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ABSTRACT 

Accurate phenotypic detection, and quantification of plant pathogens is an important 

challenge in plant sciences. Thanks to the rapid development of scalable digital 

technologies, and more specifically computer imaging, new and precise methods are 

emerging to tackle this challenge with application both in model organisms as well as 

agricultural crops. This constitutes an asset for researchers and for breeders, who often 

must rely on time‐consuming manual phenotyping or scoring by eye. Currently there are 

multiple tools that can be used for this purpose, two of them being ImageJ and PlantCV, 

both of which have become well recognized, scientific-grade software packages. The first, 

is possibly the most used image analysis software in biological sciences, and the latter is 

a more recent yet very powerful OpenCV-derived image processing toolkit for plant 

phenotyping analysis. Despite the availability of these tools as opensource software, their 

use and deployment are mainly restricted by the challenge of obtaining data that is at the 

same time insightful, and biologically meaningful to infer useful and correct results. In this 

work, we present several pipelines and methodologies for image-based biological data 

extraction and analysis in two fungal pathogens, Neonectria ditissima, a tree pathogen, 

and Blumeria graminis f. sp. tritici, the causal agent of the wheat powdery mildew disease. 

This work relies of two training datasets generated from in vitro and in planta assays and 

applied to both ImageJ and PlantCV. These approaches are here technically assessed for 

their usability in extracting feature-rich biological information, and the generated data is 

evaluated for its suitability for quantitative analyses ranging from basic fungal growth 

dynamics to complex QTL mapping. As a result, a workflow for the image-based 

quantitative analysis of in planta inoculation assay of wheat leaves with Blumeria graminis 

f. sp. tritici using PlantCV and Python was developed, being obtained six different disease 

related features. Also, a pipeline for the extraction of 50 different image feature from 

Neonectria ditissima growing essays images was implemented into the ImageJ software. 

This allowed for the generation of a profile of the different isolates based on the extracted 

features, which shows the potential of these approach for its use in image-based profiling 

applications. 

 

 

Resumen 

La detección fenotípica precisa y la cuantificación de fitopatógenos es un desafío 

importante en las ciencias vegetales. Gracias al rápido desarrollo de las tecnologías 
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digitales y, más específicamente, a las técnicas de imágenes por computadora, están 

surgiendo métodos nuevos y precisos para abordar este desafío con aplicaciones tanto en 

organismos modelo como en cultivos agrícolas. Esto constituye un recurso muy valioso 

para los investigadores y para los mejoradores, que a menudo deben depender del 

fenotipado manual y el puntaje visual, técnicas las cuales consumen mucho 

tiempo. Actualmente existen múltiples herramientas que se pueden utilizar para este 

propósito, dos de ellas son ImageJ y PlantCV, las cuales se han convertido en paquetes 

de software de grado científico bien reconocidos. El primero es posiblemente el software 

de análisis de imágenes más utilizado en las ciencias biológicas, y el segundo es un 

conjunto de herramientas de procesamiento de imágenes derivadas de OpenCV que es 

más reciente, pero con muchas potencialidades para el análisis cuantitativo y el fenotipado 

digital en plantas. A pesar de la disponibilidad de estas herramientas como software de 

código abierto, su uso e implementación está restringido principalmente por el desafío que 

supone obtener datos que sean al mismo tiempo intuitivos y biológicamente significativos 

para inferir resultados útiles y correctos. En este trabajo, presentamos varias metodologías 

para la extracción y análisis de datos biológicos basados en imágenes de dos patógenos 

fúngicos, Neonectria ditissima, un patógeno de árboles, y Blumeria graminis f.sp. tritici, el 

agente causal de la enfermedad del mildiú polvoriento del trigo. Este trabajo se basa en 

dos conjuntos de datos de entrenamiento generados a partir de ensayos in vitro e in 

planta, y usando tanto ImageJ como PlantCV. Las metodologías propuestas se evalúan 

técnicamente para su usabilidad en la extracción de información biológica rica en 

características, y los datos generados se evalúan para determinar su idoneidad para 

análisis cuantitativos que van desde la dinámica básica del crecimiento de hongos hasta 

el mapeo de QTL complejos. Como resultado, se obtuvo e implementó una metodología 

para el análisis cuantitativo basado en imágenes de ensayos de inoculación en planta de 

hojas de trigo con Blumeria graminis f. sp. tritici utilizando PlantCV y Python, logrando ser 

extraídas seis caracteres diferentes relacionadas con la enfermedad. Además, se 

implementó en el software ImageJ un procedimiento para la extracción de 50 parámetros 

visuales de diferentes imágenes de ensayos de crecimiento en Neonectria ditissima. Esto 

permitió la generación de un perfil de los diferentes aislamientos basado en los parámetros 

extraídos, lo que muestra el potencial de este enfoque para su uso en aplicaciones de 

creación de perfiles basados en imágenes. 

 

Resum 

La detecció fenotípica precisa i la quantificació de patògens vegetals són un repte 

important en ciències de les plantes. Gràcies al ràpid desenvolupament de tecnologies 
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digitals escalables i, més específicament, per imatge per ordinador, sorgeixen mètodes 

nous i precisos per fer front a aquest repte tant amb aplicacions en organismes model com 

en cultius agrícoles. Això constitueix un actiu per als investigadors i per als criadors, que 

sovint han de confiar en un fenotipat manual que consumeix molt de temps o en la 

puntuació a l'ull. Actualment hi ha diverses eines que es poden utilitzar per a aquest 

propòsit, dues d'elles són ImageJ i PlantCV, totes dues convertides en paquets de 

programa de reconegut prestigi científic. El primer, és possiblement el programa d’anàlisi 

d’imatges més utilitzat en ciències biològiques, i el segon és un conjunt d’eines de 

processament d’imatges derivat d’OpenCV més recent però molt potent per a l’anàlisi del 

fenotipatge de plantes. Tot i la disponibilitat d’aquestes eines com a programa de codi 

obert, el seu ús i desplegament es veuen principalment restringits pel repte d’obtenir dades 

que siguin alhora intel·ligents i biològicament significatives per inferir resultats útils i 

correctes. En aquest treball, presentem diversos fluxes de treball i metodologies per a 

l'extracció i anàlisi de dades biològiques basades en imatges en dos fongs patògens, 

Neonectria ditissima i Blumeria graminis f. sp. Tritici ( l'agent causal de la malaltia del míldiu 

en blat). Aquest treball es basa en dos conjunts de dades de formació generats a partir 

d’assaigs in vitro i en planta, i aplicats tant a ImageJ com a PlantCV. Aquests enfocaments 

s’avaluen tècnicament per la seva utilitat en l’extracció d’informació biològica rica en 

característiques, i les dades generades s’avaluen per la seva idoneïtat per a anàlisis 

quantitatives que van des de la dinàmica bàsica de creixement dels fongs fins al mapatge 

QTL complex. Com a resultat, es va obtenir i implementar una metodologia per a l'anàlisi 

quantitativa basat en imatges d'assajos d'inoculació en planta de fulles de blat amb 

Blumeria graminis f. sp. tritici utilitzant PlantCV i Python, aconseguint ser extretes 6 

caràcters diferents relacionades amb la malaltia. A més, es va implementar en el 

programari ImageJ un procediment per a l'extracció de 50 paràmetres visuals de diferents 

imatges d'assajos de creixement en Neonectria ditissima. Això va permetre la generació 

d'un perfil dels diferents aïllaments basat en els paràmetres extrets, el que mostra el 

potencial d'aquest enfocament per al seu ús en aplicacions de creació de perfils basats en 

imatges. 
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INTRODUCTION 

The advent, large-scale adoption, and mass-utilization of Next Generation Sequencing 

(NGS) technologies has led to an exponential accumulation of genomic and genotypic 

data. Nowadays there is a gap between the amount and pace of generation of genotypic 

vs phenotypic information, which has become the limiting factor when it comes to 

understanding the genetic basis of complex traits (i.e. linking genotypes to phenotypes). 

Overcoming this challenge, known as the "phenotypical bottleneck", is of paramount 

importance to improve the efficiency of molecular breeding (Zhao et al., 2019). Recent 

advances in disciplines such as electronics, robotics, and computer sciences led to the 

development of a large set of tools with which to carry out quantitative phenotypic analyzes 

with high resolution and in a non-destructive way (Kumar, Kumar and Pratap, 2015; Tardieu 

et al., 2017). However, the challenge remains to develop and implement new analytical 

tools that allow transforming this data into knowledge that can be used to infer genetic traits 

and breeding value (Pieruschka and Schurr, 2019). 

Among the types of data most used in phenotyping, digital images are perhaps the most 

cost-effective and popular mean to generate massive amounts of phenomic information. 

This is further facilitated by the availability of a large number of software tools that are at 

our disposal to analyze plant traits (Lobet, 2017).  

The current work focuses on the development of digital imaging approaches for quantitative 

analyses of two plant pathogens Blumeria graminis f. sp. tritici, causal agent of the wheat 

powdery mildew disease, and Neonectria ditissima, the causal agent of the European apple 

canker. In the following section we will briefly introduce the history and biology of these two 

pathogens as well as the current state-of-the art regarding the use of digital images in plant 

science and its main challenges. 

Blumeria graminis f. sp. tritici. Biology and control 

All powdery mildews are ascomycete fungi that belongs to the Erysiphaceae family of 

the Erysiphales order, which consists of 16 genera and about 650 species worldwide 

(Braun et al., 2002). Its host range is strictly limited to angiosperms, since it has never been 

reported to infect either gymnosperms or other types of organisms (Amano, 1986)  being  

species Blumeria graminis (DC.) Speer the single causal agent of powdery mildew disease 

of the cereals.   

Based on the strict host specialization, Marchal (1902) proposed a classification for B. 

graminis based on seven formae speciales (ff.spp.) within the same species, although it  
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was proposed later to be extended to eight by Oku, Yamashita, Doi, & Nishihara (1985). 

However, it has been demonstrated since Eshed (1970) that the specialization could not 

be strict in some cases, given that some isolates of the ff.spp. hordei, tritici and avenae are 

compatible with wild grasses belonging to different genera in several tribes. 

This is a pathogen with some characteristics that promote rapid spread and adaptation, 

including a short life cycle,  presence of airborne spores that can be easily transported over 

long distances, and the potential for sexual recombination for generating new virulent races 

(Kang et al., 2020). This pathogen provides two types of pathogenic inoculum for infection, 

asexual conidia and sexual ascospores, the latter being released from sexual/conservation 

structure known as chasmothecia, which enables the pathogen to survive in the absence 

of a living crop. Both conidia and ascospores are infectious and become ready to germinate 

when there is enough humidity in the environment, and it is also known that mild 

temperatures ranging from 10 to 22 °C can further enhance the infection process 

(Jankovics et al., 2015). 

According to Dean et al., (2012), powdery mildew, caused by Blumeria graminis f. sp. tritici, 

ranks sixth out of 10 most important fungal diseases in plant pathology. It is also considered 

to cause the eighth highest yield loss by plant diseases worldwide (Savary et al., 2019), 

since it can occur year-round in the most important crop producing regions in the world, 

recording production losses of up to 35%, 62% and 40% in places like Russia, Brazil and 

China, respectively (Mehta, 2014).  

Powdery mildew can be controlled by systemic fungicides as seed treatments (Reis et al., 

2016) and the use of biological control methods (Köhl et al., 2019), but these methods have 

historically remained limited in success. Actually, the primary control method of powdery 

mildew in wheat is the use of resistant cultivars. Thus, the selection pressure applied by 

commonly grown cultivars carrying major resistance genes causes virulence shifts in the 

pathogen (Niewoehner and Leath, 1998) which requires continued breeding efforts in this 

sense.  

These efforts led to the over 200 resistance genes and quantitative traits loci (QTL) for 

resistance (Kang et al., 2020), thus empowering the use of marker-assisted selection for 

the breeding of powdery mildew resistant wheat (Nakaya and Isobe, 2012; Karbarz et al., 

2020). 

Despite this, breeding for B. graminis resistance using conventional crossing still presents 

several challenges. One of them being the problematic migration of exotic resistance 
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alleles by means of conventional crossing in wheat, which might come with associated 

pleiotropic effects, because of deleterious genes that are associated with an inferior 

performance in yield and quality (Johnson, 1992; Groos et al., 2003). This highlights the 

importance of obtaining reliable phenotyping data for identifying true trait-associated 

markers, a process that when done by visual scoring is very subjective and error-prone, 

especially in the case of large screenings (Poland and Nelson, 2011). 

Neonectria ditissima. Biology and control 

Neonectria ditissima is a filamentous fungus and the causative agent of the disease known 

as the European canker in apple, although it can also infect a wide range of hardwood tree 

species (McCracken et al., 2003; Florez et al., 2020). From a taxonomic perspective, the 

apple canker fungus belongs to a well-defined taxonomic group possessing a perfect 

(ascosporic) and a Cylindrocarpon imperfect (conidial) state (Castlebury, Rossman and 

Hyten, 2006; Chaverri et al., 2011). This classification is based on sexual and asexual 

reproduction morphotypes, as well as molecular phylogenetics studies, but still the 

scientific name of the apple canker has change repeatedly through the years (Tulasne and 

Tulasne, 1865; Hartig, 1889; Rossman and Palm-Hernández, 2008). 

N. ditissima has a wide host range that includes agronomically important species such as 

apple (Malus) and pear (Pyrus), as well as numerous broad-leaved trees such as Alnus, 

Betula, Crataegus, Fagus, Fraxinus, Ilex, Juglans, Populus, Quercus, Ribes, Salix, Tilia 

and Ulmus (Flack and Swinburne, 1968; Farr et al., 1989). The infection of apple trees is 

more damaging than pear trees (Weber, 2014), as apple canker is responsible for important 

yield losses through direct infection of the wood and pre- and post-harvest rotting of the 

fruits (Xu and Robinson, 2010).N. ditissima is difficult to control and represents a major 

challenges to the profitability of apple production n in Europe, and many other parts of the 

world where this disease has also been recorded (Latorre et al., 2002; Plante, Hamelin and 

Bernier, 2002; Campos et al., 2017).  

This pathogen produces two types of conidia in both nature and lab conditions, both of 

them are released passively by rain splash (Booth, 1966). Its ascospores are ellipsoidal 

and one-septate, and are released and dispersed to the air after being explosively 

discharge by the asci (Weber, 2014). It is thought that the relative contribution of conidia 

and ascospores to the dispersion of the disease varies with the climatic conditions, where 

ascospores are associated to maritime environments (Graf, 1976) while conidia a found 

more in arid ones (Dubin and English, 1975). The main sign of an infection by N. ditissima 

is a pale brown epidermis, that turned pale brown while the bark tissue becomes necrotic 
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and gradually dries out. These symptoms are most frequently seen in spring from flowering 

time onwards, although they may appear at any time of year at temperatures above 

freezing. Within a few weeks, white or pale yellow superficial conidial pustules 

(sporodochia) representing the Cylindrocarpon state develop on the surface of the dead 

bark (Weber, 2014). 

The control of the apple canker is done mainly by the repeated and thorough pruning of 

canker wounds, combined with the application of fungicides (Cooke, 1999; Palm, 2009). 

As the diseases spreads, and fungicide efficiency being limited, much work is been done 

on practical ways to improve sanitation measures in nurseries (Weber, 2014). 

This is a well characterized pathogen from the physiological and genetic standpoint, with 

the mechanism of infection of the woody tissues and the fruit having being elucidated 

(Gelain et al., 2020) as well as its genetics and the genetics of the resistance to the disease 

(Gómez-Cortecero, Harrison and Armitage, 2015; Bus et al., 2019). Regarding this, there 

are substantial variations among apple varieties in their susceptibility to this disease, 

variation that seems to be based on partial resistance (Garkava-Gustavsson et al., 2013). 

So far, monogenic resistance to canker has not yet been found, but the existence of 

differential resistance between apple cultivars allows for pyramiding resistance genes into 

new cultivars, which offers a promising strategy of control (Weber, 2014). However, since 

the breeding cycle of the apple is very long (30 – 50 years), the success of any program of 

breeding for resistance to N. ditissima requires foresight, and in this regard genomic studies 

and in vitro analyses could provide important information to unravel durable sources or 

resistance and aid durable disease management strategies.  

Digital imaging in plant pathology and in microbiology:  main challenges 

Among the types of data most used in plant science, digital images are perhaps the most 

cost-effective and popular mean to generate massive amounts of phenomics 

information.. In plant pathology, leaves are probably the most common organ targeted by 

imaging strategies , partly because of how relatively easy these images can be acquired 

(e.g compared to roots), the low level of dimensional complexity (i.e. 2D images are 

sufficient),and finally because leaves are the organ where the symptoms of many plant 

pathogens are the most easily distinguishable..  

When it comes to plant leaf diseases detection and analysis, many methods and 

approaches have been described and discussed (Raichaudhuri and Sharma, 2016). In 

Gavhale and Gawande (2014), for example, a summary of different image processing 
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techniques has been discussed for detecting leaf diseases for several plants. Detection 

methods which use texture features such as BPNN, SVM, k-means clustering, and SGDM 

are discussed in detail. While there is a variety of  methods and approaches to tackle the 

problem, the general steps that needs to be undergone for detecting and analyzing plant 

diseases in leaf images are mainly four: (i), image acquisition (ii) image pre-processing, (iii) 

feature extraction, and last (iv) classification (Ngugi, Abelwahab and Abo-Zahhad, 2021) 

Two of the most used tools in this regard are ImageJ and PlantCV (Abràmoff, Magalhães 

and Ram, 2004; Fahlgren et al., 2015; Gehan et al., 2017). The strengths of the first lie it’s 

multipurpose image analysis capabilities, in addition to a graphical user interface (GUI) that 

facilitates its use (to non programers) with an extensive number of plugins that extend its 

functionalities (Collins, 2007). , The second (PlantCV) is a suite of basic tools that the 

community could build upon (i.e. requires a higher level of user expertise). It is written in 

the Python, a high-level scripting language widely used in the scientific community 

including bioinformatics. Thus, PlantCV offer a high level of customization and versatility 

based on the  many tools available from the Python scientific computing community(Gehan 

et al., 2017). 

Digital images also constitute an important pillar in microbiology, where multiple processing 

and analysis tools and approaches has been created in the last decades (Puchkov, 2016). 

Among its most immediate applications at the macroscopic level we can cite colony 

counting and identification,  as well as applications in physiology, biochemistry, and 

molecular biology (Dörge, Carstensen and Frisvad, 2000; Marotz, Lübbert and Eisenbeiß, 

2001; Yang et al., 2001; Ogawa et al., 2012). 

Despite all this, many challenges remain for computer vision in plant science and 

microbiology that restricts their use and deployment. One of them is the challenge of 

obtaining data that is at the same time insightful, and biologically meaningful to infer useful 

and usable results (Li et al., 2020). Another challenge is the need to analyze images at a 

very high throughput but still in a robust and accurate manner in order to cope with the 

increasing amount of data being generated by the “omics” disciplines (Scharr et al., 2016). 

Image segmentation and feature extraction: main methods and approaches. 

As mentioned before, image segmentation, or pixel classification, is usually one of the first 

steps in any biological computer image analysis, and also one of the most critical ones, 

since an accurate and efficient image segmentation can rapidly and accurately obtain 

phenotypic traits (Hamuda, Glavin and Jones, 2016). In plant disease recognition 

applications, segmentation is a twofold process. Segmentation is first done to isolate the 
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leaf, fruit, or flower from the background. A second segmentation is then done to isolate 

healthy tissue from diseased tissue. However, classifying pixels has several limitations. 

One of the main ones being the difficulty to obtain consistent image data, since there is an 

intrinsic heterogeneity in images datasets (i.e., shadows, color distribution) (Lee et al., 

2018).  

Historically, thresholding algorithms have been the most common method to segment 

images in plant sciences. However, these can rapidly show their limits when two or more 

visually similar phenotypic classes must be distinguished as these methods perform poorly 

when it comes to colors and are very susceptible to variations and inconsistencies that may 

be present in large sets of images. This becomes exceedingly more complex in anopen 

field because of light variations, plant movements, crop heterogeneity,surface reflectivity 

(accumulation of moisture),  and many other factors (Tsaftaris, Minervini and Scharr, 2016). 

Methods that utilize machine learning techniques are a promising approach to tackle these 

problems (Minervini, Abdelsamea and Tsaftaris, 2014; Singh et al., 2016; Pound et al., 

2017). Consequently, a naive Bayes classifier tool has been integrated to PlantCV for 

machine-learning based pixel classification since version 2.0 (Abbasi and Fahlgren, 2017). 

Likewise,  ImageJ now also includes the Trainable Weka Segmentation, a machine 

learning tool aimed at pixel segmentation for microscopy images (Arganda-Carreras et al., 

2017). In addition, we also have Ilastik, an easy-to-use interactive tool with the ambitious 

objective  to bring machine-learning-based (bio) image analysis to users (with no previous 

knowledge in machine learning or programming) to apply basic image segmentation and 

classification  (Berg et al., 2019).  

These methods are also being used to automatically classify the output of image analyses, 

since they can be trained to categorize features associated with each disease to be 

recognized. The trained algorithm can then be used to recognize features from new images 

captured from the field. Classification deals with matching a given input feature vector with 

one of the distinct classes learned during training (Ngugi, Abelwahab and Abo-Zahhad, 

2021) 

In this work we present different approaches for the extraction of biological data  wheat 

leaves infected with the fungal pathogen Blumeria graminis f. sp. tritici, the causal agent of 

the wheat powdery mildew disease. We use the PlantCV image analysis tool for pixel 

classification and data extraction, and we analyze the suitability of the extracted data for 

its use in genetic analysis as well as compare it with the data obtained using a similar 

approach in two other image analysis tools, namely ImageJ and ilastik. 
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OBJECTIVES 

1. To develop an image-based quantitative analysis workflow of lab-controlled infections 

ofwheat leaves with Blumeria graminis f. sp. tritici using PlantCV and Python. This will 

include: 

a. Training a naïve Bayes classifier using a sample dataset as an input 

b. Image segmentation into three categories using the trained classifier 

c. Post-processing of the segmented image and feature extraction 

d. Qualitative and quantitative analyses of the output 

2. To develop an image-based feature rich quantitative analysis workflow of Neonectria 

ditissima isolates grown in three different types of culture media. This will include: 

a. Implementation of a multiple feature extraction pipeline from images of N. ditissima 

isolates growth assays 

b. Qualitative and quantitative analysis of the output 

c. Generation of an imaged-based colony profile 
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MATERIALS AND METHODS 

As a guideline for the development of the approaches presented in this work, a modified 

version of the general workflow described in Raichaudhuri and Sharma (2016), shown in 

Fig. 1 below was used. 

The second step of this workflow is usually image pre-processing, a step which was 

removed from our B. graminis f. sp. tritici quantitative analysis approach. This is becasue 

the use of a machine learning method like naïve Bayes classification, combined with the 

characteristics of the image set that was used (same camera, same settings, same 

background, etc.), made it unnecessary to carry any further procedure to improve image 

quality after the image acquisition stage. The classification step was also not included in 

the developed approach since the main goal of the workflow is to extract features and to 

generate an output that could be further analyzed. 

 

Figure 1. General workflow used as a guideline for the development of our approaches. Image capture involves 
the collection of photographic information with the use of a camera. Segmentation is generally done twice in 
plant disease recognition applications, first for isolating the plant material and second to isolate healthy tissue 
from diseased tissue. The use of the naïve Bayes Classifier allows for segmenting the image in just one step. 

For the B. graminis analysis, infected wheat leaves images were obtained from Marion 

Müller (personal data) and generated as previously described by Müller et al. (2021). 

Neonectria ditissima growing assay images were kindly provided by Kerstin Dalman, 

Department of Molecular Sciences, SLU. Image analyses were performed with the use of 

PlantCV v3.12.0, OpenCV v3.4.14, ImageJ v1.53c and iLastik v1.3.3 (Collins, 2007; Gehan 

et al., 2017; Berg et al., 2019). Statistical analyses and graphics were done using RStudio 

version 1.2.5001 with R version 3.6.1 and the following packages: ggplot 2.2.1, ggthemes 

3.4.0, reshape2 1.4.3, plyr 1.8.4, car 3.0-11 as well as R base functions (R Core Team, 

2021).  

Blumeria graminis f. sp. tritici in planta assay images analysis 

Naïve bayes classifier training 

The naïve Bayes classifier embedded in PlantCV was trained to generate predictors in form 

of Probability Distribution Functions (PDFs) that will allow to classify/segment the images. 
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During the training phase, a script included in PlantCV called “plantcv-train.py” was used. 

This script converts pixel RGB values for each input class into the hue, saturation, and 

value (HSV) color space. Kernel density estimation (KDE) is used to calculate a probability 

density function (PDF) from a vector of values for each HSV channel from each class. The 

output PDFs are used to parameterize the naive Bayes classifier function. To generate a 

training subset a set of images was picked randomly from the dataset using a command 

shell script. The training set size was chosen after analyzing the resulting Probability 

Distribution Functions (PDFs) for several set sizes and choosing a size and training set 

that renders PDFs curves with well-defined peaks and little overlapping.  

The input for the training algorithm consisted of a tab-delimited table where each column 

is a class (minimum two) and each cell is a comma-separated list of RGB pixel values from 

the column class was created using the Pixel Inspection tool on ImageJ, being the 

proposed classes “background”, “healthy tissue/plant” and “infected tissue”. Once the 

training table is generated, it is used as input data for the ‘plantcv-train.py’ script to generate 

PDFs for each class. The optimal number of pixels per class for the training set was also 

determined after analyzing the resulting PDFs for several number of pixels. 

Image segmentation, postprocessing and feature extraction 

Images were initially segmented using the trained classifier and the three classes described 

above. For visualization purposes the possibility of showing a false color segmented 

version of the input image was added to the workflow.  

To enhance the segmentation, a postprocessing stage was introduced by using PlantCV 

noise reduction tool (fill function) and by cropping the edges of the leaves where most of 

the false positive pixels (pixels misclassified as “infected tissue”) were found. Feature 

extraction was then performed using some of PlantCV included functions and some 

OpenCV functions. The extracted features proposed for the developed approach where: 

number of colonial formations, ratio “Disease tissue/healthy tissue”, total diseased area, 

average colony formations area, total colony formation perimeter, and average colony 

formation perimeter. 

A similar approach was implemented with the use of the Trainable Weka Segmentation 

tool plugin of ImageJ (Arganda-Carreras et al., 2017) and also the iLastik software in order 

to compare the quality of the image segmentation without the postprocessing across the 

three tools. For this purpose, an example set of 20 images was taken from the dataset and 

was subjected to segmentation using the three tools. The effectiveness of the output was 
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later qualitatively and quantitatively assessed by measuring the error percentage of false 

positives pixels (pixels classified as “infected”) in completely healthy images. 

Output analysis 

The developed workflow was implemented into a Python script and executed on a dataset 

comprising 9646 images (Marion Müller, University of Zurich, personal data). The output 

was stored in a .csv file and analyzed statistically from the descriptive point of view for 

normality and outliers. For both analyses, data was appropriately log-transformed, and a 

Q-Q (Figure 7) plot and a Kolmogorov-Smirnov normality test was used for qualitative and 

quantitative normality evaluation while outliers were detected with IQR. The presence of 

false positives (pixels wrongly classified as disease) in the approach was evaluated by 

implementing it on a set of images comprising only healthy plants and obtaining the 

percentage of false positive pixels. This was done also using the Trainable Weka 

Segmentation tool and Ilastik to compare the tendency of each approach to render false 

positives. 

Neonectria ditissima in vitro images: quantitative analysis workflow 

For the analysis of N. ditissima in vitro images, the general guideline for the development 

of the approach was the same as mentioned for the previous analysis (Raichaudhuri and 

Sharma, 2016). The dataset consisted of images of 39 isolates of N. ditissima from which 

two replicates of each were grown in vitro using three different culture media and 

photographed at five different timepoints (Figure 2 – Kerstin Dalman, Department of 

Figure 2: Example image from the dataset utilized for the analysis. 
Two replicas of each isolate were grown on each culture media 
and pictures were taken at five different moments. Image by 
Kerstin Dalman, Department of Molecular Sciences, SLU 
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Molecular Sciences, SLU). The media utilized were potato dextrose agar (PDA), water agar 

(WA) and apple sap amended water agar (ASAWA), described by Amponsah, Walter and 

Scheper (2014).. 

Image segmentation and ROI determination 

Due to the characteristics of the images, and the relatively small size of the dataset (e.g. 

compared to the wheat powdery mildew dataset), ROIs where manually selected and the 

selection stored in multiple files for its use in the analyses. The selection was done using 

the circle tool on ImageJ given that the shape of the colonies was consistent amongst the 

isolates and the culture media. 

Features extraction 

For the feature extraction, a putative set of image parameters were first reviewed for its 

use in this analysis. The features ranged from the typical variables used in image analysis 

like intensity to RGB composition to more specific ones like Haralick’s texture parameters 

and roughness (Haralick, Dinstein and Shanmugam, 1973; Puchkov, 2016). Its possible 

biological significance was discussed and pipelines for their retrieval was developed using 

ImageJ included scripting language and multiple plugins. Images were split for each color 

channel and each one of the selected features was extracted from each individual channel. 

Growth area was measured for each time point in all the isolates and it was used for 

measuring the fungal pathogen growth dynamic. Mycelium growth areas were square-root 

transformed and growth rate was estimated as the slope of a linear regression for changes 

of area through time combining data for all replicates for a given isolate as describe by 

Estrada et al. (2014) 

Output analysis 

The workflow was implemented on an ImageJ script and executed in the whole dataset. 

The output was stored in a .csv file and was then analyzed statistically. The analyzes 

focused on describing the variability of the different features across the isolates and across 

the culture media, to characterize differences in such variability across media, and to 

identify the media substrate with the highest impact on such variability.  

Generation of an image-based colony profile 

After assessing the impact of the type of media on colony image features a profile was 

made based on clustering and grouping methodologies. For this purpose, and to make all 

the variables comparable, the data was scaled first. Then a distance matrix was first 

obtained by computing the dissimilarities amongst the isolates using the Euclidian method, 
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and then this matrix was used to cluster the isolates in groups. The clustering was done 

using hierarchical clustering analysis, which is an analysis based on distance matrix 

renders and generates a dendrogram with the relationships that could exist between the 

clusters in the dataset. Ward’s method was use as the linkage method for this analysis 
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RESULTS 

Blumeria graminis f. sp. tritici infection assays: images analysis workflow 

A diagram representing the developed PlantCV image analysis workflow is shown in Figure 

3. It comprises the following steps: first, raw image acquisition from inoculated plants taken 

7 days post inoculation (dpi) followed by sampling and training of the classifier used for 

Figure 3. Image-based quantitative analysis workflow diagram. Plants were inoculated with the fungi. In the 
image acquisition section, individual leaves where photograph using the same background and camera at 7 
dpi. For the training of the classifier, sample pixels of each the proposed class were taken. Three pixel-
classifiers were defined and RGB information of 180 pixels for each class were collected to build the training 
dataset. The probability distribution function for each category was calculated based on that training dataset. 
In the testing session, each pixel from an input image was calculated and classified into each class. After 
postprocessing, the output produced six different metrics that would be utilized in further statistical analyses. 
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segmentation. Then the segmentation stage using as an input the dataset and the PDFs 

generated in the training step. A post-processing step follows in which the segmentation is 

improved by denoising and edge-cropping, and in which contour and object detection 

functions are applied. Finally, features are extracted obtaining as an output a .csv file 

containing feature values and the sample ID for further analyses. 

Naïve Bayes classifier training 

For the training stage, after comparing datasets with 1, 5, 10, 20 and 40 images and 20, 

40, 80, 120 and 180 pixels per class, a dataset of 20 images and 180 sample pixels per 

class was selected based on the characteristics of the PDFs it yielded (Figure 4). The latter 

showed well defined and non-overlapping probability curves for each one of the classes. 

The PDFs values resulting from this training dataset were stored in a text file to be used in 

the segmentation step. 

Image segmentation, postprocessing and feature extraction 

The output of the segmentation step for each image is a binary image for each class where 

the pixels are white if the probability of the pixel to be in the given class was the highest of 

all classes, or black if otherwise (Figure 5A). Segmentation/classification was quantitatively 

and qualitatively assessed, (i) by visual inspection of the false color segmented images 

generated from the binary images representing each class, and (ii)  by the empirical 

discrepancy method of analyzing the number of misclassified pixels in relation to a 

reference segmentation. The reference segmentation used in this case was a sub-set of 

20 completely healthy images and the average percentage of pixels misclassified as 

“diseased” was of 3.4% of the total when not using any post-processing, compared with 

the 7.3% when using iLastik and 4.8% when using ImageJ.  

After postprocessing (Figure 5B) the misclassified pixels average percentage decreased 

down to 1.7% of the total plant tissue and with nearly zero misclassified “background” 

pixels. The postprocessing included first a denoise step using PlantCV’s fill function 

selectively applied to each class, to remove artifacts and glares that could be misclassified 

as “background” and to eliminate cluster of pixels in the leaf that were being misclassified 

as “infected”. In addition to this, and given that there was an abundance of misclassified 

pixels in the edges of the leaves(especially in the regions where the leaf was cut and 

necrosis starts to appear), a procedure for cropping edges of the leaves was implemented 

as a second postprocessing step. 
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Figure 4. Classifier training output. Probability Distribution Functions (PDFs) obtained from the chosen 
training dataset of 20 images with 180 images per class. Each curve is the probability distribution for the 

saturation, value, or hue of a pixel for each of the given classes.  

Figure 5. Image segmentation and postprocessing. A, Obtention of binary images representing each of 
the classes and generation of a false color segmented image with grey pixels representing the 
background, green ones the healthy plant tissue and red ones the infected tissue. B, Postprocessing stage 
is comprised of a denoising step first and followed by the trimming of the edges of the leaf where many 
false positive pixels can be found 
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For the final step in the postprocessing, object contour detection was implemented (Figure 

6). Since many of the colonies in the images are overlapping each other, the detected 

contours were those of contiguous colonies rather than of individual colonies. PlantCV 

function “cany_edge_detect” was used for detecting those contours and obtain a mask 

containing them. After this OpenCV function “dilate” was used to fill the gaps in the edge 

lines and optimize the resulting mask. 

To calculate of the whole leaf area, the sum of the pixels belonging to the “healthy/plant” 

class and the “infected” class measured as in the previous step before feature extraction 

was obtained. The pixel count of the binary masks of each class was used directly for 

extracting the features “Total disease area” and ratio “Infected tissue/healthy tissue”. 

Altogether with the pixel number count, a series of OpenCV functions were applied to count 

the number of contour/objects in the image and to calculate the perimeter and the area of 

each (Figure 7). This allowed the extraction of four more features: “Number of 

objects/colonial formations”, “Total object/colonial formation perimeter”, “Average 

object/colony formation perimeter”, and “Average object/colony formation area”. 

 

Figure 6. Final postprocessing step, object contour detection. This step was implemented by using the 
segmented image as an input and applying first the “canny_edge_detect” function in PlantCV to detect the 
contours and create a binary mask with them and then applying OpenCV “dilate” function to fill any probable 
gap on them. 
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Output analysis 

The generated output data was submitted to several analyses for evaluating its quality. 

Original plots showed a highly skewed data at first, skewness which was partially corrected 

with the log transformation. Although the Kolmogorov-Smirnov normality test  showed that 

no feature follows a normal distribution, Q-Q plots showed for all the parameters a range 

of values for which normality is apparently true (Figure 8). The percentage of outliers for 

each variable/feature ranged from 1.3% of all the data points extracted in the feature 

“Number of colonial formations” to 12% in “Ratio Disease/Healthy”. 

 

Figure 8: Normality evaluation of the output data. Plots representing the density distribution of the six output 
variables in the right and Q-Q plots showing the correlation between the distribution of these variables and a 
normal distribution. A. Number of colonial formations B. Ratio “Diseased/Healthy” C. Avg. colonial formation 
area D. Avg. colonial formations perimeter E. Total infected area D. Total colonial formations perimeter 

Figure 7: Sorting and counting of objects. By using the raw image and the contour mask generated previously 
it was possible to sort and count the objects in the original image, which allowed for the retrieval of features 
from the colonial formations 
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Neonectria ditissima in vitro images quantitative analysis workflow 

A flow diagram representing the developed ImageJ image analysis pipeline is shown on 

Figure 9. In this workflow, features were extracted at different moments as the pipeline 

progresses. The pipeline was implemented in a series of scripts written in ImageJ Macro 

Language (Mutterer and Rasband, 2012). 

Features extraction 

The extracted parameters were included into four groups: color features, intensity related 

features, Haralick’s texture features, and roughness features. Except for the color features 

(which  was the first parameter extracted), the features of the other three groups were 

Figure 9: Neonectria dittisima colonies image-based quantitative analysis pipeline diagram. Boxes 

in color represent feature extraction steps 
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retrieved for each individual RGB channel. The result was a total of 50 variables that were 

extracted for each image and the data was stored in a .csv file. The growth rate was also 

obtained as the values of the slopes of a linear regression for changes of area through 

time. The r- values rangeed from 0.9212 to 0.9999 and have a median of 0.9914 which 

means that the linear regression fitted the data.  

Output analysis and profiling 

To visualize how dispersed and variable was each of the features amongst the three 

different culture media, the means and the standard deviations of all the variables where 

obtained. Mean values and standard deviation differ between treatments and between 

analyzed channels, being standard deviation values were always bigger higher in isolates 

grown on PDA media (Figure 10). 

For the image-based profiling, the distant matrix was computed and the values where used 

for rendering a dendrogram and a heatmap representing the relationships that could exist 

amongst the clusters formed in the dataset (Figure 11).  

Figure 10: Boxplots representing the characteristics of the extracted data for six example 
features. PDA is the media that shows a higher SD in these features and in the ones not displayed 
here. 
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Figure 11. Clusters and image base profiling of the extracted features. A. Dendrogram representing the 
relationship between the isolates based on the distance between the extracted features. B. Representation 
of the distance and the clusters formed as a heat map. 
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DISCUSSION 

Blumeria graminis f. sp. tritici in planta assay images analysis workflow 

The use of a naïve Bayes classifier as the main approach for pixel classification allowed a 

simpler segmentation step in this analysis, since this is generally done twofold in plant 

disease recognition applications, and the use of this approach allows for segmenting the 

image in just one step (Gavhale and Gawande, 2014). The PDFs used for the classifier 

showing non-overlapping curves demonstrate the consistence of the training outcome and 

its success in differentiating between the three defined classes. For this type of approach, 

it is very important to adequately capture the variation in the image dataset for each class 

to improve pixel classification (Gehan et al., 2017). In a very consistent dataset, the number 

of sample images needed for generating the training text file is low. The evaluation of the 

classifier via PDFs curves is a crucial step in this sense, since it allows for defining a correct 

sample size for training,and it to forecast the quality of the pixel classification. The success 

of the segmentation is visible in the false color images generated by the PlantCV image 

analysis workflow, since they showed a convincing segmentation of the images before and 

after the postprocessing, that could also overcomethe false positives, artifacts, and other 

irregularities in the images (Figure 12A). Another advantage of this approach is that it 

enables the use of pipelines that are both simpler (fewer steps) and more flexible especially 

when comparing to the thresholding approaches, which are currently the most commonly 

used segmentation methods (Lomte and Janwale, 2017). A machine learning approach 

can likely be used for a variety of applications, such as identifying a plant under variable 

lighting conditions or quantifying specific areas of stress on a plant. To summarize, the 

naïve Bayes approach has several advantages, first, it allows for the simultaneous 

segmentation of two or more classes, second, since it is a probabilistic method, the 

segmentation is more robust across images than when using a thresholding method, and 

third, it replaces the multiple steps required in threshold-based pipelines, reducing its 

complexity. 

When comparing the outcome of the segmentation without postprocessing between the 

three software tools (using images of non-infected plants as a control) we could the 

accuracy of the classification was visually clear and better witha PlantCV, and generally 

with a more defined background and no clusters of misclassified pixels (Figure 12B). When 

quantifying these differences, the PlantCV workflow showed an error margin of 3.4% of 
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pixels being selected as false positive, compared with the 7.3% when using iLastik and 

4.8% when using ImageJ. In the case of Ilastik, this is a tool that makes use of neural 

networks optimized for segmenting, classifying, tracking, and counting of cells in 

microscopy images, although it is intended as a general purpose tool (Berg et al., 2019). 

This platform is aimed to be “user-friendly” and although it produced robust and quick 

results it lacks the options for fine tuning that we find in PlantCV as well as the relative 

simplicity of the naïve Bayes approach, especially when compared with the complexities 

of a neural network. The Trainable Weka Segmentation plugin of ImageJ on the other hand, 

is a very complete software that contains a collection of machine learning tools that, 

although remaining “user-friendly”, does allows for more control during both the training 

Figure 12. False color images representing the outcome of the segmentation. A. An example of a highly 
irregular image from the dataset. The presence of the yellow flare in the image introduces some noise than 
nonetheless can be handled with the postprocessing at a very good extent. B. Comparison of the segmentation 
output without postprocessing in the same image using three different software. Note that in PlantCV the 
background is better segmented, generally with less false both healthy and infected pixels 
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and the classification step. However, just as Ilastik, its mainly thought for being used with 

microscopy applications, and the type of machine learning tools they use generally require 

more computing power, which translate in longer processing times, something critical when 

we are in presence of large datasets or real time applications.  

It was possible to further decrease the value of average false positive pixels in the PlantCV 

workflow down to 1.7% using postprocessing. In this case an initial step of denoising was 

followed by edge-cropping. These two steps were easily implemented in the workflow 

thanks to the fact is is written in Python and the versatility that this represents. In 

particular,this does not constraint the utilities and packages that can be used to those of 

PlantCV, as it is possible to use any other Python package at the same time, which was 

the case for the edge cropping step, in which some base python functions where used. The 

flexibility provided by the Python programming language was also clear in the last step of 

postprocessing, in which functions from Python’s OpenCV (Bradski, 2000) package were 

used to identify the individual colonies and enumerate them, a critical step for retrieving 

information from each individual colonial formation. Since PlantCV branched from 

OpenCV, with the latter being already rich in packages (Fahlgren et al., 2015), the 

combination of both revealed very powerful yet easy to implement..  

For integration with genotypic data, like in QTL analysis for example, phenotypical data 

containing information on trait segregation must be obtained by paying special attention to 

the experimental design and the method by which the data is retrieved. Inadequate 

quantification of a trait often affects the data quality in a negative manner. Noisy images 

highly affect the dataset and could bias the results. Data normality tests and outlier 

detection is necessary to improve the data quality (Rahaman et al., 2015). In standard 

interval mapping (IM) of quantitative trait loci (QTL), the QTL effect is described by a normal 

mixture model. When this assumption of normality is violated, the most adopted strategy is 

to use the previous model after data transformation. However, an appropriate 

transformation may not exist or may be difficult to find and this approach can also raise 

interpretation issues (Fernandes, Pacheco and Penha-Gonçalves, 2007). The output 

analysis of our workflow showed that the features were not normally distributed for some 

ranges and were generally skewed. This is not uncommon  given that many phenotypic 

traits are not normally distributed (Rodo et al., 2006) and the assumption of normality can 

occult important characteristics of the model. Many proposals have been made in order to 

cope with this, like the use of nonparametric interval mapping based on the Kruskal-Wallis 

test statistic (Broman et al., 2003) and the replacement of the assumption of normality by 
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a weaker assumption that the quantitative variable has a “smooth” density that may be 

skewed (Dalla Valle, 2004). 

Previous studies have attempted an image based scoringof the B. graminis - wheat 

pathosystem (Li, Gao and Shen, 2010; Yuan et al., 2014; Awad et al., 2015; Majumdar et 

al., 2015). Many of these approaches, however, are characterized by having as a main 

goal the detection of the disease and by relying on small datasets or satellite images. While 

they can have specific uses, they are not ideal for high throughput phenotyping platforms, 

in which fast and reliable data extraction is needed and dealing with huge datasets is 

necessary to complement the enormous amount of genomic data available. On the other 

hand, in Lück et al., (2020) and in Zhang et al., (2019), platforms for high throughout 

phenotyping for wheat are described. The first one, called “Macrobot”, scores the visible 

powdery mildew disease symptoms, typically 5-7 days post-inoculation (dpi), in a highly 

automated manner. The system can precisely and reproducibly quantify the percentage of 

the infected leaf area with a theoretical throughput of up to 10000 individual samples per 

day, making it appropriate for phenotyping of large germplasm collections and crossing 

populations. The second one is more general purpose oriented and allows for the 

phenotyping of several traits like plant morphology, greenness, leaf area, amongst others. 

Both platforms software is meant to be implemented in specific hardware that is an 

indissociable part of the platform per se. This makes  widespread use difficult, due to the 

obligation of having to acquire both the software and the hardware, the latter being the 

critical point when it comes to availability and price. An approach like the one describe in 

this work, implemented in Python using free resources like PlantCV and OpenCV, have a 

great versatility since it offers the advantage of being capable of running on a larger range 

of systems and hardware, and this enables its implementation on “in-house” developed 

hardware that could be based on affordable technologies, like for example Raspberry Pi 

microcomputers (Gehan and Kellogg, 2017; Tovar et al., 2018).  

Neonectria ditissima in vitro images quantitative analysis workflow 

Manual image selection might have several drawbacks, one of them is that the use of 

ImageJ “Circle” tool might cause an oversimplification of the real colony shape not 

considering the variation in the colony borders, which could be an interesting feature to 

extract. However, across all images of the dataset the shape of the colonies was 

consistently circular and there ws no important variations in their shape across the different 

isolates. For this reasons the features selected to be extracted where non-shape related 

pictures, for which an approximated selection/segmentation of the colony is enough 

(Puchkov, 2016). During the development of the pipeline, several post-processing 
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modifications were made to the manual segmentation to obtain more accurate results for 

some features. The best example of this is the reshaping of the circular ROIs into square 

ROIs that was made before the extraction of the roughness variable (Figure 13). This was 

implemented due to the inability of the roughness calculation plugin of ImageJ for handling 

circular ROIs (Chinga and Dougherty, 2002) 

When comparing the Standard Deviation values between treatments, growth on the PDA 

substrate gave the always higher values. This points to the fact that PDA generates more 

disperse and variable growth dynamics, and hence, the visual variability of isolates grown 

on this media is higher. This is valid to almost all the extracted features, with exceptions in 

some of the Haralick’s texture features. It seems that the biggest variation amongst the 

isolates is displayed when grown on PDA media, something that was assessable visually 

by noting the variation in the image dataset with visual inspection, but that here is 

represented with descriptive statistics. The idea of the PDF media being the most suitable 

one for image-based in vitro analysis of N. ditissima isolates colonies is reinforced also after 

analyzing how the features behave amongst the different isolates (Figure 14). For most of 

the variables, when grown on PDA, variables are more uniform when comparing the 

replicates of each isolate and there is less overlap and an apparently higher variability when 

comparing different isolates, which is not true for most of the features when the other two 

media are analyzed. Based on this, PDA assay images where the one chosen to perform 

the cluster analysis because the data extracted from these assays have better quality and 

seems to be more informative due to the higher variability it showed. 

Euclidian distances were used as the distance matrix computation method, since our main 

purpose is to look at the absolute distance between our isolates given the extracted features 

and no correlations that might be very distant according to these features were searched. 

We were trying to quantify the dissimilarity between isolates based on the extracted 

features, and to group them afterwards. The dendrogram resulting from this cluster analysis 

Figure 13: ROI reshaping step previous to the extraction of the roughness variable using the 

Roughness ImageJ Plugin by Chinga and Dougherty (2002) 
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shows a hierarchical representation of the distances between the isolates. It shows a 

different number of clusters depending on the height its analyzed. By representing this 

analysis in a heatmap it is possible to visually assess how similar are the different variables 

and which ones have more weight for the grouping of the isolates. In this case we can see 

that some variables like Rsk, Contrast, Correlation, and others, are very different within a 

same group, which mean they could be less informative variables and bring some noise to 

the analysis.  

 

One of the multiple applications of a multiple feature extraction workflow like the one 

described here is Computer Based Image Retrieval (CBIR), an approach in which the use 

of a profile based on visual features is used for the classification and retrieval of images 

in a dataset. In this approach the extraction of features is the most critical steps, since 

them should be informative enough to create a profile that’s representative of the dataset 

(Choras, 2007). 

 

 

Figure 14: Boxplots representing the variation of the Mean Intensity feature amongst the different isolates 
and the three culture media utilized. In the PDA grown isolates the variation within the same isolates 
(variation amongst the replicas) is lower, something that does not happens when evaluating the other two 
culture media. 
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CONCLUSIONS 

A workflow for the image-based quantitative analysis of in planta inoculation assay of wheat 

leaves with Blumeria graminis f. sp. tritici using PlantCV and Python was developed. For 

the pixel segmentation stage, a naïve Bayes classifier was first trained and then executed 

over a dataset of over 9600 images. The segmentation yielded satisfactory results on 

separating the pixels in three classes with the aid of postprocessing. Six different disease 

related features were obtained as an output and were described statistically. Since it is 

Python based, this workflow could be use in multiple applications and implemented across 

multiple hardware platforms.  

A workflow for an image-based feature rich quantitative analysis from isolates of Neonectria 

ditissima grown in three different types of culture media was also developed as a part of 

this work. A pipeline for the extraction of 50 different image feature was implemented into 

the ImageJ software. These features where then analyzed from the quantitative and 

qualitative standpoint, showing to be more informative and variable when the isolates were 

grown on PDA media. Finally, a profile of the different isolates based on the extracted 

features was generated, which shows the potential of these approach for its use in image-

based profiling applications. 
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