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Abstract

This article presents a Topology Optimization (TO) method developed for
maximizing the acoustic attenuation of a perforated dissipative muffler in
the targeted frequency range by optimally distributing the absorbent mate-
rial within the chamber. The Finite Element Method (FEM) is applied to
the wave equation formulated in terms of acoustic pressure (chamber) and
velocity potential (central duct, due to the existence of thermal gradients and
mean flow) in order to evaluate the acoustic performance of the noise control
device in terms of Transmission Loss (TL). Sound propagation through the
chamber fibrous material is modelled considering complex equivalent acous-
tic properties, which vary spatially not only as a function of temperature,
but also as a function of the filling density, since non-homogeneous density
distributions are considered. The acoustic coupling at the perforated duct
is performed by introducing a coordinate-dependent equivalent impedance.
The objective function to maximize is expressed as the mean TL in the tar-
geted frequency range. The sensitivities of this function with respect to the
filling density of each element in the chamber are evaluated following the stan-
dard adjoint method. The Method of Moving Asymptotes (MMA) is used to
update the design variables at each iteration of the TO process, keeping the
weight of absorbent material equal or lower than a given value, while max-
imizing attenuation. Additionally, several particular designs inferred from
the topology optimization results are analyzed. The sizing optimization of
these rings is carried out simultaneously with the aforementioned TO process
(density layout). A reactive chamber is added in order to evaluate the TL
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of a hybrid muffler and its shape optimization is also carried out simultane-
ously with the aforementioned TO. Results show an increase in the muffler’s
mean TL at target frequencies, for all cases under study, while the amount
of absorbent material used is maintained or even reduced.

Keywords: Silencer, Acoustic attenuation, Temperature gradient,
Topology Optimization, Transmission Loss, Absorbent Material

1. Introduction

A large number of different muffler configurations is used nowadays; de-
signs range from a simple expansion chamber connected to the inlet and out-
let ducts, to intricate mufflers with several components combined together.
Generally speaking, mufflers can be divided into reactive and dissipative
configurations, depending on the acoustic phenomena that occur inside the
device. Whereas reactive configurations cause the acoustic energy to be re-
flected back to the source, dissipative components, i.e., those containing ab-
sorbent material, convert the acoustic energy into heat [1].

Reactive mufflers can provide good acoustic attenuation at low to mid
frequencies, even with relatively reduced dimensions [1], and their acoustic
behaviour can be improved, at target frequencies, by applying sizing opti-
mization to the components of the muffler, e.g., expansion chamber, extended
ducts, resonators, etc. Barbieri and Barbieri [2] found an optimized geom-
etry of a circular reactive chamber with extended inlet and outlet ducts by
employing the Zoutendijk’s feasible directions method [3]. Chang and Chiu
[4] performed sizing optimization to designs with perforated duct using ge-
netic algorithms (GA). GA were also used by De Lima et al. [5] in order
to conduct the parametric optimization (sizing) of a reactive muffler with
extended ducts, as well as the shape optimization of the duct’s profile by the
use of control points to approximate its boundary with cubic curves.

Topology optimization (TO) methods [6] can also be applied to reactive
mufflers in order to distribute rigid-wall elements and create partitions inside
the reactive chamber. The density approach is applied by employing material
interpolation schemes, such as the Rational Approximation of Material Prop-
erties (RAMP) [7] in order to make the acoustic properties associated with
each element of the FE mesh to vary from those of the air to those of sound-
hard material [8, 9]. The sensitivities of the objective function with respect
to the element densities are normally filtered [10] in order to avoid numeri-
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cal instabilities and mesh-dependent solutions. Lee [11] used the Method of
Moving Asymptotes (MMA) [12] to create partitions in a reactive muffler and
to increase the TL at targeted frequencies, experimentally validating the re-
sults. Lee and Kim [8] used the RAMP model along with the MMA to create
partitions in an expansion chamber. Yedeg et al. [9] also used the MMA to
create internal walls within a perforated muffler, obtaining components that
resembled cylindrical pipes and Helmholtz resonators. On the other hand,
Azevedo et al. [13] used the discrete optimization approach by employing Bi-
directional Evolutionary Structural Optimization (BESO) method to create
barriers within an expansion chamber using discrete variables.

Regarding dissipative mufflers, i.e., those containing absorbent material,
they offer broadband attenuation essentially at mid and high frequencies
[1]. Yoon [14] and Lee et al. [15] used the MMA to distribute elastic and
poro-elastic material elements (as well as air elements) within the muffler’s
reactive chamber by the use of a thee-phase material scheme. Furthermore,
Selamet et al. [16, 17] studied the acoustic behaviour of dissipative mufflers
containing several layers of material with different compaction densities.

Considerable attenuation can be obtained in a broad range of the spec-
trum by using the so-called hybrid muffler, that combines reactive and dis-
sipative chambers [18]. Chiu [19] used GA to maximize the attenuation of a
hybrid muffler in a targeted frequency range, by optimizing the dimensions
and the amount of absorbent material within the dissipative chamber (hence
its filling density).

Moreover, the effect of temperature and thermal gradients on the be-
haviour of dissipative mufflers has been previously studied [20]. The FE
model used in this study, which is fully explained in [20] and will be re-
called in Section 2, is formulated in terms of acoustic velocity potential along
the central duct, due to the existence of an axial flow and a heterogeneous
medium; while pressure formulation is used at the chamber domain, where
there is no mean flow.

This paper presents a method for improving the acoustic attenuation at
target frequencies in dissipative and hybrid mufflers, through a TO approach
that yields non-homogeneous absorbent material distributions. For the dissi-
pative muffler, each finite element within the dissipative chamber is assigned
a different design variable (filling density of the absorbent material within the
element). Hence, the number of design variables coincides with the number
of elements inside the chamber. As a consequence, the acoustic properties
of the fibrous medium vary into the chamber. Regarding the hybrid muffler,

3



the geometrical parameters of both dissipative and reactive chambers are
also considered variables of the optimization process.

This paper is organized as follows: after this introduction, Section 2 pro-
vides the equations used to characterize the acoustic behaviour of dissipative
and hybrid mufflers, considering thermal gradients and mean flow. The fi-
brous material in the dissipative chamber is modelled as an equivalent fluid,
whose acoustic properties are evaluated within each element as a function of
both its filling density and temperature, according to the models provided in
Section 2.1.

The high number of variables obtained makes the use of gradient-based
algorithms a suitable method for the optimization problem presented in Sec-
tion 3. The MMA [12] is utilized to update the filling densities of each
element within the chamber, while maintaining or even reducing the amount
of fibrous material used. The standard adjoint method recalled in Section 4
is considered to speed up the sensitivity analysis.

Numerical results are presented in Section 5. First the optimized fill-
ing density distribution is obtained for different working conditions. Next,
some easy-to-fabricate models are obtained from the TO results and anal-
ysed. Additionally, a model with a dissipative chamber filled with rings of
absorbent material, and a reactive chamber is considered. The filling density
of each ring of material into the dissipative chamber, and the geometry of
both chambers are optimized. Finally, Section 6 shows the main conclusions
of this work.

2. Acoustic problem

Figure 1 shows a sketch of the perforated dissipative muffler considered
in this section. It consists of a central air passage carrying a mean flow, and
a surrounding annular chamber filled with absorbent material. Additionally,
the perforated surface between the chamber and the central duct allows for
acoustic interaction between them, while reducing back-pressure and pre-
venting the absorbent material from being dragged out by the exhaust flow
[16–18, 20–22].

The noise control device is divided into two subdomains: the central pas-
sage, denoted by Ωa, and the annular dissipative chamber, Ωm. Γp denotes
the perforated surface between them, Γa and Γm represent the rigid bound-
aries of the muffler (with normal velocity Un equal to zero), while Γin and
Γout stand for the inlet and outlet sections of the muffler.
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Figure 1: Perforated dissipative muffler with heterogeneous absorbent material.

Following the approach presented in [20], an axial temperature gradient
is considered at the central passage, which causes not only the acoustic prop-
erties of the air (density ρ0 and speed of sound c0) to vary with respect to
the x coordinate, but also the mean flow speed Umf . On the other hand,
axial and radial temperature variations are considered inside the chamber.
The fibrous medium can be modelled as an equivalent fluid, in terms of its
position-dependent complex equivalent properties, ρm(x) and cm(x), which
can be expressed, for a given material, as a function of filling density ρb(x),
temperature T (x) and acoustic frequency f . Finally, the perforated duct is
modelled by evaluating the acoustic impedance Z̃p(x).

2.1. Material characterization

Absorbent materials can be modelled as equivalent fluids by using the
corresponding complex acoustic properties [23]. Delany and Bazley’s empir-
ical model [24] is used in this study to estimate the characteristic acoustic
impedance Zm and material wavenumber km (or equivalenty the propagation
constant) in terms of f and steady airflow resistivity R.

On the other hand, R can be evaluated at room temperature as a function
of the filling density ρb by the expression [25]

R0 = A1ρ
A2
b , (1)

where coefficients A1 = 1.0831 and A2 = 1.8279 are obtained from exper-
imental data for the material under study, Owens Corning texturized fi-
breglass roving [18], with R0 = 4896 Pa s/m2 for ρb = 100 kg/m3, and
R0 = 17378 Pa s/m2 for ρb = 200 kg/m3 [16]. This interpolation is here-
inafter considered valid for ρb between 50 kg/m3 and 250 kg/m3 [16–18], and
any value of filling density between these two limits is considered suitable
from a manufacturing point of view.
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Additionally, Christie’s power law [26] is used in this study to evaluate R
at high temperature

R(x) = R0(x)

(
T (x) + 273.15

T0 + 273.15

)0.6

, (2)

with T0 = 25 oC. Once R(x) is known, Delany and Bazley’s aforementioned
expressions for Zm(x) and km(x) are [24]

Zm(x) = Z0(x) (1 + a5ξ(x)a6 − ja7ξ(x)a8) , (3)

km(x) = k0(x) (1 + a3ξ(x)a4 − ja1ξ(x)a2) , (4)

Z0(x) and k0(x) being the acoustic characteristic impedance of the air and
its wavenumber, while the dimensionless frequency parameter is defined by
ξ(x) = ρ0(x)f/R(x). Coefficients and exponents ai for the material studied
are shown in Table 1, and are kept constant with temperature [26–28]. Fi-
nally, the equivalent density ρm(x) and speed of sound cm(x) are expressed
as

ρm(x) =
Zm(x)

cm(x)
, (5)

cm(x) =
ω

km(x)
, (6)

ω being the angular frequency of the acoustic excitation.

Texturized fibre glass
a1 0.189
a2 −0.595
a3 0.160
a4 −0.577
a5 0.095
a6 −0.754
a7 0.085
a8 −0.732

Table 1: Coefficients and exponents for the calculation of the equivalent acoustic proper-
ties.
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2.2. Hybrid FE formulation

This section describes the FE formulation of the acoustic problem and
the role played by the design variables (such as the filling density ρb of each
element or the chamber dimensions Lx and Lr) in the equations. Addition-
ally, the derivatives of the global system matrices with respect to the design
variables are obtained in Appendix A.

The FE model described in [20] is used throughout this paper and re-
called in this Section for the sake of convenience. The wave propagation
model formulated in terms of acoustic velocity potential within Ωa, and in
terms of acoustic pressure within Ωm is explained in Sections 2.2.1 and 2.2.2,
whereas the coupling between them across the perforated surface is recalled
in Sections 2.2.3 and 2.2.4. The reader is referred to [20] for further details.

2.2.1. Wave propagation along the central passage domain Ωa

An axial temperature gradient is considered along the central passage.
This implies the acoustic properties of the air c0(x) and ρ0(x) to vary axially
within Ωa. In addition, a mean axial flow may be considered, with velocity
Umf (x) = {Umf (x), 0, 0}. A convenient form of the wave equation for the
described medium is the one formulated in terms of velocity potential φ [29]:

∇ · (ρ0∇φ)− ρ0
D

Dt

(
1

c20

D

Dt
φ

)
= 0 . (7)

Acoustic velocity u and pressure p can be obtained from φ as [29]

u = {u, v, w}T = ∇φ , (8)

p = −ρ0
Dφ

Dt
. (9)

A harmonic time dependence of the acoustic magnitudes involved is as-
sumed, with φ(x, t) = Φ(x)ejωt and p(x, t) = P (x)ejωt. Hence the total time
derivative can be written as

D

Dt
=

∂

∂t
+ Umf · ∇ = jω + Umf

∂

∂x
, (10)

j being the imaginary unit. By introducing Eq. (10) into Eq. (7), it is
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obtained [20]

∇ · (ρ0∇Φ)−
ρ0U

2
mf

c20

∂2Φ

∂x2
− 2ρ0jωUmf

c02
∂Φ

∂x
− ρ0U2

mf

∂ (1/c20)

∂x

∂Φ

∂x

− ρ0Umf
c20

∂Umf
∂x

∂Φ

∂x
− ρ0jωUmf

∂ (1/c20)

∂x
Φ +

ρ0ω
2

c20
Φ = 0 . (11)

The weighted residual statement (with weighting function Ψ) and the
divergence theorem [30] are applied to Eq. (11). Further manipulation yields
[20]

−
∫
Ωa

ρ0∇TΨM∇Φ dΩ

+

∫
Ωa

Ψ

(
U2
mf

c20

∂ρ0
∂x

+
ρ0Umf
c20

∂Umf
∂x

− 2ρ0jωUmf
c20

)
∂Φ

∂x
dΩ

+

∫
Ωa

Ψ

(
−ρ0jωUmf

∂ (1/c20)

∂x
+
ρ0ω

2

c20

)
Φ dΩ +

∫
Γa

ρ0ΨnTM∇Φ dΓ = 0 ,

(12)

where n is the outward normal unit vector to the boundary Γ , and M is the
matrix defined by

M =

1−Mmf
2 0 0

0 1 0
0 0 1

 , (13)

Mmf (x) = Umf (x)/c0(x) being the Mach number. The FE discretization
given by Eqs. (14) and (15) is applied to Eq. (12), where N is the row vector
of nodal shape functions, and Φ̃ and Ψ̃ are the vectors containing the nodal
values of Φ and Ψ .

Φ(x) = N(x)Φ̃ , (14)

Ψ(x) = N(x)Ψ̃ . (15)

The use of the Galerkin approach [30] leads to the following algebraic
system, expressed here in compact notation [20]:(

Ka + jω (Ca1 + Ca2)− ω2Ma

)
Φ̃ = Fa , (16)
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where the stiffness, damping and mass matrices, as well as the force vector
are respectively [20]

Ka =

Ne
a∑

e=1

∫
Ωea

ρ0 (∇N)T M∇N dΩ , (17)

Ca1 =

Ne
a∑

e=1

∫
Ωea

2ρ0Umf
c20

NT ∂N

∂x
dΩ , (18)

Ca2 =

Ne
a∑

e=1

∫
Ωea

ρ0Umf
∂ (1/c20)

∂x
NTN dΩ , (19)

Ma =

Ne
a∑

e=1

∫
Ωea

ρ0
c20

NTN dΩ , (20)

Fa =

Ne
a∑

e=1

∫
Γea∩Γ

ρ0N
TnTM∇Φ dΓ

=

Ne
a∑

e=1

∫
Γea∩Γbc

ρ0N
T
(
1−M2

mf

) ∂Φ

∂n
+

∫
Γea∩Γp

ρ0N
T ∂Φ

∂n
dΓ , (21)

N e
a , Ω e

a and Γ e
a being the number of elements within Ωa, as well as the domain

and boundary of each of these elements in the summation term. A normal
acoustic velocity to Γ may exist at those boundaries where the natural rigid
wall condition is not satisfied [31], i.e., Γbc = Γin∪Γout (inlet/outlet sections)
and Γp (perforated duct surface).

2.2.2. Wave propagation in the dissipative chamber

In the absence of mean flow, and considering a heterogeneous medium, the
simpler harmonic form of the wave equation expressed in terms of pressure
can be used [20–22, 29]

∇ ·
(

1

ρm
∇P

)
+

ω2

ρmc2m
P = 0 . (22)

The FE method is applied to Eq. (22) in an analogous way to Section
2.2.1, yielding the following algebraic system, expressed here in compact form
[20] (

Km − ω2Mm

)
P̃ = Fm , (23)
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where the matrices Km, Mm and the vector Fm are defined below [20]

Km =

Ne
m∑

e=1

∫
Ωem

1

ρm
(∇N)T (∇N) dΩ , (24)

Mm =

Ne
m∑

e=1

∫
Ωem

1

ρmc2m
NTN dΩ , (25)

Fm =

Ne
m∑

e=1

∫
Γem∩Γp

1

ρm
NT ∂P

∂n
dΓ , (26)

N e
m, Ω e

m and Γ e
m being the number of elements within Ωm, as well as the

domain and boundary of each of these elements in the summation term.
The equivalent acoustic properties of the poroelastic medium ρm and cm
are calculated according to Eqs. (5) and (6). Note that, although just one
variable ρb is assigned to each element, ρm and cm might vary within Ω e

m due
to thermal effects.

2.2.3. Acoustic coupling at the perforated duct

The acoustic coupling between Ωa and Ωm is modelled by means of an
impedance associated with the perforated surface. This is defined as the ratio
of the acoustic pressure drop between both sides of the plate to the acoustic
velocity across the orifices Un [1]:

Z̃p =
Pa − Pm
Un

, (27)

where Pa and Pm are the pressures at both sides of the perforated screen.
On the other hand, recalling Eqs. (8), (9) and (10) within Ωa yields

Pa = −ρ0 (jωΦ + Umf ∂Φ/∂x) . (28)

Assuming continuity of normal velocity across the perforated surface [32],
Una = −Unm , and substituting ∂Φ/∂n = Un from Eq. (27) into the second
term of Eq. (21), the contribution of the perforated surface to Fa is obtained
[20]

FZp
a =

∫
Γea∩Γp

ρ0N
T

(
−ρ0 (jωΦ + Umf ∂Φ/∂x)

Z̃p
− Pm

Z̃p

)
dΓ . (29)
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F
Zp
m can be derived analogously, replacing the term ∂Pm/∂n = −ρmjω(−Un)

into Eq. (26), where Unm is obtained from Eq. (27) [20].

FZp
m =

∫
Γea∩Γp

NT

(
ρ0ω

2Φ − ρ0jωUmf ∂Φ/∂x

Z̃p
− jωPm

Z̃p

)
dΓ . (30)

No mesh continuity is required between both domains, although a con-
forming mesh has been used between Ωa and Ωm in order to simplify the
computations, and shape functions at both sides of the perforated surface
are therefore equal [20]. The force terms described in Eqs. (29) and (30) are
moved to the left-hand side of the algebraic system, following the relations:

FZp
a =

(
−KZp

aa − jωCZp
aa

)
Φ̃a −KZp

amP̃m , (31)

FZp
m =

(
−jωCZp

ma + ω2MZp
ma

)
Φ̃a − jωCZp

mmP̃m , (32)

obtaining the following new terms [20]

KZp
aa =

Ne
a∑

e=1

∫
Γea∩Γp

ρ20UmfN
T

Z̃p

∂N

∂x
dΓ , (33)

KZp
am =

Ne
a∑

e=1

∫
Γea∩Γp

ρ0N
TN

Z̃p
dΓ , (34)

CZp
aa =

Ne
a∑

e=1

∫
Γea∩Γp

ρ20N
TN

Z̃p
dΓ , (35)

CZp
mm =

Ne
a∑

e=1

∫
Γem∩Γp

NTN

Z̃p
dΓ , (36)

CZp
ma =

Ne
a∑

e=1

∫
Γem∩Γp

ρ0UmfN
T

Z̃p

∂N

∂x
dΓ , (37)

MZp
ma =

Ne
a∑

e=1

∫
Γem∩Γp

ρ0N
TN

Z̃p
dΓ . (38)

2.2.4. Perforated duct impedance models

In order to model the acoustic coupling at a perforated circular duct
separating an air passage with grazing mean flow and a chamber with no
absorbent material, the empirical impedance model presented by Lee and Ih
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[33] has been found to show good correlation with experimental data [32] and
is therefore used in this study. The dimensionless impedance for a perforated
surface in the presence of grazing mean flow is

ςp(x) =
Zp(x)

ρ0(x)c0(x)
= α(x) + jβ(x) . (39)

The values of the real (resistance) and imaginary (reactance) parts depend
on the geometric parameters of the perforated plate: its thickness tp, porosity
σ and diameter of the orifices dh, as well as f and Mmf , and its computation
is described in [20]. In order to capture the effect of the fibrous material,
good correlation with experimental results is found for Kirby and Denia’s
expression shown below [32]

Z̃p(x) = Z0(x)

(
ςp(x) +

j0.425k0(x)dh (ρm(x)/ρ0(x)− 1)F (σ)

σ

)
, (40)

where the hole interaction factor F (σ) is approximated in this study by the
mean value [32, 34] given by Ingard [35] and Fok [36] expressions, denoted
below by FI and FF , respectively

FI (σ) =1− 0.7
√
σ , (41)

FF (σ) =1− 1.41
√
σ + 0.34

√
σ3 + 0.34

√
σ5 . (42)

2.2.5. Boundary conditions at the outlet

TL computations require an anechoic termination [1]. This can be achieved
by prescribing an acoustic impedance at the outlet section equal to the char-
acteristic impedance of the propagation medium:

Z =
P

Un
=

P

∂Φ/∂x
= Z0 = ρ0c0 . (43)

Introducing P from Eq. (43) into Eq. (28), and solving for ∂Φ/∂x leads
to [20]

∂Φ

∂x
= − jωρ0Φ

Z0 + ρ0Umf
. (44)

Eq. (44) is then introduced into the first term of Eq. (21), and the
resultant expression is evaluated at the outlet section, obtaining

FZout
a = −jωρ20

1−M2
mf

Z + ρ0Umf

Nout
e∑
e=1

∫
Γe∩Γout

NTΦ dΓ . (45)
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Eq. (45) is moved to the left-hand side of Eq. (16). In compact form,
FZout
a = −jωCZout

a Φ̃a, with the new matrix CZout
a given by:

CZout
a = ρ20

1−M2
mf

Z + ρ0Umf

Nout
e∑
e=1

∫
Γe∩Γout

NTN dΓ . (46)

2.2.6. Final system of equations

The resulting global system of equations is:([
Ka + K

Zp
aa K

Zp
am

0 Km

]
+ jω

[
Ca1 + Ca2 + CZout

a + C
Zp
aa 0

C
Zp
ma C

Zp
mm

]

−ω2

[
Ma 0

M
Zp
ma Mm

]){
Φ̃a

P̃m

}
=

{
Fin
a

0

}
. (47)

However, in the present study excitation at the inlet section is modelled
by means of Dirichlet boundary conditions, with Φ = 1 on Γin for simplicity.
A suitable modification of rows and columns in Eq. (47) is then required,
following [37]. Additionally, Fin

a = 0. Finally, the value of the objective
function is obtained using the solution of the acoustic field within the silencer,
as shown in Section 2.3.

2.3. Objective Function. Transmission Loss

The acoustic attenuation of a muffler can be measured in terms of Trans-
mission Loss (TL), which is defined as the ratio of the incident power on the
noise control device to the one transmitted through the outlet section (with
anechoic conditions). It can be expressed as [1]

TL = 10 log

( ∣∣P+
in

∣∣2 Sin (1 +M2
in) / (2ρincin)∣∣P+

out

∣∣2 Sout (1 +M2
out) / (2ρoutcout)

)
, (48)

where P+, S and M denote the amplitude of the progressive wave, the cross-
section area of the tube and the Mach number, respectively (subscripts in
and out denote the inlet and outlet sections). By assuming that the inlet and
outlet ducts are long enough to avoid three-dimensional effects at Γin and Γout
(generated at the expansion and contraction of the muffler chamber), plane
wave propagation is guaranteed for the frequencies analyzed (up to 3200
Hz), and the progressive wave at the inlet section is P+

in = (Pin + Z0Uin) /2,
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whereas the lack of regressive wave at the outlet tube leads to P+
out = Pout

[22]. Given Eqs. (8), (9) and (10), it leads to

P+
in =

1

2

(
−ρin

(
jωΦ̃

(
nin1
)

+ U in
mf

∂Φ

∂x

(
nin1
))

+ Z0
∂Φ

∂x

(
nin1
))

, (49)

P+
out = −ρout

(
jωΦ̃out

(
nout3

)
+ U out

mf

∂Φ

∂x

(
nout3

))
, (50)

where nin1 and nout3 are the central nodes of Γin and Γout, respectively. The
computation of ∂Φ/∂x at nin1 and nout3 can be carried out, for example,
through the nodal solution of Φ at additional nodes nin2 , nin3 , nout1 , and nout2

within the corresponding elements (see Figure 2).

Figure 2: Nodes of the finite element mesh of a dissipative muffler.

3. Optimization problem

The optimization problem of designing a muffler targeted to operate in
the frequency range [ω0, ω1] can be stated as

max
υ

f0(Φ̃(υ)) =
1

ω1 − ω0

∫ ω1

ω0

TL(Φ̃(υ), ω) dω , (51)

subject to gi(υ) ≤ 0 for i = 1, ...,m ,

υmin
j ≤ υj ≤ υmax

j for j = 1, ..., n ,

(52)

i.e., optimizing a set of n design variables υj, in order to maximize the mean
TL in the targeted frequency range, while satisfying the m constraints gi(υ).
Note that υ is a general representation of the design variables. In general, υ
contains the bulk densities corresponding to the elements of the chamber. In
Section 5.3 it will contain some additional variables such as the dimensions
of the dissipative and reactive chambers. A weight constraint is included
to limit the maximum amount of fibre, and to show the versatility of the
proposed method to add constraints:

g1(υ) = W (υ)−W0 ≤ 0 , (53)
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W0 being the maximally allowed weight. Simpson’s numerical integration rule
[38] with frequency spacing ∆ω of 5 Hz is used in this study to approximate
the integral in (51). As mentioned in Section 1, the optimization problem is
solved at each iteration by the use of the gradient-based MMA [12] due to
the high number of design variables. No filtering of sensitivities is performed.

Opposite to standard TO approaches, which look for material-void de-
signs, the proposed method also allows for intermediate values of filling den-
sity, since obtaining areas with these filling density values is possible from a
manufacturing point of view. Hence intermediate values of ρb are not penal-
ized.

Given a design point υ, an approximating subproblem is generated, in
which the objective function is replaced by certain convex functions, using
gradient information. The algorithm to solve this subproblem is beyond
the scope of this paper and the reader is referred to [12] for its description.
However, it has not been proven that the problem is convex, hence it is
not possible to state that the solution reached after meeting the stopping
criterion is the optimal design. The computation of the sensitivities of f0
with respect to a perturbation of the design variables can be sped up (with
respect to the finite difference method) by using the standard adjoint method
[39], recalled in Section 4.

4. Sensitivity analysis

The standard adjoint method [39] is described below. The global algebraic
system (47) is recalled here in compact form

κ(υ, ω)Θ̃(υ, ω) = F , (54)

where κ = K + jωC − ω2M and the column vector Θ̃ contains the nodal
solution in terms of acoustic pressure and velocity potential. As explained
in Section 5, the force term F only includes the force terms derived from the
excitation at the inlet, and does not depend on υ. At each iteration, for a
certain frequency ω, the augmented objective function is defined as follows:

f̂0

(
Θ̃(υ)

)
= f0

(
Θ̃(υ)

)
−λT (υ)

(
κ(υ)Θ̃(υ)− F

)
−λT (υ)

(
κ(υ)Θ̃(υ)− F

)
,

(55)
λ(υ) being the Lagrange multipliers column vector, and (·) being the complex
conjugate of (·). Differentiating Eq. (55) with respect to the design variable
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υj and reordering the terms yields

Df̂0
Dυj

=
∂f0
∂υj

+

(
∂Θ̃r

∂υj

)T (
−κTλ− κTλ +

∂f0

∂Θ̃r

)

+

(
∂Θ̃i

∂υj

)T (
−jκTλ + jκTλ+

∂f0

∂Θ̃i

)
− λT

(
∂κ

∂υj
Θ̃

)
− λ

T
(
∂κ

∂υj
Θ̃

)
, (56)

where the computation of the term ∂κ/∂υj is explained in Appendix A.1
(derivative with respect to the filling density), Appendix A.2 (longitudinal
dimension of the chamber) and Appendix A.3 (radial dimension). Column
vectors ∂f0/∂Θ̃r and ∂f0/∂Θ̃i contain the derivatives of f0 with respect to
the real and imaginary parts of the nodal solution of the six nodes highlighted
in Figure 2, and can be derived analytically from Eqs. (48), (49) and (50).
In addition, ∂f0/∂υj = 0.

As the explicit form of the terms ∂Θ̃r/∂υj and ∂Θ̃i/∂υj is difficult to
obtain, λ(x) is chosen so that

−κTλ− κTλ +
∂f0

∂Θ̃r

= 0 , (57)

−jκTλ + jκTλ +
∂f0

∂Θ̃i

= 0 . (58)

Multiplying Eq. (58) by −j and adding Eq. (57) leads to [39]

λ =
1

2

(
κT (x)

)−1( ∂f0

∂Θ̃r

− j ∂f0
∂Θ̃i

)
. (59)

The derivatives of the system matrices with respect to each design variable
are obtained analytically as explained in Appendix A, and the sensitivity of
the objective function with respect to each design variable υj is calculated
as [39]

Df̂0
Dυj

= −2<
{
λT
(
∂κ

∂υj
Θ̃

)}
for j = 1, ..., n . (60)
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5. Results

The acoustic model described in Section 2 has been implemented for the
axisymmetric case in order to optimize the density layout of the absorbent
material within the dissipative chamber. This section shows numerical results
to illustrate the good performance of the proposed method. The designs
obtained after optimization will be referred hereinafter as optimized designs,
since it cannot be stated that they correspond to the global optima of their
respective problems.

Given a muffler geometry, temperature distribution and Mach number
at the inlet, computations are carried out with a view to maximize acoustic
attenuation performance in the targeted frequency range. The TO method
described in Section 3 is applied below to two different muffler configurations:
a dissipative muffler with one chamber and perforated tube; and a hybrid
muffler containing a dissipative chamber with perforated tube, and a reactive
chamber with extended outlet tube. The effect of temperature gradients on
the design of the noise control device will be included, as described in Section
5.1, as well as the simultaneous design of the density layout and the muffler’s
geometry given a constant temperature within it.

The computation times for the dissipative and hybrid geometries provided
in Sections 5.2 and 5.3 refer to the use of an Intel R© Xeon R© CPU E5-2609
@ 2.40 GHz with 16 GB RAM.

5.1. Temperature distribution

The temperature distribution within the muffler depends on the muffler
configuration, as well as the engine load and speed, and affects the sound
propagation properties of both the air and fibrous mediums. The effect of the
absorbent material filling density on the temperature function is not included
in this study, and therefore temperature can be expressed as a function of
position T = T (x, r) at all stages of optimization: a linear axial variation
is assumed along the perforated section Tduct(x), whereas temperatures at
the inlet Tin and outlet tubes Tout are considered constant due to their short
length with respect to the total length of the muffler, in accordance with
reference [20].
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Figure 3: Axisymmetric temperature distribution studied.

Regarding the temperature function at the annular chamber, Tchamber(x, r),
a quadratic variation along the radial direction is added in order to approx-
imate the logarithmic temperature function through a cylindrical domain.
The example cases studied are shown in Table 2 [20].

Tin Tout T1 T2 T3 T4 T5 T6 Tavg
Case T-I 25 25 25 25 25 25 25 25 25
Case T-II 300 200 300 235 200 200 135 100 181
Case T-III 181 181 181 181 181 181 181 181 181

Table 2: Definition of the temperature field (oC).

5.2. Multi-frequency optimization of a dissipative muffler

The configuration to optimize is shown in Fig. 4. The muffler consists of
a single dissipative chamber, filled with Owens Corning texturized fibreglass
roving [18] (see properties in Table 1). Its dimensions are: inner radius
Rt = 0.0268 m, outer radius Rc = 0.0886 m, and chamber length Lc = 0.3
m. The perforated duct properties are: thickness tp = 0.001 m, porosity
σ = 20%, and orifice diameter dh = 0.0035 m.

Ωa and Ωm are meshed using 8-node quadrilateral elements, whose max-
imum length is set to 0.005 m. 780 elements are obtained within Ωm and
therefore, 780 design variables are considered, with maximum and minimum
element filling density values set to 50 and 250 kg/m3 respectively. Initially,
a homogeneous filling density of 120 kg/m3 is assigned to every finite element
of the chamber, using 0.8066 kg of absorbent material. This initial weight
is defined as the maximum admissible weight (W0). Finally, the maximum
change in each variable per iteration is restricted to 10% of the range.
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Figure 4: Initial design.

Design 1. Cold condition. Low frequency range

First, the TO process is carried out for the case T-I described in Table
2 (cold condition). Mach number at the inlet section is 0.05. The targeted
frequency range where TL is to be improved is set to [100− 200] Hz. The
acoustic analysis is performed by employing 4500 degrees of freedom, and the
sensitivities of f0 are obtained for each of the 101 frequencies of the Simpson’s
quadrature, with ∆ω = 5 Hz. The MMA method is then used to optimize
the material distribution by using gradient information. Each iteration takes
80 seconds to solve, using the aforementioned processor.

The stopping criterion is defined as the relative variation (in absolute
value) in each design variable being below 1% of its range. Figure 5 shows
the muffler design after meeting the stopping criterion at iteration 27.

Figure 5: Optimized topology. Design 1.

As shown in Figure 5, the improved design has the minimum density
associated with most of the elements of Ωm. Therefore the final design uses
only 0.3656 kg of absorbent material. In accordance with Selamet et al. in
[16], a slight improvement in TL at low frequencies can be achieved by using
low filling density, even though this may result in a worse attenuation in the
rest of the frequency range, as shown in Figure 7.

Even if this optimized muffler could be difficult or expensive to manu-
facture, the TO process yields basic ideas to construct a high-performance
manufacturable muffler for these particular working conditions.
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Design 1a. Manufacturable muffler with ρb = 50 kg/m3 and extended ducts

Design 1 shown in Figure 5 shows maximum density in two thin regions
at both sides of the perforated surface. Although Design 1 is difficult to
obtain by standard fabrication methods, it gives some guidelines in order
to generate new designs. The increase in bulk density up to the maximum
value next to the perforated duct tends to form acoustically independent
subdomains, similar to an extended duct separating the central passage and
the outer chamber. Therefore, it is suggested that Design 1 can be replaced
by a muffler with homogeneous minimum filling density in the chamber and
duct extensions (Design 1a). Figure 6 shows the easily manufacturable design
with a homogeneous ρb of 50 kg/m3 and extended ducts of length 0.0075 m
each, as suggested by Figure 5.

Figure 6: Manufacturable design. Design 1a.

Results discussion. Designs 1 and 1a

The attenuation performance of the optimized topology shown in Figure 5
(Design 1) and the manufacturable muffler shown in Figure 6 (Design 1a) are
compared with the initial topology. As shown in Figure 7, the manufacturable
design shows an improvement in terms of TL which is similar to the optimized
design in the targeted frequency range, with respect to the initial design. In
addition, both Designs 1 and 1a show worse attenuation with respect to the
initial topology, for frequencies out of the attenuation range. The addition of
the extended ducts does affect the TL prediction for higher frequencies: the
manufacturable design shows better performance up to 1000 Hz with respect
to the optimized design, while it provides worse attenuation in the range
from 1000 to 3200 Hz.
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Figure 7: TL for the initial and optimized topologies (case 2 and 3).

Design 2. Cold condition. Mid frequency range

Next, the targeted frequency range is switched to [500− 1000] Hz. The
TO process is repeated for the same temperature case. Figure 8 shows an
intermediate design of the optimization process, after 9 iterations. At this
stage of the process, the design still includes many areas with intermediate
values of density. However, the improved design shown in Figure 11 resembles
a set of annular rings with the maximum and minimum filling densities.
Similar configurations have been studied in reference [17].

Figure 8: Optimized topology. Case 2 at iteration 9.

Figure 9 shows that f0 improves at every iteration, from the starting value
of 28.39 dB to 35.65 dB at iteration 43. However, the value of the weight
constraint g1 oscillates until converging to a value near zero. This implies
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that the optimized design shown in Figure 11 (once optimization finishes)
uses 0.8066 kg of material, as much as the initial one.

Figure 9: Case 2. Evolution of f0(υ).

This suggests that better attenuation at mid frequencies could be ob-
tained by the use of a higher amount of fibrous material, in accordance with
reference [16].

Figure 10: Case 2. Evolution of g1(υ).

After 43 iterations, the stopping criterion is met. The resultant design,
resembling a configuration with rings [17], is shown in Figure 11.

Figure 11: Optimized topology. Design 2.
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Design 2a. Manufacturable muffler with a ring design

Analogously to Case study 1, the optimized topology shown in Figure 11
is not easily manufacturable. Additionally, a ring configuration consisting
of 5 rings of material with filling densities of 50 and 250 kg/m3 is studied,
as TO suggests. The rings are 0.065 m and 0.0525 m wide respectively, as
shown in Figure 12, in order to maintain the amount of dissipative material
used.

Figure 12: Manufacturable design. Design 2a.

Design 2b. Manufacturable muffler with a ring design and extended ducts

Design 2 shown in Figure 11 includes small regions of dissipative material
with high density over both sides of the perforated surface, reducing the
acoustic coupling between the subdomains Ωa and Ωm in these sections of
the tube. Figure 8 shows that these areas tend to adopt the maximum
bulk density faster than any other region in the chamber. As shown in the
literature [34], the use of extended inlet/outlet ducts can help to increase
attenuation at certain ranges of frequency. Therefore, an additional design
including extended tubes with 0.02 m of length (equal to the axial length
of 4 finite elements within Ωm) is studied. This design is sketched in Figure
13. The acoustic performance provided by Designs 2, 2a and 2b is shown in
Figures 15 and 16, and results are discussed below in this section.

Figure 13: Manufacturable design. Design 2b.
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Case 3. Hot condition. Middle frequency range

The TL provided by a given muffler can differ substantially when con-
sidering thermal effects, and peaks in TL can shift to different frequencies
[20, 22, 40]. Additionally, by considering silencers with large dimensions and
fibre volume, high temperature and highly resistive fibres, it is likely that
the topologies obtained by cold and hot TO could exhibit differences in some
cases.

Next, the effect of temperature on the TO process will be studied, by
considering the hot condition case T-II described in Table 2, while maintain-
ing the frequency range of interest in [500− 1000] Hz. The initial density
distribution is the one used in previous sections (see Fig. 4). The improved
topology after stopping criterion is met at iteration 39 is plotted in Fig. 14.

Figure 14: Optimized topology. Case 3.

As shown in Figure 14, by considering the high-temperature effect, a sim-
ilar optimized topology to Design 2a (resultant of the cold TO) is obtained.
It consists of 5 rings alternating minimum and maximum ρb. The final weight
is again 0.8066 kg.

Results discussion. Designs 2, 2a, 2b and 3

The initial design as well as Designs 2, 2a, 2b and 3 are evaluated at the
cold temperature case T-I described in Table 2. The initial homogeneous
topology of 120 kg/m3 provides a mean TL in the targeted frequency range
of 28.65 dB. As it can be seen in Figure 15, the result of TO for the cold
working condition (Design 2), shows good acosutic attenuation improvement
in terms of TL (35.65 dB). Design 2a, consisting of 5 rings inferred from
Design 2, provides a similar mean TL of 34.80 dB. However, Design 2b with
rings and extended ducts improves noise mitigation up to 37.02 dB.

This suggests that the small regions with maximum ρb that appear at
both sides of the perforated surface have a physical meaning: the algorithm
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increases filling density in these small areas in order to reduce the acoustic
coupling between the duct and the chamber in these regions of the perforated
duct, similar to duct extensions. As shown in Figure 8, at iteration 9 of the
TO, these small regions already show maximum ρb, whereas the rest of the
finite elements within Ωm are associated with intermediate filling densities.
Therefore, removing the acoustic coupling at these regions by means of ex-
tended ducts increases attenuation in the problem under analysis. Finally,
Design 3 shows worse attenuation than Design 2 at target frequencies (mean
TL of 35.12 dB). Nonetheless, the differences in material performance ob-
served in the literature [28, 40] can justify the use of the complete model,
which considers thermal effects.

Figure 15: TL for the initial and optimized topologies (case 2 and 3).

On the other hand, the topologies obtained with the different working
conditions are tested with the high temperature field T-II defined in Table
2. Results are shown in Figure 16. The initial topology with uniform ρb of
120 kg/m3 provides a mean TL at the targeted frequency range of 27.65 dB.
Design 2, resultant of the cold TO (case T-I of Table 2), provides a mean TL
of 36.72 dB in the targeted range.

Design 3, obtained from the TO with the hot case T-II, provides a good
improvement in TL in the targeted frequency range, up to 37.35 dB. This
proves that higher attenuation can be achieved with the same amount of
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material, depending on the working conditions. Figure 16 shows a peak in
attenuation with 60 dB at around 1200 Hz for this last design.

Design 2a, consisting of rings, shows a mean TL of 35.30 dB, which is
worse than cases 2 and 3, but still better than the initial design. However,
the addition of the extended ducts improves the mean TL up to 37.42 dB,
although their length is larger than the length suggested by Design 3 (see
Figure 14).

Figure 16: TL for the initial and optimized topologies (case 2 and 3).

For both cold and hot evaluations, all the optimized designs show worse
TL than the initial design from around 1500 to 3200 Hz, proving that opti-
mization in one range of frequencies can lead in some cases to worse attenu-
ation at other frequencies.

5.3. Multi-frequency optimization of a hybrid muffler with multiple constraints

Design 4. Broad frequency range

A hybrid muffler, which consists of a dissipative chamber and a reac-
tive one with extended outlet duct, is considered in this section in order
to maximize the attenuation in a wide range of frequencies. A baffle with
0.005 m in thickness is added between both chambers. In order to obtain
potentially manufacturable designs, and taking into account the optimized
topology obtained in previous cases, 5 annular rings with constant filling
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density are defined, each one containing several elements of the FE mesh,
hence reducing the number of design variables.

The dimensions of these rings are also considered design variables υj,
as shown in Figure 17. The maximum and minimum values of each design
variable can be checked in Table 3. The sensitivities of f0 with respect
to these dimensions are also required at each iteration (see Appendix A.2
and Appendix A.3). Temperature gradients are neglected in this case for
simplicity, and case T-III (hot muffler with constant temperature) detailed
in Table 2 is considered. The targeted frequency range is [500− 2000] Hz.

Figure 17: Initial design and design variables.

8146 nodes are employed, and each iteration (with 301 frequencies of
analysis) takes 360 seconds by using the aforementioned processor.

Additional constraints are added in this case in order to keep the muffler
under 1 m in length and both chambers with the same radii. The mean
Mach number at the inlet is set to zero. The optimization stopped after 22
iterations producing the result shown in Figure 18.

Figure 18: Optimized topology. Case 1.

Results discussion. Design 4

Figure 18 shows the optimized design. The left dissipative chamber con-
tains two lateral rings with minimum ρb, and three central rings with around
150 kg/m3. This chamber resembles the muffler configuration with two short
lateral chambers and a central dissipative region, already studied in reference
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[41]. Also, an overall length increase of the dissipative chamber is observed,
increasing the perforated surface length (and hence the area of acoustic cou-
pling). The reactive chamber decreases in length, while containing a longer
extended tube. Results are shown in detail in Table 3. The optimized design
uses 0.8054 kg of absorbent material, and both additional constraints are
satisfied (the muffler length is 0.838 m and both chambers have the same
radius, 0.0872 m).

υj υminj υmaxj υ1j υoptj

ρ1 (kg/m3) 50 250 120 51.07
ρ2 (kg/m3) 50 250 120 145.81
ρ3 (kg/m3) 50 250 120 148.27
ρ4 (kg/m3) 50 250 120 141.17
ρ5 (kg/m3) 50 250 120 50.00
Lx1 (m) 0.0420 0.7800 0.0600 0.0733
Lx2 (m) 0.0420 0.7800 0.0600 0.0686
Lx3 (m) 0.0420 0.7800 0.0600 0.0685
Lx4 (m) 0.0420 0.7800 0.0600 0.0685
Lx5 (m) 0.0420 0.7800 0.0600 0.0664
Lr1 (m) 0.0433 0.0803 0.0618 0.0604
Lx6 (m) 0.1050 0.1950 0.1500 0.1050
Lx7 (m) 0.1050 0.1950 0.1500 0.1747
Lr2 (m) 0.0433 0.0803 0.0618 0.0604

Table 3: Optimization summary. Design parameter υj , minimum υmin
j and maximum

υmax
j limits, initial υ1j and optimized υoptj values. Case 4.

The mean TL increase along the range of frequencies under study can be
checked in Figure 19. The optimized design shows higher mean attenuation
in the targeted frequency range (63.84 dB) than the initial design (56.31 dB),
although it might be lower at some specific frequencies. Also, the peaks in
TL shift to the left in Figure 19 as a result of the increase in the extended
duct length.
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Figure 19: TL for the initial and optimized designs. Design 4.

6. Conclusions

This work presents a combination of geometry and topology optimization
methods to effectively increase attenuation of dissipative and hybrid muf-
flers at certain frequency ranges. The evaluation of the TL is performed
using a FE hybrid acoustic model valid for mufflers with heterogeneous ab-
sorbent material layout and perforated duct, in the presence of mean flow
and temperature gradients. The optimization problem is solved by the use
of the iterative algorithm MMA, which requires the gradient of both the ob-
jective function and the restrictions with respect to all design variables at
each design step. The adjoint method, along with the analytical derivation of
the global matrices with respect to each design variable, allows to efficiently
calculate the sensitivities of the objective function.

For low frequencies, TO results in a reduction of the amount of dissipative
material used in the dissipative chamber and a slight improvement in TL at
target frequencies, which can worsen the acoustic behaviour at mid to high
frequencies. Regarding the optimization at mid frequencies, the optimization
scheme has been set up for two case studies with different thermal gradients,
obtaining the optimized absorbent material layout in each case. Although
little discrepancy in the optimized material distribution was observed, results
showed the importance of considering temperature in the optimization pro-
cess. The proposed methodology is able to provide a predesign for building
manufacturable mufflers. These manufacturable designs are inferred from
the topologies proposed by the optimization algorithm and keep most of the
improvement in acoustic performance at target frequencies. This fact enables
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the proposed methodology to be a powerful tool for engineers and designers
to build efficient mufflers for practical applications.

Finally, an optimization of a hybrid muffler has been carried out. The
density layout obtained from the previous optimized dissipative mufflers has
been combined with the geometry optimization of the reactive chamber and
the size of the dissipative rings. The optimization is also carried out by using
the MMA. Significant TL increase at target frequencies has been achieved in
every case under study.

7. Acknowledgements

The authors gratefully acknowledge the financial support of Ministerio
de Ciencia, Innovación y Universidades–Agencia Estatal de Investigación
and the European Regional Development Fund (projects TRA2017-84701-R
and DPI2017-89816-R), as well as Generalitat Valenciana (project Prome-
teo/2016/007).

8. Conflict of interest

On behalf of all authors, the corresponding author states that there is no
conflict of interest.

9. Replication of results

The optimized fibre density layouts relating to Cases 1-3 shown in Figures
5, 11 and 14, are accessible in http://aim.upv.es/doc/SMO-TO-mufflers-

replication-of-results.xlsx. Additionally, the TL prediction for Cases
1-4 shown in Figures 7, 15, 16 and 19 respectively, are provided in numerical
form in the same link.

30



[1] M.L. Munjal, Acoustics of Ducts and Mufflers, John Wiley & Sons, 2nd
Edition (2014).

[2] R. Barbieri, N. Barbieri, Finite element acoustic simulation based shape
optimization of a muffler, Applied Acoustics 67 (2006) 346–357.

[3] Zoutendijk G. Methods of feasible directions, Elsevier, Amsterdam
(1960).

[4] Y.C. Chang, M.C. Chiu, Shape optimization of one-chamber perforated
plug/non-plug mufflers by simulated annealing method, International
Journal for Numerical Methods in Engineering 74 (2008) 1592–1620.

[5] K.F. De Lima, A. Lenzi, R. Barbieri, The study of reactive silencers
by shape and parametric optimization techniques, Applied Acoustics 72
(2011) 142-150.

[6] O. Sigmund, K. Maute, Topology optimization approaches. Structural
and Multidisciplinary Optimization 48 (2013) 1031-1055.

[7] M. Stolpe, K. Svanberg, An alternative interpolation scheme for min-
imum compliance optimization. Structural and Multidisciplinary Opti-
mization 22 (2001) 116-124.

[8] J.W. Lee, Y.Y. Kim, Topology optimization of muffler internal partitions
for improving acoustical attenuation performance, International Journal
for Numerical Methods in Engineering 80 (2009) 455–477.

[9] E.L. Yedeg, E. Wadbro, and M. Berggren, Interior layout topology op-
timization of a reactive muffler. Structural and Multidisciplinary Opti-
mization 53 (2016) 645–656.

[10] O. Sigmund, Morphology-based black and white filters for topology
optimization. Structural and Multidisciplinary Optimization 33 (2007)
401–424.

[11] J.W. Lee, Optimal topology of reactive muffler achieving target trans-
mission loss values: Design and experiment, Applied Acoustics 88 (2015)
104-113.

31



[12] K. Svanberg, The method of moving asymptotes - a new method for
structural optimization, International Journal for Numerical Methods
in Engineering 24 (1987) 359–373.

[13] F.M. Azevedo, M.S. Moura, W.M. Vicente, R. Picelli, R. Pavanello,
Topology optimization of reactive acoustic mufflers using a bi-directional
evolutionary optimization method. Structural and Multidisciplinary Op-
timization 58 (2017) 2239–2252.

[14] G.H. Yoon, Acoustic topology optimization of fibrous material with De-
lany–Bazley empirical material formulation, Journal of Sound and Vi-
bration 332 (2013) 1172-1187.

[15] J.S. Lee, P. Göransson, Y.Y. Kim, Topology optimization for three-
phase materials distribution in a dissipative expansion chamber by uni-
fied multiphase modeling approach, Computer Methods in Applied Me-
chanics and Engineering 287 (2015) 191-211.

[16] A. Selamet, M.B. Xu, I.J. Lee, N.T. Huff, Dissipative expansion cham-
bers with two concentric layers of fibrous material, International Journal
of Vehicle Noise and Vibration 1 (2005) 341-357.

[17] A. Selamet, M.B. Xu, I.J. Lee, N.T. Huff, Effect of voids on the acoustics
of perforated dissipative mufflers, International Journal of Vehicle Noise
and Vibration 2 (2006) 357-372.

[18] A. Selamet, I.J. Lee, N.T. Huff, Acoustic attenuation of hybrid mufflers,
Journal of Sound and Vibration 262 (2003) 509–527.

[19] M. Chiu, Optimization design of hybrid mufflers on broadband frequen-
cies using the genetic algorithm, Archives of Acoustics 36(2011) 795–822.

[20] F.D. Denia, E.M. Sánchez-Orgaz, J. Mart́ınez-Casas, R. Kirby, Finite
element based acoustic analysis of dissipative mufflers with high tem-
perature and thermal-induced heterogeneity, Finite Element in Analysis
and Design 101 (2015) 46–57.

[21] A.G. Antebas, F.D. Denia, A.M. Pedrosa, F.J. Fuenmayor, A finite ele-
ment approach for the acoustic modelling of perforated dissipative muf-
flers with non-homogeneous properties, Mathematical and Computer
Modelling 57 (2013) 1970-1978.

32



[22] E.M. Sánchez-Orgaz, Advanced numerical techniques for the acoustic
modelling of materials and noise control devices in the exhaust system
of internal combustion engines, Ph. D. Thesis, Universitat Politècnica
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Appendix A. Differentiation of the global matrix κ with respect
to the design variables

In this appendix, the expressions of each of the components of κ are differ-
entiated analytically with respect to each of the design variables considered
in this study.

Appendix A.1. Calculation of ∂κ/∂ρb
Differentiating the global matrix κ in Eq. (54) with respect to the bulk

density ρb assigned to the elements e = 1, ..., N e
ρ , one obtains:

∂κ

∂ρb
=
∂K

∂ρb
+ jω

∂C

∂ρb
− ω2∂M

∂ρb
, (A.1)

where, according to Eqs. (24), (25) and (33)-(38), the terms considered in
order to build the global matrices are:

∂Km

∂ρb
=

Ne
ρ∑

e=1

∫
Ωeρ

−∂ρm/∂ρb
ρ2b

(∇N)T (∇N) dΩ , (A.2)

∂Mm

∂ρb
=

Ne
ρ∑

e=1

∫
Ωeρ

(
−∂ρm/∂ρb

ρ2mc
2
m

− 2
∂cm/∂ρb
ρmc3m

)
NTN dΩ , (A.3)

∂K
Zp
aa

∂ρb
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Ne
ρ∑

e=1

∫
Γeρ∩Γp

−ρ
2
0Umf∂Z̃p/∂ρb

Z̃2
p

NT ∂N

∂x
dΓ , (A.4)
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Ne
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Z̃2
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Using the equivalent acoustic properties detailed in Eqs. (5) and (6), the
derivatives of ρm and cm with respect to ρb can be obtained as:

∂ρm
∂ρb

(x) =
1

cm(x)2

(
∂Zm
∂ρb

(x)cm(x)− Zm(x)
∂cm
∂ρb

(x)

)
, (A.10)

∂cm
∂ρb

(x) = − 1

km(x)2
∂km
∂ρb

(x) , (A.11)

whereas according to Eqs. (3) and (4), it can be obtained:

∂Zm
∂ρb

(x) = Z0(x)
(
1 + a5a6ξ(x)a6−1 − ja7a8ξ(x)a8−1

) ∂ξ
∂ρb

(x) , (A.12)

∂km
∂ρb

(x) = k0(x)
(
1 + a3a4ξ(x)a4−1 − ja1a2ξ(x)a2−1

) ∂ξ
∂ρb

(x) . (A.13)

Taking into account the thermal effects described in Christie’s power law
recalled in Eq. (2), the derivative of the frequency parameter with respect
to ρb is

∂ξ

∂ρb
(x) =

−A1A2ρb (x)A2−1 ρ0(x)f

R2(x)

(
T (x) + 273.15

T0 + 273.15

)0.6

. (A.14)

On the other hand, differentiating Eq. (40), ∂Z̃p/∂ρb can be obtained as:

∂Z̃p(x)

∂ρb
= Z0(x)

j0.425k0(x)dh/ρ0(x)F (σ)

σ

∂ρm
∂ρb

(x) . (A.15)

Appendix A.2. Calculation of ∂κ/∂Lx

In Section 5.3, rings of absorbent material are defined as areas with con-
stant ρb, and the dimensions of these are also subject to modification. Carte-
sian element grids are implemented within each ring. For the elements within
a certain ring, e = 1, ..., N e

m, and the elements within the corresponding duct
zone underneath, e = 1, ..., N e

a , the velocity field at the element integration
points due to the modification of the ring length Lx must be taken into
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account during the computation of the terms listed below:
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Appendix A.3. Calculation of ∂κ/∂Lr
In order to compute the derivative of the chamber terms with respect to

the chamber dimension Lr = Rc − Rt (see Figures 3 and 17), the velocity
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field generated by ∂Lr must be taken into account, but also the axisymmetric
integration effect must be considered when computing ∂ (dΩ) /∂Lr. The
terms are given by the expressions:
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