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Abstract: Statistical mechanics is a physics theory that deals with ensembles of microstates of a system
compatible with environmental constraints and that on average define a thermodynamic state. The
evolution of a small system is normally subjected to changing constraints, as set by a protocol, and
involves a stochastic dependence on previous events. Here, we generalize the dynamic trajectories
described by a realization of a physical system without dissipation to include those in which the
history of previous events is necessary to understand its future. This framework is then used to
characterize the processes experienced by the stochastic system, as derived from ensemble averages
over the available pathways. We find that the pathways that the system traces in the presence of a
protocol entail different statistics from those in its absence and prove that both types of pathways
are equivalent in the limit of independent events. Such equivalence implies that a thermodynamic
system cannot evolve away from equilibrium in the absence of memory. These results are useful to
interpret single-molecule experiments in biophysics and other fields in nanoscience, as well as an
adequate platform to describe non-equilibrium processes.

Keywords: non-markovian; memory; pathway; stochastic; microscopic reversibility; statistical
mechanics; Information Theory; phase space; single molecule; non-equilibrium

1. Introduction

Reversibility refers to quasistatic processes that invert isentropically. Such processes
involve a sufficiently slow dynamics to prevent heat flows; more in depth, they take place
through a timeless succession of states along which there is no energy dissipation. Re-
versible processes are normally analyzed by equilibrium statistics: a so-called partition
function is used to characterize the thermodynamic states described by a system by ponder-
ing all possible configurations of microstates compatible with each state [1]. For a system
in which fate is not dependent on either the past or the present, like many macroscopic
systems, both equilibrium and frictionless quasistatic processes can be examined through
the same mathematical framework because such system is able to explore all the possible
configurations in an indefinite time. In this paper, we introduce for the first time memory
effects of full extent through an ab initio theory that reveals differential statistics.

Phase space is a long-standing concept to analyze the dynamics of physical systems,
transcending the configuration space of position coordinates. From the classical to the quan-
tum realm, the system—a point comprising a set of generalized position and momentum
coordinates—traces a pathway (or trajectory) described by the time-ordered union of points
in this space [2]. Phase-space trajectories determine the evolution of the thermodynamic
microstates of similarly constructed systems under the same protocol through so-called
processes, which involve ensemble averages over such trajectories [3]. The principle of
microscopic reversibility asserts that the probability of any pathway of a system realization
through phase space is equivalent to that of the time reversed pathway. While individual
pathways are reversible, processes may not, thus entailing energy dissipation [4]. We
herein apply the principle of microscopic reversibility to systems that recall not only the
present but also the past by an unprecedented mathematical treatment, in which phase
space trajectories are analyzed exactly.
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Microscopic reversibility and phase space underlie the theory of dynamical systems
in physics but they usually remain at the conceptual level. With the advent of nanoscience,
the urge for understanding so-called small systems [5]—those for which energy exchanges
are smaller or similar to the thermal level—is pushing these concepts to the direct appli-
cations. A small system typically measures from a few to hundreds of nanometers and
contains from one to some thousands of atoms or molecules. Due to the scale nature,
a small system is deemed to progress along only one of the possible trajectories by a certain
protocol. Its energy balance in terms of work and heat as a function of the temperature
has to be evaluated at the single phase-space pathway level. In addition, the protocol by
which this system evolves has to be considered when ensemble-average thermodynamics
are addressed, especially when memory effects are present.

Biological systems have become central players in this urge for understanding small
systems. For many processes that take place in the cell, the study of each molecular tra-
jectory individually is crucial for a complete comprehension of the role of fluctuations [6].
Biophysical processes have traditionally been analyzed by bulk (ensemble-average) strate-
gies but the importance of tackling them at the single-molecule level and at the single-
chemical reaction has raised much both scientific and technological interest in the last
twenty years [7,8]. In this regard, replication, transcription, and translation in molecu-
lar biology, just to name a few, are processes in which thorough investigation requires
single-molecule approaches [9]: nucleotides or amino acids are incorporated sequentially
by a protein in which operation determines a certain copying direction and a mechanism,
both of them responsible for chain stability and information fidelity. Sustained by physi-
cal interactions, these biological processes encompass naturally memory effects because
nucleotide and amino acid polymers carry genetic meaning. Protein folding is another in
singulo process that showcases the firm link between physical interactions and memory,
and how this link brings thermodynamic consequences to the structural and functional
fate of a polypeptide [10]. Certainly, both the synthesis protocol and the amino acid se-
quence stochastically guide protein folding dynamics through preferential phase-space
trajectories [11]. Another biological example in which memory is a key ingredient is that
of learning, in which organisms collect information to perform complex control tasks [12].
In general, small systems may present mutual and internal correlations due to physical
interactions [13,14], which, steered by a protocol, make up their biography, a history of
events that influence their future.

To analyze theoretically small systems with memory, thermodynamics uses stochastic
variables and statistical mechanics [15,16], often considering evolutions where only the
immediate present is necessary to inspect the future (known as memoryless or Markovian
evolutions). Tsallis entropy generalization enabled non-extensive analyses of physical
systems that keep memory on previous events, that is, of systems that recall not only the
present but also the past events (non-Markovian evolutions) [17]; this generalization in
turn compacts non-equilibrium dynamics elegantly. Open system formalisms, including
spectral analysis, introduce memory effects through non-Markovian approaches to address
the environment surrounding the system under study [18–22]. Complete memory effects
have been considered in the study of spatial chains made up of physical subunits, including
those with symbolic meaning, to access non-equilibrium dynamics [23] and information
management in nanoscale systems [24]. They have also been taken into account to analyze
abstract strings of symbols for the paradigm of communication [25]. However, full memory
effects in temporal chains of events have never been treated from an exact perspective.

In the following, we develop a general framework for reversible pathways with
memory to address the evolution of physical systems. Although not restricted to them, we
will discuss this framework in the context of small systems, where strong interest resides in
their stochastic behavior and in the wealth of current applications. We analyze microscopic
pathways exactly, tracing explicitly the memory that a physical system retains along the
pathway it describes, and we derive consistency constraints. Our theory discerns between
protocol-driven and equilibrium pathways. We analyze their associated dynamics at the
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level of the ensemble average, as taken over the pathways through which the system can
evolve. We end up by illustrating our theory in the context of computing biomolecular
systems, where memory effects are inherent to their thermodynamic modeling.

2. Analysis
2.1. Concepts and Terminology

The evolution of a small system is strongly affected by the thermal fluctuations.
Under the action of external perturbations, the statistical characterization of any set of
ensembles of the same system does not determine a unique thermodynamic description
because different perturbations drive the system preferentially through different sets of
pathways. Then, it is necessary to introduce the protocol, λ, which is a collection of
control parameters that describes the mechanism and external constraints that act over
the system [5]. Given an initial and a final microstate of the system at time instants t = t0
and t = t f , respectively, every pathway (or trajectory) that connects them in phase space
will be specified by a temporal sequence, ν = {xt0 , . . . , xt, . . . , xt f }, of stochastic events
Xt = xt (xt ∈ X , being X the domain of the random variables with cardinality |X |,
and t = t0, . . . , t f ) under protocol λ.

We will use the term event for xt and microstate for the event at time t plus the
ordered sequence of previous events that the system recalls. We will use the term state for
the ensemble-average over the pathways that the system can follow until time t driven
by protocol λ. This is the notion of macrostate in statistical mechanics [1], but since it
is misleading in a nanoscale context, we prefer using state. In the limit in which the
memory of a system at time t extends to its complete history, {xt0 , . . . , xt−1}, microstates
and pathways are equivalent. In the limit of independent events, events and microstates
are equivalent and the term pathway is not necessary since microstates do not depend on
how they have been reached by the system. A state is solely determined by the protocol by
which events have been driven. For the sake of conceptual clarity, we will also distinguish
between process and pathway, the former being obtained under averages over ensembles of
the latter. The principle of microscopic reversibility, expressed at the introduction, stands
at the level of the pathway.

We will tackle sequences ν as directional, stochastic chains with memory [26] in the
time domain. Events experienced by the system at each time instant, xt, involve a set of
stochastic variables according to the degrees of freedom of the system:

xt ≡ (q1(t), . . . , qD(t); p1(t), . . . , pD(t)), (1)

or, abbreviated, xt ≡ (qh(t), ph(t)), h = 1, . . . , D, where D is the number of degrees of
freedom and qh and ph are generalized space and momentum coordinates, respectively.

The microstate of the system at time t is not only determined by the value of Xt but
also by how xt has been reached. Therefore, the energy of each microstate is a function of
the previous events, namely

E(xt; xt−1, . . . , xt0), (2)

which account for the memory, i.e., the relative interactions of the present event, xt, with its
previous ones, {xt−1, . . . , xt0}. As noted, we will represent the random variables corre-
sponding to the memory of a microstate in a thermodynamic function by a semicolon
followed by the variable values with decreasing subscript order.

In addition to the energy, central to the thermodynamic description of a physical
system is the entropy, which characterizes the level of reversibility in the system’s evolution
by pondering the level of uncertainty in the stochastic events along phase-space pathways.
In this regard, it is connected to the entropy defined in information theory, as reflected in
the mathematical similarity between the Gibbs and the Shannon entropies (appearing later
on) [27].
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2.2. Protocol-Driven Pathways

The probability of a microstate, according to a canonical formalism, is:

p(λ)(xt|xt−1, . . . , xt0) =
e−βE(xt ;xt−1,...,xt0)

∑x′t
e−βE(x′t ;xt−1,...,xt0)

=
e−βE(xt ;xt−1,...,xt0)

Z(λ)(; xt−1, . . . , xt0)
, (3)

with β = 1/(kT) (T the absolute temperature and k the Boltzmann constant), ∑xt p(λ)

(xt|xt−1, . . . , xt0) = 1 and the partition function given by

Z(λ)(; xt−1, . . . , xt0) ≡∑
x′t

e−βE(x′t ;xt−1,...,xt0). (4)

Note that ∑x′t
≡ ∑q′1(t),...,q

′
D(t) ∑p′1(t),...,p

′
D(t). We use the prime symbol in xt to emphasize

that the sum does not affect the previous events, xt0 , . . . , xt−1, since they are fixed at
present time t. For completeness, consider that for t = t0, p(λ)(xt0) = exp(−βE(xt0))/ ∑x′t0

exp
(
−βE(x′t0

)
)

. p(λ)(xt|xt−1, . . . , xt0) is the probability that random variable X (which,
as explained in the previous subsection, comprises a set of generalized position and
momentum coordinates, Equation (1)) takes value x at time t provided that the values of
this random variable for the previous instants, t− 1, . . . , t0, are Xt−1 = xt−1, . . . , Xt0 = xt0 ,
respectively.

The probability of a pathway is:

p(λ)ν ≡ Pr(λ){Xt0 = xt0 , . . . , Xt f = xt f } = p(λ)(xt0 , . . . , xt f )

= p(λ)(xt0 )p(λ)(xt0+1|xt0 ) · · · p(λ)(xt f |xt f−1 . . . , xt0 ) =
t f

∏
t=t0

p(λ)(xt|xt−1, . . . , xt0 ). (5)

p(λ)(xt0 , . . . , xt f ) is the probability that a particular sequence of microstates take place, that
is, that random variable X takes the specific sequence of values Xt0 = xt0 , . . . , Xt f = xt f

from t0 to t f . According to probability theory [28], it is obtained as a product of the
conditional probabilities p(λ)(xt|xt−1, . . . , xt0), for t = t0 to t = t f . This probability can be
expressed in a more compact form [26]:

p(λ)ν =
e−βEν

Z(λ)
ν

, (6)

such that ∑N
ν=1 p(λ)ν ≡ ∑xt0 ,...,xt f

p(λ)(xt0 , . . . , xt f ) = 1. In this equation,

Eν ≡ E(xt0 , . . . , xt f ) =

t f

∑
t=t0

E(xt; xt−1, . . . , xt0), (7)

and Z(λ)
ν is the sequence-dependent partition function,

Z(λ)
ν ≡

t f

∏
t=t0

Z(λ)(; xt−1, . . . , xt0) (8)

= ∑
x′t0 ,...,x′t f

exp

−β

t f

∑
t=t0

E
(
x′t; xt−1, . . . , xt0

) ≡ N

∑
ν′(λ)=1

exp (−βEν′ν), (9)
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with Eν′ν the two-sequence energy,

Eν′ν ≡
t f

∑
t=t0

E
(

x′t; xt−1, . . . , xt0

)
. (10)

N = |X |∆t+1, ∆t = t f − t0, is the number of configurations along pathway ν, which is
the result of combining ∆t + 1 events and |X | = |Q|D|P|D possibilities for each event
(Q and P are the discrete domains of qh and ph, h = 1, . . . , D, respectively, and |Q| and
|P| indicate the number of elements in the range of Q and P , respectively) and subscript
ν′(λ) in the sigma symbol reminds that the sum over the multiple x′t variables, which are
correlated due to memory effects, has to be evaluated according to the constraints imposed
by the protocol.

The probability of a pathway, Equation (6), is a function of its energy, Eν (see
Equation (7)), which is a sum over the energies of the microstates that the system has
passed through in its evolution between microstates xt0 and xt f . The pathway energy is in
essence the action, S , in the discrete domain; more in depth, it is the abbreviated action, S0,
minus the action itself, as defined in classical mechanics [2], divided by the time elapsed
between the initial and final microstates, namely (S0(ν)− S(ν))/∆t. The probability of a
pathway thus weights the dynamics of a system according to the exponential of the value
that this functional difference takes on such a pathway.

The expected value of the instantaneous energy, which is a state function known as
the internal energy, is:

〈Et〉λ ≡ ∑
xt0 ,...,xt

p(λ)(xt0 , . . . , xt)E(xt; xt−1, . . . , xt0), (11)

where we have used that

p(λ)(xt0 , . . . , xt) = ∑
xt+1,...,xt f

p(λ)(xt0 , . . . , xt f ), (12)

straightforward from the expansion of the probability as a product of conditional prob-
abilities, Equation (5), and the fact that ∑xt p(λ)(xt|xt−1, . . . , xt0) = 1, t = t0, . . . , t f . This
equation for the probability of a truncated temporal sequence can be expressed as (t < t f )

p(λ)(xt0 , . . . , xt) =
e−βE(xt0 ,...,xt)

Z(λ)(xt0 , . . . , xt−1)
, (13)

where, in analogy to Equations (7) and (8) for the whole temporal sequence, the energy
and the partition function of a truncated sequence are, respectively:

E(xt0 , . . . , xt) =
t

∑
i=t0

E(xi; xi−1, . . . , xt0), (14)

Z(λ)(xt0 , . . . , xt−1) =
t

∏
i=t0

Z(λ)(; xi−1, . . . , xt0). (15)

The expected value of the pathway energy,

〈Eν〉λ ≡
N

∑
ν=1

p(λ)ν Eν = ∑
xt0 ,...,xt f

p(λ)(xt0 , . . . , xt f )E
(

xt0 , . . . , xt f

)
, (16)
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is equal to the sum over the expected instant energies that conform the pathway, namely

〈Eν〉λ =

t f

∑
t=t0

〈Et〉λ. (17)

The proof to this result can be found in Appendix A. Although the expected value of a
pathway function, like the energy in Equation (16), does not depend on a specific pathway,
we will keep the subscript “ν” within the angle brackets to denote that it is an ensemble
average over a pathway function.

We now introduce the entropy at t with reference to both the protocol and the pathway
that the system is following as [29]:

S(λ)(xt; xt−1, . . . , xt0) ≡ −k ln p(λ)(xt|xt−1, . . . , xt0), (18)

with expected value〈
S(λ)

t

〉
λ
= ∑

xt0 ,...,xt

p(λ)(xt0 , . . . , xt)S(λ)(xt; xt−1, . . . , xt0). (19)

This entropy constitutes the state function used in thermodynamics [1,3], with the caveat
that it observes memory effects. Such entropy is used in information theory under the
name of conditional entropy [27].

We can also introduce the pathway entropy:

S(λ)
ν ≡ −k ln p(λ)ν =

t f

∑
t=t0

S(λ)(xt; xt−1, . . . , xt0). (20)

The last part of this equation is a direct consequence of Equations (5) and (18). Its expected
value, 〈

S(λ)
ν

〉
λ
=

N

∑
ν=1

p(λ)ν S(λ)
ν = ∑

xt0 ,...,xt f

p(λ)(xt0 , . . . , xt f )S
(λ)
(

xt0 , . . . , xt f

)
, (21)

fulfills an analogous expression to that of the energy, Equation (17), namely

〈
S(λ)

ν

〉
λ
=

t f

∑
t=t0

〈
S(λ)

t

〉
λ

; (22)

see Appendix A for the proof.
Finally, we introduce the Helmholtz free energy at t with reference to the protocol and

the pathway as:

F(λ)(xt; xt−1, . . . , xt0) ≡ −kT ln Z(λ)(; xt−1, . . . , xt0), (23)

which actually does not depend on the present (instant t), in contrast to the energy and the
entropy, Equations (2) and (18), respectively. Its expected value (state function) is:〈

F(λ)
t

〉
λ
= ∑

xt0 ,...,xt

p(λ)(xt0 , . . . , xt)F(λ)(xt; xt−1, . . . , xt0). (24)

The corresponding pathway Helmholtz free energy is:

F(λ)
ν ≡ −kT ln Z(λ)

ν =

t f

∑
t=t0

F(λ)(xt; xt−1, . . . , xt0). (25)
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The last part of this equation follows from Equations (8) and (23). Its expected value,

〈
F(λ)

ν

〉
λ
=

N

∑
ν=1

p(λ)ν F(λ)
ν = ∑

xt0 ,...,xt f

p(λ)(xt0 , . . . , xt f )F(λ)
(

xt0 , . . . , xt f

)
, (26)

fulfills 〈
F(λ)

ν

〉
λ
=

t f

∑
t=t0

〈
F(λ)

t

〉
λ

; (27)

see Appendix A. The definitions of pathway thermodynamic potentials formally resemble
those used in information theory for string of symbols [24] although their physical meaning
is different.

In general, for a given thermodynamic potential “A”, it is possible to introduce its
instantaneous and pathway versions under a protocol,

A(λ)(xt; xt−1, . . . , xt0), (28)

A(λ)
ν ≡

t f

∑
t=t0

A(λ)(xt; xt−1, . . . , xt0), (29)

respectively. State functions are constructed by taking expected values:〈
A(λ)

t

〉
λ

= ∑
xt0 ,...,xt

p(λ)(xt0 , . . . , xt)A(λ)(xt; xt−1, . . . , xt0), (30)

〈
A(λ)

ν

〉
λ

=
N

∑
ν=1

p(λ)ν A(λ)
ν = ∑

xt0 ,...,xt f

p(λ)(xt0 , . . . , xt f )A(λ)
(

xt0 , . . . , xt f

)
. (31)

Instantaneous and pathway expected values fulfill:

〈
A(λ)

ν

〉
λ
=

t f

∑
t=t0

〈
A(λ)

t

〉
λ

. (32)

From Equations (2), (18), and (23), and from Equations (7), (20), and (25), it is immedi-
ate to demonstrate the energy conservation for both instants and pathways, respectively:

F(λ)(xt; xt−1, . . . , xt0) = E(xt; xt−1, . . . , xt0)− TS(λ)(xt; xt−1, . . . , xt0), (33)

F(λ)
ν = Eν − TS(λ)

ν . (34)

In the same way, the energy is conserved for both instant and pathway state functions:〈
F(λ)

t

〉
λ

= 〈Et〉λ − T
〈

S(λ)
t

〉
λ

, (35)〈
F(λ)

ν

〉
λ

= 〈Eν〉λ − T
〈

S(λ)
ν

〉
λ

; (36)

see Appendix A for the demonstrations of these results.
The internal energy for instants and pathways follows next laws:

〈Et〉λ = −
〈

∂

∂β
ln Z(λ)(; xt−1, . . . , xt0)

〉
λ

, 〈Eν〉λ = −
〈

∂

∂β
ln Z(λ)

ν

〉
λ

, (37)

respectively. Corresponding expressions for the expected value of the entropies are〈
S(λ)

t

〉
λ
= −

〈
∂

∂T
F(λ)(xt; xt−1, . . . , xt0)

〉
λ

,
〈

S(λ)
ν

〉
λ
= −

〈
∂

∂T
F(λ)

ν

〉
λ

. (38)
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These four equations are demonstrated in Appendix A.

2.3. Equilibrium Pathways

The probability of a pathway described by the system under equilibrium conditions
is:

pν =
exp (−βEν)

Z
, (39)

such that ∑N
ν=1 pν = 1. In this equation, we use the path energy, as given by Equation (7),

and the partition function [1,3]

Z ≡ ∑
xt0 ,...,xt f

exp

−β

t f

∑
t=t0

E(xt; xt−1, . . . , xt0)

 =
N

∑
ν=1

exp (−βEν), (40)

where, in contrast to Equation (9), the sums are extended to both present and previous
events. Certainly, there are no prime variables and the sums are nested in Equation (40),
unlike in the protocol-driven Equation (9). Partition function Z is not built on the basis of
a particular protocol; therefore, the resulting probability does not limit how the different
pathways are accessed.

The equilibrium partition function Z measures the available pathways ν that connect
the microstates at t = t0 and t = t f , constructed as temporal sequences of stochastic events
Xt and statistically weighted by the exponential of their energies ∑t E(xt; xt−1, . . . , xt0);
these energies, in turn, account for the memory, i.e., the relative interactions of every present
microstate, xt, with its previous ones, {xt0 , . . . , xt−1}. The sequence-dependent partition

function, Z(λ)
ν , in contrast, measures the exponential energy-weighted pathways that

connect these states considering that at each step, xt, the previous events, {xt−1, . . . , xt0},
are unchangeable and that the sequence of events is stochastically determined by protocol
λ.

The probabilities expressed in Equation (39) represent pathways along which the
external constraints to the system do not change with time. The dynamics so described are,
therefore, timeless. As we will see, the expected values of the pathway thermodynamic
potentials reduce to explicit functions of Z, as shown generally for equilibrium thermo-
dynamics [1,3]. It is demonstrated (Appendix A) that, to recover Equation (39), having in
mind that [28]

pν ≡
t f

∏
t=t0

p(xt|xt−1, . . . , xt0), (41)

the probability of a microstate under equilibrium pathways must be:

p(xt|xt−1, . . . , xt0) =
e−βE(xt ;xt−1,...,xt0) f (xt0 , . . . , xt)

∑xt e−βE(xt ;xt−1,...,xt0) f (xt0 , . . . , xt)
, (42)

where ∑xt p(xt|xt−1, . . . , xt0) = 1 and

f (xt0 , . . . , xt) = ∑
xt+1,...,xt f

e−βE(xt+1;xt ,...,xt0) · · · e−βE
(

xt f ;xt f −1,...,xt0

)
(43)

= ∑
xt+1,...,xt f

exp

−β

t f

∑
i=t+1

E(xi; xi−1, . . . , xt0)

. (44)

For completeness, it is important to note that

f
(

xt0 , . . . , xt f

)
= 1, (45)
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and that
∑
xt0

e−βE(xt0 ) f (xt0) = Z. (46)

It follows straightforward from Equation (44) that

f (xt0 , . . . , xt) = ∑
xt+1

e−βE(xt+1;xt ,...,xt0) f (xt0 , . . . , xt+1). (47)

We will call functions f (xt0 , . . . , xt), t = t0, . . . , t f , partition factors [30].
The probability of a microstate under equilibrium pathways, Equation (42), can be

expressed as

p(xt|xt−1, . . . , xt0) =
e−βE(xt ;xt−1,...,xt0)

Z(xt; xt−1, . . . , xt0)
, (48)

with

Z(xt; xt−1, . . . , xt0) ≡
f (xt0 , . . . , xt−1)

f (xt0 , . . . , xt)
(49)

being the equilibrium instant partition function. Equation (49) reduces to Equation (4) for
protocol-driven dynamics. In analogy to Equation (8), the equilibrium pathway partition
function builds up as

Z =

t f

∏
t=t0

Z(xt; xt−1, . . . , xt0). (50)

The reduced probability for a truncated equilibrium temporal sequence is:

p(xt0 , . . . , xt) = ∑
xt+1,...,xt f

p
(

xt0 , . . . , xt f

)
=

e−βE(xt0 ,...,xt)

Z(xt0 , . . . , xt)
, (51)

where

Z(xt0 , . . . , xt) =
t

∏
i=t0

Z(xi; xi−1, . . . , xt0) =
Z

f (xt0 , . . . , xt)
(52)

is the partition function for equilibrium truncated temporal sequences; see Appendix A.
For a thermodynamic potential “A”, the instantaneous and pathway versions un-

der equilibrium conditions are represented by dropping superscript λ in Equations (28)
and (29), namely

A(xt; xt−1, . . . , xt0), (53)

Aν ≡
t f

∑
t=t0

A(xt; xt−1, . . . , xt0). (54)

Their expected values (state functions) are constructed by using probability Equations (42)
and (39), respectively:

〈At〉 = ∑
xt0 ,...,xt

p(xt0 , . . . , xt)A(xt; xt−1, . . . , xt0), (55)

〈Aν〉 =
N

∑
ν=1

pν Aν = ∑
xt0 ,...,xt f

p(xt0 , . . . , xt f )A
(

xt0 , . . . , xt f

)
, (56)

fulfilling the next relation between instantaneous and pathway equilibrium state functions:

〈Aν〉 =
t f

∑
t=t0

〈At〉. (57)
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The proof to Equation (57) is formally equivalent to that for Equation (17).
The equilibrium instant and pathway energies are given by Equations (2) and (7),

respectively, because they are independent of the protocol. However, state functions do
depend on the presence or absence of a protocol because a different probability is used in
the expressions of their expected values. Then, in analogy to Equations (11) and (16), these
state functions read:

〈Et〉 = ∑
xt0 ,...,xt

p(xt0 , . . . , xt)E(xt; xt−1, . . . , xt0), (58)

〈Eν〉 =
N

∑
ν=1

pνEν = ∑
xt0 ,...,xt f

p(xt0 , . . . , xt f )E
(

xt0 , . . . , xt f

)
. (59)

They keep the next relation:

〈Eν〉 =
t f

∑
t=t0

〈Et〉, (60)

which proof is formally equivalent to that for Equation (17).
The equilibrium instant and pathway entropies depend on the presence or absence of a

protocol because they operate on a probability. In analogy to Equations (18) and (20), these
thermodynamic potentials are built by using instant and pathway equilibrium probability
Equations (39) and (42):

S(xt; xt−1, . . . , xt0) ≡ −k ln p(xt|xt−1, . . . , xt0), (61)

Sν ≡ −k ln pν =

t f

∑
t=t0

S(xt; xt−1, . . . , xt0), (62)

with expected values:

〈St〉 = ∑
xt0 ,...,xt

p(xt0 , . . . , xt)S(xt; xt−1, . . . , xt0), (63)

〈Sν〉 =
N

∑
ν=1

pνSν = ∑
xt0 ,...,xt f

p(xt0 , . . . , xt f )S
(

xt0 , . . . , xt f

)
. (64)

Finally, the equilibrium instant and pathway Helmholtz free energies, which also
depend on the presence or absence of protocol because they operate on partition functions,
are given in analogy to Equations (23) and (25) by:

F(xt; xt−1, . . . , xt0) ≡ −kT ln Z(xt; xt−1, . . . , xt0), (65)

Fν ≡ −kT ln Z =

t f

∑
t=t0

F(xt; xt−1, . . . , xt0), (66)

respectively, with expected values:

〈Ft〉 = ∑
xt0 ,...,xt

p(xt0 , . . . , xt)F(xt; xt−1, . . . , xt0), (67)

〈Fν〉 =
N

∑
ν=1

pνFν = ∑
xt0 ,...,xt f

p(xt0 , . . . , xt f )F
(

xt0 , . . . , xt f

)
. (68)
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The equilibrium entropy and free energy fulfill the next relations between pathway and
instant expected values:

〈Sν〉 =
t f

∑
t=t0

〈St〉, 〈Fν〉 =
t f

∑
t=t0

〈Ft〉, (69)

which proofs are formally equivalent to that for Equation (17).
Similar conservation energy equations to those found for protocol-driven dynamics

are obtained for equilibrium. Their expressions (and proofs in Appendix A) follow by
dropping superscript λ in Equations (33)–(36), namely.

F(xt; xt−1, . . . , xt0) = E(xt; xt−1, . . . , xt0)− TS(xt; xt−1, . . . , xt0), (70)

Fν = Eν − TSν, (71)

〈Ft〉 = 〈Et〉 − T〈St〉, (72)

〈Fν〉 = 〈Eν〉 − T〈Sν〉. (73)

In analogy to Equations (37) and (38), equilibrium processes follow the next relations
for state functions:

〈Et〉 = −
〈

∂

∂β
ln Z(xt; xt−1, . . . , xt0)

〉
, 〈Eν〉 = −

∂

∂β
ln Z, (74)

respectively. Corresponding expressions for the entropies are

〈St〉 = −
〈

∂

∂T
F(xt; xt−1, . . . , xt0)

〉
, 〈Sν〉 = −

∂

∂T
F. (75)

The right-hand side expressions in Equations (74) and (75) are known in the context
of equilibrium thermodynamics in the absence of memory as U ≡ 〈Eν〉, S ≡ 〈Sν〉 =
−k ∑ν pν ln pν, and F ≡ 〈Fν〉 = Fν = −kT ln Z [1,3].

2.4. Relations between Protocol-Driven and Equilibrium Treatments

The following relations for instantaneous partition functions hold:〈
Z(λ)(; xt−1 . . . , xt0)

Z(xt; xt−1 . . . , xt0)

〉
λ

= 1,

〈
Z(xt; xt−1 . . . , xt0)

Z(λ)(; xt−1 . . . , xt0)

〉
= 1; (76)

see Appendix A for their demonstrations. These expressions indicate that the equilibrium
and protocol driven partition functions approach one another on average ratios.

Similar expressions can be found for partition functions along truncated sequences:〈
Z(λ)(xt0 , . . . , xt−1)

Z(xt0 , . . . , xt)

〉
λ

= 1,

〈
Z(xt0 , . . . , xt)

Z(λ)(xt0 , . . . , xt−1)

〉
= 1, (77)

which are trivially demonstrated from the definitions of p(xt0 , . . . , xt) and p(λ)(xt0 , . . . , xt).
Particular cases of previous equations are those for the complete sequences, that is, when
t = t f : 〈

Z(λ)
ν

Z

〉
λ

= 1,

〈
Z

Z(λ)
ν

〉
= 1. (78)

Straightforward consequences for the expected values of the probability ratios are
next: 〈

p(xt|xt−1 . . . , xt0)

p(λ)(xt|xt−1 . . . , xt0)

〉
λ

= 1,

〈
p(λ)(xt|xt−1 . . . , xt0)

p(xt|xt−1 . . . , xt0)

〉
= 1, (79)
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〈
p(xt0 , . . . , xt)

p(λ)(xt0 , . . . , xt)

〉
λ

= 1,

〈
p(λ)(xt0 , . . . , xt)

p(xt0 , . . . , xt)

〉
= 1, (80)

〈
pν

p(λ)ν

〉
λ

= 1,

〈
p(λ)ν

pν

〉
= 1. (81)

The evolution of a system does not only depend on the protocol but also on the physical
nature of the system itself. In this regard, partition functions and probability distributions
for protocol-driven dynamics are equivalent to their associated equilibrium processes
under ensemble averages, according to Equations (76)–(81). These relations indicate that,
on average, the stochastic nature of any protocol-driven process is equivalent to that of the
equilibrium process.

The Kullback-Leibler distance (or relative entropy) between two conditional probabil-
ity distributions p and q are used as defined elsewhere [27]:

D(p(xt|xt−1, . . . , xt0)||q(xt|xt−1, . . . , xt0))

≡ ∑
xt0 ,...,xt

p(xt0 , . . . , xt) ln
p(xt|xt−1, . . . , xt0)

q(xt|xt−1, . . . , xt0)
=

〈
ln

p(xt|xt−1, . . . , xt0)

q(xt|xt−1, . . . , xt0)

〉
p
. (82)

They are positive for protocol-driven and equilibrium instantaneous probability distribu-
tions, as expected:

D
(

p(λ)(xt|xt−1, . . . , xt0 )||p(xt|xt−1, . . . , xt0 )
)

=

〈
ln

Z(xt; xt−1, . . . , xt0 )

Z(λ)(; xt−1, . . . , xt0 )

〉
λ

≥ 0, (83)

D
(

p(xt|xt−1, . . . , xt0 )||p(λ)(xt|xt−1, . . . , xt0 )
)

=

〈
ln

Z(λ)(; xt−1, . . . , xt0 )

Z(xt; xt−1, . . . , xt0 )

〉
≥ 0, (84)

where we have applied Jensen’s inequality [27] and Equation (76).
Using the chain rule for relative entropies [27],

D(p(xt0 . . . , xt)||q(xt0 , . . . , xt)) =
t

∑
i=t0

D(p(xi|xi−1, . . . , xt0)||q(xi|xi−1, . . . , xt0)), (85)

it follows that

D
(

p(λ)(xt0 , . . . , xt)||p(xt0 , . . . , xt)
)

=

〈
ln

Z(xt0 . . . , xt)

Z(λ)(xt0 . . . , xt−1)

〉
λ

=
t

∑
i=t0

〈
ln

Z(xi; xi−1 . . . , xt0)

Z(λ)(; xi−1 . . . , xt0)

〉
λ

≥ 0, (86)

D
(

p(xt0 , . . . , xt)||p(λ)(xt0 , . . . , xt)
)

=

〈
ln

Z(λ)(xt0 . . . , xt−1)

Z(xt0 . . . , xt)

〉
=

t

∑
i=t0

〈
ln

Z(λ)(; xi−1 . . . , xt0)

Z(xi; xi−1 . . . , xt0)

〉
≥ 0. (87)

In particular,

D
(

p(λ)ν ||pν

)
=

〈
ln

Z

Z(λ)
ν

〉
λ

≥ 0, (88)

D
(

pν||p(λ)ν

)
=

〈
ln

Z(λ)
ν

Z

〉
≥ 0. (89)
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These formal results and those in Equation (78) appeared in previous works in the con-
text of information chains [24,26]; we show them again for the sake of completeness in
temporal chains.

2.5. Protocol-Driven Dynamics and Equilibrium Approach Each Other for Weak Memory Effects

We observed previously that sequence-dependent and equilibrium statistics are mu-
tually convergent when a chain construction is sufficiently smoothly-dependent on its
history [26]. We next formulate and demonstrate the Independence Limit theorem for
instants, for which proof is in Appendix B:

Theorem 1 (Instant Independence Limit). Let ν = {xt0 , . . . , xt, . . . , xt f } and ν′ = {x′t0
, . . . , x′t,

. . . , x′t f
} be two reversible pathways with memory along which a certain system may evolve. Let

Z
(

x′t; x′t−1, . . . , x′t0

)
and Z(λ)(; xt−1, . . . , xt0) be the equilibrium and protocol-driven instanta-

neous partition functions (Equations (49) and (4), respectively), relative to different histories until
time t. If the normalized energy difference for microstate x′t relative to distinct histories fulfills:∣∣E(x′t; x′t−1, . . . , x′t0

)
− E

(
x′t; xt−1, . . . , xt0

)∣∣/(kT)→ 0 (kT > 0) (90)

and the normalized energy differences for future events within the same pathway relative to distinct
microstates xt and x′t at time t fulfill:∣∣E(x′i ; x′i−1, . . . , x′t+1, x′t, x′t−1 . . . , x′t0

)
− E

(
x′i ; x′i−1, . . . , x′t+1, xt, x′t−1, . . . , x′t0

)∣∣/(kT)→ 0

for i = t + 1, . . . , t f , (91)

then Z
(

x′t; x′t−1, . . . , x′t0

)
/Z(λ)(; xt−1, . . . , xt0)→ 1.

This theorem provides the adequate link between protocol-driven and equilibrium
pathways in the absence of friction. It states that when memory-induced variations in
the energetic cost for advancing one temporal step are sufficiently low with respect to the
thermal level (kT), the evolution of the system by a defined mechanism approaches an
equilibrium thermalization of independent events.

It is easy to prove (Appendix B) the two following corollaries for truncated and full
partition functions:

Corollary 1 (Truncated Pathway Independence Limit). If, in addition to the condition ex-
pressed in Equation (91), the one in Equation (90) extends to all instants before t, namely∣∣E(x′i ; x′i−1, . . . , x′t0

)
− E

(
x′i ; xi−1, . . . , xt0

)∣∣/(kT)→ 0 for i = t0, . . . , t, (92)

then Z
(

x′t0
, . . . , x′t

)
/Z(λ)(xt0 , . . . , xt−1)→ 1.

Corollary 2 (Full Pathway Independence Limit). If, for all instants, t = t0, . . . , t f ,∣∣E(x′t; x′t−1, . . . , x′t0

)
− E

(
x′t; xt−1, . . . , xt0

)∣∣/(kT)→ 0, (93)

then Z/Z(λ)
ν → 1.

Since the extension of Equation (90) to all instants comprises Equation (91), a suffi-
cient condition to meet the Independence Limit for instants, truncated pathways and full
pathways is

∣∣∣E(x′t; x′t−1, . . . , x′t0

)
− E(x′t; xt−1, . . . , xt0)

∣∣∣/(kT)→ 0, ∀t = t0, . . . , t f , which is
the condition of Equation (93) in the last corollary. Interestingly, this last corollary recov-
ers the Independence Limit Theorem found elsewhere in the context of spatial chains with
memory [26].
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3. Applications

Computing systems, either natural, like the ones taking place in biological cells, or
artificial, like tape-based technologies, generate stepwise evolutions through the interven-
tion of Turing machines. They are of model significance to illustrate the above theory
because they show how physical interactions within the tape and between the tape and
the Turing-like processing machine influence both the spatial arrangements at the tape
and the history of the whole system. In particular, biological replication, transcription,
and translation comprise both a space- and time-dependent directional, stochastic chain
with memory. More in depth, their dynamics consists of a single protein—a polymerase or
ribosome—that builds a single template-directed polymer as a function of the time through
incorporation of monomers one at a time.

Thermodynamic potentials for a growing biopolymer are simulated in Figure 1. The
system exchanges energies near the thermal level at each time instant. Equilibrium path-
ways exploit memory effects greater than protocol-driven pathways because the system
is assumed to explore indefinitely each monomer alternative at each time step, thus im-
proving the chances for correct monomer selection under positive feedback. In particular,
the entropy decreases, thus indicating a lower incidence of errors, and the internal and free
energies become more negative, thus indicating a higher stability of the resulting polymer
as time passes.

Figure 1. Entropy, internal energy, and Helmholtz free energy as a function of the time during the templated-directed
synthesis of a biopolymer. The graphs show expected potentials per monomer considering independent events (solid lines),
protocol-driven pathways (dotted lines) and equilibrium pathways (dashed lines). Each incorporated monomer either
releases an energy of 0.5 kT if it fits correctly or absorbs an energy 0.5 kT otherwise. Monomers are selected from a pool of
4 different elements, only one fitting correctly at a time. The memory is modeled by a power law of the form 1/(∆t)3/2,
where ∆t is the number of elapsed time steps [24,26].

The protocol-driven results in Figure 1 just address the case in which the polymer only
grows during its synthesis. Monomers may actually be removed during polymer synthesis
due to proofreading and editing activities. In these situations, the system explores the
available pathways in a longer time, thus approaching the equilibrium results (also shown
in Figure 1) and thus reducing the incidence of errors. This applicative perspective can
be modeled with the above theory by selecting a protocol that combines shrinking and
growing dynamics.

4. Discussion

We have extended thermodynamics to systems that evolve along specific sequences
of events driven by changing constraints in the frictionless limit. To do that, we have
introduced pathway- and protocol-dependent functions, including thermodynamic poten-
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tials, that characterize the microstates of the system in the presence of memory. Similarly,
we have analyzed the equilibrium evolution of systems that keep memory of previous
events by introducing pathway-dependent functions. Under ensemble averages, protocol-
driven and equilibrium thermodynamic functions become state functions because they
lose their dependence over the pathways. Our theory discriminates between microscopic
reversibility and equilibrium, which, as presented in the theorem, converge to the same
concept when memory effects become negligible. Given that randomness is characterized
by probability, we find that, on average terms, the stochastic nature of protocol-driven and
equilibrium processes are equivalent because the expected value of the ratio between any
protocol-driven probability and the equilibrium probability is always unity, with indepen-
dence of which the protocol is. Finally, we have applied our framework in the context of
template-directed biopolymer synthesis, a molecular process that objectifies the connection
between thermodynamic and information entropies. This nanoscale illustration—in which
a protein replicates, transcribes, or translates an information carrier—shows that informa-
tion requires energy and that information is another manifestation of entropy (like heat to
energy).

When memory is present, the number of different microstates that a system can attain
increases with the number of events that it can recall because each microstate involves a
configurational history of events. When memory extends to all previous events at each time
step, there is a bijection between available microstates until a particular time t and pathways
to reach them; the system actually resets whenever it explores new pathways in these
conditions. If memory effects can be cut off down to a finite number of previous events,
as, for example, in Markov (memoryless) dynamics or in the case of independent events,
microstates can be recurrently visited within a particular pathway, that is, without starting
over. The lower the number of nearest temporal neighbors to be considered in the memory,
the lower the revisiting period. This revisiting period can be assumed as the so-called
Poincaré recurrence time, which increases with the number of past events that stochastically
influence the present. In the limit in which the origin of the system is at t = −∞ and
the memory extends to all previous events, the Poincaré recurrence time tends to infinity
because the system cannot restart.

The evolution of a system is a consequence of the existence of a protocol, which
represents constraints that change with time. If the protocol is sufficiently smooth in the
time dependence, the system has time to visit many microstates before the constraints
has substantially changed, thus evolving near or at equilibrium. When the environment
evolves very rapidly (involving that the protocol has a sharp time dependence), the system
cannot follow its changes due to memory effects. For long times, the fact that the system
cannot relax to its original state implies that it presents hysteresis and evolves away
from equilibrium.

The existence of a protocol, therefore, biases the pathways through which a system
progresses between two microstates. If the memory of the system is very long, the system
does not lose correlations with previous events at short periods of time. In these conditions,
it is not possible to assume ensemble averages and time averages as interchangeable, which
make evolutions no longer ergodic.

Considering that fluctuation theorems assume both microscopic reversibility and
Markovianity [5,6], and that Markovianity is a special case of non-Markovianity, we
speculate that our theory may describe non-equilibrium thermodynamics within a uni-
fied framework.

Funding: Work supported by Ministerio de Ciencia e Innovación, grant number PID2019-107391RB-I00.

Acknowledgments: The author wishes to thank the Universtitat Politècnica de València for general
support through the Attraction Talent program.

Conflicts of Interest: The author declares no conflict of interest. The founding sponsor had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript, and in the decision to publish the results.



Mathematics 2021, 9, 127 16 of 21

Appendix A. Proofs

We next demonstrate the expressions of Sections 2.2–2.4.

Proof of Equation (17). From Equations (16), (7), and (12), it follows that

〈Eν〉λ = ∑
xt0 ,...,xt f

p(λ)(xt0 , . . . , xt f )

t f

∑
t=t0

E(xt; xt−1, . . . , xt0)

=

t f

∑
t=t0

∑
xt0 ,...,xt

p(λ)(xt0 , . . . , xt)E(xt; xt−1, . . . , xt0) =

t f

∑
t=t0

〈Et〉λ,

which proves Equation (17).

The proof to Equation (22) is similar to this for Equation (17) and can be found in
Reference [27] in the context of Information Theory for the therein called conditional
entropy. The proofs to Equation (27) and to Equation (32) for a general thermodynamic
potential “A” (following Equations (28) and (29)) parallel those for Equations (17) and (22).

Proof of Equation (35). From Equations (19), (18), and (3), it follows that〈
S(λ)

t

〉
λ

= ∑
xt0 ,...,xt

p(λ)(xt0 , . . . , xt)S(λ)(xt; xt−1, . . . , xt0)

= −k ∑
xt0 ,...,xt

p(λ)(xt0 , . . . , xt) ln p(λ)(xt|xt−1, . . . , xt0)

= −k ∑
xt0 ,...,xt

p(λ)(xt0 , . . . , xt)
(
−βE(xt; xt−1, . . . , xt0)− ln Z(λ)(; xt−1, . . . , xt0)

)
=

1
T

(
〈Et〉λ −

〈
F(λ)

t

〉
λ

)
,

where we have used Equations (11), (23), and (24).

Proof of Equation (36). This expression appears by taking sums over subscript t on
Equation (35) and using Equations (17), (22), and (27). This result was demonstrated
in a previous work through a different strategy [24].

Proof of Equation (37). From Equations (11) and (37), left, satisfies

〈Et〉λ = ∑
xt0 ,...,xt

p(λ)(xt0 , . . . , xt)E(xt; xt−1, . . . , xt0)

= ∑
xt0 ,...,xt

p(λ)(xt0 , . . . , xt−1)p(λ)(xt|xt−1, . . . , xt0)E(xt; xt−1, . . . , xt0)

= ∑
xt0 ,...,xt

p(λ)(xt0 , . . . , xt−1)
exp(−βE(xt; xt−1, . . . , xt0))

Z(λ)(; xt−1, . . . , xt0)
E(xt; xt−1, . . . , xt0)

= − ∑
xt0 ,...,xt

p(λ)(xt0 , . . . , xt−1)
1

Z(λ)(; xt−1, . . . , xt0)

∂

∂β
exp(−βE(xt; xt−1, . . . , xt0))

= − ∑
xt0 ,...,xt−1

p(λ)(xt0 , . . . , xt−1)
∂

∂β ∑
xt

p(λ)(xt|xt−1, . . . , xt0)

− ∑
xt0 ,...,xt

p(λ)(xt0 , . . . , xt)
∂

∂β
ln Z(λ)(; xt−1, . . . , xt0) = −

〈
∂

∂β
ln Z(λ)

t

〉
λ

,
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where we have used Equations (3), (5), and (12). To abbreviate, we have inserted ∂
∂β ln Z(λ)

t ≡
∂

∂β ln Z(λ)(; xt−1, . . . , xt0). Equation (37), right, is obtained by taking sums over subscript t
on Equation (37), left. More in depth, since

− ∑
xt0 ,...,xt

p(λ)(xt0 , . . . , xt)
∂

∂β
ln Z(λ)(; xt−1, . . . , xt0 )

= − ∑
xt0 ,...,xt f

p(λ)(xt0 , . . . , xt f )
∂

∂β
ln Z(λ)(; xt−1, . . . , xt0 ) = −

N

∑
ν=1

p(λ)ν
∂

∂β
ln Z(λ)(; xt−1, . . . , xt0 )

so that

−
t f

∑
t=t0

〈
∂

∂β
ln Z(λ)

t

〉
λ

= −
〈

∂

∂β

t f

∑
t=t0

ln Z(λ)
t

〉
λ

= −
〈

∂

∂β
ln

t f

∏
t=t0

Z(λ)
t

〉
λ

= −
N

∑
ν=1

p(λ)ν
∂

∂β
ln Z(λ)

ν = −
〈

∂

∂β
ln Z(λ)

ν

〉
λ

,

then, considering ∑
t f
t=t0
〈Et〉λ = 〈Eν〉λ from above, it follows that

t f

∑
t=t0

[
〈Et〉λ = −

〈
∂

∂β
ln Z(λ)

t

〉
λ

]
→ 〈Eν〉λ = −

〈
∂

∂β
ln Z(λ)

ν

〉
λ

(A1)

which proves Equation (37), right. This equation was also demonstrated in a previous work
by an alternative strategy [24].

Proof of Equation (38). From Equations (35), (23), and (24), and Equation (37), left, in this
order, Equation (38), left, satisfies〈

S(λ)
t

〉
λ
= − 1

T

〈
F(λ)

t − E(λ)
t

〉
λ
= − 1

T

〈
−kT ln Z(λ)

t +
∂

∂β
ln Z(λ)

t

〉
λ

= −
〈

∂

∂T
F(λ)

t

〉
λ

.

To abbreviate, we have inserted ∂
∂T F(λ)

t ≡ ∂
∂T F(λ)(xt; xt−1, . . . , xt0). Equation (38), right,

is obtained by taking sums over subscript t on Equation (38), left. Following the above

demonstration for ∑
t f
t=t0
〈Et〉λ = 〈Eν〉λ, it is easy to see that ∑

t f
t=t0

〈
S(λ)

t

〉
λ
=
〈

S(λ)
ν

〉
λ

. Like-

wise, considering the above demonstration for −∑
t f
t=t0

〈
∂

∂β ln Z(λ)
t

〉
λ
= −

〈
∂

∂β ln Z(λ)
ν

〉
λ

, it
follows that

−
t f

∑
t=t0

〈
∂

∂T
F(λ)

t

〉
λ

= −
〈

∂

∂T

t f

∑
t=t0

F(λ)
t

〉
λ

= −
N

∑
ν=1

p(λ)ν
∂

∂T
F(λ)

ν = −
〈

∂

∂T
F(λ)

ν

〉
λ

.

Then,
t f

∑
t=t0

[〈
S(λ)

t

〉
λ
= −

〈
∂

∂T
F(λ)

t

〉
λ

]
→
〈

S(λ)
ν

〉
λ
= −

〈
∂

∂T
F(λ)

ν

〉
λ

, (A2)

which proves Equation (38), right. This equation was also demonstrated in a previous work
by an alternative strategy [24].

Proof of Equation (42). We want to demonstrate that pν ≡ p(xt0 , . . . , xt f ) = ∏
t f
t=t0

p(xt|xt−1, . . . , xt0), where pν is given by Equation (39) and p(xt|xt−1, . . . , xt0) by
Equation (42).
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Certainly, Equation (42) can be expressed as:

p(xt|xt−1, . . . , xt0) = e−βE(xt ;xt−1,...,xt0)
f (xt0 , . . . , xt)

f (xt0 , . . . , xt−1)

by using property Equation (47). Then,

pν = e−βEν

t f

∏
t=t0

f (xt0 , . . . , xt)

f (xt0 , . . . , xt−1)
= e−βEν

ft0 ft0+1 ft0+2 · · · ft f−2 ft f−1 ft f

Z ft0 ft0+1 ft0+2 · · · ft f−2 ft f−1
=

e−βEν

Z
,

where we have used Equations (45) and (46). We have labeled partition factors ft ≡
f (xt0 , . . . , xt), t = t0, . . . , t f , to abbreviate.

Proof of Equations (51) and (52). Equation (51) is obtained by taking sums in the pathway
probability product decomposition of Equation (41) from the most recent event variable,
xt f , to the furthest event variable, xt+1.

With regard to the second part of Equation (51),

p(xt0 , . . . , xt) =
t

∏
i=t0

e−βE(xi ;xi−1 ...,xt0)

Z(xi; xi−1, . . . , xt0)
=

e−βE(xt0 ,...,xt)

∏t
i=t0

Z(xi; xi−1, . . . , xt0)
.

For Z(xt0 , . . . , xt) ≡ ∏t
i=t0

Z(xi; xi−1, . . . , xt0), we find

Z(xt0 , . . . , xt) =
t

∏
i=t0

∑xi
e−βE(xi ;xi−1,...,xt0) f (xt0 , . . . , xi)

f (xt0 , . . . , xi)
=

Z
f (xt0 , . . . , xt)

,

where we have used Equation (46).

Proof of Equation (76). The left part expands as:〈
Z(λ)(; xt−1 . . . , xt0 )

Z(xt; xt−1 . . . , xt0 )

〉
λ

= ∑
xt0 ,...,xt

p(λ)(xt0 , . . . , xt)
Z(λ)(; xt−1 . . . , xt0 )

Z(xt; xt−1 . . . , xt0 )

= ∑
xt0 ,...,xt−1

p(λ)(xt0 , . . . , xt−1)∑
xt

p(λ)(xt|xt−1, . . . , xt0 )
Z(λ)(; xt−1 . . . , xt0 )

Z(xt; xt−1 . . . , xt0 )

= ∑
xt0 ,...,xt−1

p(λ)(xt0 , . . . , xt−1)∑
xt

p(xt|xt−1, . . . , xt0 ) = 1.

The proof to the right part is formally analogous.

Appendix B. Proof of the Independence Limit Theorem for Instants, Truncated, and
Full Pathways

We begin with the proof for the theorem for instants. We will use the following
inequality:

|ez − 1| ≤ e|z||z|, (A3)

which was proven elsewhere [31]. For mild memory effects, we express the condition of
Equation (90) as

β
∣∣E(x′t; x′t−1, . . . , x′t0

)
− E

(
x′t; xt−1, . . . , xt0

)∣∣ ≤ ε, (β ≡ 1/(kT) > 0). (A4)

Firstly, we demonstrate that

Z(λ)
(

; x′t−1, . . . , x′t0

)
Z(λ)(; xt−1, . . . , xt0)

−−→
ε→0

1. (A5)
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Proof of Equation (A5). From Equation (4),

∣∣∣Z(λ)
(
; x′t−1, . . . , x′t0

)
− Z(λ)(; xt−1, . . . , xt0 )

∣∣∣ =
∣∣∣∣∣∣∑x′t
[

e−βE
(

x′t ;x
′
t−1 ,...,x′t0

)
− e−βE(x′t ;xt−1 ,...,xt0 )

]∣∣∣∣∣∣
=

∣∣∣∣∣∣∑x′t e−βE(x′t ;xt−1 ,...,xt0 )
[

e−β
(

E
(

x′t ;x
′
t−1 ,...,x′t0

)
−E(x′t ;xt−1 ,...,xt0 )

)
− 1
]∣∣∣∣∣∣

≤ ∑
x′t

e−βE(x′t ;xt−1 ,...,xt0 )
∣∣∣∣e−β

(
E
(

x′t ;x
′
t−1 ,...,x′t0

)
−E(x′t ;xt−1 ,...,xt0 )

)
− 1
∣∣∣∣

≤ ∑
x′t

e−βE(x′t ;xt−1 ,...,xt0 )β
∣∣E(x′t; x′t−1, . . . , x′t0

)
− E

(
x′t; xt−1, . . . , xt0

)∣∣eβ
∣∣∣E(x′t ;x

′
t−1 ,...,x′t0

)
−E(x′t ;xt−1 ,...,xt0 )

∣∣∣

≤ ∑
x′t

e−βE(x′t ;xt−1 ,...,xt0 )εeε = Z(λ)(; xt−1, . . . , xt0 )εeε,

where we have used Equation (A3) followed by Equation (A4). Then,∣∣∣∣∣∣
Z(λ)

(
; x′t−1, . . . , x′t0

)
Z(λ)(; xt−1, . . . , xt0)

− 1

∣∣∣∣∣∣ ≤ εeε −−→
ε→0

0,

which demonstrates Equation (A5).

Secondly, we demonstrate that

Z
(

x′t; x′t−1, . . . , x′t0

)
Z(λ)

(
; x′t−1, . . . , x′t0

) −−→
ε→0

1. (A6)

Proof of Equation (A6). Using Equation (47), Equation (49) can be expressed as:

Z
(

x′t; x′t−1, . . . , x′t0

)
= ∑

xt

e−βE
(

xt ;x′t−1,...,x′t0

) f (x′t0
, . . . , x′t−1, xt)

f (x′t0
, . . . , x′t)

.

Then,

∣∣∣Z(x′t; x′t−1, . . . , x′t0

)
− Z(λ)

(
; x′t−1, . . . , x′t0

)∣∣∣ = ∣∣∣∣∣∑xt

e−βE
(

xt ;x′t−1 ,...,x′t0

)[ f (x′t0
, . . . , x′t−1, xt)

f (x′t0
, . . . , x′t)

− 1

]∣∣∣∣∣
≤ ∑

xt

e−βE
(

xt ;x′t−1 ,...,x′t0

)∣∣∣∣∣ f (x′t0
, . . . , x′t−1, xt)

f (x′t0
, . . . , x′t)

− 1

∣∣∣∣∣. (A7)

To continue, we need to prove that

f (x′t0
, . . . , x′t−1, xt)

f (x′t0
, . . . , x′t)

−−→
ε→0

1. (A8)

For mild memory effects, we express the condition of Equation (91) as

β
∣∣∆E

(
x′i ; x′i−1, . . . , x′t+1, x′t, xt, x′t−1, . . . , x′t0

)∣∣ ≤ ε, (A9)

for i = t + 1, . . . , t f , where

∆E
(

x′i ; x′i−1, . . . , x′t+1, x′t, xt, x′t−1, . . . , x′t0

)
≡ E

(
x′i ; x′i−1, . . . , x′t+1, x′t, x′t−1, . . . , x′t0

)
− E

(
x′i ; x′i−1, . . . , x′t+1, xt, x′t−1, . . . , x′t0

)
. (A10)
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From Equation (44),∣∣∣ f(x′t0
, . . . , x′t−1, xt

)
− f

(
x′t0

, . . . , x′t
)∣∣∣

=

∣∣∣∣∣∣∣ ∑
x′t+1 ,...,x′t f

exp

−β

t f

∑
i=t+1

E(x′i ; x′i−1, . . . , x′t0
)

exp

β

t f

∑
i=t+1

∆E
(

x′i ; x′i−1, . . . , x′t, xt, x′t−1, . . . , x′t0

)− 1


∣∣∣∣∣∣∣

≤ ∑
x′t+1 ,...,x′t f

exp

−β

t f

∑
i=t+1

E(x′i ; x′i−1, . . . , x′t0
)

∣∣∣∣∣∣exp

β

t f

∑
i=t+1

∆E
(

x′i ; x′i−1, . . . , x′t, xt, x′t−1, . . . , x′t0

)− 1

∣∣∣∣∣∣
≤ ∑

x′t+1 ,...,x′t f

exp

−β

t f

∑
i=t+1

E(x′i ; x′i−1, . . . , x′t0
)

(t f − t
)
εe(t f−t)ε = f

(
x′t0

, . . . , x′t
)(

t f − t
)
εe(t f−t)ε,

where we have used Equation (A3) followed by Equation (A9). Then,∣∣∣∣∣∣
f
(

x′t0
, . . . , x′t−1, xt

)
f
(

x′t0
, . . . , x′t

) − 1

∣∣∣∣∣∣ ≤
(

t f − t
)

εe(t f−t)ε −−→
ε→0

0,

which demonstrates Equation (A8). As a consequence, from Equation (A7),∣∣∣Z(x′t; x′t−1, . . . , x′t0

)
− Z(λ)

(
; x′t−1, . . . , x′t0

)∣∣∣ ≤ Z(λ)
(
; x′t−1, . . . , x′t0

)(
t f − t

)
εe(t f−t)ε.

Then, ∣∣∣∣∣∣
Z
(

x′t; x′t−1, . . . , x′t0

)
Z(λ)

(
; x′t−1, . . . , x′t0

) − 1

∣∣∣∣∣∣ ≤
(

t f − t
)

εe(t f−t)ε −−→
ε→0

0,

which demonstrates Equation (A6).

Finally, multiplying Equation (A5) by Equation (A6), we find:

Z
(

x′t; x′t−1, . . . , x′t0

)
Z(λ)(; xt−1, . . . , xt0)

−−→
ε→0

1,

which completes the proof of the theorem for instants.
The proof for the truncated sequence version is straightforward from the above results

using Equations (15) and (52):

Z(x′t0
, . . . , x′t)

Z(λ)(xt0 , . . . , xt−1)
=

t

∏
i=t0

Z(x′i ; x′i−1, . . . , x′t0
)

Z(λ)(; xi−1, . . . , xt0)
−−→
ε→0

1.

The proof for the full pathways follows from the Equations (8) and (50) and from the
fact that Z/Z(λ)

ν = Z(x′t0
, . . . , x′t f

)/Z(λ)(xt0 , . . . , xt f−1) (also see Reference [26,31]).
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