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The acoustic analog of the quantum black hole for airborne sound in two dimensions was denominated
as an omnidirectional acoustic absorber by Climente et al. [see Appl. Phys. Lett., 100, 144103 (2012)],
who characterized its absorbing properties without providing any theoretical support. The viscothermal
losses of the underlying structure, which consists of an absorbing core and a surrounding gradient-index
(GRIN) lens both made of periodic distributions of cylindrical rods, are here comprehensively studied by
using the boundary element method (BEM) in two dimensions. It is shown that the numerical simulations
in two dimensions reproduce fairly well the increase in absorption of the core when the GRIN lens is added
and reveal that the discrepancy between measured and calculated values of absorbance is an artifact of the
experimental setup. The possibility of independent calculation of viscous and thermal losses contributions
in the two-dimensional (2D) BEM algorithm is employed for the comparison with a homogenization
theory in which the cluster of cylinders is represented by a single fluidlike viscous cylinder with effective
parameters. We conclude that viscous losses represent about 90% of the total energy dissipated in the core.
The homogenization approach results are only 2% below the results calculated with 2D BEM, indicating
that the effective parameters obtained by the homogenization are very accurate.
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I. INTRODUCTION

The classical analogs of the quantum hole effect are top-
ics of increasing interest in physics. The photonic black
hole (PBH) [1–3] and the acoustic black hole (ABH)
[4–11] have been proposed as efficient structures for omni-
directional absorption of electromagnetic and acoustic
energies, respectively. The term ABH was employed by
Krylov and Tilman [4] to represent the behavior of flexural
waves propagating in a sharp edge that become trapped as
they approach the tip. Later on, the concept of an ABH has
been extended to passive vibration control in beams and
plates. Though the denomination of “vibration acoustic
black hole” would be more appropriate, the term ABH is
widely accepted by the scientific community. The vibration
control by the ABH effect is out of the scope of this work
and readers interested in this particular topic are addressed
to the recent review by Pelat and coworkers [12].

Some initial proposals of ABHs in a fluid background
were denominated as omnidirectional acoustic absorbers
[5,6] and their performance was supported by numerical
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simulations. Afterward, Climente et al. [7] reported a prac-
tical realization of an ABH for airborne sound, which was
based in lattices of hard cylinders, using a metamaterial
core consisting in a highly packed sonic crystal. Later, a
similar design was employed by Naify et al. [9] to demon-
strate its functionality for underwater sound. On similar
backgrounds, Elliot et al. [10] employed a porous material
together with a metamaterial matching layer as the absorb-
ing core. Gu and coworkers [11] used angularly distributed
fins as the external shell in charge of focusing the acous-
tic energy towards the absorbing core. Unfortunately, the
experimental works did not present any convincing theo-
retical analysis supporting the absorbing features measured
in their respective characterizations.

The study of ABHs is interesting not only from the
fundamental point of view but also for its potential in
realistic applications as sinks of environmental noise. The
fast development of rapid prototyping machines allows the
fabrication of the two-dimensional (2D) ABH structures
previously described, as well as their three-dimensional
(3D) counterparts. The ABH can be considered as a proof-
of-concept of an omnidirectional and broadband absorbing
device suitable as a covering structure to arbitrary surfaces
where the sound needs be dissipated.
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Here, we are interested in studying the absorbing prop-
erties of the ABH characterized in Ref. [7]. The struc-
ture consists of an external shell made of cylinders with
various radii, which are calculated with the purpose of
bending the impinging waves towards the absorbing core.
Figure 1 describes the fabricated ABH, the components of
which, the external shell and the inner core, are specifically
designed acoustic metamaterials based on lattices of rigid
cylinders. In Ref. [7], the authors extended previous works
on gradient-index (GRIN) acoustic lenses with flat surfaces
[13,14] to design a GRIN lens with circular symmetry,

(a)

(b)

FIG. 1. (a) Photograph of the ABH inside the characteriza-
tion chamber employed in [7]. (b) Sketch of the ABH, where
the outer layer of green circles represents the cylindrical scat-
terers designed to act as a GRIN lens in charge of redirecting
the impinging sound towards the metamaterial core, which is
represented by the hexagonal lattice of red circles. The core is
designed to absorb the acoustic energy by viscothermal losses
arising in the small separation between cylinders. Here Rc and
Rs define the radii of the imaginary circles enclosing the two
structures.

defining the external shell in charge of energy redirec-
tion. The circular GRIN lens plays the role of an acoustic
concentrator, a device that has its own interest because it
has important applications also for acoustic sensing and
energy harvesting [15]. Recently, a 3D acoustic concen-
trator based on a metamaterial has been demonstrated for
airborne sound [16]. On the other hand, a metamaterial
core is implemented in [7] using a highly packed sonic
crystal, which dissipates the arriving energy due to its
viscothermal losses [17]. Though evidence of energy dissi-
pation has been demonstrated experimentally, a calculation
of viscothermal effects supporting the recorded data is still
lacking.

This work presents a comprehensive study of the vis-
cothermal losses in the structures analyzed in [7]. Par-
ticularly, we have employed an improved version of the
boundary element method (BEM) [18] implementing the
Navier-Stokes equations [19,20] to show how viscother-
mal effects determine the absorbing features observed
in the manufactured ABH [7]. The BEM algorithm was
already successfully applied to explain why some types of
double-negative metamaterials [21] are not able to exhibit
their expected behavior because of losses within the vis-
cous and thermal boundary layers formed around the solid
scatterers forming the structure [22].

The study of viscothermal effects on acoustic devices
and structures based on lattices of hard scatterers embed-
ded in a fluid, as the ABH, is a topic of increasing interest
since the resulting losses ultimately determine their prac-
tical functionality [17,23–28]. Remember that losses can,
except for long-distance propagation, be ignored in free
air or water, but the dissipation is greatly enhanced when
sound waves impinge a single hard scatterer due to the
existence of thin viscous and thermal boundary layers with
thicknesses δv and δκ , respectively. Although the dissipa-
tion of acoustic energy around a single hard scatterer can
be considered low, the amount of losses increases by orders
of magnitude, as compared with the losses of the surround-
ing fluid, when the cylinders are arranged in a lattice and
the fraction of scatterers f increases [29]. The absorb-
ing characteristics of continuously graded phononic crys-
tals has been pointed out previously [30]. More recently,
the relevance of viscous dissipation has been analyzed
numerically for the case of a tubular phononic crystal
sensor [31].

The extraordinary properties of acoustic metamaterials
appear in the long-wavelength limit where the lattices of
scatterers behave like a uniform medium with effective
parameters (mass density and bulk modulus), sometimes
negative, which can be obtained using different homoge-
nization theories [32–36].

A comparison with the measurements published in [7]
indicates that our BEM simulations give a good quali-
tative description of the absorbing features of the ABH
and the fundamental role played by the GRIN lens shell
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in order to enhance the dissipating properties of the core.
Discrepancies between measured and calculated values in
the absorbance spectra have been attributed to the intrin-
sic losses of the characterization chamber employed in the
experimental setup.

In addition, the viscous and thermal dissipation in the
metamaterial structure defining the core have been inde-
pendently analyzed in order to assess the contribution of
viscous losses to its total absorption. Thus, dissipating
losses due to viscosity are calculated for the cluster of
cylinders defining the bare core (BC). The results are com-
pared with that obtained by representing the cluster as a
uniform viscous cylinder with effective parameters, includ-
ing a frequency-dependent imaginary part for the wave
number. The BEM simulations indicate that the effective
viscous cylinder reproduces fairly well the absorbance
spectra obtained when considering the full cluster geom-
etry and show that viscous losses explain about 90% of
the total energy dissipated by viscothermal effects in this
setup.

This article is organized as follows. After this intro-
duction, Sec. II describes the features of the ABH under
study and explains the experimental approach employed
in its characterization. A brief description of the 2D BEM
employed in the numerical simulations of the ABH and
related structures is also presented. Afterward, Sec. III
reports the results from the BEM simulations, which are
discussed and compared with measurements reported in
[7]. The absorbance spectra for the BC and the isolated
GRIN lens are studied separately in Sec. III A, which
presents not only the numerical simulations but also the
corresponding experimental spectra. On the other hand,
Sec. III A presents the study of viscous losses in clusters
with inner structure similar to the BC. The computational
demand to solve these structures with the 2D BEM has
been reduced dramatically thanks to the introduction of
an homogenization approach, which allows the cluster to
be represented with a single uniform cylinder. It is shown
that the homogenized cylinder describes fairly well the
absorbing features of the exact clusters and facilitates the
study of the viscous absorbance as a function of the cluster
dimensions. A summary and conclusions are presented in
Sec. IV.

II. THEORETICAL APPROACH: THE BOUNDARY
ELEMENT METHOD

The structure of the ABH under study is shown in
Fig. 1, where Fig. 1(a) shows a photo inside the char-
acterization chamber and Fig. 1(b) depicts a schematic
view, where the circular sections of cylinders are colored
to distinguish between the two components of the ABH.
The green circles define the GRIN lens component, which
is made of 408 cylinders distributed in five layers, with
radii gradually decreasing with the distance to the center

in order to approximately match the acoustic impedance
of both the inner core and the surrounding air. The red
circles define the inner core, the absorbing component of
the ABH, which contains 361 cylinders distributed in a
hexagonal lattice with period a = 7.5 mm. All the cylin-
ders have equal diameter, dc = 7.2 mm, corresponding to
a lattice filling fraction of 83.6% [7]. Note that the close-
packing (CP) condition for the hexagonal lattice is 90.6%.
Therefore, the inner core is a sonic crystal with external
shape approximately circular. It can be also considered as
a metamaterial designed to dissipate the acoustic energy by
viscothermal losses produced in the narrow channels exist-
ing between nearest-neighbor cylinders. The actual values
of Rc and Rs in Fig. 1 are 80 and 120 cm, respectively.

Experimentally, the absorbing properties of the ABH are
characterized in a homemade 3D multimode impedance
chamber (MMIC), which is schematically depicted in
Fig. 2(a). The experimental setup also involves a speaker
(red circle) centered at the left-hand-side plate of the
MMIC and two arrays of nine microphones (blue dots)
placed at the middle of the chamber. The setup requires an
additional microphone which is used as a reference [Ref.
Mic. in Fig. 1(a)]. The MMIC is manufactured with alu-
minum plates 1 cm thick. The bottom and top surfaces
are rectangular with the same dimensions. However, the

(a)

(b)
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FIG. 2. (a) Sketch of the 3D multimodal impedance chamber
employed in the experimental setup. The actual dimensions are
[7]: Lx = 148 cm, Ly = 29.6 cm, and Lz = 5 cm. (b) Sketch of
the 2D chamber employed in the BEM simulations. The cham-
ber boundaries are determined by 212 quadratic three-node line
elements. The blue circles (more clearly seen in enlarged view)
indicate the positions of the 424 nodes defining the elements. The
symbols at the middle of the chambers represent the two rows of
points where the pressure waves are captured.
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top surface is made of two plates with different areas.
The smaller plate, represented by the red dashed square in
Fig. 2(a), is removable to allow the introduction of samples
inside the chamber. The dimensions reported in the cap-
tion of Fig. 2 correspond to the space available inside the
chamber for sound propagation. For a complete description
of the characterization procedure the reader is addressed
to [7].

For the theoretical model, the 3D problem has been
reduced to a 2D problem because we are always working
with frequencies below the frequency cutoff defining the
excitation of modes with a nodal line along the z direction
(see Appendix A). The numerical simulations have been
performed using the BEM instead of the finite element
method (FEM) because of its computational advantages for
large acoustic setups with losses [19].

Figure 2(b) depicts the section of the cylindrical cavity
employed in the 2D BEM simulations. It has been defined
with the dimensions reported in Fig. 2(a) for the actual
MMIC. Therefore, sound waves, which are generated in
the left-hand side, travel along the positive x axis, impinge
the sample, and are reflected back by the rigid bound-
ary at the right-hand side. In addition, the pressure field
P(x, y) presents acoustic modes involving the y axis finite
dimension. In other words,

P(x, y) =
M∑

m=0

[
Ameiβmx + Bme−iβmx] cos

(
mπ

Ly
y
)

, (1)

where the propagation constants are βm =√
ω2/c2

b − (mπ/Ly)2, with ω = 2πν the angular fre-
quency, cb the speed of sound in air, and Ly the chamber
width along y. Note that the summation involves only three
terms, corresponding to even modes m = 0, 2, and 4 in
the y direction. These modes are the only ones excited in
the range of frequencies analyzed experimentally [7]. See
Appendix A for a discussion of the normal modes excited
in the MMIC.

Coefficients Am and Bm are obtained experimentally by
measuring the pressure with nine pairs of microphones
evenly distributed along the y direction, with 3 cm being
the distance between the two rows of microphones along x
[see Fig. 2(a)]. However, in the present numerical simula-
tions, the pressure is sampled at 29 position pairs, (xα , yα),
with a separation between rows equal to that employed in
the experiments. As the launched waves are deterministic
(no reference microphone is needed), the coefficients Am
and Bm are obtained by solving the following overdeter-
mined system of equations,

Pα(xα , yα) =
M∑

m=0

[
Ameiβmxα + Bme−iβmxα

]
cos

(
mπ

Ly
yα

)
,

(2)

where α runs from 1 to 58.
Once the coefficients Am and Bm are calculated, the

flux 	A that enters in region 1 and the flux 	B reflected
backwards to region 2 are calculated by integration

	A = Ly

4ωρb

M∑

m=0

βm|Am|2, (3)

	B = Ly

4ωρb

M∑

m=0

βm|Bm|2. (4)

The reflectance is obtained as R = 	B/	A and the
absorbance or energy absorbed by the structure placed at
region 2 is

α(ω) = 1 − R. (5)

The absorbance is the key parameter characterizing the fre-
quency dependence of the energy dissipated by a given
structure.

The comparison of different absorbing structures is per-
formed by using the so-called absorption quality factor
Qα , which condenses in a single value the absorbing power
in a selected band of frequencies �ν,

Qα ≡ 1
�ν

∫ νf

νi

α (ν) dν, (6)

where �ν = νf − νi is the bandwidth in Hertz. For a fair
comparison with the experimental data, values of Qα are
calculated using the same range of frequencies, that is,
from νi = 580 Hz to νf = 3400 Hz.

A. Viscothermal effects in the boundary element
method

The BEM with viscothermal losses has been already
employed by these authors in previous works [19,20]. In
brief, the BEM with losses solves the linearized Navier-
Stokes equations with no flow. The three components of
the sound field (i.e., the acoustic, thermal, and viscous)
are separated and only coupled at the domain boundaries
[37,38]. Assuming the time dependence e−iωt, where ω is
the angular frequency, the harmonic equations are

(� + k2
a)pa = 0, (7a)

(� + k2
h)ph = 0, (7b)

(� + k2
v)�vv = �0, with � · �vv = 0, (7c)

where indexes a, h, and v define the acoustic, thermal,
and viscous components, respectively. The total pressure,
p , is the sum of its acoustic and thermal components
because the viscous velocity has no pressure associated:
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p = pa + ph. The particle velocity field is the superposi-
tion of the three components, �v = �va + �vh + �vv ,

Viscous and thermal components take nonnegligible
values only within the so-called viscous and thermal
boundary layers with thicknesses, δv and δκ , which are
inversely proportional to the square root of frequency [39]:

δv =
√

2η/ρ0ω, (8)

δκ = √
2κ/Cpρ0ω, (9)

where η is the viscosity coefficient, ρ0 is the fluid density,
κ is the thermal conductivity, and Cp is the specific heat
at constant pressure. At audible frequencies, both layers δv

and δκ have similar thickness, with values that span from
a fraction of a millimeter to a few micrometers [37]. The
viscous and thermal losses are usually taken into account
as an acoustic impedance of the boundary, and the sound
field can be described by the lossless wave equation [40].

In 3D setups, the five unknowns in Eqs. (7a), (7b),
and (7c) (i.e., pa, ph, and the three components of �vv) are
calculated by imposing the boundary condition on the total
pressure, p , and the total velocity �v [20]. In the 2D imple-
mentation employed in this paper, only two components of
�vv are considered, giving four unknowns.

As Eqs. (7a)–(7c) are formally equivalent to the
Helmholtz wave equation, the practical implementation of
BEM is based on the research software OpenBEM, which
solves the Helmholtz wave equation using the direct col-
location technique [41]. The BEM algorithm only meshes
the domain boundary, saving degrees of freedom as com-
pared with FEM. However, the BEM coefficient matrices
are frequency dependent and fully populated, which may
counterbalance the mesh reduction. In the case of BEM
with viscous and thermal losses, three sets of coefficient
matrices are used, corresponding to the three compo-
nents: acoustic, thermal, and viscous. The thermal and
viscous coefficient matrices are usually sparse due to the
short reach of such effects, as compared with the overall
dimensions of the setup.

Figure 2(b) depicts the mesh defining the cavity bound-
aries, containing 212 linear three-node triangular surface
elements, and the blue dots represent the corresponding
424 nodes. Figures 3(a) and 3(b) show, a quarter of the
cylinders defining the ABH and the structure here denom-
inated as expanded core (EC). Note that the EC is con-
structed with the same number of cylinders than the ABH
but all the cylinders have equal size. Simulations have been
performed by changing the number of quadratic three-node
line elements per cylinder: three, six, and twelve elements.
As the numerical results for six elements per cylinder are
close to those obtained with denser meshes, in what fol-
lows, all the results here reported correspond to BEM
simulations using six quadratic three-node line elements
per cylinder. Therefore, the number of nodes needed to

(a) (b)

FIG. 3. Sketch representing one quadrant of two structures
characterized experimentally with the mesh employed in the
BEM simulations: (a) the ABH, made of a GRIN lens (green
color) and an absorbing core (red color); (b) the EC, where the
cylinders in the GRIN lens are replaced by equal radii cylinders.
Quadratic three-node line elements are used to define the cylin-
ders’ boundaries. The nodes are represented by the small circles
along the boundaries of each cylinder.

describe both the ABH and the EC is 9228, from which
4332 correspond to the core and 4896 correspond to the
external shell. A total of 289 frequencies per structure are
calculated in the range of frequencies from 400 Hz to 3400
Hz, with a spacing of 10.4 Hz.

III. RESULTS AND DISCUSSION

Figure 4 shows the calculated coefficients Am and Bm
employed in the linear expansion described by Eq. (2).
They correspond to the case of the ABH sample located
inside the 2D chamber depicted in Fig. 2(b). In prin-
ciple, they should be quasi-continuous functions of the

FIG. 4. Modulus of coefficients Am and Bm employed in the
calculation of the absorbance of the ABH (see Fig. 1). They are
calculated using the BEM algorithm with viscothermal losses.
The vertical dashed lines located at 1162 and 2324 Hz define the
cutoff frequencies of modes with m = 2 (green dashed lines) and
m = 4 (red dotted lines), respectively.
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frequency, which would happen if the length Lx of the rect-
angular cavity is very large. However, the actual length of
the cavity along the x axis is not long enough and, there-
fore, the frequency-dependent coefficients Am and Bm show
well-defined peaks, as it is also observed in the measured
coefficients (see Fig. 4 in [7]). The peaks define the fre-
quencies of the standing waves in the finite 2D box defined
by the chamber and the ABH sample located inside. The
reader is addressed to Appendix A, where Am and Bm are
calculated for the case of the empty chamber and where it
is discussed how the frequencies of the peaks change with
the size of the sample located at its interior.

Let us remark that the frequency dependence of the
ABH coefficients obtained from measurements is well
reproduced by the profiles of the calculated coefficients
using a 2D approach, which are depicted in Fig. 4. For
example, coefficients associated to modes with m = 0
(blue lines) show equidistant peaks below the onset of
modes m = 0, as the experimental data does. Note also that
some particular features in the measured coefficients are
well reproduced in the 2D BEM simulations. Thus, |B0|
shows strong minimums at positions 1420, 2067, and 3320
Hz, which are also shown in the reported data but located
a slightly shifted frequencies. Overall, it can be concluded
that the profiles of the calculated and measured coefficients
show a good qualitative agreement. Regarding quantitative
discrepancies, they possibly appear due to different issues
in the experimental setup as is discussed in the following.

Figures 5(a) and 5(b) represent the absorbance spectra
of the ABH and the EC, respectively. From the comparison

Expt.

Expt.

(a)

(b)

FIG. 5. (a) Calculated absorbance spectrum of the ABH using
the BEM algorithm with viscothermal losses (red continuous
line). (b) Calculated spectrum (blue continuous line) corre-
sponding to the denominated EC depicted in Fig. 3(b). Their
corresponding experimental spectra (hollow symbols) are taken
from [7].

(a)

(b)

Expt.

Expt.

FIG. 6. (a) Absorbance spectrum of the BC calculated with
the BEM algorithm (black line). (b) The absorbance spectrum
for the shell (green line). The corresponding experimental data
(symbols) are taken from Ref. [7].

of both the measured (symbols) and the simulated (lines)
spectra, it is concluded that they show a general qualita-
tive agreement in their profiles’ shapes, however, strong
disagreements are also observed regarding their absolute
values. The absorbance values in the experimental spec-
tra are always higher than those obtained using the BEM
algorithm. For frequencies below 1200 Hz, the disagree-
ment between experiments and simulations is particularly
strong, showing discrepancies not only in the absolute val-
ues but also in the profile shape. For higher frequencies,
both spectra seem to follow the same profile shape but the
simulations predict values smaller than that measured in
the actual MMIC.

The absorbing properties of the two components form-
ing the ABH taken as individual units (i.e., the BC and the
circular GRIN lens) are also studied numerically and com-
pared with the experiments. Figures 6(a) and 6(b) show
the resulting spectra for the BC and the GRIN lens shell,
respectively. BEM simulations (continuous lines) are com-
pared with measurements (symbols). The discrepancies
observed between theoretical and experimental spectra
data are similar to those described regarding Fig. 5.

The disagreements between simulations and measure-
ments shown in Figs. 5 and 6 can be understood by
considering that the homemade 3D chamber employed in
the experimental setup has intrinsic losses adding up to
the absorbing properties of the structures characterized
inside. This effect is supported by the results shown in
Appendix B, which reports the absorbance spectra mea-
sured for the empty 3D chamber. Therefore, the discrep-
ancies between theoretical and experimental spectra are
attributed to an artifact of the characterization setup, which
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Expt.

Structures

FIG. 7. Absorptive quality factor Qα of the structures under
study. Experimental results (black columns) are compared with
BEM 2D simulations (red columns) for the ABH, the EC, the BC,
and the isolated GRIN shell (SHELL). The case where the
impedance chamber has no object (EMPTY) also shows the
result obtained with BEM 3D simulations (blue column).

added extra losses to the absorbing features of the samples
due to the imperfect manufacturing of the 3D chamber.
A further analysis of the absorbing properties has been
performed by calculating the absorption quality factor,
Qα , described by Eq. (6). Figure 7 shows a comparison
between the values Qα obtained from measurement and
BEM 2D simulations for the different structures. They are
represented in a bar plot. The values corresponding to the
ABH and the EC are calculated using the spectra shown
in Fig. 5. In a similar manner, the values for the bare core
(BC) and the isolated GRIN lens shell are obtained with the
spectra represented in Fig. 6. The values corresponding to
the EMPTY case (i.e., when the chamber has no structure
inside) are obtained using the measured spectrum shown
in Appendix B and, regarding simulations, the values are
obtained by applying the BEM to the 2D and 3D chambers
shown in Fig. 2.

We observe how the calculated viscothermal factor
using the 2D approach, of about 2.7%, is small in compar-
ison with that obtained using full 3D simulations (15.2%)
and very small in comparison with that obtained exper-
imentally, of about 28.9%. As the viscothermal losses
in the empty chambers are, in principle, only due to
dissipation on its walls, the large value obtained from
measurements confirms our previous discussion regarding
the undesired extra losses involved in the manufactured
empty chamber. This finding is key to understand the dis-
crepancies between calculated and experimental quality
factors. Therefore, the value Qα of a given structure that
results from the 2D BEM simulations includes, in fact,
a small percentage (2.7%) associated with the viscother-
mal absorption taking place at the four walls enclosing the

chamber. However, from the experimental point of view,
the contribution of the actual 3D chamber is extraordinar-
ily high and cannot be attributed solely to the dissipation
on the walls, which according to our 3D BEM simulation
is only 15.2%.

In spite of the poor agreement observed in Fig. 7
between calculated and experimental Qα values, interest-
ing conclusions can be drawn from their analysis. For
example, the simulations predict that the Qα of the ABH
is 58.7%, indicating that the absorbing power of the BC
increases 19.1% when it is surrounded with the GRIN lens
shell. Experimentally, the increase in Qα is 20.6%. There-
fore, the 2D BEM simulations with viscothermal losses
underestimated by only 1.5% the increase in Qα observed
experimentally. Taking into account the uncertainties dis-
cussed above regarding the experimental setup, we can
conclude that the present 2D simulations are helpful in
order to understand the measured data and support the
claim that the ABH responds to the 2D model employed
in its design.

A. Viscous absorption of circular clusters:
homogenization approach

This section is devoted to showing that viscous dissipa-
tion arising in clusters with high filling fractions can be
reproduced fairly well by using a uniform fluidlike vis-
cous cylinder with effective parameters determined with a
two-step procedure. In the first step, the dimension of the
cylinder, its mass density, and its bulk modulus are deter-
mined by applying the homogenization theory introduced
for inviscid cylinders [34,35]. In the second step, the vis-
cous dissipation is represented with an effective imaginary
part added to the wave number [29]. This procedure allows
the viscous quality factor of clusters to be obtained as a
function of the number of cylinders. This enables a sim-
plified numerical calculation, here implemented in BEM,
where a given cluster of hard cylinders is replaced by a
single fluidlike cylinder with effective viscous parameters.

The homogenization theory [34,35] establishes that
effective parameters are valid for large enough clusters
made of isotropic lattices of cylinders, like the hexagonal
and square lattices. Moreover, it has been also demon-
strated than the homogenization approach is valid for
wavelengths λ ≥ 4a, with a being the lattice period of the
cylinders’ distribution. For the case of clusters made of
a small number of cylinders, it has been shown that the
homogenization is still applicable to certain magic clusters
[42] in which the number of cylinders and their external
shape follow some constraints.

As an example, let us consider the structure named as
cluster A, consisting of a circular cluster made of 361
cylinders, all with the same diameter dc = 7.2 mm and
distributed in a hexagonal lattice with period a = 7.5 mm.
This cluster corresponds to the BC studied in the previous
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section and its viscothermal dissipation, in terms of Qα ,
is already calculated by using the time-consuming 2D
BEM algorithm described in Sec. II. In what follows, we
describe how to obtain the effective parameters of the uni-
form fluidlike cylinder representing the cluster A and how
the effective cylinder accurately reproduces the viscous
absorptive properties of the cluster.

The theory predicts [34] that cluster A can be replaced
by an homogeneous fluidlike cylinder with the same scat-
tering properties only if the impinging sound waves have
wavelengths larger than 4a = 31.2 mm, which corre-
sponds to frequencies below 11 kHz. This is satisfactorily
accomplished for cluster A because we are interested in
its properties up to 3.5 kHz. The effective parameters (i.e.,
radius, mass density, and bulk modulus) of the homoge-
neous cylinder representing cluster A are determined as
follows.

To calculate the effective radius, we use the general
expression introduced for the case of a cluster made of N
rigid cylinders distributed in a hexagonal lattice [34]:

Reff =
(

N
√

3
2π

)1/2

a, (10)

which is obtained by the condition of conservation of
filling fraction, that is, f = fhex, where f is the volume
occupied by the cylinders in the cluster and fhex is the cor-
responding value calculated for cylinders distributed in an
infinite hexagonal lattice. As fhex = (2π/

√
3)(dc/2a)2, for

the parameter of cluster A, fhex = 0.836 and, consequently,
Reff = 74.8 mm, a value slightly smaller than the radius
of the imaginary circle enclosing the cluster. The corre-
sponding effective mass density and effective sound speed,
obtained from the semianalytical expressions in [35], are

ρeff = 17.19 kg/m3, (11)

ceff = 223.48 m/s. (12)

As the second step in the homogenization procedure, the
energy dissipation occurring inside the cluster due to vis-
cous losses is represented by an effective imaginary part
added to the wave number [29]. In other words, it is con-
sidered that the pressure propagating in a infinite lattice of
cylinders follows the simple expression,

p(x) ≈ e−βeffx, (13)

where βeff is the decay coefficient for a wave propagating
in a fluidlike dissipating medium.

In a viscous fluid, such as air or water, the decay
coefficient β0 grows quadratically with ω as β0 =
(ω2/2ρc3)

[ 4
3η + ξ

]
, where c is the speed of sound, ρ is

the fluid density, and η, ξ are two viscosity coefficients.
For the case of a lattice of hard cylindrical scatterers,

×

×

×

×

FIG. 8. Calculated decay coefficient, βeff, for sound waves
propagating in a hexagonal lattice of hard cylinders embedded
in air (continuous line). The lattice period is 7.5 mm and the
diameter of the cylinders is 7.2 mm. The blue dashed line repre-
sents the coefficient normalized to that of air, β0, which has been
calculated with the following parameters: ρair = 1.29 kg/m3,
cair = 343.98 m/s, ξ = 1.92 × 10−5 Ns/m2, and η = 18.5 ×
10−6 Ns/m2.

however, the decay coefficient βeff lies within the interval
β0 � βeff � 1/a and, therefore, the calculation of βeff is
made possible in the lowest approximation over ξ and η

(Ref. [29]).
Figure 8 depicts the isotropic decay coefficient βeff (con-

tinuous line) resulting from the numerical solution of Eq.
(13) in [29]. It is solved for the case of the hexagonal lat-
tice embedded in cluster A. The normalized values (dashed
line) indicate that, in the range of frequencies of interest,
the sound waves decay much faster in the lattice than in
air. In fact, the decay length increases in about five orders
of magnitude in comparison with that in air.

In this second step of the homogenization procedure,
the effective parameters already calculated (i.e., sound
speed and mass density) keep their values since they are
viscosity-independent [36].

For the sake of comparison, a larger structure denom-
inated as cluster B has been considered. It is made of
817 cylinders and its calculated effective radius is 112.6
mm, the other effective parameters being equal to those of
cluster A. Cluster B is particularly interesting because the
cylinders in this cluster occupy a region approximately cir-
cular with the same dimension than the ABH. Figures 9(a)
and 9(b) show the viscous absorbance spectra calculated
for clusters A and B, respectively. The spectra associated to
the homogenized clusters (continuous lines) are calculated
using the 2D BEM algorithm applied to a single fluidlike
cylinder with acoustic parameters determined as explained
before. For comparison purposes, Fig. 9 also shows the
spectra calculated for the full clusters (dashed lines) by
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(a)

(b)

FIG. 9. Calculated viscous absorbance, αv , for the structures
with parameters described in Table I: (a) cluster A (bare core);
(b) cluster B. Results obtained by applying the BEM algorithm
to single fluidlike homogenized cylinders (continuous lines) are
compared with those obtained using the exact clusters (dashed
lines). The arrows indicate the frequencies of the corresponding
fundamental modes.

running the BEM algorithm without thermal losses. The
absorbance profiles calculated for the homogenized clus-
ters exhibit a perfect agreement with the profiles obtained
for the complete clusters, giving strong support to the
frequency-dependent effective viscosity developed in the
homogenization theory.

Table I reports the absorptive factors due to viscosity,
Qv

α , and their comparison with the corresponding fac-
tors due to viscothermal losses, Qα . Note how the good
agreement between spectral profiles translates into a cor-
responding good agreement between the quality factors
obtained from them. The cluster C appearing in the last row
corresponds to the structure denominated EC, schemati-
cally shown in Fig. 3(b). This cluster has the same external

TABLE I. Absorptive factors due to viscous losses only, Qv
α .

BEM values calculated using the full clusters are compared with
those calculated using a single fluidlike viscous cylinder with
effective parameters. All the clusters have the cylinders enclosed
in a circular region. Cluster C corresponds to the EC described
in Fig. 3(b). The last column gives the contribution of viscous
losses in relation to the total viscothermal absorptive factor, Qα .

Structure Cylinders Reff Qv
α Qv

α/Qα

(number) (mm) (%)

Cluster A (full) 361 80 33.9 90
Cluster A (homogenized) 1 74.8 33.4 88
Cluster B (full) 817 120 42.4 91
Cluster B (homogenized) 1 112.6 41.5 89
Cluster C 769 120 35.8 91

shape than cluster B but contains a lower number of cylin-
ders. Therefore, the homogenization approach is not appli-
cable due to the existence of vacancies inside the structure.
Note that the calculated viscous factor has decreased by
about 6% due the smaller number of cylinders in cluster C
in comparison with cluster B. Finally, the last column in
Table I reports the relative contribution of viscous losses
to the total viscothermal losses, which in average for all
the studied clusters is about 90%. This high value, leads
us to conclude that the viscous losses according to the
homogenization theory is a valid and fast technique for the
estimation of the total viscothermal losses expected from a
cluster based on isotropic sonic crystals.

At this point it is interesting to study the origin of some
features observed in the spectra of Fig. 9. For cluster

Ly Lx

0

(a)

(b)

(c)

(d)

FIG. 10. (a),(b) Snapshots of the pressure patterns calculated
at the frequencies of the fundamental modes of clusters A and B,
respectively. (c),(d) Snapshots corresponding to the fundamental
modes of the homogenized viscous cylinders representing clus-
ters A and B, respectively. The frequencies are defined by the
positions of the arrows shown in Fig. 9.
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A, which is the bare core of the ABH, the absorbance
peak located at 993.8 Hz corresponds to the excitation of
its fundamental mode. A snapshot of the pressure ampli-
tude corresponding to this mode is shown in Fig. 10(a).
Remember that large pressure amplitudes associated with
mode excitation are the origin of absorption enhancements
in the absorbance spectra [22]. This effect is remark-
able Fig. 9(b), corresponding to the absorbance spectra of
cluster B. The strong peak appearing at 764.6 Hz corre-
sponds to the excitation of its fundamental mode, which
is represented in Fig. 10(b). This behavior is fairly well
reproduced for the homogenized fluidlike cylinders, whose
fundamental modes appear at 981.9 and 781.3 Hz, respec-
tively, for clusters A and B. Snapshots of the corresponding
pressure patterns are depicted in Figs. 10(c) and 10(d),
respectively.

The high accuracy of the homogenization approach
allows the viscous absorbance to be studied as a func-
tion of the cluster size. Figure 11 shows the resulting
dependence of the viscous quality factor with the number
N of cylinders in the cluster, which is considered as the
more intuitive parameter describing the cluster size. For
the smaller clusters, made of a few cylinders, the homog-
enization approach can be only applied to the “magic
clusters” described in [43]. Seven magic clusters have been
reported, all with hexagonal external shape and containing
7, 19, 37, 61, 85, 121, and 163 cylinders. The corre-
sponding values are represented by symbols in Fig. 11.
For clusters containing more than about 200 cylinders,
the homogenization approach works well in spite of the
fact that sometimes their external shapes deviate slightly

FIG. 11. The viscous quality factor Qv
α (in %) as a function

of the number N of cylinders in the cluster. For a given N , Qv
α

is determined from the absorbance spectra obtained for its cor-
respondent homogenized viscous cylinders with circular shape.
For the smaller clusters (hollow symbols), such correspondence
is only allowed for certain magic clusters [43]. These results are
valid for clusters in which the fraction of volume occupied by the
cylinders is 0.836.

from the perfect circular shape. Figure 11 shows that vis-
cous losses increase smoothly with increasing number of
cylinders.

IV. SUMMARY

We have comprehensively studied the absorbing proper-
ties of the 2D omnidirectional acoustic absorber presented
in Ref. [7], here denominated as ABH. An improved BEM
algorithm has been employed to calculate its absorbance
spectrum due to viscothermal losses in a 2D chamber. The
components of the ABH (i.e., the absorbing core and the
GRIN lens shell) have been also separately analyzed in
order to understand their contributions to the total absorp-
tion. The absorbance spectra predicted by the 2D BEM
simulations show strong discrepancies with that reported
experimentally in Ref. [7]. Regarding quality factors, the
calculated values are always smaller than that obtained
from the measurements. The observed disagreements are
attributed to an artifact of the experimental setup, where
the characterization chamber adds extra dissipation losses
due to its imperfect manufacturing. This conclusion has
been drawn from the analysis of the absorbance spec-
trum of the actual empty 3D chamber also presented here.
In spite of the uncertainties associated with the measure-
ments, the 2D BEM simulations reproduce fairly well the
increase in the absorptive power of the bare core when it is
surrounded by the GRIN lens in the ABH.

We have also demonstrated that the contribution of
the viscous losses to the total viscothermal losses in the
absorbing core of the ABH is about 90%. The viscous
dissipation has been studied with the homogenization pro-
cedure proposed in Ref. [29], which has been successfully
validated here. It is shown that the effective parameters
determined with the homogenization approach produce
reliable results. The corresponding homogenized cylinders
have been employed to calculate the viscous absorption of
circular clusters as a function of the number of cylinders,
and the results indicate that the viscous losses smoothly
increase with the number of cylinders in the cluster. This
homogenization procedure opens an easy way to tailor the
viscous losses in clusters of hard cylinders.
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APPENDIX A: STANDING WAVES IN THE
MULTIMODAL IMPEDANCE CHAMBER

The actual MMIC employed in the experimental setup
is a 3D cavity and the dimensions of its side lengths Lx,
Ly , and Lz are given in the caption of Fig. 2. Therefore,

064057-10



VISCOTHERMAL EFFECTS IN A TWO-DIMENSIONAL... PHYS. REV. APPLIED 15, 064057 (2021)

the standing waves excited in this cavity have discrete
frequencies given by [39],

f�mn = (c/2) ·
[
(�/Lx)

2 + (
m/Ly

)2 + (n/Lz)
2
]1/2

, (A1)

where c is the sound speed inside the chamber and (�, m, n)
are integers taking values 0, 1, 2, . . . , ∞. Frequencies f�mn
define the normal modes of this 3D cavity.

In practice, we are interested in frequencies below 3400
Hz. In addition, the location of the speaker at the center
of the left-hand side plate with rectangular section Ly ×
Lz implies that only modes with even symmetry will be
excited along the y and z axis, respectively.

By considering that the temperature inside the chamber
is 20 ◦C, the corresponding sound speed c = 343.982 m/s
and, therefore, the cutoff frequencies for the onset of the
first two modes (0, m, 0) with an even number of nodal
lines along the y axis are

f020 = c
2

· 2
Ly

= 1162 Hz, (A2a)

f040 = c
2

· 4
Ly

= 2324 Hz, (A2b)

where modes with m = 2 and 4 contain two and four nodal
lines parallel to the x axis, respectively. The mode f060 has
a frequency of 3486 Hz, above the range of frequencies
of interest here. Therefore, the linear expansion in Eq. (2)
can be reduced to just three terms: those corresponding to
m = 0, 2, and 4.

The cutoff frequency for the excitation of the mode with
two nodal lines (n = 2) in the vertical z direction is

f002 = c
2

· 2
Lz

= 6948 Hz, (A3)

which is also above the frequencies of interest here and
justifies the use of the simplified 2D cavity sketched in
Fig. 2(b).

Figure 12(a) represents the frequencies of the standing
waves excited in the 3D cavity employed as characteri-
zation chamber in the experimental setup. They are cal-
culated using the analytical formula given in Eq. (A1):
blue dots correspond to modes (�, 0, 0), green triangles
correspond to modes (�, 2, 0) and red squares correspond
to modes (�, 4, 0). Figure 12(b) plots the profiles of the
modulus of coefficients Am calculated with the 2D BEM
algorithm with viscothermal losses. They are obtained by
solving the linear system of Eq. (2) in which the pressures
Pα are recorded at the (xα , yα) positions in the 2D cavity.
Figure 12(c) shows the profiles corresponding to the coef-
ficients calculated with the empty 3D cavity schematically
represented in Fig. 2(a).

The profiles |Bm| are not reported since they are practi-
cally indistinguishable from that of |Am|. In other words,

(a)

(b)

(c)

FIG. 12. (a) Calculated frequencies of the standing waves
(modes) that can be excited in the 3D cavity defined by the
empty MMIC employed in the experimental setup of Ref. [7]. (b)
Modulus of coefficients Am calculated with the BEM algorithm
using the empty 2D cavity depicted in Fig. 2(b). (c) The corre-
sponding moduli calculated for the empty 3D cavity depicted in
Fig. 2(a). Only the even modes m = 0 (blue continuous lines),
m = 2 (green dashed lines), and m = 4 (red dotted lines) are rep-
resented. The vertical dashed lines are guides for the eye and
represent the onsets of modes m = 2 and m = 4.

when the cavity is empty, the BEM algorithm applied to
both the 2D and the 3D cavities reproduces the expected
result regarding the behavior of Am an Bm; they are prac-
tically the same according to the fact that the reflectance
R is almost unity in spite of the dissipation losses on the
walls. In addition, it is observed that the peaks of coef-
ficients appear at the positions of the symbols depicted
in Fig. 12(a). The accuracy of the BEM simulations is
shown in Table II, where the first three rows provide the
comparison between the frequencies of the standing waves
inside the empty chambers calculated through Eq. (A1)
(exact) and those extracted from BEM simulations applied
to the 2D and 3D cavities. The lossless case reports the
values calculated with no viscothermal losses in the BEM
algorithm. The small discrepancies are mainly due to the
fact that coefficients are calculated for discrete frequen-
cies separated by intervals of 3 Hz. It is concluded that
viscothermal losses produce negligible effects on the stand-
ing waves excited in the 2D and 3D cavities and that, for
the frequencies of interest, the actual 3D MMIC can be
approached with a 2D cavity.

Table II also lists the frequencies of the peaks appearing
on the profiles of coefficients Am and Bm calculated with
our BEM algorithm without losses when the 2D chamber
contains the given structure. These frequencies represent
the standing waves excited in the chamber with an object
inside. For the frequencies (below 1 kHz) reported in the
table, it is observed that the presence of a given structure
produces small shifts in the frequencies of the standing
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TABLE II. Frequencies of standing waves (modes) excited in
the MMIC employed in Ref. [7]. For the empty case, the exact
values are obtained using the analytical expression given by
Eq. (A1). The remaining frequencies correspond to the peaks’
positions observed in the profiles of coefficients Am and Bm cal-
culated using the BEM algorithm with viscothermal losses. The
second row reports values obtained from coefficients calculated
using the empty 3D cavity depicted in Fig. 2(a). The third row
corresponds to values obtained without viscothermal losses using
the 2D cavity sketched in Fig. 2(b). The remaining rows are
self-explained and are commented in the text.

Mode (�mn) (400) (500) (600) (700) (800) (900)

Empty (exact) 465 581 697 813 930 1046
Empty (3D) 463 580 697 814 928 1045
Empty (lossless) 460 581 701 811 932 1042
Empty 466 580 697 814 929 1046
ABH 431 556 681 796 1004 1118
EC 431 556 681 806 900 1108
Bare core 442 556 681 806 921 1129
GRIN shell 442 567 671 733 837 1025

waves in the empty chamber. The size of the frequency
shifts is affected by the introduction of an object in the cav-
ity. This effect is more pronounced at high frequencies, as
it is observed by comparing, for example, the profiles of
the ABH coefficients shown in Fig. 4 with those shown in
Fig. 12, corresponding to the empty 2D chamber.

APPENDIX B: EXPERIMENTAL
CHARACTERIZATION: CHAMBER ARTIFACTS

ON THE MEASURED SPECTRA

The experimental setup described in [7] involves a
MMIC [see the sketch in Fig. 2(a)], which is constructed
under the assumption that its absorbing behavior does
not hinder the assessment of the structures in its interior.
However, as we will see below, this expectation is not
fulfilled.

A well-known artifact, appearing when the absorbing
properties of a structure are measured inside a closed
chamber, is the viscothermal losses taking place on the
walls of the chamber. In other words, the measured
absorbance of the structure is overestimated due to the fact
that it is characterized inside a cavity. As the experimental
setup employs a 3D cavity, one expects larger absorptions
than that obtained with 2D BEM simulations just by the
fact that the 3D chamber has additional walls. Fortunately,
the calculation of the absorbance for the empty 3D cav-
ity is feasible with the BEM algorithm and the results are
discussed below.

Figure 13 shows the spectrum of the empty cham-
ber obtained experimentally (symbols) and its comparison
with that obtained using BEM simulations with viscother-
mal losses in the 3D cavity (blue solid line) and in the
simplified 2D cavity (red dashed line). Both cavities are

Expt.

FIG. 13. Absorbance spectrum of the homemade MMIC mea-
sured with no object inside (symbols). The spectra calculated for
the 2D empty chamber sketched in Fig. 3(b) (red dashed line) and
that corresponding to the empty 3D box representing the actual
MMIC (blue continuous line) are also shown.

sketched in Fig. 2. It is observed that the absorbance pre-
dicted by the 2D simulations is very small, always below
0.1, though two strong peaks emerge at the frequencies
where modes with two modal lines (n = 2) and four nodal
lines (n = 4) start propagating. For the 3D simulations the
absorbance increases significantly, achieving values up to
0.2 at the higher frequencies, where the three even modes
coexist. As the viscothermal losses are due to particles
impinging the chamber surfaces with oblique incidence,
it can be concluded that the amount of particles with such
property increases with the order of the modes propagating
inside the chamber. Regarding the empty MMIC employed
in the measurements, the measured absorbance spectrum
(symbols) shows larger values than that obtained in the
2D and 3D BEM simulations, indicating the existence of
measurement artifacts.

The strong absorbing features observed at low frequen-
cies in the spectrum of the empty MMIC are attributed
to imperfections in its construction, consisting of seven
assembled aluminum plates 1 cm thick, one on them being
removable to insert the samples in the chamber. In other
words, for frequencies below 1160 Hz, where the excited
modes have perfect plane wavefronts, the pressure waves
can excite flexural modes of the non-thick-enough plates
employed in the construction of the actual 3D MMIC. This
would explain the series of peaks repetitively observed not
only in the empty chamber (see Fig. 13) but also in almost
all the spectra measured in this study (see Figs. 5 and 6).
For frequencies above 1160 Hz, where modes with two and
four nodal lines are allowed, the absorbing background due
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to the viscothermal losses on the walls is greatly enhanced
due to the slits and pores existing in the imperfect joints
between plates. Therefore, the absorptive effects occurring
in the empty chamber appear as artifacts in the measured
absorbance of the different structures.

Let us point out that the contribution of the chamber
imperfections to the absorbing properties of the different
structures is not well determined and could differ in the dif-
ferent measured spectra. The reason is that the measuring
process involves several steps: (i) removing the plate defin-
ing the aperture to the chamber, (ii) inserting and centering
the structure in the sample holder, and (iii) closing the aper-
ture and sealing the chamber. At the end of the process,
there is no guarantee that all the structures are measured
under exactly the same conditions.
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