author divided the equator of the dome
into 16 parts. Consequently, the vertical contact faces between voussoirs are located on the sheaf of
planes containing the dome polar axis and passing though these divisions.

In order to trace the helical curve defining the directrix of the voussoirs beds, Vandelvira drew an
auxiliary frontal view, in which a quarter of meridian was divided into 56 parts, that is the result of
multiplying the 16 divisions in the plan by 3,5, so as to construct the spiral describing three and a half
turns from the equator to the pole, as it can be seen in Fig. 6. Since this meridian is seen in true shape,
the distance between each point of the curve and the polar axis of the dome was measured and
transferred to the plan on the radial division, thus obtaining some points of the horizontal projection
of the curve, which Vandelvira interpolated manually among them.



Fig. 6 lllustration in the manuscript by Alonso de Vandelvira (ca. 1585:65). Geometrical construction of the curve.

This results in a mathematically accurate curve, which is known as a Clelia Curve or Spherical Spiral.
The Clelia is generated by a point moving at constant speed along a meridian of a sphere while this
meridian rotates, also at constant speed, around the polar axis.

Vandelvira defined graphically this curve almost one hundred and fifty years before its mathematical
definition by Luigi Guido Grandiin 1728, who gave its name in honour of the Genovese Countess Clelia
Grillo Borromeo, who was a brilliant woman, amateur mathematician and enthusiast of natural
sciences. The spherical equation of the Clelia curve is:

{ r=R (R = sphere radius, A = longitude, 6 = latitude,c > 0)

A=cH
This kind of curve cannot be mistaken for a Spherical Helix, since it has not a constant slope, nor for a
loxodrome or rhumb line, which would form a constant angle with the meridians.

In order to draw this curve accurately, a dedicated Autolisp function has been programed in AutoCAD
to generate a Spline that matches with the Clelia curve proposed by Vandelvira (Fig. 7). From a practical
and a mathematical point of view, the spatial distribution of the voussoirs is quite more harmonic than
De L'Orme’s proposal. Nevertheless, this design is not absolutely perfect, since the voussoirs are not
disposed in a brickwork layout. This fact could cause a structural weakness and ease the movement of
the masonry under load. However, this issue can be easily solved by dividing the equator into an odd
number of parts and taking two divisions per voussoir so, in this way, the pieces would follow the
brickwork layout. Another practical problem that arises in Vandelvira’s proposal is the lack of a
keystone. The upper pieces become more and more smaller and the carving process may be difficult.
This problem would be solved by putting the last pieces together in order to get a single voussoir.



Fig. 7 Intrados face of Vandelvira’s dome. The spatial curve is a Clelia or Spherical Spiral

Unlike in De L'Orme’s proposal, Vandelvira defined a method to obtain the intrados templates based
on determining the irregular quadrilateral inscribed in the intrados faces of the voussoirs. He only
needed the true size of their diagonals and three of their edges. The geometrical procedure can be
deduced by carefully reading the textual description, that can be sometimes a bit confusing.

Vandelvira explains how to obtain the true size of the diagonals correctly, in the same way that it would
by achieved by using modern technical drawing. That is, the true size of a line segment can be obtained
by measuring the hypotenuse of a rectangular triangle, in which one of their sides measures the same
as the horizontal projection of the line segment, while the other side is equivalent to the height
difference between the line segment endpoints.

However, he does not apply this correct procedure when obtaining the real distance between the
lower points of the template, since, as the author indicates, are measured directly from the plan.
Actually, these points are almost on a horizontal line, so this consideration would produce minor
inaccuracies.

Vandelvira finished the intrados templates, by adding circumference arcs to approximate the portion
of the Clelia curve defining the beds edges of the voussoir. These arcs were obtained by tracing the
circumference arcs whose radius is the generatrix of a cone tangent to the spherical surface of the
dome at the lower point of the Clelia portion. This fact justifies the straight line at the lower part of
the templates in the voussoirs of the lower part of the dome presented by Vandelvira, since the
tangents to the sphere in that points are so vertical that produces an arc of a huge radius.

Vandelvira considers this irregular quadrilateral as being flat, when actually it is not. Certainly, it is
difficult to provide a perfect solution to this problem using flat templates because, as mentioned
before, it involves developing a non-developable surface.

Vandelvira did not specify how the template had to be traced, but the more accurate way to carry out
the transfer process would be to use a semi-rigid template placed on the spherical surface pre-carved
in the voussoir. If the template were totally rigid, only three of their points would touch the spherical
surface. The optimal position would be achieved when laying the template over the endpoints of its



major diagonal, while the endpoints of the other diagonal were equally separated from the spherical
surface. Then, thanks to the flexibility of the template, this points would be forced until touching the
spherical surface. In practice, despite of causing some geometrical deviations, the stonecutter would
surely try to lay the entire template on the spherical surface. That would be achieved with more or less
difficulty depending on the concavity and may cause wrinkles on the template. Nevertheless, it would
be admissible for the habitual cases.

To estimate the accuracy of the template, a three-dimensional CAD model of its deformation and its
transference was obtained and compared with the spatial spherical quadrilateral of the intrados face.
There was found minor differences, since the maximum deviation between homologous points was
under 2 %o of the radius of the dome. This maximum was measured at one of the endpoints of the
minor diagonal of the template. The method by Vandelvira to approximate the portion of the Clelia
curve resulted very accurate as the measured deviations on the curves were above the maximum
mentioned values. Logically, the maximum deviation was measured on the template corresponding to
the first voussoir, as is the biggest one. Consequently, this deviation values would be perfectly
admissible in practice, since the mortar joint would absorb this little differences. That proves that
Vandelvira provided a very good solution for such a complex vault.

The proposals that will be analysed onwards, are derived from De L’'Orme Teatrise. As mentioned by
Rabasa (2003), the first case appeared in the unpublished manuscript by Jean Chereau entitled Le Livre
de L’Architecture (ca.1600). The only copy of this manuscript is kept in the Municipal Library of Gdansk
(Poland) [ms. 2280]. This case is almost an exact copy of De L'Orme’s proposal, as it is shown in Fig. 8.
Like De L'Orme, Chereau said nothing about the construction of the templates.

Fig. 8 Comparison between the proposal by De L’Orme (1567:120) (left) and the case in the unpublished manuscript by Jean
Chereau (right). Picture of Chereau’s manuscript obtained from Rabasa (2003:1682)

Milliet Dechales (1674) exposed in his Treatise Cursus seu mundus mathematicus a similar version of
De L'Orme’s proposal, which is more didactic but worse in the quality of the engraving.

The author entitled this case “Spiraliter testudinem efformare” (Spiral-shaped Shell) and the illustration
was accompanied with a textual explanation that says nothing about the construction of the volute,
which is quite more complex that De L'Orme’s one. It may seem, at first sight, that is a unique four-
centres volute, but the better fitting hypothesis was achieved with a combination of three tangent



volutes. The first volute has four centres that are located in a square that is inscribed in the keystone
circle and rotated 45°. The second one has also four centres, but they are located on another square,
which is inscribed in the previous one and passes through the medium points of their edges. Finally,
the third volute has two centres, which are located on the vertical diameter (Fig. 9).

Problema, Problema,

. Spivaliser sefudinem efformare, - Y . Spivaliter veffudinem eformarcs

Fig. 9 lllustration in the treatise by Dechales (1674:681). Proportions and Geometrical modelization

The complete volute makes three and a half turns to reach the keystone. The spatial curve was
obtained by projecting this volute on a hemispherical sphere surface. As it can be seen in Fig. 10, this
case produces a voussoir distribution that is even more unbalanced than De L'Orme’s one, due to the
minor number of turns. As the volute designed by Dechales is not tangent to the equator of the sphere,
there is an abrupt curvature change at the beginning of the spatial curve.

Fig. 10 Intrados face of Milliet Dechales’ dome. The spatial curve generated by projecting the volute on the hemisphere



Milliet Dechales, at last, explained a method to trace the intrados templates. This method can even be
understood by observing the illustration so it is quite descriptive. Nevertheless, the intrados template
is badly represented and very disproportionate, since the drawing does not follow properly the
instructions exposed in the text. The author embraced the idea of using an auxiliary template from De
L'Orme’s proposal and he managed to provide a reasonable method. Firstly, he traced what would be
similar to the intrados templates of two auxiliary conventional spherical voussoirs. One of them would
be inscribed in the considered voussoir, while the other would circumscribe it. This auxiliary traces
define the position of the four corners of the final template. and on its symmetry axis can be placed
two additional points to trace the curves of the beds, that are simplified as circumference arcs.
Dechales made a mistake in his method, as he indicated that the radius of the contour arcs has to be
taken from the plan, measuring from the considered point to the centre of the dome. This would
produce a different radius if compared to the habitual method for developing the cone surface. This
difference would be quite important in the templates of the lower voussoirs, while, in the
corresponding to the upper ones, it would be minimal as the generatrixes of the cone become more
horizontal as ascending.

In order to estimate the accuracy of this method, the same previous procedure was carried out. As it
was foreseen, the accuracy increased as ascending. The comparison in the taller voussoir at the lower
part of the dome, resulted in a maximum deviation between homologous points of about 7 %o of the
radius of the dome, which was measured approximately in the mediums points of the curve defining
the edge of the lower bed. The comparison corresponding to voussoirs of the second turn showed a
better fit between the edges of the beds, with maximum deviations about 3 %o, while the fitting in the
last turns was almost perfect. This method could have been improved considerably if considering the
appropriate radius for the arcs of the templates.

An almost identical proposal was presented by the Spanish presbyter, architect and mathematician
Tomas Vicente Tosca in his treatise entitled Compendio Mathematico, published in 1707. It is evident
that this proposal is based on Milliet Dechales, but he made some changes when tracing the volute
and, unconscientiously, transformed completely the solution. He designed a quite simple two centres
volute, in which one of this centres was placed in the centre of the dome, causing accidentally an
interesting solution that is a mixture of a conventional spherical multi-row dome and a single-row
spherical dome (Fig. 11).

Fftaimpee d5.Toorr. 3

Fig. 11 lllustration in the treatise by Tosca (1707:232). Proportions and Geometrical modelization



It is clear that the author was not aware of this fact, because in the text description he mentioned that
each voussoir of the dome would require a specific template: “Esta bdveda tanto como tiene de
ingeniosa, tiene de trabajosa, porque cada una de sus piedras necesita de diferentes plantillas” (Tosca
1707:230).

Fig. 12 Intrados face of Tosca’s dome. The spatial curve is horizontal in the half part of the dome

Actually, only the voussoirs located at the right part of the dome and those that are between both
parts would require the methodology exposed by the author, while the rest would follow the
conventional methodology and only one template per row would be necessary.

Unfortunately, the proposal, as it was conceived, is quite unbalanced (Fig. 12). It is a pity, as this
solution could have been gorgeous if the left part of the volute had been traced as usual in the case of
a multi-row spherical dome. That is, being the concentric circumference arcs of this part of the dome
not equally separated in the plan projection. Their separation would derive, in this case, from the
division of a meridian into equal parts and would result in a much more balanced voussoirs layout.

The method exposed by Tosca to trace the templates is almost the same as the one by Dechales. The
only difference is that he makes a little simplification and specifies that the arcs defining the edges of
the beds should pass through a point located on the construction axis and equally separated from their
respective auxiliary arcs. Given that the differences are negligible; it is not necessary to carry out any
further accuracy estimation.

To conclude this study case, it is worth it to mention that Juan de Portor y Castro included in his
Architecture notebook (1708) the same proposal defined by Tosca. As it can be seen in Fig. 13, they
are identical. This notebook is kept in the National Library of Spain [ms. 9114]
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Fig. 13 Comparison between the proposal by Tosca (1707:232) (left) and the case in the manuscript by Juan de Portor y
Castro (1708:192) (right)

Conclusions

In order to summarize the features of every studied case, a comparison between all the spatial
directrices of the domes it is shown in Fig. 14. The Clelia curve designed by Vandelvira (blue) produces
the most balanced and elegant spatial distribution of voussoirs. As mentioned before, the problem is
that the voussoirs does not follow a brickwork pattern, but this can be easily solved by dividing the
equator in an odd number of parts and taking two divisions per voussoir. This consideration would also
improve the rest of the cases, as they had to insert an extra-large voussoir every turn to follow the
brickwork pattern. The solution by De L’'Orme and their derivations result more unbalanced, as they
were not spatially conceived. The projection of the volute on the hemisphere produced the worst
distributions in the case by Dechales and in the mixed solution created accidentally by Tosca, which
could be radically improved by properly distributing the concentric arcs of the volute.

=

M De L'Orme M Vandelvira B Dechales M Tosca

Fig. 14 Comparison between all the obtained spatial curves



From a constructive point of view, the method provided by Vandelvira was the most accurate for
tracing the templates. The method described by Dechales and adopted by Tosca had some conceptual
mistakes that make it be less accurate in the lower part of the dome, where the curves defining de
edges of the bed faces would not match properly with the spatial curve.

Due to the complexity of this domes, there are only six known constructed examples, all of them were
carried out during the 16™ century in Spain. See Rabasa (2003) and Calvo et al. (2005). The oldest case
is in the Cathedral of Murcia (early 16" century). There are two examples attributed to the Spanish
architect Rodrigo Gil de Hontafién in the Palacio de los Guzmanes (Leén) and in the Cathedral of
Plasencia. There are two more cases located in the province of Cadiz; in the Churches of Medina
Sidonia and San Juan de los Caballeros in Jerez de la Frontera. The last example is located in the
Convento de Santa Catalina in Talavera de la Reina. Nowadays, with the development of digital 3D
modelling tools and the Computer-Aided Manufacturing (CAD/CAM), it is possible to generate and
construct easily such a complex model and with total accuracy. As an example, Fig. 15 shows a textured
3D model corresponding to the proposal by Vandelvira.

Fig. 16 3D printed scale model obtained from the previous modelization using an injection 3D printer.



The virtual model became real by means an injection 3D printer, which allows colouring the surfaces
of the dome (Fig. 16). Every single voussoir of this scale model is independent and all the pieces are
sustained only by gravity, without any kind of glue.

All these new tools ease the reading and comprehension of the ancient stereotomy treatises, whose
concise drawings are sometimes difficult to understand, even for skilled geometers. The graphical
methodologies that have been employed in this article will also be useful for future studies in the field
of stereotomy and to promote the knowledge and dissemination of this complex and valuable
geometrical heritage.
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