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a b s t r a c t 

We present two new methods for simultaneous smoothing and sharpening of color images: the GMS 3 

(Graph Method for Simultaneous Smoothing and Sharpening) and the NGMS 3 (Normalized Graph-Method for 

Simultaneous Smoothing and Sharpening). They are based on analyzing the structure of local graphs computed 

at every pixel using their respective neighbors. On the one hand, we define a kernel-based filter for smoothing 

each pixel with the pixels associated to nodes in its same connected component. On the other hand, we modify 

each pixel by increasing their differences with respect to the pixels in the other connected components of 

those local graphs. Our approach is shown to be competitive with respect to other state-of-the-art methods that 

simultaneously manage both processes. 

• We provide two methods that carry out the process of smoothing and sharpening simultaneously. 
• The methods are based on the analysis of the structure of a local graph defined from the differences in the 

RGB space among the pixels in a 3 × 3 window. 
• The parameters of the method are adjusted using both observers opinion and the well-known reference image 

quality assessment BRISQUE (Blind/Referenceless images spatial quality Evaluator) score. 
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Specifications Table 

Subject area: Select one of the following subject areas: 

● Agricultural and Biological Sciences 

● Biochemistry, Genetics and Molecular Biology 

● Chemical Engineering 

● Chemistry 

● Computer Science 

● Earth and Planetary Sciences 

● Energy 

● Engineering 

● Environmental Science 

● Immunology and Microbiology 

● Materials Science 

● Mathematics 

● Medicine and Dentistry 

● Neuroscience 

● Pharmacology, Toxicology and Pharmaceutical Science 

● Physics and Astronomy 

● Psychology 

● Social Sciences 

● Veterinary Science and Veterinary Medicine 

More specific subject area: Image processing 

Method name: Graph Method for Simultaneous Smoothing and Sharpening (GMS 3 ) 

Normalized Graph Method for Simultaneous Smoothing and Sharpening 

(NGMS 3 ) 

Name and reference of original 

method: 

Cristina Pérez-Benito, Cristina Jordán, Samuel Morillas, and J. Alberto Conejero. 

A model based on local graphs for color images and its application for 

Gaussian noise smoothing. J. Comp. Appl. Math. 330, 955–964 (2018). 

Cristina Pérez-Bebito, Cristina Jordán, J. Alberto Conejero, and Samuel Morillas. 

Graph-based method for simultaneous smoothing and sharpening of color 

images. Preprint, 2018. J. Comp. Appl. Math. 350, 380-395 (2019). 

Resource availability: The implementation of our methods in Matlab is provided. 

The following functions are needed to run the methods 

fila.m https://pastebin.com/ezr5dgGh 

clases.m https://pastebin.com/Hjwew3cX 

Introduction 

The acquisition of color images is always carried out under non-optimal conditions. Sometimes 

this is done under low light, too much clarity or poor weather conditions. Also, deficient quality

equipment can hamper image acquisition. These conditioners do not only affect the visual perception

of the image. They also hinder the identification and distinction of image features that are relevant

for different applications such as segmentation or pattern recognition. 

To overcome these problems some processes are carried out: on the one hand, an image can be

smoothed in order to remove the noise, which is usually of Gaussian type, without losing much image

information. On the other hand, for enhancing image details, a sharpening of the borders and details

of the picture can be conducted. But even in this last case, smoothing will be needed in order to

obtain a robust solution. 

Therefore, a combination of both processes can provide optimal results. However, this is not a

simple task given the opposite nature of these two operations. The first natural way to proceed

is to consider this as a two-step process: first smoothing and later sharpening, or the other way

around. However, this approach usually leads to many problems. On the one hand, if we first apply a

smoothing technique, then we could be losing information that cannot be recovered in the succeeding

sharpening step. On the other hand, if we first apply a sharpening method over a noisy image, we will

amplify the noise present in it. The ideal way to address this problem is to consider a method that

was able to sharp image details and edges while removing noise. 

Many methods for both sharpening and smoothing have been proposed in the literature, but if we

restrict ourselves to methods that consider both of them simultaneously, the state-of-the-art is not so

extensive. A recent review of the simultaneous application of these methods can be found in [6] . 

https://pastebin.com/ezr5dgGh
https://pastebin.com/Hjwew3cX
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In [7] we have recently proposed the use of local graphs for image smoothing. For any arbitrary

ixel, we consider a weighted graph according to the similarities of the pixels in a 3 × 3 window,

here pixels in the window stand for nodes, and two nodes are connected if the distance in the RGB

pace color is smaller than a given threshold U. The cardinal of the set of links of the connected

omponent that contains the central pixel was shown to permit us to separate flat regions from

exture and detail regions. If the goal is just smoothing, the threshold U can be estimated through

aximization of mutual information [3 , 11] . Later, we have taken this approach for defining two

ethods that simultaneously address the smoothing and sharpening problems. 

ethod details 

First, let us describe the steps in which the GMS 3 can be divided. The NGMS 3 can be later

educed with a slight modification of the GMS 3 . Given a color image F , we consider each image

ixel represented by their three color components in the RGB space F 0 = ( F R 0 , F 
G 

0 
, F B 0 ) . Except the

omputations required in Step 0.1, the rest of steps are included in the file GMS3.m. 

STEP 0: Definition of the local graph at every pixel. 

Consider a 3 × 3 window centered at F 0 . The rest of the pixels are denoted as F i = 1 , . . . , 8 . 

0.1 The threshold U is estimated with ThresholdEstimation.m, which computes the optimal

threshold from an estimation of the noise appearing in the image (GaussianNoiseEstimation.m),

that, through a regression returns the optimal value (Regression.m). The threshold U is given

by the expression U = 4 . 59 τ + 11 . 16 , where τ is an estimation of the standard deviation of the

noise. Further details on how this estimation is achieved through a Mutual Information analysis

can be found in [7] . 

0.2 Now, we define the local weighted graph G F 0 
= ( V ( G F 0 

) , L ( G F 0 
) ) for every pixel F 0 , where V ( G F 0 

)

stands for the set of nodes and L ( G F 0 
) for the set of links or edges. Then 

V 
(
G F 0 

)
= { F i , i = 0 , . . . , 8 } and L 

(
G F 0 

)
= 

{ (
F i , F j 

)
, i � = j, ‖ F i − F j ‖ 2 ≤ U 

}
, 

with ‖ ‖ 2 standing for the Euclidean norm. Lastly, if ( F i , F j ) ∈ L ( G F 0 
) , its weight will be defined

as w ( F i , F j ) = ‖ F i − F j ‖ 2 . 
STEP 1: Determination of the connected components of the local graphs. 

For this part, we will only consider the pixels whose nodes lay in the same connected component

s the pixel F 0 . To determine these pixels, we compute the adjacency matrix (AdjacencyMatrix.m)

aving into account the weights of the links. Then, the connected components are computed with the

unctions fila.m and clases.m. 

STEP 2: Smoothing 

We define a kernel-based filter for smoothing, which gives more importance to the pixels closest

o the central pixel F 0 . The new value for the pixel F S 
0 

, namely F S 
0 

, will be defined as: 

F S 0 := 

∑ 

i ∈ V ( C C F 0 ) e 
− | | F i −F 0 | | 2 

2 α2 F i 

∑ 

i ∈ V ( C C F 0 ) e 
− | | F i −F 0 | | 2 

2 α2 

, 

here α > 0 is a parameter that controls the smoothing effect and CC F 0 denotes the connected

omponent that contains the pixel F 0 . We will discuss later the fitting of this parameter. 

STEP 3: Sharpening 

Afterwards, the sharpening part is done taking into account the pixels outside the connected

omponent to which F 0 belongs. 

3.1. For the GMS 3 , the new value of the pixel F 0 including the smoothing and sharpening effect

ill be defined as 

F GM S 3 

0 := F S 0 − λv being v := 

∑ 

i / ∈ V ( C C F 0 ) 
(
F i − F S 

0 

)

9 − card ( V ( C C F 0 ) ) 
, 

here λ∈ [0,1] is a parameter controlling the sharpening effect, and card ( V ( CC F 0 )) stands for the

ardinal of the connected component of the pixel F 0 . 
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3.2. For the NGMS 3 , in order to define the new value of the pixel F NGM S 3 

0 
, we only have to

normalize the vector v in the sharpening part. 

F NGM S 3 

0 := F S 0 − λ
v 

| | v | | 2 
The script GMS3.m allows us to execute both methods, thanks to the variable “version”. When

calling to GMS3(image, alpha, lambda, version), if version = 0 we have the GMS 3 method, and if

version = 1 we have the NGMS 3 . 

Implementation: Both methods, GMS 3 and NGMS 3 have been implemented in Matlab. 1 The 

implementation can be found in the supplementary material. For running any of these methods we

only have to introduce the noisy image, and the values of α and λ. They are implemented in GMS3.m

As it is indicated in [8] , the values of α and λ have been estimated in two different ways: 

From the opinions of a pool of observers. All the observers have visualized the set of images,

randomly ordered, under the same conditions: in a dark room, with the same screen, at a distance

of about 50 cm of it, and after five minutes of visual adaptation. In this case the optimum

parameters of ( α, λ), where (4.43,0.16) for the GMS 3 and (8.67,4.54) for the NGMS 3 . 

By minimizing the sum of the squares of the BRISQUE score [4 , 5] over a dataset of images, using

the Interior Point Algorithm [1] . In this case the optimum parameters of ( α, λ), where (7,0.275) for

the GMS 3 and (5.5,3.5) for the NGMS 3 . 

There are differences in the adjustment of the parameters. In the case of the GMS3, the observers

smooth and sharpen less than what BRISQUE score would have suggested. However, the opposite 

effect happens with the NGMS3. 

Our methods have been compared with the (i) Forward-and-backward diffusion method (FAB) [9] ,

(ii) the Fuzzy networks based technique (Fuzzy) [10] and, (iii) the collaborative filtering based method

(BM3D) [2] . The comparison was based on the well-known non-reference image quality assessment

(BRISQUE) score [4 , 5] . Our methods are competitive with them, both in terms of objective assessment

and visual evaluation. Details on this comparison can be found in [8] . 
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