Document downloaded from:

http://hdl.handle.net/10251/176801
This paper must be cited as:

Tomas Dominguez, AE.; Quintana-Orti, ES. (2020). Tall-and-skinny QR factorization with
approximate Householder reflectors on graphics processors. The Journal of Supercomputing
(Online). 76(11):8771-8786. https://doi.org/10.1007/s11227-020-03176-3

The final publication is available at

https://doi.org/10.1007/s11227-020-03176-3

Copyright - gpringer-Verlag

Additional Information

Noname manuscript No.
(will be inserted by the editor)

Tall-and-Skinny QR Factorization with Approximate
Householder Reflectors on Graphics Processors

Andrés E. Tomas - Enrique S. Quintana-Orti

the date of receipt and acceptance should be inserted later

Abstract We present a novel method for the QR factorization of large tall-and-
skinny matrices on a hybrid platform equipped with a graphics processor. This ap-
proach uses an approximation technique for computing the Householder vectors dur-
ing the factorization. Its main advantage over the conventional factorization is the
reduced amount of data transfers between the graphics accelerator and the main mem-
ory of the host.

Our experiments show that, for tall-skinny matrices, the new approach outper-
forms the code in MAGMA by a large margin, while it is very competitive for square
matrices when the memory transfers and CPU computations are the bottleneck of the
Householder QR factorization.

Keywords QR factorization - Tall-and-skinny matrices - GPU - Householder vector -
look-ahead - high-performance

1 Introduction

There exist relevant applications that require the computation of an orthonormal ba-
sis for a relatively small set of very long vectors, which form a “tall-and-skinny”
(TS) matrix. This type of problem appears, among others, in the orthogonalization

Andrés E. Tomas

Dept. d’Enginyeria i Ciéncia dels Computadors
Universitat Jaume I, 12071 Castell6 de la Plana, Spain
Dept. de Sistemes Informatics i Computacid

Universitat Politecnica de Valéncia, 46022 Valeéncia, Spain
E-mail: tomasan@uji.es

Enrique S. Quintana-Ort{

Dept. d’Informatica de Sistemes i Computadors
Universitat Politecnica de Valéncia, 46022 Valencia, Spain
E-mail: quintana@disca.upv.es

2 Andrés E. Tomds, Enrique S. Quintana-Orti

in Krylov subspace methods [12]; in the analysis of big data applications character-
ized with a few descriptors only (e.g., large datasets with a few variables produced
by long data acquisitions of several sensors) [2, 9]; and as a preprocessing step when
computing the singular value decomposition (SVD) of a matrix [8] with many more
rows than columns.

The conventional blocked QR factorization based on Householder reflectors [8],
hereafter QRF-H, is not an efficient algorithm for the factorization of tall-and-skinny
(TS) matrices on modern parallel processors; see, e.g., [4]. The reason is that, for
matrices that have few columns but a large number of rows, the fraction of work of
the QRF-H procedure that can be cast in terms of kernels from the Level-3 of BLAS
(basic linear algebra subprograms [5]), as part of the highly parallel and efficient
trailing update, cannot compensate the overwhelming cost of the panel factorization,
which is performed via the much slower Level-1 and Level-2 BLAS.

The TSQR-H [4] algorithm follows the ideas of the incremental QRF-H [9] to
obtain a method that is especially appealing for the factorization of TS matrices. In
this procedure, the panel is split into small “square-like” blocks, and a QRF-H is com-
puted for each block. These small QRF-H are then merged by pairs, using a structure-
aware version of QRF-H. This merge procedure can follow a linear scheme [9] or, in
parallel machines, a recursion tree [4], yielding a communication-reduction scheme
with a considerable higher level of parallelism than traditional QRF-H.

The Cholesky QR factorization [14] (QRF-C) is an alternative that reduces the
amount of communications but, unfortunately, often suffers from orthogonality loss.
The use of mixed precision (in particular, the combination of 64-bit and 128-bit float-
ing point arithmetic) in [19] can improve the accuracy of QRF-C, but its implemen-
tation is not efficiently supported by current hardware. A simpler solution is to op-
erate only in standard double precision but perform a second step of QRF-C to im-
prove the orthogonality [7, 18]. This result connects neatly with the classical “twice
is enough” rule for Gram-Schmidt re-orthogonalization. However, as the number of
vectors grows, the cost of QRF-C increases cubically. In addition, for very large prob-
lems the conditioning of the Gram matrix can become too large and a second “pass”
may not be sufficient.

In this paper we propose a blocked QR factorization with approximate House-
holder vectors (QRF-AH). The current approach in QRF-H computes the dot prod-
ucts between pairs of panel columns after each Householder vector is generated and
applied. The proposed alternative computes these dot products at the beginning of
the panel factorization and updates them after the computation of each Householder
vector. This update can be cheaply computed by exploiting the orthogonal relation
between two consecutive column orthogonalizations but, due to rounding errors, the
computed values are approximations of the actual dot products: hence the name of ap-
proximate Householder vectors. This alternative is similar to the column norm update
used in the QR factorization with pivoting (QRP) [3]. The advantage of this technique
is that it only requires to access the whole panel twice: before the panel factorization
commences and once that is it completed. A hybrid CPU-GPU implementation can
then take advantage of this property to transfer only two small square blocks of order
b, where b stands for the algorithmic block size, instead of the whole 7z X b panel for

TSQR Factorization with Approximate Householder Reflectors on GPUs 3

each block of columns to be factorized. This is particularly relevant for TS matrices,
as b < i, and this transfer stands in the critical path of the algorithm.

The rest of the paper is organized as follows. Section 2 reviews the conventional
blocked algorithm for the QR factorization and Section 3 presents the details of the
QRF-AH algorithm. Next, Sections 4 and 5 respectively provide numerical and per-
formance evaluations of the new method in comparison with a state-of-the-art hybrid
library for CPU-GPU platforms. Finally, Section 6 summarizes the contributions of
this work and suggests a few future lines of research.

2 Householder QR Factorization

The compact QR factorization of a TS matrix A € R"™", with m > n, is given by
A = QR?

where Q € R™ has orthonormal columns and R € R™" is upper triangular.

Algorithm 1 (QRF-H) presents a blocked implementation of the QR factorization
on a hybrid platform equipped with a CPU and a GPU accelerator. The input matrix
A is assumed to be initially stored in the GPU memory. The orthonormal matrix Q
is not built explicitly, but maintained implicitly as a collection of Householder vec-
tors. In practice, these orthonormal vectors are stored in the strictly lower triangular
part of the matrix A while the upper triangular factor R overwrites the corresponding
entries of A. Therefore, upon completion, these data reside in the GPU memory. For
simplicity we hereafter assume that the number of columns # is an integer multiple
of the algorithmic block size b.

Algorithm 1 Blocked QRF-H factorization for CPU + GPU

Input: A € R™"

Output: R € R™" (upper triangle of A), V € R™" (strictly lower triangle of A)
1 for k = 1 to n in steps of b

2 Define the (current) panel Ap = Ay kk+b-1
3 Define the trailing submatrix As = Agmirpn
4 Send Ap to the CPU

5 Compute V and R from Ap in the CPU

6 Send V and R to the GPU

7 Compute T~! from V

8 Ag =T+ VTVT Ay

9 end

In this algorithm, the QR decomposition of the panel is computed on the CPU
(step or line 5) and the trailing matrix update is performed on the GPU (step 8). The
QR factorization can be performed in the CPU via the LAPACK routine xGEQRF,
which may also be blocked depending on value of b. The algorithm requires transfer-
ring the panels to the CPU ((k —m + 1) X b elements per iteration, for an approximate
total of mn/2 elements) and retrieving onto the GPU the Q and R factors for the panels

4 Andrés E. Tomds, Enrique S. Quintana-Orti

(also mn/2 elements in total). Due to all those transfers the algorithm is only competi-
tive if the CPU/GPU communications and CPU computations are overlapped with the
computations on the GPU. This can be achieved via a look-ahead technique which,
for simplicity, is not included in the algorithm. For the details, see, e.g., [15, 17].
Algorithm 1 differs form the current implementations in LAPACK and MAGMA
in the computation of the triangular matrix 7 used to block the Householder reflec-
tors [13]. Concretely, those libraries compute 7 with the routine xLARFT, which
is based in level-2 matrix vector multiplications, and is computed on the CPU in
MAGMA. In contrast, Algorithm 1 follows [11, 10] to compute T~! instead of T':

T A- . .
u;u]1f1<1
-1 u; ui .. .
Tij =y ifi=

0 ifi>j

This computation can be performed efficiently on the GPU via a level-3 xSYRK oper-
ation and a small diagonal update [10]. When operating with T~!, the application of
the blocked Householder transformation requires solving a triangular system instead
of a triangular matrix multiplication, but this is not an important issue because both
operations are rather efficient on the GPU. Computing 7! on the GPU also dimin-
ishes slightly the amount of communication. More importantly, it reduces the amount
of work on the CPU and yields a more efficient overlapping [16].

3 QR Factorization with Approximate Householder vectors

At each iteration of Algorithm 1, the CPU needs to retrieve the panel Ap = Ag. k:k+p-1
prior to computing its QR factorization in order to obtain the corresponding triangular
factor R and the corresponding Householder vectors in V. The caveat is that, for
TS matrices, the overhead of retrieving this panel from the GPU (memory) has to
be added to the cost of factorizing the panel itself, and together they can have a
significant impact on the execution time, even for a realization that includes look-
ahead.

In this section, we first introduce our new techique to reduce the CPU-GPU
communication overhead. Next, we explain how to integrate this communication-
reducing technique into the blocked algorithm, and the section is finally closed with
a brief discussion of how to avoid negative cancellation artifacts.

3.1 Panel factorization

The results of the factorization of the panel Ap € R™ withimn=m—k+ 1, comprise
the triangular factor R®*®, plus the Householder reflectors, given by V € R, that
correspond to the compact representation of the orthogonal factor. Algorithm 1 com-
putes these results using the full panel Ap, which requires the transfer of 72b numbers
between the GPU and the CPU. Once the panel is factorized, the factors R and V have
to be sent back to the GPU, requiring a transfer of /b additional numbers.

TSQR Factorization with Approximate Householder Reflectors on GPUs 5

We discuss next how to compute both R and (the top b X b part of) V in the CPU,
using the data in A7, B = AITJAP € Rb* only. These two b X b blocks reside in the
GPU and transferred to the CPU before the panel factorization commences. Once R
and (part of) V are obtained in the CPU, they are sent back to the GPU, yielding the
reduced transfer overhead of 4b% numbers. As m > b for TS matrices, the savings
can be notable.

Consider the following partitionings of the panel to be factorized during a given
iteration k:

ar|ay|...|Qp AT
A = = = | —, 1
! [al‘az‘ ‘a;,] [&1 512---5%} [AB} M
where a; € R™ ajisascalar,and a; € R for j=1,2,...,b; moreover, Ay € Rb*P
and Ap € R0 Also, let B = ALAp, with the (i, j) entry of this matrix given by
Bij = aiTaj, fori,j=1,2,...,b; and note that the entries in the first row of B satisfy
Bij=ala;=ara;+ala;, j=1,2,...,b ()

Lj 149 1@ 19> J AR

Consider also analogous partitionings of V as

1/0(...|0 \%
V:[Vl\)z...vb]:[ﬂﬁ—z’f’f)—b]:[v—zy (3)

where v; € R™, §; € R™! for j = 1,2,...,b; furthermore, Vr € R is unit lower
triangular and Vg € RU=9xb,

The factorization of the panel Ap proceeds columnwise left to right. From the
first column (i.e., the leftfmost), the procedure needs to obtain the top-left entry of R,
referred to as pj 1, and the first column of V. Now, for the QR factorization, we know
that

p11 = —sgn(a)llaill, = —sgn(a1) vB1,1 4

where || - || denotes the vector 2-norm. This expression exposes that the calculation
of p1,1 does not require the full column a; as) is available as part of B. In addition,
the Householder reflector v; is given by

br=a1/o, 5)

with
o1 = ap +sgn(allaill, = a; + sgn(a;) Bi1- 6)

The Householder reflector v; has to be applied next to the second, third,. .. ,b-th
columns of the panel, as in

aj =+ vlvlT)aj =a;+ v](vlTaj) =aj+viwy,;

(7

=aj+A—a)1,j=aj+ j:2,3,...,b,

1 }
—_—| w1,
ar/pi, /

6 Andrés E. Tomds, Enrique S. Quintana-Orti

where I denotes an square identity of the appropriate order. Furthermore, from (5)
and (2), we derive that the scalar w; ; satisfies

(Ij]
aj

=a;+9{a; = a;+ @] [p1)a; = a;+ Brj— ara@)/pi,

AT
o]

T, —
wlx,—vlaj—[l

(®)

which again only needs entries from B and Ay for its calculation.

The key to the communication-reduction property of the algorithm is to defer the
update of those entries of Ap in equations (5) and (7) until the panel factorization is
completed. Algorithm 2 details this procedure for computing the QR decomposition
of the panel using the approximate Householder vectors.

Algorithm 2 Single vector QRF-AH factorization

Input: Ay € R?>, B e R
Output: R € R” and V; € R”® (respectively overwritting the
upper/strictly lower triangule of A), D € RP*?

1 Vki=vei= APk k=1,2,...b

2 fork=1tob

3 /* Compute the k-th Householder reflector */
4 Ok ‘= Apg + sgn(ak,k)f/k

5 Ty = %

6 Ay = —sgnlag i)k

7 1k 2= 1ok Tk

8 for j=k+1tob

9 /% Apply Householder vector to columns k+1, k+2,...,b */
10 Wij = Brjlarx — axj

11 Q:p,j -= Wik:b,jOk:bk T Ak:b,j

12 end

13 for j=k+1tob

14 /* Norm update */

15 t :=max(0, 1 — (ax ;/7,)*)

16 if 1(7;/v;)* < Ve exit

17 17]' = ‘71' \/;

18 /* Dot product update */

19 Brs1:b,j = Prateb,j — Qk, jAkk+1:b
20 end
21 end
2 fork=1tob
23 /¥ Compute D */
24 5k,k = l/O'k
25 for j=k+1tob
26 ik 1= 0, wj/ o
27 end

TSQR Factorization with Approximate Householder Reflectors on GPUs 7

The first step of Algorithm 2 computes the norm of each panel column v; and
its corresponding initial approximation ¥; from S;;. The algorithm also maintains the
original norms in v;, in order to leverage the same norm-update formula described
in [6] for the QR with pivoting. Steps 4—7 compute the Householder vectors as defined
in (5), but using the equivalent ¥; instead of \/E As per convention, when operating
with Householder reflectors, the sign of a4 is taken into account to avoid cancellation
errors.

Steps 10 and 11 of Algorithm 2 apply the approximate Householder vector us-
ing (7). The values of p and w are stored and accumulated in a lower triangular matrix
D € RP? in steps 22-28. This matrix is used to update the bottom 7z — b entries of
Ap with the matrix multiplication Ag := AgD.

Steps 15—17 update the norm approximation ¥; and test for severe cancellation er-
rors using the strategy in [6]. Step 19 updates the approximations stored in B exploit-
ing the orthogonality of Householder reflectors. Concretely, assume that H stands for
the Householder transformation that introduces zeros below the diagonal in the first
column of Ap and define

A:HAsz[Cfl(fz'] [alaz] 9)
al‘az‘. O‘az‘

Then each element of B, which corresponds to a dot product between a pair of
columns of A, satisfies that

AT A o -~
,Bi,j =i ta;aj = t+a; aj = qa; +,8,"j. (10)

Now, for the next column of the panel factorization, we will need to use the dot
products j3;, j» which can be cheaply computed from the update formula

ﬁi,jzﬁi,j_&i&j’ i,j:2,3,...,b. (11)

3.2 Matrix factorization with approximate vectors

Algorithm 3 (QRF-AH) presents the blocked QR factorization using approximate
Householder vectors. This algorithm has the same structure as QRF-H but instead of
transferring the whole panel to the CPU to compute its QR decomposition, it uses
Algorithm 2 to compute R and the top b X b part of V.

Algorithm 3 Blocked QRF-AH factorization for CPU + GPU

Input: A € R™"
Output: R € R™" (upper part of A), V € R™" (lower part of A)
for k = 1 to n in steps of b

Define the top part of panel A7 = Agkrp—1 kkrb-1

Define the bottom part of panel Ap = Ajypmickrb-1

Define the trailing submatrix As = Ag.mirpn

B:= [ATAT][Z]

O N

w

8 Andrés E. Tomds, Enrique S. Quintana-Orti

6 Send A7 and B to the CPU
7 Compute R, Vy and D from A7 and B on the CPU; see Algorithm 2
8 Send R and D to the GPU
Vr
9 V.= [yp D]
10 Compute T~! from V
11 As =+ VTVDHT Ag
12 end

Step 7 of Algorithm 3 computes the QR factorization of the panel from Ay and
B. The triangular factor and approximate Householder vectors respectively overwrite
the upper triangular and strictly lower triangular part of Ar. This procedure does not
access Ap but instead uses the values from B. The lower part of the approximate
Householder vectors, that is Vg, is computed in step 6 as a linear combination of D
and the columns of Ag.

The main advantage of blocked QRF-AH over QRF-H is the reduced amount of
memory transferred between the CPU and the GPU. The QRF-H algorithm requires
the transfer of approximately mn/2 numbers while its QRF-AH counterpart transfers
a total of 4nb numbers only where, in the target scenario, b < n < m.

3.3 Cancellation

When any of the columns of the panel Ap is close to being a linear combination of
the rest, its correspondent diagonal element in R becomes very small. This means that
the update formula in step 17 of Algorithm 2 can introduce severe cancellation errors.
This condition can be detected by the test in step 16, which stops the algorithm at a
given iteration, say k. In this occurs case, Algorithm 2 returns the factors of a smaller
QR decomposition, where the initial £ — 1 columns of R and V; are still computed
accurately. The QRF-AH procedure in Algorithm 3 then simply adjusts the block
size b = k — 1 for this iteration of the matrix factorization, applies the corresponding
transformations (steps 8—11), and continues with the next panel starting at column k
during the next iteration of loop k (while setting b back to the original block size).
There will be no errors in the computation of the first column in a block as none
of the norms is updated. Similarly, the approximation to dot products in step 19 of
Algorithm 2 can also suffer from severe cancellation. However, there is no need to
check for those errors as they will detected by the norm update and any previous error
in that column of R will be discarded.

4 Numerical experiments

In this section, we assess the numerical behaviour of the new QRF-AH algorithm by
running some numerical experiments with TS matrices specifically designed to pro-
duce a breakdown of the update formula. This stress test follows the approximation
in [1] and should allow a fair comparison between the reliability of QRF-AH with that

TSQR Factorization with Approximate Householder Reflectors on GPUs

Table 1 Numerical comparison of QRF-H and QRF-AH

QR with exact Householder

QR with approximate Householder

p Q"0 - Illr SR 1070 - Il WA Chle
107! 9.154715x 10715 9591258 x 1071¢ 9.925917 x 1071 7.210446 x 1071°
1072 9.377855x 10715 9.598223 x 10716 1.011355x 1014 7.181040 x 10710
1073 9.244618 x 10715 9.601067 x 10716 9.984865 x 10715 7.195629 x 1016
1074 9.039978 x 10715 9.600339 x 10716 1.028484 x 10714 7.198046 x 10~16
107> 9.001562x 10715 9.575120 x 10716 9.901356 x 10~15 7.190128 x 1016
107¢ 9.094931 x 10715 9.620550 x 10716 1.020415x 10~'4 7.175174 x 10716
1077 9.013317x 10715 9.592615x 10716 1.024607 x 104 7.210177 x 10716
1078 8.883850x 10715 9.597328 x 10716 9.802340 x 10~15 7.191490 x 10710
107 9337637 x 10715 9.603291 x 10716 9.594664 x 10~15 7.207318 x 107'°
10710 9323021 x 10755 9.574503 x 10716 1.062224 x 1014 7.190121 x 10716
10711 8.877251x 10715 9.572992 x 10716 1.014206 x 1014 7.190841 x 10716
10712 9.124937x 10715 9.597074 x 10716 1.001635 x 10714 7.199647 x 10~16
10713 8931211 x 10755 9561183 x 10716 1.031587 x 1014 7.192527 x 1016
107 9340513 x 10715 9.610956 x 10716 1.009986 x 1014 7.188647 x 10~16
10755 9570032 x 10715 9.615985x 10716 9.988672 x 1015 7.203320 x 10~16

of other alternative methods, as those in [1], whose implementation does not seem to
be publicly available.

The test matrices are derived from the QR factorization of an m X n = 1000 x 200
matrix A with entries following a uniform random distribution in the interval [0, 1).
We then set Rig0,100 = p in the upper triangular factor R, and multiply back Q and R
to form A := QR. The parameter p controls the condition number of the assembled
matrix, which is given by x(4) ~ 1/p so that, varying p € [107",107!%], we obtain
matrices with a condition number of up to 10'°.

Table 1 reports the orthogonality loss

10" 0 - IlF (12)

and the relative residual
lIA — ORI|F
lAllF

of the QR factorizations computed with the QRF-H and QRF-AH algorithms for ma-
trices with different values of p. All the tests were performed in a Intel Xeon E5-2630
v3 processor using 1Eee double-precision arithmetic. The QRF-H implementation cor-
responds to the xGEQRF routine form the Intel MKL 2019 library.

Table 1 shows that QRF-AH offers orthogonality and relative residuals quite sim-
ilar to those of QRF-H. This remarkable numerical behaviour is due to the update
formula breakdown detection mechanism. Specifically, in this experiment the fail-
safe detection on the update only triggers once for each one of the matrices with
p < 107*. This means that, among the k(= [n/b] = [200/167) = 13 panel factor-
izations that have to be computed for each matrix, only the factorization of a single
block had to be stopped early. We expect that, for real applications, the probability of
an update breakdown will be even much lower.

13)

10 Andrés E. Tomds, Enrique S. Quintana-Orti

5 Performance Evaluation

Hardware setup. In this section we compare the performance of QRF-AH and QRF-
H on two distinct platforms equipped with two representative GPUs: a high end
NVIDIA Tesla P100 (Pascal) and a cost-effective NVIDIA GeForce Titan X (Pas-
cal). The P100 is paired with two Intel Xeon E5-2620 v4 processors (8+8 cores)
while the Titan X is paired with an Intel Core 17-3770K CPU (4 cores).

Software setup. All codes are compiled with version 8.0 of the CUDA develop-
ment environment. The optimized implementations of BLAS and LAPACK are those
provided by NVIDIA cuBLAS 8.0 for the GPU and Intel MKL 2019 for the CPU.
Hyper-threading is disabled in the CPUs, as suggested by the MKL library documen-
tation. To reduce the variance of execution times, the number of threads for OpenMP
and MKL is set to the number of physical cores and each thread is mapped statically
to one core. The corresponding Intel C compiler 2019 was used to compile the code
with the -O3 optimization level. Nevertheless, the optimizations made by the com-
piler are not very relevant for our study, because most of the performance-sensitive
code is implemented inside the cuBLAS and MKL libraries. To avoid noise caused
by other processes activity on the systems, the execution times reported next are the
median values from ten executions. The execution times in all cases are very similar
except for some initial, much slower executions due to dynamic libraries loading.

Input data. The input matrices are created following the same procedure described
in the numerical tests in section 4, with random elements in range [0, 1), and setting
p = 1 so that the condition number is kept small. For brevity, for the platform with
the P100 we report results in (1Eeg) double precision only; the analysis using single
precision on this platform offers similar conclusions. As the Titan X offers very low
performance in double precision, we only employ single precision on that platform.

QRF implementations. The baseline GPU implementation of xGEQRF (QR factor-
ization via Householder reflectors) is that available in the MAGMA library (version
2.2.0). Among the three variants of xGEQRF in MAGMA, we choose the first one as it
is the only one with an LAPACK-compatible interface. Furthermore, the performance
of the other two versions seems to be quite similar. The block size in QRF-AH was
set to 1,024 which we found optimal for both platforms.

Look-ahead. Both the MAGMA-xGEQRF and our implementation of QRF-AH lever-
age integrate a look-ahead strategy [15, 17] to hide the cost of transfers and compu-
tations on the CPU. In rough detail, the look-ahead overlaps the transfer of the panel
and the computation of its QR factorization on the CPU, with the update of the trail-
ing submatrix (for the previous iteration) on the GPU. Unfortunately, this technique
offers minor advantages for TS matrices, as for those problems, the trailing matrix
often presents too few columns to attain high performance.

Evaluation. Figure 1 compares the performance of MAGMA-xGEQRF and our im-
plementation of QRF-AH on both platforms. The y-axis shows the ratio between the

TSQR Factorization with Approximate Householder Reflectors on GPUs 11

Number of rows
10000 —+—

125000 —e—

MAGMA QR time / Approx. Householder QR time

I I I I I I I I
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of columns

Number of rows
10000 —+—
25000 —*—

125000 —e—

MAGMA QR time / Approx. Householder QR time
IS
T

I I I I I I I I
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of columns

Fig. 1 Performance comparison of QRF-AH over MAGMA-xGEQRF for TS matrices on a P100 using
double precision (top) and a Titan X using single precision (bottom)

execution time of MAGMA-xGEQRF divided by that of QRF-AH. Each line corre-
sponds to a group of matrices with the same number of matirx rows (n) while the
number of matrix columns (m) remains fixed as specified in the x-axis of the plot.
The MAGMA implementation changes the block size when the number of columns
is over 3000 in double precision and when it is over 7000 in single precision. This
is the reason the plots show a small variation around those values. As expected, the
performance of QRF-AH is much higher for TS matrices (up to 6 times) but this ad-
vantage diminishes as the gap between the number of columns and number of rows
narrows. However, the performance drop is considerably less sharp in the Titan X
platform, in part because the relative slow CPU drags the performance of MAGMA -
XGEQRF and QRF-AH benefits from the reduced volume of communication.

Figure 2 compares the performance of MAGMA-xGEQRF and QRF-AH for square
matrices. The effect of the reduced communications of QRF-AH is quite small in the
system with the P100 because the CPU is fast enough to compute the panel factor-

12 Andrés E. Tomds, Enrique S. Quintana-Orti

18 T

MAGMA QR s
Approx. Householder QR - s

6l

ns

1 . . I I
oL ilem

10000 15000 20000 25000 30000 35000
Matrix dimension

Time (sec.)

16 T

MAGMA QR s
Approx. Householder QR s

Time (sec.)
N IS o ©
T T T T

10000 15000 20000 25000 30000 35000
Matrix dimension

Fig. 2 Performance comparison of QRF-AH over MAGMA-xGEQRF for TS matrices on a P100 using
double precision (top) and a Titan X using single precision (bottom)

ization and perform all the communications faster than the GPU performs the matrix
update. However, the CPU in the platform with the Titan X is much slower and the
look-ahead in MAGMA-xGEQRF is not well balanced. In that case the reduced com-
mutations of QRF-AH have a much more relevant impact and, as a result, this routine
outperforms MAGMA-xGEQRF by a factor of two.

6 Conclusions

The new algorithm presented in this work, QRF-AH, is a variant of the conventional
Householder-based QR factorization that uses an alternative formula to compute the
Householder vectors. While the approximation underlying this formula can fail for
very ill-conditioned matrices, these breakdowns can be easily detected and corrected
by an early termination of the panel factorization.

TSQR Factorization with Approximate Householder Reflectors on GPUs 13

The variant of QRF-AH with look-ahead can be efficiently implemented on a hy-
brid CPU-GPU system, with the CPU in charge of the panel decomposition while the
rest of operations (all BLAS level-3) are performed on the GPU. The main advan-
tage of this approach is the reduced volume of communications between CPU and
GPU compared with the blocked QR implementations available in MAGMA. An ad-
ditional advantage of QRF-AH is that its implementation is much simpler than other
methods specifically designed for tall-skinny matrices as no custom GPU kernels are
required. This also favours portability to new GPU architectures or even to different
types of accelerators.

The performance of the new approach is very competitive for tall-skinny matrices,
and even outperforms MAGMA for square matrices when memory transfers and CPU
computations impose a strong performance bottleneck.

The stability of QRF-AH has been analyzed with matrices that explicitly enforce
breakdowns. While this experiment shows that QRF-AH offers levels of orthogonal-
ity and relative error similar to those of the stable QRF-H, a theoretical analysis may
help to fully understand the behaviour of the algorithm and devise future strategies
for improve the accuracy of the update formula.

Acknowledgements This research was supported by the project TIN2017-82972-R from the MINECO
(Spain), and the EU H2020 project 732631 “OPRECOMP. Open Transprecision Computing”.

References

1. Ballard G, Demmel J, Grigori L, Jacquelin M, Knight N, Nguyen H (2015) Re-
constructing Householder vectors from tall-skinny QR. Journal of Parallel and
Distributed Computing 85:3 — 31, DOI 10.1016/j.jpdc.2015.06.003, iPDPS 2014
Selected Papers on Numerical and Combinatorial Algorithms

2. Benson AR, Gleich DF, Demmel J (2013) Direct QR factorizations for tall-and-
skinny matrices in MapReduce architectures. In: 2013 IEEE International Con-
ference on Big Data, pp 264-272, DOI 10.1109/BigData.2013.6691583

3. Businger P, Golub GH (1965) Linear least squares solutions by householder
transformations. Numer Math 7(3):269-276, DOI 10.1007/BF01436084

4. Demmel J, Grigori L, Hoemmen M, Langou J (2012) Communication-optimal
parallel and sequential QR and LU factorizations. SIAM J Sci Comput
34(1):206-239, DOI 10.1137/080731992

5. Dongarra J, Du Croz J, Hammarling S, Duff IS (1990) A set of level 3 ba-
sic linear algebra subprograms. ACM Trans Math Softw 16(1):1-17, DOI
10.1145/77626.79170

6. Drma¢ Z, Bujanovi¢ Z (2008) On the failure of rank-revealing qr factoriza-
tion software — a case study. ACM Trans Math Softw 35(2):12:1-12:28, DOI
10.1145/1377612.1377616

7. Fukaya T, Nakatsukasa Y, Yanagisawa Y, Yamamoto Y (2014) CholeskyQR2: A
simple and communication-avoiding algorithm for computing a tall-skinny QR
factorization on a large-scale parallel system. In: 2014 5th Workshop on Lat-

Andrés E. Tomds, Enrique S. Quintana-Orti

10.

14.

15.

16.

17.

19.

est Advances in Scalable Algorithms for Large-Scale Systems, pp 31-38, DOI
10.1109/ScalA.2014.11

. Golub G, Van Loan C (2013) Matrix Computations. Johns Hopkins Studies in
the Mathematical Sciences, Johns Hopkins University Press

. Gunter BC, van de Geijn RA (2005) Parallel out-of-core computation and

updating the QR factorization. ACM Trans Math Softw 31(1):60-78, DOI

10.1145/1055531.1055534

Joffrain T, Low TM, Quintana-Orti ES, Geijn Rvd, Zee FGV (2006) Accumulat-

ing householder transformations, revisited. ACM Trans Math Softw 32(2):169—

179, DOI 10.1145/1141885.1141886

. Puglisi C (1992) Modification of the Householder method based on the com-
pact WY representation. SIAM Journal on Scientific and Statistical Computing
13(3):723-726, DOI 10.1137/0913042

. Saad Y (2003) Iterative methods for sparse linear systems, 3rd edn. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA

. Schreiber R, Van Loan C (1989) A storage-efficient WY representation for prod-

ucts of Householder transformations 10(1):53-57, DOI 10.1137/0910005

Stathopoulos A, Wu K (2001) A block orthogonalization procedure with con-

stant synchronization requirements. SIAM J Sci Comput 23(6):2165-2182, DOI

10.1137/S1064827500370883

Strazdins P (1998) A comparison of lookahead and algorithmic blocking tech-

niques for parallel matrix factorization. Tech. Rep. TR-CS-98-07, Department

of Computer Science, The Australian National University, Canberra 0200 ACT,

Australia

Tomas Dominguez AE, Quintana Orti ES (2018) Fast blocking of householder

reflectors on graphics processors. In: 2018 26th Euromicro International Confer-

ence on Parallel, Distributed and Network-based Processing (PDP), pp 385-393,

DOI 10.1109/PDP2018.2018.00068

Volkov V, Demmel JW (2008) LU, QR and Cholesky factorizations using

vector capabilities of GPUs. Tech. Rep. 202, LAPACK Working Note, URL

http://www.netlib.org/lapack/lawnspdf/lawn202.pdf

. Yamamoto Y, Nakatsukasa Y, Yanagisawa Y, Fukaya T (2015) Roundoff error

analysis of the Cholesky QR2 algorithm. Electronic Transactions on Numerical

Analysis 44:306-326

Yamazaki I, Tomov S, Dongarra J (2015) Mixed-precision Cholesky QR factor-

ization and its case studies on multicore CPU with multiple GPUs. SIAM Journal

on Scientific Computing 37(3):C307-C330, DOI 10.1137/14M0973773

