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Supplying global energy demand with CO2-free technologies is becoming feasible 

thanks to the rising affordability of renewable resources. Hydrogen is a promising 

vector in the decarbonization of energy systems, but more efficient and scalable 

synthesis is required to enable its widespread deployment. Here we report 

contactless H2 production via water electrolysis mediated by the microwave-

triggered redox activation of solid-state ionic materials at low temperatures (<250 

ºC). Water was reduced via reaction with non-equilibrium gadolinium-doped CeO2 that 

was previously in situ electrochemically deoxygenated by the sole application of 

microwaves. The microwave-driven reduction was identified by an instantaneous electrical 

conductivity rise and O2 release. This process was cyclable, whereas H2 yield and energy 

efficiency were material- and power-dependent. Deoxygenation of low-energy molecules 

(H2O or CO2) led to the formation of energy carriers and enabled CH4 production when 

integrated with a Sabatier reactor. This method could be extended to other reactions such 

as intensified hydrocarbons synthesis or oxidation. 

Sustainability of industry, transportation and energy management will rely on CO2-free 

technologies and renewable electricity, which are boosted by the rising affordability of 

photovoltaic solar and wind turbine parks. The electrification of industry and transport 

will strongly contribute to limiting greenhouse gas emissions1,2 by using CO2-neutral 

energy carriers or chemical raw materials; however, the intermittent nature of renewables 



requires new energy storage tools paired with novel, highly efficient methods to electrify 

unitary steps in process industry3,4. 

Batteries and water electrolysers enable the compact, scale-flexible and durable storage 

of electric energy. The storage of energy in the H2 molecule is of great interest as it can 

be converted back into electricity in a fuel cell or used in chemical processing. H2 

production today is mostly accomplished by reforming hydrocarbons, leading to a 

substantial CO2 footprint. H2 produced from water and green power through solar 

thermochemical or photocatalytic water splitting5,6 and water electrolysis7–9 has become 

a sustainable alternative with negligible on-site greenhouse gas contribution. In 

thermochemical cycles, the highly energy-demanding splitting of water molecules 

(ΔHH2O=285 kJ mol-1) is often realized by using regenerable energy carriers (molecular 

or solid agents as metals or ceramics) that reduce water to yield H2. The redox activation 

of water is usually carried out by very high-temperature heating or galvanic methods to 

enable this non-spontaneous equilibrium-limited reaction, that is, with a large positive 

Gibbs free-energy change (ΔGH2O). 

Electromagnetic processes such as microwave heating hold promise for smart 

manufacturing and activating chemical reactions10,11, and can enable electrochemical 

operation without contact electrodes and the restrictions of conventional electrolysis cells, 

those being constrained operation conditions and equipment complexity. Here we report 

the contactless H2 production from water, mediated by microwave-triggered redox 

activation of solid-state ionic materials. Water splitting is realized by the sole application 

of microwave radiation, which enables the chemical redox cycling (Fig. 1) of ceramic 

oxides at very low temperatures (<250 °C).  In the first step, microwaves interact with the 

crystalline oxide, leading to an instantaneous rise in electrical conductivity that is 

accompanied by the material reduction (deoxygenation). This electromagnetically driven 

reduction mechanism implies that the electron transfer couples with solid-state oxide-ion 

diffusion and surface release of molecular oxygen to result in a non-equilibrium high-

energy state. The second step involves splitting water through a spontaneous reaction with 

the activated material, which leads to direct H2 formation and reoxygenation of the 

material. This striking reaction can also be applied to the reduction of other oxidized 

molecules to directly produce different molecular energy carriers, that is, converting H2O 

and CO2 into syngas that can in turn be transformed into hydrocarbons. This versatile 

technique opens the door to new, simpler and energy-efficient routes for H2 production 



and the non-invasive electrification of catalytic reactions such as hydrocarbon synthesis 

and selective oxidations, along with gas separations12 and solid-state energy storage13. 

 

Hydrogen synthesis from microwave energy 

To explore the coupled water splitting and redox cycling of oxide materials, we developed 

an ad hoc cavity and a new method grounded on precisely controlled microwave 

irradiation. The experiments were carried out in a continuous flow-through tubular quartz 

reactor holding a packed-bed reactor; the reactor was inserted into the microwave 

resonant-mode cylindrical cavity, which is capable of reaching temperatures of up to 

1,000 °C under different gas atmospheres. The set-up (Fig. 2a) was completed with a 120 

W solid-state microwave generator and control system (~2.45 GHz), an infrared 

pyrometer, on-line gas analysis and a probe for in situ conductivity measurement in the 

same cavity, using an additional orthonormal polarized E-field configuration connected 

to a second low-power microwave source at close frequencies14. The average bulk 

temperature of the sample is determined by monitoring the pyrometer-based surface-

reactor temperature, with extensive calibration procedures, which included an optic fibre 

within the material (see Supplementary Fig. 1)15. The theoretical modelling of the 

electromagnetic field distribution (Fig. 2a) within the resonant cavity evidences the 

intense and uniform irradiation of materials inside of the reactor. 

Doped CeO2 is used to illustrate the microwave redox principle as this well-studied ion-

conductor is catalytic16,17 and chemically reducible while structurally very stable. Figure 

2b shows the time evolution of temperature and gas composition during the microwave 

treatment of Ce0.8Gd0.2O1.9 (CGO) under dry N2 flow. The controlled microwave 

application heats the material up to an induction temperature (Tind≈110 °C), from which 

the material capability to absorb microwave energy is largely increased. At this point, the 

radiation triggers the material reduction for supplied power values above an absorption 

threshold (Pth≈10 W g-1), as revealed by the sharp O2 release monitored by mass 

spectrometry, achieving >0.2ml O2 per gram of solid. By contrast, conventional heating 

shows negligible O2 release in this operation range (Supplementary Fig. 2), requiring 

challenging temperatures (>1,100 °C) for an equivalent reduction in solar 

thermochemical cycles18,19. Following reduction, the controlled microwave irradiation 

produces the steeply and continuous heating up to a final equilibration temperature (Teq), 

where the absorbed microwave power per unit mass (PMW) is adjusted to preserve the non-



equilibrium material state at constant Teq. This abrupt reduction is attributed to the effect 

of the strong electromagnetic polarization of the material at low temperatures (below 200 

°C). Despite precise calibration of the temperature measurement15, a massive temperature 

gradient among the material fixed-bed reactor could not, however, explain the narrow 

time distribution of the observed O2 formation in Fig. 2b nor why no further O2 is 

measured up to Teq. A progressive O2 release would be expected for a microwave-driven 

purely thermal reduction effect (demanding peak temperatures >1,100 °C). On the 

contrary, here the sample was heated up to 750 °C without additional O2 formation. The 

microwave power effect on the heating dynamics was analysed by radiating at constant 

absorbed power a CGO sample initially set at 200 °C in an oxidizing atmosphere 

(Supplementary Fig. 3). Although a large sharp temperature step-rise is found for power 

rates above the threshold, a smooth, damped distribution is reported otherwise without 

any sign of O2 release. In the transition scenario (where controlled absorbed power is 

approximately equal to Pth), a small variation of the energy input leads to an immediate, 

severe temperature response, and yet is incompatible with a delay on bulk-surface 

activation times or overheated bulk regions. This very dissimilar heating behaviour can 

only be ascribed to the high-frequency strong polarization that the microwave-induced 

electromagnetic field causes on the material, triggering its reduction, as reported in direct 

current-polarized solid-oxide electrochemical cells20. In  situ conductivity measurements 

shed further light on the nature of this effect. 

 

Conductivity analysis 

It has been largely reported that the reduction of ceria-based materials has a direct effect 

on their electrical properties21. Charge-carrier transport mechanisms within the 

microwave-irradiated material were further investigated by contactless alternating current 

conductivity measurements during simultaneous microwave application (see 

Supplementary Notes 4–6). Following conventional heating, the conductivity (Fig. 2c) 

follows an Arrhenian behaviour that is characteristic of prevailing oxide-ion conduction, 

with an activation energy EA,ion≈0.42 eV. However, the microwave-irradiated material 

exhibits two distinctive electrical conductivity profiles, depending on whether the applied 

power is above/below Pth (Fig. 2c,d). At PMW >Pth, an instantaneous conductivity growth 

is observed on reaching Tind (Fig. 2c), unveiling a characteristic transition step 

simultaneous to O2 release. Following nearly full O2 release, further conductivity growth 



with temperature is mostly related to the thermal activation of both charge carriers 

(oxygen vacancies and electrons), reflecting an initial electronic conduction character that 

becomes gradually more dominated by oxide-ion transport as temperature increases 

(Supplementary Fig. 4). Once the microwave power has ceased, the cooling process 

occurs as in a conventional heating cycle. The application of an external electric field 

transforms both material oxygen substoichiometry (δ) and charge-carrier mobility. First, 

the microwave-induced material reduction leads to the formation of one oxygen vacancy 

and two localized electronic charge carriers (polarons22) per pair of reduced ceria atoms 

(Ce4+→Ce3+). The oxygen vacancy concentration, as well as the associated ion-

conductivity, rise a modest 10%, as quantified from the O2 release. The homologous 

growth of the electronic carrier population translates, however, into a much greater 

increment of the electronic conductivity (that is, proportional to [Ce3+]); namely, a two-

order of magnitude enhancement for 30 W g−1 (Fig. 2c). Second, the polaron mobility is 

boosted, even if the relative orientation of the polaron hopping trajectory is different from 

the E-field direction and apparently arbitrary, as reported for polaronic transport in 

disordered organic solids23. The activation energy for n-type polaron mobility reveals a 

considerable decrement in the presence of microwave-assisted E-fields, EA,n=0.19 eV 

(fitting in Supplementary Fig. 4). 

The conductivity at PMW<Pth displays a monotonic Arrhenian evolution with neither 

abrupt transitions nor signs of O2 release (Fig. 2d and Supplementary Fig. 2c,d). Still, a 

moderate conductivity increment is detected during microwave heating compared with 

conventional heating. Hence, microwave radiation seems to promote polaron mobility 

with an increasing influence of the applied E-field magnitude albeit the power was not 

sufficient to trigger the material reduction. This agrees with the Poole–Frenkel effect in 

polaronic materials, that is, moderate E-fields trigger the direct decline in hopping 

activation energy and long-range electron-phonon interaction enhancement that 

underpins polaron migration24. Following E-field cessation, electronic mobility is no 

longer activated, as revealed by the observed patterns during cooling and conventional 

heating.  

Microwave-assisted reduction alters the lattice structure and electronic configuration of 

CGO. X-ray photoelectron spectroscopy of activated CGO confirms the formation of 

surface oxygen vacancies and Ce3+ on irradiation, with Ce3+/Ce4+ surface ratio ~27% 

(Supplementary Fig. 5). Compared with ~2.6% average ratio inferred from the total 



oxygen released, the redox process reveals a superior activity on the grain surface level. 

The Ce3+ appearance lowers the narrow band of 4f electronic states localized around the 

Ce3+ sites, giving rise to a reduced band gap (a colour change to blue in Fig. 2e) as 

determined by UV–vis spectroscopy and is also reflected in the increased cell parameter 

of the fluorite host (Supplementary Fig. 5). 

 

Energy analysis 

The applied microwave power is absorbed through two coupled phenomena, that is, the 

endothermic oxygen vacancy formation (ΔHr=385 kJ mol−1 for CGO)25,26 and the heating 

induced by the agitation and vibration of the crystalline lattice (Fig. 2f). CGO reduction 

is not spontaneous (ΔGr>0) for the studied temperature range (200–500 °C) and only takes 

place by microwave-triggered electrochemical induction. This leads to a more disordered 

system through formation of gaseous O2 and oxygen vacancies in non-preferential lattice 

sites. The heat demand associated with this entropy increment (TΔSr) can be partially or 

fully satisfied by the simultaneous microwave heating and thus the net energy demand of 

the material reduction is the Gibbs free-energy, which is readily provided by the 

microwave radiation. 

Low-energy molecules can be reduced by the redox-activated material through a 

deoxygenation pathway, as exemplified in Fig. 3a for the conversion of H2O into valuable 

H2. Under a wet gas flow (3% H2O in N2), CGO was first microwave reduced (Teq<400 

°C) and the released O2 molecules were evacuated. Figure 3b represents the time sequence 

of O2 and H2 gas generation, temperature variation, total absorbed power (Pabs) and 

electric conductivity. After initial heating until Tind, and applying the absorbed power 

above the threshold (from 10 to 40 W g−1), a reduction outbreak and a huge rise in 

conductivity are observed. The induced microwave E-field preserves the non-

equilibrium, reduced state; however, once microwaves are switched off, the material 

reoxidizes by reacting with water, evolving gaseous H2. This water splitting mechanism 

is experimentally confirmed via the formation of D2 when using D2O instead of H2O. The 

mass spectrometer signals for both H2O and D2O experiments display a similar behaviour 

(Fig. 3c), that is, first the O2 release is observed (m/z=32) and, on modulation of 

microwave power, the material is reoxygenated by reaction with water, as evidenced by 

formation of H2 or D2 (m/z=4). Unquestionably, the production of H2 in the system stems 

from the CGO reoxidation and the consequent water splitting. Figure 3d shows the time 



evolution of temperature and gas formation for sequential microwave-driven H2O 

deoxygenation cycles (eight cycles). H2 production reflects high stability and excellent 

process reproducibility (Supplementary Fig. 6), as further confirmed by the subsequent 

O2/H2 balances comparison (that is, ~1.1 ml (H2) per cycle) being moderately 

incremented for larger pH2O. We envision that this reductive process can be further 

integrated with synthesis catalysts to directly produce hydrocarbons from CO2. For 

instance, simultaneous deoxygenation of H2O and CO2 to produce syngas can be widely 

employed in the synthesis of added-value chemicals, for example, via the Fischer–

Tropsch or methanol-intermediate routes.  

The excellent process cyclability will enable continuous H2 production through two 

different configurations (Fig. 4): microwave-swing reactors and a chemical looping 

scheme27. In the swinging process, the material remains fixed while reduction and H2 

formation (reoxidation) steps take place separately in two alternating reactors. The regime 

of each reactor is exchanged in consecutive cycles. In chemical looping, the material is 

closed-loop flowing and the reactors operate continuously in the same regime producing 

two separate streams of O2 and H2. 

 

Thermodynamic evaluation 

To assess the practical implications of microwave-assisted H2 production, we performed 

thermodynamic process simulations and evaluated the energy efficiency. We assumed 

that microwave radiation is mostly absorbed by the material (90–95%, with irradiation 

losses within the 5–10% range; see Supplementary Note 11) and serves as both main 

energy source and electrochemical driving force. This absorbed power promotes 

simultaneous material reduction and heating, with the energy fraction absorbed by the 

reduction defined as fr (Fig. 2f), whereas the heating fraction is 1–fr. The subsequent 

material reoxidation and water splitting to form H2 is spontaneous if the free Gibbs energy 

level reached by the material in the reduction stage (ΔGr) exceeds the water dissociation 

energy along the redox cycle (that is, ΔGr>ΔGH2O). The energy balance in Fig. 5 

schematizes the scenario where the difference between the enthalpies of oxygen vacancy 

generation and water dissociation is exothermic (that is, ΔHr>ΔHH2O), and this heat 

surplus from H2 production can be recovered in the next endothermic reduction cycle or, 

alternatively, to produce overheated steam. 



The energetic evaluation for the complete redox loop (Fig. 5) considers the H2 yield to be 

determined by the equilibrium, that is, by the net change in oxygen substoichiometry 

(Δδloop≡δr–δox in MOx-δr↔MOx-δox). For operation with the CGO material25,26, the highest 

boundary in energy efficiency (Fig. 5b) is reached when only the electric microwave 

energy demand is accounted and scales linearly with fr. The lowest boundary is reached 

when considering the complete energy demand of the balance of plant, that is, steam 

generation from liquid water. The actual energy efficiency lies between these boundaries 

(grey zone) and depends on the degree of heat recovery from the exothermic reoxidation 

step into the balance of plant heat demand. These results show the critical impact of fr in 

the process efficiency. The energy cost evaluation of H2 production (Fig. 5c and 

Supplementary Fig. 7a) using three different materials (namely, CGO, pure CeO2 and 

20% ZrO2-doped CeO2 (CZO)) illustrates the marked effect of the dopant nature and 

initial oxygen substoichiometry (δ0). The lesser energy requirement of CeO2 and, 

particularly, CZO originates from its lower reduction enthalpy (ΔHr). For CZO, the step-

coupling H2 formation and material reoxygenation becomes endothermic (ΔHr>ΔHH2O), 

demanding additional heat from, for example, microwave heating (1–fr). Furthermore, the 

reducibility of the oxides is different: higher δr values are reached for CeO2 and CZO 

even at lower temperatures; however, only a fraction of these vacancies is capable of 

reducing H2O, CGO being the most reductive agent (Supplementary Fig. 7b). The 

activated CGO can be nearly fully reoxidized by steam and the experimentally observed 

values for the closed-loop variation of oxygen vacancy fraction (Δδloop) range between 

0.002 and 0.005, in line with thermodynamic calculations, whereas CZO and CeO2 can 

only be partly reoxidized by steam. The distinct impact of the oxygen vacancy formation 

in the lattice entropy is responsible for the dissimilar redox behaviours. 

Figure 5d compares the operating energy costs with three established technologies for H2 

production from water: electrolysis plants based on (1) alkaline28–32 and (2) proton 

exchange membrane (PEM) cells28–30,33, and (3) a solar thermochemical plant that is 

based30,34,35 on ceria and perovskite oxides. These technologies will be among the most 

competitive in likely scenarios featuring abundant and low-cost renewable electricity and 

rising CO2 taxation8,36. Currently, PEM water electrolysis holds the highest share in this 

quickly evolving market due to its high energy efficiency and simple equipment 

operability. The quantitative analysis of the operating energy costs (Fig. 5d) reveals that 

microwave technology can be a competitive technology in the future with respect to 



conventional water electrolysis techniques. The capital cost estimation, evaluated for two 

different scales (distributed and centralized H2 production, with 10 kg and 50,000 kg per 

day, respectively) at present and future scenarios, also forecasts comparable capital 

expenses (Supplementary Fig. 7); however, microwave energy must be selectively used 

in the reduction of the oxide (fr>0.7) to reach the lowest H2 operating energy costs. 

Furthermore, the microwave technology can potentially reach higher efficiency than the 

experimental solar thermal process, directly generating H2 at operational temperatures 

>1,200 °C, reached by efficiently concentrating sunlight37. 

 

Intensification of processes assisted by microwaves 

Beyond H2 production, the broad applicability of microwave-driven reduction of different 

oxides in the intensification of chemical process is here exemplified by the selective 

(Sabatier) CH4 formation38 starting from H2O and CO2 (Fig. 6a), accomplished using a 

Ru/γ-Al2O3-catalyst packed-bed reactor in series with the microwave cavity. Before the 

methanation reaction, the dry CO2 deoxygenation was independently studied with a 

constant flow of 15% of CO2 in argon. Reproducible behaviour was obtained for nine 

cycles, as for the studied H2O deoxygenation, that is, an initial O2 release reveals the 

microwave-assisted oxide reduction and then—following microwave cessation—CO2 is 

partly converted into CO (Supplementary Fig. 8), as revealed by the CO2 signal 

diminution and the CO signal growth. The simultaneous deoxygenation of H2O and CO2 

to yield CO and H2 was first investigated (Supplementary Fig. 9a) for consecutive cycles 

using a constant flow of 15% CO2 and 3% H2O (argon balance) and by analysing the 

cavity-outlet gas. During the reduction step, together with the O2 release, a thermal-

induced desorption of CO2 from the material surface was observed at >150 °C. Following 

microwave shutoff, CO and H2 were formed and CO2 was converted while CH4 could not 

be detected at this stage. The in-line catalytic treatment of this gas stream in the sequential 

isothermal reactor gave rise to the formation of CH4 and high conversion of CO and H2 

(Fig. 6b and Supplementary Fig. 9b), pointing out the high cyclability of this hybrid 

microwave-redox catalytic process. CH4 formation over the Ru0 surface can proceed via 

hydrogenation of CO intermediate, coupled with the reverse water-gas shift reaction or 

via direct CO2 hydrogenation39.  



The unique ability of microwave radiation to evolve O2 and transmute the redox catalytic 

behaviour in oxides can eventually be leveraged to in situ realize the selective 

hydrocarbon oxidation or complete combustion of hydrocarbons, for example, soot40 or 

VOCs41 abatement. Figure 6c,d shows the syngas production via CH4 partial oxidation42. 

Under a 10% CH4 stream on reaching Tind, CH4 reacts with surface oxygen species 

evolving from the activated CeO2 lattice43 and is primarily converted into H2, CO and 

CO2 while O2 traces are still detectable (Supplementary Fig. 10). The high degree of 

process intensification reached here, that is doped CeO2 plays a triple role by acting as 

redox-activated catalyst, microwave-modulated oxygen carrier and by locally providing 

the thermal energy for the reaction light-off, will enable the development of new chemical 

looping schemes27. 

 

Conclusions 

A carbon-free H2 production method is reported. Under microwave mediation, solid-state 

ionic materials are redox activated at very low temperatures. The observed reduction is 

triggered on a given Tind and for a supplied microwave intensity above a certain power 

threshold (both of which are material-dependent properties), as ascertained from an 

abruptly peaked oxygen release and a large characteristic electronic conductivity raise. 

We derive that the material’s capacity to absorb energy is temperature activated and the 

reported redox phenomena and the electronic dynamics are highly stimulated by high-

frequency polarization effects caused by the induced electromagnetic field. The 

production of H2—accomplished via water splitting and prompted by the material 

reoxygenation—manifests as a reversible, cyclable process. Furthermore, the proposed 

technology can be coupled to produce different hydrocarbons or other molecular energy 

carriers, for example, the reported CH4 formation from CO2 and H2O integrated in a 

Sabatier reactor over a Ru/γ-Al2O3-catalyst. 

From the thermodynamic analysis of the redox process, fr (the fraction of absorbed 

microwave energy leveraged to promote the material reduction) emerges as the critical 

parameter that regulates the energy efficiency of the redox process and the hydrogen 

production cost. Heat losses and the energy balance of the plant can be often covered by 

the material heating excess, 1–fr. Furthermore, the preference of CGO over the other 

studied materials originates from its greater reductive power, as the larger amount of 

oxygen vacancies generated are capable of deoxygenating water. The proposed 



microwave-driven technology opens a new pathway for energy storage that is already 

expected to be competitive with conventional water electrolysis technologies.  

This method enables the contactless, electrolyte-free realization of electrochemical 

reactions such as H2O electrolysis, alleviating the operational constraints of classical 

electrochemical cells (that is, the temperature, pressure and reactor-stack architecture will 

not be restricted by the electrolyte/electrode operation window and challenging electric 

contacting). Reduction of compounds based on anions other than O2– (for example, S2–, 

Cl–, Br–) will allow for new chemistries, with application in several sectors such as 

emission control44 and functionalization of hard-to-activate molecules at low 

temperatures45. Electricity storage is another pivotal application, facilitating ultrafast 

battery recharge28,29 through volumetric reduction of anode-chamber materials. Tighter 

control of reduction energetics (electric work and reduction/reoxidation enthalpies) 

through material formulation and microwave-process engineering will maximize energy 

efficiency and operability in very diverse areas. 

 

Methods 

Materials preparation. Ce0.8Gd0.2O2-δ (CGO) was purchased from Cerpotech (Norway). The as-

received powders were pre-annealed at 1400 ºC and sieved between 200 and 250 µm. CGO 

powders for methanation experiments were synthesized via the co-precipitation method21, 

followed by calcination in air at 600 ºC, delivering a crystallite size below 40 nm.  

 

Microwave irradiation of samples. The microwave cylindrical cavity (104.92 mm in diameter, 

85 mm in height) was designed to irradiate samples of solid materials and perform simultaneous 

in situ measurements of the alternating current conductivity. The cavity has open cut-off holes in 

the upper, lower and lateral walls for insertion of the pass-through tubular quartz reactor 

containing the sample, location of antennas for coupling of microwaves, and process monitoring. 

The set-up was completed by a 120 W solid-state microwave amplifier (RCA2026U50, RFcore 

Ltd., from 2.2 to 2.6 GHz) driven by the oscillator and receiver of a network analyser (Rohde & 

Schwarz ZVRE) and a microwave control system.  

The microwave control system—located next to the irradiation source (amplifier) in the 

experimental set-up—made use of a variable coupling device (coaxial probe with variable 

penetration) and a double directional coupler (Meca Electronics, model 722-40-1.950 W) to adjust 

and measure the reflected signals from the microwave cavity as a function of frequency and 

temperature to provide the desired level of heating rate to the sample. This configuration enables 



temperatures to reach higher than 1,000 °C in the sample under different gas atmospheres. To 

determine the bulk temperature of the sample, the surface temperature of the quartz reactor was 

measured by an infrared pyrometer (Optris CT-Laser LT), previously calibrated with multiple 

procedures including measurements of fibre optic sensors placed in contact with the material’s 

body (see the Suppementary Methods for the full method).  

The irradiation of solid materials (in a tubular volume of 9.8 mm in diameter and 15 mm in height) 

was realized through the application of microwave power in the cylindrical transversal electric 

mode TE111 around the ISM (industrial, scientific and medical) frequency of 2.45 GHz. 

 

Measuring the alternating current conductivity of samples. For microwave conductivity 

measurements (alternating current conductivity) of samples during microwave irradiation, the 

microwave source and receiver of an additional low-power vectorial network analyser (Hewlett 

Packard HP8720E) were coupled to the microwave cavity through the SubMiniature version A 

connector placed at the bottom wall of the cavity. The continuous sweep of the generator 

frequencies from 1.9 GHz to 2.2 GHz and received signals allowed extraction of the cavity 

resonance response of the electromagnetic cylindrical mode TM010, employed for conductivity 

calculations. The dual-mode configuration (microwave heating and simultaneous conductivity 

measurements) was feasible without interferences by using two different microwave sources at 

slightly different microwave frequencies and a high isolation cross-coupling filter14. 

 

Alternating current conductivity measurements. Conductivity measurements of solid 

materials at microwave frequencies (alternating current conductivity) as a function of temperature 

were based on the microwave cavity perturbation technique46 and rely on the fact that the 

introduction of a small sample in a resonant cavity barely perturbs the microwave electromagnetic 

fields around the material. The method requires the measurement of the resonance characteristics 

of the microwave cavity (that is, the resonance frequency and the Q factor) from the second 

microwave system coupled to the bottom of the cavity (measurement mode TM010). These are 

measured before the insertion of the material sample, after the insertion of the empty quartz 

reactor inside of the cavity, and continuously during the microwave irradiation of the sample (and 

the quartz reactor) in the cavity. The observed variations in frequency and Q factor14 (Δf/f and 

Δ((2Q)–1), respectively) lead to the evaluation of the alternating current conductivity as  

 

𝜎𝐴𝐶 = 𝜔𝜀0

𝜂 Δ (
1
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2
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where ω is the angular frequency of the microwave signal; ε0 is the vacuum permittivity; and 

N=0.102 and η=0.00238 are the sample depolarization factor in the direction of the electric field 

polarization and the sample filling factor that quantifies the electric relative volume 

sample/cavity, respectively47, which depended on the specific geometry of the cavity, the resonant 

mode (TM010) and sample, and were determined through a calibration by measuring reference 

materials with known permittivity14. 

To enable the analysis of the polarization mechanism of the material, measurements of 

conductivity and dielectric properties variations are performed in the same frequency range 

(gigahertz) as the frequency of the irradiation (~2.45 GHz). Consequently, frequency of the 

measurement mode emerges as a dependent variable in the current experimental configuration 

and broadband frequency range experiments are not currently available, for example, the 

impedance response of the material for different frequencies (see Supplementary Notes 6 and 7). 

 

Measurement using conventional heating. For alternating current conductivity measurements 

under conventional heating, an electric resistance furnace was employed above the cylindrical 

cavity48 (see Supplementary Note 3). Small cylindrical samples of particulate materials (9.8mm 

diameter and 15mm height) were placed on a quartz frit membrane located in a long tubular quartz 

reactor and heated in the furnace outside of the cavity. Once the desired temperature was reached 

in the furnace, the reactor containing the sample was moved to the cavity for the conductivity 

measurements and then rapidly moved back to the furnace to continue with the heating process. 

 

Microwave heat generation and control. The microwave power absorbed by the sample was 

adjusted by fixing the coupling device to a specific penetration and dynamically selecting the 

frequency sweeps of the microwave source around the frequency peak of the cavity, as the heating 

of the sample was progressing. Then, by selecting the appropriate frequency sweeps of the 

microwave source around the frequency peak of the cavity (f1 and fN), the required level of 

microwave power (average microwave power) can be provided to the microwave reactor 

according to a desirable heating rate (K s–1). The full development of the method is shown in 

Supplementary Methods. 

 

Temperature calibration. An infrared pyrometer (Optris CT-Laser LT) with an accuracy of 0.1 

°C was used to determine the bulk temperature of the sample by measuring the surface 

temperature of the quartz reactor from outside of one of the microwave cavity access holes (see 

Supplementary Fig 2). The surface temperature of the quartz reactor is normally the coolest region 

on the material volume due to the inverted temperature profiles in microwave heating processes. 



A calibration is therefore needed to determine the correspondence between the measured 

temperature (quartz surface) and the sample bulk temperature (at which the reactions take place).  

The complete procedure for temperature calibration is detailed in a previous work15. It merges 

four independent methods to define the real bulk temperature of the sample. In the first method, 

the sample is heated with a conventional cartridge heater and the bulk sample temperature, 

measured with a thermocouple, is compared with the surface temperature given by the infrared 

pyrometer. The second method relies on the temperature measurements performed with a fibre 

optic sensor. The fibre optic calibration procedure consisted of heating a sample of CGO (15 mm 

height, 10 mm diameter) within the microwave cavity comparing (1) the temperature measured 

by the fibre optic in contact with the sample and (2) the surface temperature given by the infrared 

pyrometer. The calibration was performed at atmospheric pressure, opening the reactor for 

inserting the fibre optic inside the CGO sample. Likewise, same results equally apply when the 

reactor is sealed under other gas atmospheres.  

In the third method, pure salts with well-known transition temperatures (Ag2SO4 and KClO4) were 

heated in the microwave cavity and their dielectric properties were continuously monitored to 

identify the transition temperatures, which were employed to determine the relationship between 

the bulk temperature and the surface temperature at these points (see Supplementary Fig 10). The 

same procedure is applied in the fourth method but employing reference materials with well-

known Raman shifts at certain transition temperatures (Bi4Ti3O12 and K2SO4). 

 

Microwave-driven reaction experiments. Approximately 2.5 g of CGO powder sample (~1.2 

cm3) was placed on top of a quartz porous frit in a 10mm internal diameter quartz tube (1 mm 

wall thickness and 200 mm total height) and inserted within the cylindrical microwave cavity to 

irradiate materials and simultaneously (in situ) measure the conductivity. An infrared 

thermometer was used to measure temperature in the sample zone. The design of the cavity 

ensured temperature uniformity. The samples were measured with different carrier/reaction gases 

(that is, CO2, argon, N2, CH4 and mixtures O2/N2) with a flow rate of 100 ml min−1 (NTP) in wet 

and dry conditions. The CGO reduction experiments were carried out in a 1% O2/N2 carrier flow, 

which is sufficient to reoxidize the material. The reduction of H2O (saturated at 25 °C, pH2O=0.03 

atm) and subsequent reoxidation of CGO was made with a wet N2 sweeping, whereas the 

reduction of CO2 needed argon as a sweep, as the CO2 fraction masses overlap with those of N2. 

The gases were fed at atmospheric pressure through mass‐flow controllers (Bronkhorst). The 

sample was heated up by microwaves in the cavity. The outlet gas flow was analysed in a mass 

spectrometer, following 2, 4, 12, 13, 14, 16, 17, 18, 20, 28, 29, 32, 40, 43, 44 and 45 mass signals 

(m/z). Before the measurements, the sample powder packed-bed reactor was pretreated in situ by 

heating with microwave radiation in a flowing oxidizing atmosphere passing through a filter (SGT 



CO1051) to remove adsorbed water, CO2 and other products that might have interfered with the 

measured species, and subsequently cooled down to room temperature. 

The Sabatier reaction for catalytic methane synthesis was carried out in a two-step sequential 

process: (1) a constant flow rate of 100 ml min−1 of a gas mixture consisted of 15% CO2 and 3% 

H2O (saturated at 25 °C) in argon was continuously circulated through the CGO fixed-bed reactor, 

which was activated by microwave irradiation at 35 W g−1, and (2) the Sabatier reaction was 

conducted on-line in a second reactor. The reaction between the CO and H2 produced from CO2 

and H2O deoxygenation was catalysed over 5%Ru@γ-Al2O3 at 350 °C. The catalyst was 

previously shaped into particles ranging from 0.25 to 0.35 mm, and 350 mg of catalyst was loaded 

into the methanation reactor. The catalyst was prereduced in 10% H2 in argon at 350 °C for 2 h. 

A control methanation reaction without catalyst was also performed. 

Microwave-triggered oxidative conversion of CH4 into syngas over CGO was carried out at 

constant flow rate (100 ml min−1) of 10% CH4 in argon. The oxide sample was irradiated at 35 W 

g−1, and the outlet gas was analysed by a mass spectrometer.  

To quantify the released or formed species in the reactions, the gases in the mass spectrometer 

were calibrated (O2, H2, CH4, CO and CO2). Pure N2 was used as the carrier gas at a flow rate of 

100 ml min−1 (NTP), except for CO due to mass overlapping. The response to gas/N2 pulses (1 

ml), with different gas contents (from 0.01 to 100%, 4 to 6 calibration points per gas) passing 

through the empty reactor, was analysed by on-line mass spectrometry. A six-port valve with a 

sample loop was used for injection of the O2/Ar pulses into the N2 carrier gas flow stream. 

Calibration gas bottles (purity 5.0) were purchased from Linde. Five pulses were measured for 

each of the gas contents and the average area of the peaks was calculated (with a relative error of 

3%). The area was afterwards related to the gas yield or concentration. 

 

Physicochemical characterization. X-ray diffraction measurements were carried out by a 

PANalytical Cubix fast diffractometer, using CuKα1 radiation (λ=1.5406 Å) and X′Celerator 

detector in Bragg–Brentano geometry. X-ray diffraction patterns recorded in the 2θ range from 

2° to 90° were analysed using X’Pert Highscore Plus software. UV–vis spectra of the compounds 

were recorded on a Varian 5000 UV–vis–NIR spectrophotometer in the range of 200–800 nm 

using BaSO4 as a reference material and with a lamp change at 350nm. Kubelka–Munk (K–M) 

theory has been used to estimate the energy gap Eg of the material49,50. The evaluation involves 

plotting of the obtained (hνF(R∞)2) as a function of hv. In ceria51, the difference between the 

conduction and 4f electrons states can be estimated by extrapolating a tangent line drawn in the 

point of inflection of the curve to zero. X-Ray Photoelectron spectra (XPS) were recorded on a 

SPECS spectrometer with a MCD-9 detector by using non-monochromatic AlKα radiation 

(1,486.6 eV) of a twin anode in the constant analyser energy mode, with a pass energy of 50 eV 

and an X-ray power of 100 W under an operating pressure of 10−9 mbar. The binding energy scale 



was regulated by setting the C 1s transition at 284.6 eV. The accuracy of the binding energy was 

0.1 eV. During data processing of the XPS spectra, binding energy values were referenced to the 

oxygen 1s peak of the CeO2 lattice settled at 530 eV. The energy regions of cerium 3d, O 1s and 

C 1s transitions were recorded. Spectra analyses were performed using CasaXPS software v. 

2.3.16Dev52 (http://www.casaxps.com). The samples were removed from the reactor under a 

flow of helium, quenched in liquid nitrogen, and transferred under N2 flow into the XPS 

spectrometer to avoid the reoxidation of the material. Temperature-programmed reduction was 

carried out in a Micromeritics system. 100 mg of sample were degassed under argon flow for 1 h 

and subjected to reduction under H2/Ar (1/9) flow, by a heating rate of 10 °C min−1 until 950 °C. 

The H2 consumption was measured by a thermal-conductivity detector. 

 

Thermodynamic evaluation. The complete loop of hydrogen generation due to microwave-

induced oxygen vacancy generation involves the water dissociation through two phenomena: (1) 

microwave-assisted oxygen generation and the formation of oxygen vacancies in the lattice, and 

(2) hydrogen generation by the oxidation of these oxygen vacancies with the oxygen from water. 

The second step means the spontaneous formation of hydrogen by the reoxidation of the material 

with steam. The equilibrium of the release of H2 generation could be expressed in terms of lattice 

terms, 

 2𝐶𝑒𝐶𝑒
′ + 𝑉𝑂

⋅⋅ + 𝐻2𝑂 ⇄ 2𝐶𝑒𝐶𝑒
𝑋 + 𝑂𝑂

𝑋 + 𝐻2 , (2) 

Therefore, for the evaluation of the equilibrium of this reaction, the Gibbs free energy is related 

to the reactant’s concentrations through the equilibrium ratio of the reaction: 

 
𝐾𝐸𝑄 ≡ exp (−

Δ𝐺𝑟𝐻2

𝑅𝑇
) =

[𝑂𝑂
𝑋] · [𝐶𝑒𝐶𝑒

𝑋 ]2 · 𝑝𝐻2

[𝑉𝑂
⋅⋅] · [𝐶𝑒𝐶𝑒

′ ]2 · 𝑝𝐻2𝑂
 , 

(3) 

The extended thermodynamic modelling methodology is explained in the Supplementary 

Methods. 

 

Evaluation of the energy cost and generated hydrogen. The efficiency analysis in hydrogen 

generation process is evaluated considering the energy demand of the process regarding the HHV. 

For hydrogen, the HHV is 283.6 kJ mol–1. The energy demand was evaluated under two scenarios: 

(case 1) considering only the electric demand of the process and (case 2) considering both the 

heat and the electric demands. As microwave heating is inherent to the assisted reduction of the 

material, the entropic heat demand of this reaction is generally covered. A more detailed 

thermodynamic modelling methodology is set forth in the Supplementary Methods. 
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Fig. 1 | Schematic illustration of the microwave-induced redox cycle. Microwave irradiation 

of doped ceria materials induce its reduction and triggers the release of gaseous oxygen. The input 

of a suitable sweep gas on microwave switching-off leads to the material reoxidation via gas 

deoxygenation and the formation of valuable molecular energy carriers. MW, microwave. 

 

 

 

 



 

Fig. 2 | Microwave radiation process induces reduction of Ce4+ in CeO2. a, Experimental set-

up for microwave irradiation (120 W) and simultaneous measurement of alternating current 

conductivity, illustrating the theoretical (modelled) TE111 relative electromagnetic field 

distribution inside of the resonant cavity (see colour mapping) at 25 °C, in ambient air, with a 

maximum value ~8.104 V m–1. b, During the microwave irradiation of CGO (2.4 g) sintered at 

1,400 °C and the associated heating, the mass spectrometry analysis reveals sudden oxygen 

release per unit time (FO2) after reaching a characteristic Tind and Pth. Tests were performed under 

dry N2 flow for a controlled absorbed power (PMW ≈ 30 W g–1) after reaching Tind. c, Electrical 

alternating current conductivity as a function of reciprocal temperature characterizes the effect of 

microwave irradiation in the material charge-carrier conduction in CGO under N2 flow. The 

microwave-induced reduction is triggered for supplied powers above the material power 

threshold, showing an abrupt electrical conductivity step enhancement. The upwards 

(downwards) arrows indicate material heating up (cooling down) in the presence (absence) of 

microwaves. The thermal behaviour of the conduction in the unreduced material with no 

irradiation is included for comparison. d, The conductivity Arrhenian plots display distinctive 

thermal behaviours in CGO for supplied microwave powers above and below the material power 

threshold under dry N2 flow. Although an abrupt electrical conductivity step enhancement and 

material reduction are only reported in the first scenario, the microwave irradiation also boosts 

the charge-carrier mobility in the unreduced case, as the different heating up and cooling down 

patterns unveil. e, The reduction of CGO is detected macroscopically by the change in colour of 

the powder, turning from blue to yellow as it oxidizes in contact with ambient air. The inset shows 

that the colour variation is caused by the energy gap contraction of the lowest 4f state to the 

valence band in reduced ceria. f, A Sankey diagram of the energy process in the material 

reduction. The microwave energy is absorbed by both the material reduction (fr) and heating (1–

fr) processes. The entropic demands for the generation of oxygen vacancies can be covered by 

excess heat. 

 

 



 

Fig. 3 | Application and time sequence in water deoxygenation. a, Schematics of the H2O 

reduction mechanism through the extraction of one oxygen atom that is reduced to O2- and 

accommodated into the lattice of the reduced oxide (crystalline host), converting an oxygen 

vacancy (VO¨) into a neutral oxygen site (OX). b, A time sequence of the control parameters in 

the reduction process shows stepwise behaviour, by the time oxygen is released; once microwaves 

are switched off, hydrogen is formed. c, A time-sequence comparison of the reduction process 

under H2O (dark blue) and D2O (light blue) mixed with N2 flow displays similar values for (from 

top to bottom) temperature, conductivity (σ), D2 yield and H2 yield. d, The production of H2 via 

water splitting is prompted by the reoxidation of CGO material on the microwave switching off. 

Cyclability is accomplished by the alternate presence and absence of microwave radiation under 

a N2 gas flow saturated with H2O at 25 °C (3% H2O in N2). 

 

 

 

 

 

 

 

 

 

 



 

Fig. 4 | Hydrogen production flowchart based on microwave reduction. a,b, A comparison of 

the swing reactor (a) and the chemical loop (b) configurations for microwave-induced hydrogen 

production. Microwave irradiation is periodically alternated between two independent reactors in 

a, as opposed to the sequential disposition of the reduction and the oxidation reactors in b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 5 | Energy balance and efficiency for hydrogen production. a, A Sankey energy diagram 

of the energy distribution of the complete microwave-assisted redox cycle for hydrogen 

production. The heat excess from CGO reoxidation is reused to supply the energy demand of the 

reduction step. b, Energy efficiency and H2 energy cost as a function of the microwave-to-

reduction effectiveness for the reduction process (fr) favour higher values of this parameter, for 

different ceria-based materials. The here presented microwave-induced process may improve the 

current H2 energy production costs and outperform the state-of-the-art technologies for hydrogen 

generation. The energy efficiency is evaluated considering the high heating value (HHV) for the 

H2 generation with CGO in a loop process. c, H2 energy cost-evaluated for CGO, CeO2 and CZO 

materials considering the microwave electric demand and the balance of plant heats considering 

reduction and reoxidation at 350 °C. d, A comparison with conventional technologies evaluated 

on the same basis: PEM electrolysis30–34, alkaline electrolysis28–33 and solar thermal32,35–45. Heat 

losses, 5%; water excess, 100%; power-to-microwave efficiency, 85%; non-absorbed microwave 

power, 5%; Δδloop≡δr – δox= 0.002–0.005; ΔHr,H2O, enthalpy of the water dissociation.  

 



 

Fig. 6 | Microwave electrocatalysis in energy conversion reactions. a, Schematics of CH4 

formation by in-series coupling of CO2 and H2O deoxygenation over redox-activated CGO (left) 

and the Sabatier reaction catalysed over 5% Ru@γ-Al2O3 at 350 °C (right). b, Time monitoring 

of CGO activation (maximum absorbed power, 35 W g–1) and subsequent CH4 synthesis. A 

constant flow rate (100 ml min–1) of a gas mixture (3% H2O, 15% CO2 in argon) was passed 

through the first CGO fixed-bed reactor. c, Schematics of the all-at-once CGO microwave-

triggered reduction and oxidative conversion of CH4 into syngas. The irradiated oxide is 

polarized, becoming more redox-active but also forming oxygen species on its surface that 

subsequently react with adsorbed CH4 to form H2 and CO. d, Time sequence of the production of 

H2 and CO from CH4 oxidation on CGO reduction at maximum absorbed power 35 W g–1. A 

constant flow rate (100 ml min–1) of a gas mixture (3% H2O, 10% CH4 in argon) was continuously 

circulated through the CGO fixed-bed reactor. 
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