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Abstract

The ever need for higher performance to cope with the high computational power de-

mands of new applications (e.g autonomous driving systems), forces industry to support

technology based on multi-processors system on chip (MPSoCs) in their safety-critical

embedded systems. MPSoCs usually include a network-on-chip (NoC) to interconnect

the cores between them and, with memory and the rest of shared resources. Unfor-

tunately, the inclusion of NoCs difficults achieving time predictability as network-level

conflicts may occur in many points in a distributed manner.

To overcome this problem, this thesis proposes a new time-predictable NoC design

paradigm where conflicts within the network are eliminated by design. This new paradigm

builds on top of the Channel Dependency Graph (CDG) in order to deterministically

avoid network conflicts. Our solution is able to naturally inject messages using a TDM

period equal to the optimal theoretical bound without the need of using a computa-

tionally demanding offline process. The network is integrated in a tile-based manycore

system and adapted to its memory hierarchy.

As a second main contribution, we propose a novel distributed dynamic scheduler that

is able to achieve peak performance close to a wormhole-based NoC design without

compromising its real-time guarantees. The scheduler builds on top of our NoC design

to exploit its key properties.

The results of our NoC show that our design guarantees time predictability avoiding net-

work interference among multiple running applications. The network always guarantees

performance and also improves wormhole performance in a 4 × 4 setting by a factor of

3.7× when interference traffic is injected. For a 8×8 network differences are even larger.

In addition, the network obtains a total area saving of 10.79% over a standard wormhole

implementation.

The proposed scheduler achieves an overall throughput improvement of 6.9× and 14.4×

over a baseline conflict-free NoC for 16 and 64-node meshes, respectively. When com-

pared against a standard wormhole router 95% of its network throughput is preserved
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while strict timing predictability is kept. This achievement opens the door to new high

performance time predictable NoC designs.

As a final contribution, we build a taxonomy of TDM-based NoCs with real-time prop-

erties. With this taxonomy we perform a comprehensive analysis to study and compare

from response time specific, to low resource implementation cost, through trade-off so-

lutions for real-time NoCs designs. As a result, we derive new TDM-based NoC designs.



Resumen

La constante necesidad de un mayor rendimiento para cumplir con la gran demanda de

potencia de cómputo de las nuevas aplicaciones, (ej. sistemas de conducción autónoma),

obliga a la industria a apostar por la tecnología basada en Sistemas en Chip con Pro-

cesadores Multinúcleo (MPSoCs) en sus sistemas embebidos de seguridad-crítica. Los

sistemas MPSoCs generalmente incluyen una red en el chip (NoC) para interconectar los

núcleos de procesamiento entre ellos, con la memoria y con el resto de recursos compar-

tidos. Desafortunadamente, el uso de las NoCs dificulta alcanzar la predecibilidad en el

tiempo, ya que pueden aparecer conflictos en muchos puntos y de forma distribuida a

nivel de red.

Para afrontar este problema, en esta tesis se propone un nuevo paradigma de diseño para

NoCs de tiempo real donde los conflictos en la red son eliminados por diseño. Este nuevo

paradigma parte del Grafo de Dependencia de Canales (CDG) para evitar los conflictos

de red de forma determinista. Nuestra solución es capaz de inyectar mensajes de forma

natural usando un periodo TDM igual al límite teórico óptimo sin la necesidad de usar

un proceso offline exigente computacionalmente. La red se ha integrado en un sistema

multinúcleo basado en tiles y adaptado a su jerarquía de memoria.

Como segunda contribución principal, proponemos un nuevo planificador dinámico y

distribuido capaz de alcanzar un rendimiento pico muy cercanos a las NoC basadas en

un diseño wormhole sin comprometer sus garantías de tiempo real. El planificador se

basa en nuestro diseño de red para explotar sus propiedades clave.

Los resultados de nuestra NoC muestran que nuestro diseño garantiza la predecibilidad

en el tiempo evitando interferencias en la red entre múltiples aplicaciones ejecutándose

concurrentemente. La red siempre garantiza el rendimiento y también mejora el rendi-

miento respecto al de las redes wormhole en una red 4× 4 en un factor de 3, 7× cuando

se inyecta trafico para generar interferencias. En una red 8 × 8 las diferencias son in-

cluso mayores. Además, la red obtiene un ahorro de área total del 10, 79% frente a una

implementación básica de una red wormhole.
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El planificador propuesto alcanza una mejora de rendimiento de 6, 9× y 14, 4× frente

la versión básica de la red DCFNoC para redes en forma de malla de 16 y 64 nodos,

respectivamente. Cuando lo comparamos frente a un conmutador estándar wormhole

se preserva un rendimiento de red del 95% al mismo tiempo que preserva la estricta

predecibilidad en el tiempo. Este logro abre la puerta a nuevos diseños de NoCs de alto

rendimiento con predecibilidad en el tiempo.

Como contribución final, construimos una taxonomía de NoCs basadas en TDM con

propiedades de tiempo real. Con esta taxonomía realizamos un análisis exhaustivo para

estudiar y comparar desde tiempos de respuesta, a implementaciones con bajo coste,

pasando por soluciones de compromiso para diseños de NoCs de tiempo real. Como

resultado, obtenemos nuevos diseños de NoCs basadas en TDM.



Resum

La constant necessitat d’un major rendiment per a complir amb la gran demanda de po-

tència de còmput de les noves aplicacions, (ex. sistemes de conducció autònoma), obliga

la indústria a apostar per la tecnologia basada en Sistemes en Xip amb Processadors

Multinucli (MPSoCs) en els seus sistemes embeguts de seguretat-crítica. Els sistemes

MPSoCs generalment inclouen una xarxa en el xip (NoC) per a interconnectar els nuclis

de processament entre ells, amb la memòria i amb la resta de recursos compartits. Des-

afortunadament, l’ús de les NoCs dificulta aconseguir la predictibilitat en el temps, ja

que poden aparéixer conflictes en molts punts i de forma distribuïda a nivell de xarxa.

Per a afrontar aquest problema, en aquesta tesi es proposa un nou paradigma de disseny

per a NoCs de temps real on els conflictes en la xarxa són eliminats per disseny. Aquest

nou paradigma parteix del Graf de Dependència de Canals (CDG) per a evitar els con-

flictes de xarxa de manera determinista. La nostra solució és capaç d’injectar missatges

de mra natural fent ús d’un període TDM igual al límit teòric òptim sense la necessitat

de fer ús d’un procés offline exigent computacionalment. La xarxa s’ha integrat en un

sistema multinucli basat en tiles i adaptat a la seua jerarquia de memòria.

Com a segona contribució principal, proposem un nou planificador dinàmic i distribuït

capaç d’aconseguir un rendiment pic molt pròxims a les NoC basades en un disseny

wormhole sense comprometre les seues garanties de temps real. El planificador es basa

en el nostre disseny de xarxa per a explotar les seues propietats clau.

Els resultats de la nostra NoC mostren que el nostre disseny garanteix la predictibilitat

en el temps evitant interferències en la xarxa entre múltiples aplicacions executant-se

concurrentment. La xarxa sempre garanteix el rendiment i també millora el rendiment

respecte al de les xarxes wormhole en una xarxa 4×4 en un factor de 3, 7× quan s’injecta

trafic per a generar interferències. En una xarxa 8×8 les diferències són fins i tot majors.

A més, la xarxa obté un estalvi d’àrea total del 10, 79% front una implementació bàsica

d’una xarxa wormhole.
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El planificador proposat aconsegueix una millora de rendiment de 6, 9× i 14, 4× front la

versió bàsica de la xarxa DCFNoC per a xarxes en forma de malla de 16 i 64 nodes, res-

pectivament. Quan ho comparem amb un commutador estàndard wormhole es preserva

un rendiment de xarxa del 95% al mateix temps que preserva la estricta predictibilitat

en el temps. Aquest assoliment obri la porta a nous dissenys de NoCs d’alt rendiment

amb predictibilitat en el temps.

Com a contribució final, construïm una taxonomia de NoCs basades en TDM amb pro-

pietats de temps real. Amb aquesta taxonomia realitzem una anàlisi exhaustiu per a

estudiar i comparar des de temps de resposta, a implementacions amb baix cost, pas-

sant per solucions de compromís per a dissenys de NoCs de temps real. Com a resultat,

obtenim nous dissenys de NoCs basades en TDM.



Chapter 1

Introduction

The market of embedded systems has been showing a constant growth over the last

years. According to the report by Transparency Market Research [4], embedded systems

market revenue will rise to US$338.34 bn by 2027 with a compound annual growth rate

(CAGR) of 6.4% from 2019 to 2027. This market growth is owing to the implementation

of embedded systems on a wide range of applications such as telecommunication, au-

tomotive, healthcare, consumer electronics, aerospace, and defense, among others. The

increasing demand of Industry 4.0 solutions or automation solutions to improve manu-

facturing speed in plants, the adoption of 5G technology, electronic shelf label markets

and telemedicine are expected to fuel the embedded automation computers market even

further [5–7].

There are several major subsystems in the field of embedded automation that still share

several requirements related to chip design. They must be appropriately low power,

highly reliable, secure and must be programmable. The complexity of these systems

is growing, as more and more applications are being integrated. Most of subsystems

target application-specific hardware platforms. However, the general-purpose platforms

could be manufactured in smaller quantities with less developing and fabric cost. Unfor-

tunately, current commercial off-the-shelf (COTS) many-core processor designs cannot

be used in the context of autonomous safety-related applications since safety standards

(e.g ISO26262 [8] in the automotive domain) impose strict requirements that cannot be

generally met with these platforms.

1



2 Chapter 1. Introduction

Figure 1.1: Different MPSoC applications in real-time systems.

Processing cores have become important in such subsystems and must sit in a system-

on-chip (SoC) architecture. Several other pieces such as memory, sensors, actuators and

several other pieces of IP interfaced via Network-on-Chip (NoC), the focus of this thesis,

are connected to the cores.

New SoC architectures are emerging to help manage cost, power consumption and

weight [9, 10]. Multi-Processor System-on-Chip (MPSoC), which combines the advan-

tages of parallel processing with the high integration capability of SoC seems to be the

most appropriate solution (see Figure 1.1).

Because of the nature of communication, the requirements imposed by different appli-

cation domains (soft/hard real-time, safety critical, network topology, and so on) tend

to have low data rates, small data packets, and typically require real-time capabilities,

which may demand deterministic or time bounded data transfers. The need to guaran-

tee a predictable response demands the use of appropriate scheduling schemes. However,

achieving predictability in safety-critical MPSoCs is challenging due to the use of shared

resources such as the system interconnect [11]. The NoC implemented in real-time MP-

SoCs is, therefore, impacted by this requirement and needs to be designed accordingly.
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Typically, an MPSoC is composed by several IP cores and memory elements intercon-

nected by a network-on-chip though a Network Interface (NI) module. The NoC is com-

posed of several crossbar routers, interconnected between them and building the topology

of the NoC. The network design is crucial in an MPSoC as all transmissions between cores

and memories use the NoC. NoCs play an important role to enforce predictable and deter-

ministic traffic in MPSoCs and need some effort to tackle the communication contention

problem. There are three kinds of contention: source-based contention (many traffic

flows from the same source at the same time), destination-based contention (many mes-

sages target the same destination at the same time), and path-based contention (many

transmission flows sharing the same network resources at the same time). Bandwidth

reservation is another expected property in real-time systems that needs to be taken

into account by the scheduler at message injection as well as by the NoC design to en-

force traffic isolation between different applications. In addition, system latency and

throughput are affected by the network interconnect and the way is designed is crucial

for real-time systems.

To address the communication contention problem, Time Division Multiplexing (TDM) [2,

12–15] is the most popular way to ensure time predictability in NoCs. Relying on TDM

is one of the classical methods of providing configurable bandwidth reservation, guaran-

teed latency and throughput. TDM NoCs use slot tables that dictate resource reserva-

tions. The reservation made on the various resources ensure that communications follow

their path without waiting. However, TDM-based NoCs largely ignore the fact that

the application needs may change during execution, depending on its state. Besides,

some works show that is possible to find a scheduling for TDM that allows achieving

contention-free communications by using a computationally demanding offline process.

This offline scheduling process puts serious limitations to find optimal scheduling periods

for moderate NoC sizes. The use of sub-optimal scheduling periods induce performance

limitations.

One way of taking into account the application state is by using a dynamic scheduler

enforcing real-time guarantees. The combination of TDM NoCs with a dynamic sched-

uler reassigns unused TDM slots improving performance while preserving strict real-time

guarantees. This technique also ensures a strong temporal isolation between communi-

cation flows needed in safety-critical MPSoCs.
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The main objective of this thesis is, thus, to introduce the design and implementation

of a novel and efficient time-predictable network for real-time systems in the context

of MPSoC. The challenge for designing such a network is to avoid all potential mes-

sage conflicts while preserving constant network message latency. To do so, conflict-free

transmission is based on using a time-division multiplexing (TDM) window.

1.1 Contributions of the Thesis

In the first contribution of this thesis, we propose a new methodology based on time-

division multiplexing (TDM) to eliminate packet conflicts (contention) thus, tailoring the

performance bounds of the NoC to the needs of the different applications (see Figure 1.2

left side). This methodology is applied to the whole NoC design (marked with M in

red circles) at right side, and allow us to map resources by time cycles to avoid packets

using the same resources at the same time (conflicts). With the addition of delays

at output ports at specific routers we ensure transmissions are naturally serialized and

conflicts are avoided. With this methodology we build a predictable conflict-free NoC and

perform a functional validation. Our NoC named DCFNoC, is able to naturally inject

messages using a TDM period without the need of using a computationally demanding

offline process to find the appropriate schedule. DCFNoC is suitable for mixed-criticality

systems since it provides the timing isolation requirements imposed by safety-critical

standards to consolidate several tasks of different criticality levels.

As a second contribution, we implement our predictable NoC in an MPSoC system (see

Figure 1.2 left side). To do that, we implement both routers and NI modules and analyse

the maximum attainable frequency and area overhead of implemented modules (marked

with I in red circles).

As a third contribution, and in order to improve peak performance, we propose a dynamic

and distributed scheduler (see Figure 1.2 left side). This scheduler builds on top of the

predictable NoC to exploit its unique features. To integrate the distributed scheduler,

several modules have been implemented at crossbar routers (marked with S in red circles).

As a final contribution, and for comparison purposes, we build a methodology analysis

of TDM-based NoCs with real-time properties (see Figure 1.2 left side). With this
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Figure 1.2: Main contributions to safety-critical MPSoC.

methodology we perform a comprehensive analysis to study and compare real-time NoCs

trade-offs such as response time specific and implementation cost. As a result, we also

derive new TDM-based NoC designs.

All in all, we can list the following specific and detailed contributions:

• Study the most recent related work in network-on-chip for real-time systems.

• Formally describe DCFNoC theory and prove that when using this NoC paradigm

packet transmission is conflict-free.

• Describe a new router architecture design to apply DCFNoC theory.

• Provide timing guarantees and scalability comparison with other state-of-the art

proposals.

• Evaluate the flexible bandwidth allocation property that makes DCFNoC suitable

for mixed-criticality systems since it provides the timing isolation requirements im-

posed by safety critical standards to consolidate several tasks of different criticality

levels.
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• Integrate DCFNoC in a manycore processor, adjusting the design to meet deter-

minism at application level.

• Describe how DCFNoC can be smoothly integrated in a manycore with few changes

in the network interface.

• Provide performance evaluation of real workloads in the manycore to show real-time

application communications behavior and thus tailoring the performance bounds

of the NoC to the needs of the different applications.

• Propose a new NoC design that provides top peak performance while preserv-

ing strict real-time guarantees using a dynamic scheduler that builds on top of

DCFNoC and exploits its properties.

• Describe the dynamic scheduler, evaluate the peak performance improvements over

the baseline DCFNoC design and provide a scalability analysis.

• Analyse area and frequency of all modules in the new NoC design.

• Explore several TDM-based NoC solutions with real-time properties in order to

compare DCFNoC with other time-predictable NoC solutions.

In summary, this thesis provides a new time-predictable NoC design paradigm where

conflicts within the network are eliminated by design. The network can be smoothly

integrated in the manycore system adjusting the design to meet determinism at appli-

cation level. Our proposed NoC designs are suitable for mixed-criticality systems since

they provide the timing isolation requirements imposed by safety critical standards to

consolidate several tasks of different criticality levels.

1.2 Thesis Outline

This thesis is organized as follows: Chapter 1 has introduced the thesis, objectives,

and contributions. Chapter 2 provides the necessary background on NoCs and TDM

scheduling. Related work to recent Real-Time NoCs based on TDM allocation as well

as COTS NoCs is discussed in this chapter. Specifically time-predictability in NoCs

and systems with shared resources. Evaluation methodology and experimental platform



for implementations are also presented in this chapter. Chapter 3 describes the details

of the design and implementation of the time-predictable conflict-free network on chip.

Chapter 4 provides the integration of the network in a manycore processor. Chapter 5

presents the distributed dynamic scheduler that builds on top of our conflict-free network

design. This scheduler is needed to improve peak performance while preserving strict

real-time guarantees. Chapter 6 presents new methodologies to build time-predictable

network solutions and compare them with our conflict-free network. Finally, Chapter 7

summarizes this thesis, discusses future work, and enumerates the related publications.





Chapter 2

Background, Related Work and

Methodology

This chapter provides basic knowledge and the most relevant related work for NoCs and

TDMA, specially real-time NoCs and COTS NoCs.

First, we introduce background concepts regarding NoCs, real-time systems and time

predictability. Second, we introduce the related work on real-time NoCs with static and

dynamic scheduling.

Finally, we present our design and implementation methodology, as well as methods for

comparison purposes. These methods include simulation at register-transfer level (RTL),

cycle accurate simulations as well as area and frequency implementation analysis.

9
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2.1 Background

2.1.1 NoCs

A Network-On-Chip (NoC) is an interconnection network implemented inside an inte-

grated circuit (IC), where logical nodes, known as IP cores, are interconnected each other

in a System-On-Chip (SoC). NoCs main goal is to provide throughput and communica-

tion services for the chip, being efficient enough from both power and performance point

of view.

The NoC uses switching mechanism, routing techniques and flow control strategies typi-

cally derived from the field of high-performance interconnection networks. Moreover, in

the field of NoCs, these methods must be adapted to chip constraints which are different

from traditional interconnection networks.

One important step at network design consists on determining the network topology.

The topology defines the interconnection pattern between network devices and has a

important impact in terms of cost and performance for the final system. This impact

is due to the number of links and switches1, its network diameter and potential number

of parallel communications (as determined by the bisection bandwidth). Other aspects

are related with the physical implementation which affects signal propagation latency,

network clock frequency, area and power consumption.

Nowadays we can differentiate four types of network topologies [16]:

• Shared medium networks (bus): In this type of network all the nodes share

the transmission medium and only one node is able to start transmitting at a time

meanwhile the rest are receiving the information.

• Switched media networks: This network is formed by switches and nodes. In

this type of network the nodes do not share all the switches, thus there is the

possibility to transmit concurrently. We can differentiate:

– Direct networks: Switches are attached at each node and these are inter-

connected through point-to-point links.
1In this thesis we use the terms switches and routers with the same meaning. Those devices connecting

end nodes and building the topology.
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Figure 2.1: Direct topology at left and indirect topology at right. Nodes are repre-
sented by circles.

– Indirect networks: In this type of network, switches are also attached at

each node and switches between them are connected through point-to-point

links creating stages of switches [17].

– Hybrid networks: This type of network includes a combination of the pre-

vious types.

Direct networks are point-to-point networks with a regular topology where each node

has a switch attached. On the other hand, indirect networks use point-to-point com-

munication links though switches that can be connected to none, one or several nodes

and also to other switches. These type of networks commonly have irregular multistage

shape. Figure 2.1 shows and example of direct and indirect network. In this thesis we

implement several direct networks, specifically 2D mesh networks.

NoCs must have low area overhead and be power efficient. It is important to highlight

that they are usually implemented in a single 2D plane. Because of that, 2D network

topologies have been common for on chip implementation, like the Tilera many-core

processor family [18] and the Intel 80-core Polaris chip [19]. In fact, the 2D mesh topology

is preferred due to its natural suit to a 2D surface. Link length is regular and allows a

high degree of modularity. Network area increases linearly with the number of nodes.

However, network bisection bandwidth increases linearly when the system size increases

quadratically, which poses a system scalability problem.
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2.1.1.1 Switch Architecture

The basic building block component in a NoC is the switch (or router). The switch pro-

vides communication between input and output ports following routing rules. Switches

are connected to end nodes or to other switches through links. Switch architecture

is determined by the switching technique that is supported and drastically affects the

performance of the entire network.

Typically, a switch architecture is composed by the following elements:

• Input Buffer (IB): It temporarily stores the incoming units of information (typically

called flits) from the associated incoming port and requests a routing operation to

the next component.

• Routing unit (RT): Is in charge of computing the message’s output port following

a determined routing algorithm (see Section 2.1.1.4). At the same time, it sends a

request to the virtual channel allocator (VA) and switch allocator (SA).

• Virtual channel Allocator (VA): This module arbitrates request from all input

buffers and assigns one free output buffer (typically called virtual channels, see

Section 2.1.1.3.1) per request.

• Switch Allocator: This arbiter grants the output port permissions to message flits.

This module can be implemented to arbitrate all output ports (centralized) or

instantiated per output port.

• Output crossbar (XOP): This module performs flit multiplexing for one or multiple

output ports. This multiplexer is configured by the SA. Incoming flits can come

from different incoming ports and from each virtual channel.

Figure 2.2 shows a baseline switch architecture with only one centralized arbitration

unit [20], [21], the switch allocator. Each input port implements different input buffers,

where each physical channel decomposes into several time-multiplexed logical channels

or virtual channels (explained in more detail in Section 2.1.1.3.1). Each virtual channel

applies individual routing decisions. As all switch buffers are centralized in only one



Chapter 2. Background, Related Work and Methodology 13

Output Port #1Input Port #1
OB

Output Port #NInput Port #N

MxM centralized 
Switch Allocator

IB

IB

IB

IB

RT

#1

#M

#1

#V

#1

#V

RT
XOP

MxM

#1 #N

Figure 2.2: Baseline switch architecture. Centralized switch allocation for virtual
channel switches

arbiter, the complexity of the arbiter may be high. The main drawback of a centralized

arbiter is the delay.

In order to reduce the arbiter complexity, the arbitration stage may be separated using

several arbiters, one per output port. In this case, every switch allocator arbitrates for

free buffers to the same output port [22]. Incoming request signals may come from any

incoming port RT module, thereby there is the possibility to get several incoming requests

form different incoming ports and from different input buffers at the same time (at the

same clock cycle). As switch allocator arbiters grant permissions for that output port,

the arbiter complexity is reduced to one output port. Incoming requests, like VA arbiter,

come from routing modules and thus could arrive in the same clock cycle. Moreover, SA

arbiter gets requests from different incoming ports and from each one input buffers (also

called virtual channels). As the output crossbar is configured by the SA associated to

that output port, this multiplexer complexity is also reduced to one output port. Note

that, to save area and power, buffers at output ports are usually not implemented. In

this thesis we assume this router architecture as the baseline.

2.1.1.2 Flow Control

Flow control avoids loosing information between switches. To do so, there is a communi-

cation protocol between two neighbour nodes. The communication protocol establishes

the flit as the minimum information unit that can be flow controlled. A message can be

decomposed into packets, which incorporates routing information (therefore each packet
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Figure 2.3: Stop&Go flow control.

is an independent transfer unit). Then, a message or a packet is decomposed into flits [23].

In this case, there is a header flit with routing information and the payload flits. Finally,

a tail flit is also identified.

Flit size is variable and depends on the different network implementations. In fact, flit

size may be equal to a complete message size (or packet) or a few bits of it. The flit is

never forwarded until its storage is ensured without loss of information.

The flit transmission can be further split at the physical level into phits, representing the

information unit that can be transferred in a single clock cycle through a link. Typically,

in on-chip networks, flit size equals to phit size.

Flits are stored in buffers implemented at switches. Flow control techniques are in charge

of determining when the flits can be forwarded according to the capacity of the buffers

and the link bandwidth. There are two main flow control mechanisms: Stop&Go and

credit-based. The Stop&Go mechanism is based on every receiving buffer having two

thresholds to notify the sender to activate or deactivate the flow of flits. As Figure 2.3

shows, thresholds are setup taking in account the round-trip time (RTT) [24].

With credit-based flow control, each sender implements a credit counter for every link

to indicate the number of flits that can still be stored at the buffer on the receiver side.

The drawback of this flow control mechanism is the amount of credit signaling which

could impact energy consumption. On the contrary, as Figure 2.4 shows, buffer size is

reduced to round-trip time, being lower than buffer size used in Stop&Go.
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2.1.1.3 Switching

Switching techniques manage network resources in order to allocate and forward mes-

sages/packets inside the switches, while trying to minimize the message resource alloca-

tion time to maximize performance. These techniques, set connections between buffers at

the input ports and output ports. Switching strategies impose several design constraints

in the switch that impacts performance, manufacturing costs and power consumption of

the network. Next, we describe the main switching techniques applied in NoCs:

• Circuit Switching (CS). This technique establishes a reserved path between

source and destination node before starting messages transmission. This is achieved

by injecting short control messages containing the destination of the message.

• Store and Forward (SAF). This strategy is performed at message granularity.

When a message arrives to a switch the whole message is stored at the input port

buffer before starts its transmission to the next switch.

• Virtual Cut-Through (VCT). In this technique messages are transmitted to the

next switch when the header just arrives, and before the whole message arrives. In

case the message can not be forwarded it must be fully stored in the input port

buffer [25].

• Wormhole (WH). In wormhole switching input port buffers only have to provide

enough space to store few flits, depending on the round-trip time delay, instead of

the whole message. The round-trip time is the elapsed time between the informa-

tion transmission and the corresponding acknowledgement is received. In WH the

allocation is more efficient and, as a consequence, less power consumption in the

NoC. However, wormhole may carry higher network congestion as messages can
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Figure 2.5: Virtual cut-through and Wormhole switching techniques.

be temporarily blocked, keeping several switches occupied (also called head-of-line

blocking [26]). Figure 2.5 shows how VCT and WH work.

2.1.1.3.1 Virtual Channels (VC)

Virtual channels are designed to improve switching efficiency or to provide traffic iso-

lation. Basically, the physical channel is multiplexed in several FIFO queues at input

ports. Every VC is associated to a buffer and an individual flow control is performed on

each VC [27]. When using VCs, if a blocked message reserves a virtual channel, other

messages have the remaining virtual channels available and therefore can be forwarded

using different virtual channels if the requested output port is available, see Figure 2.6.

Thus, the head-of-line blocking problem is avoided. The use of virtual channels is not

restricted to a specific switching mechanism and have an impact on area overhead. Orig-

inally, virtual channels have been used as a network congestion solution [28, 29], however

they can also be used to improve network performance or to provide traffic isolation,

avoid deadlocks in routing algorithms or prevent protocol-level deadlocks [30].



Chapter 2. Background, Related Work and Methodology 17

Figure 2.6: Virtual channels operation example.

2.1.1.4 Routing Algorithm

Routing is a fundamental aspect in a network. The routing algorithm decides which

path the message has to follow to be effectively routed from its source to its destination

through switches. The message will use the network resources following the switching

and flow control techniques. The main goal of a good routing algorithm consists of

spreading messages along the network in a well-balanced manner to minimize network

congestion and using as many paths as possible. The designer must find a trade-off

between efficiency, flexibility and implementation cost.

The routing algorithm can be deterministic or adaptative. In a deterministic routing a

message follows always the same path from the source to the destination node, regardless

of the network state (e.g. source routing). Otherwise, an adaptative routing algorithm

manages to take alternative paths along the whole route in case of congested or faulty

components.

A deterministic routing algorithm [23] is simple and its implementation is very efficient

with low cost. Besides, message order is guaranteed, since the routing path depends only

on the source and the destination node. On the other hand, an adaptative routing algo-

rithm does not ensure in-order message delivery but offers alternative paths to increment

the routing flexibility [31]. All this may lead to a higher implementation complexity and

cost.

One feature to take into account in routing is the situations when messages block. We can

differentiate three blocking situations: deadlock, livelock and starvation [28]. Deadlock is

produced when the messages are blocked due to busy requested resources (buffers) and
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Figure 2.7: Deadlock situation due to busy requested resources (buffers) between
messages in a 4× 4 mesh. Each colour represents a message.

they never move forward. As Figure 2.7 shows, these messages may block others and so

on until forming a cycle between them, hence they never move forward.

A routing algorithm is deadlock-free when its channel dependency graph is acyclic. The

channel dependency graph represents all the dependencies between two channels deter-

mined by the routing algorithm. There is a dependency between two channels Ci and Cj

when the algorithm requests the channel Cj for a message which is currently assigned to

channel Ci. When we build a channel dependency graph and it is cycle free we can ensure

that the routing algorithm is deadlock-free at network level. There are other algorithms

that allow cycles at their channel dependency graph, and still they are free of blocking

situations (for more details we recommend to read the Duato’s theory [28]).

The livelock problem happens when a routing algorithm uses non-minimal paths and a

message is always re-routed without reaching its destination. This situation may happen

when the message has lower priority than others. This problem can be solved with an

arbitration mechanism to avoid this situation to happen indefinitely to a message. In

the same way, the starvation problem appears when a message is never properly routed.

This situation may happen due to a lower priority to use the resources. Again, a fair

arbiter for all messages can avoid this situation.

In this thesis we use the Dimension Order Routing (DOR [28]) algorithm which is de-

terministic and its channel dependency graph is acyclic. The DOR routing algorithm

routes messages in a established dimension order. For instance, in a 2D mesh topology,
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Figure 2.9: Segment-based routing with routing restrictions placed at partitions to
avoid deadlock situations.

the routing algorithm sends messages along the X dimension until the offset in that di-

mension is cancelled, then the message is routed along the Y dimension. This algorithm

is also known as XY routing algorithm in the context of 2D meshes. Figure 2.8 shows

an example of DOR solving the blocking situation the previous last figure introduced.

A way to achieve isolation in NoCs is by using Segment-based Routing algorithm (SR)

[32]. This routing algorithm is deterministic and allows to split the network in disjoint

sets of interconnected switches and links called partitions. Partitions are used to avoid

packets from different partitions to compete between them. In addition, some routing

restrictions are placed to break potentially dependency cycles, hence its channel depen-

dency graph is acyclic. The routing restrictions avoid packets to take some turns to

preserve deadlock freedom while connectivity is kept. Figure 2.9 shows an example of

SR with different partitions and the corresponding routing restrictions placed.
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2.1.1.5 Arbitration

The arbitration unit is located at every switch and typically are per output port. Multiple

input messages may request the same output port at the same time. In this scenario,

the arbitration unit decides which message is granted to access the output port. This

function can be implemented in a centralized or distributed way. If implemented in

a centralized unit the arbiter inputs will be all request signals from every input port.

Contrary, in a distributed way the arbiters will be scattered between the input and/or

output ports [22].

A good arbitration unit must ensure the maximum match between requests and resources

while ensuring fairness between all requestors. Starvation is one of the main problems in

arbitration. This problem arises when some requests are never granted. An easy solution

to avoid starvation is to implement a fair arbiter such as the round-robin arbiter.

2.1.2 Real-Time Systems

In the recent years Real-Time systems have grown in demand in the market specially in

industrial environments. Real-time systems have to respond within a stipulated period

of time to ensure the system functionality. Timing constraints are imposed by the real

behaviour of the external world to which the system must respond or control. One of the

most important features is the achievement of predictability in guaranteeing a bounded

response time for software executing in these systems. Those real-time systems can be

classified into four groups, depending on the accomplishment of timing restrictions.

• Hard real-time systems. These systems must respond after a strict set of deadlines,

and missing a deadline must be handled appropriately to avoid a system failure.

In critical systems, system failures may result on catastrophic consequences such

as system crash or loss of human lives. These systems are also called safety-critical

systems and are the focus of this thesis.

• Firm real-time systems. They have tolerable deadlines but it will affect the quality

of the service.



Chapter 2. Background, Related Work and Methodology 21

• Soft real-time systems. These systems make an effort to reach deadlines but do not

cause a high impact if a deadline is missed. Indeed, the result can still be valid to

the system.

• Non real-time systems. The system functionality is not timing dependent.

2.1.2.1 Safety-Critical Real-Time Systems

MPSoCs are increasingly considered in safety-critical systems to cope with the high com-

putational power demands of new applications (e.g autonomous driving systems). Un-

fortunately, current commercial off-the-shelf (COTS) manycore processor designs cannot

be used in the context of autonomous safety-related applications since safety standards

(e.g. ISO26262 [8] in the automotive domain) impose strict requirements that cannot

be generally met with these platforms. Some of these restrictions are related with the

response time. Ensuring predictability in MPSoCs is challenging due to its increasing

functionality and complexity.

The use of manycore processor architectures was the solution for the industry to ac-

complish with high performance demands with better area costs. Moreover, the use of

schedulers allows to maximize resource utilization while meeting application constraints.

However, multi-processors can suffer from time-related delays caused by resource sharing

(e.g. interconnection networks, shared caches, buses and main memory). Furthermore,

potential conflicts grow quickly as the number of cores and/or the size of the NoC in-

crease. Moreover, as interferences may occur between independent applications, they are

difficult to predict and the system must be designed accordingly.

In this thesis, we enforce predictability in manycore architectures to ease their adoption

in safety-critical applications.

2.1.2.2 Worst Case Execution Time (WCET) Estimates

Providing timing analysis in manycore processor architectures is challenging due to the

use of shared resources. In manycores, execution time is heavily influenced by the poten-

tial interference of the applications running concurrently. Safety-critical systems require

freedom from interference for SW elements integrated in the system. This translates
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into being able to determine the WCET of each task that is executed in the system so

that response time of the system is guaranteed to be below a given threshold. Thus, in

safety-critical systems a WCET estimate is mandatory to meet the certification process

requirements.

Most methods for finding WCET rely on approximations (rounding upwards when there

are uncertainties) since the exact WCET is often unobtainable [33]. In the context of

shared resources, an upperbound to the maximum contention suffered when accessing

a particular resource is required. Research in WCET analysis focuses on reducing the

overestimation to make the estimated value low enough to be valid for the design engineer.

There are two typical methods to compute shared resource contention between concurrent

running tasks. In the first one, the latency suffered by a task to access a shared resource

can be accounted as part of the WCET estimation process. Thus, for every shared

resource we compute a latency upperbound affected by potential interferences.

In order to upperbound the impact of all potential interferences, at analysis time, every

access to a shared resource is delayed its latency upperbound.

The second method of accounting for contention among accesses to shared resources is

to handle contention in the schedulability analysis. This analysis is performed at system

integration time, hence the exact set of tasks is known and also taking part in the

system (communication flows). In order to compute the contention impact, an addition

of the WCET estimates computed in isolation and the maximum contention potentially

generated due to interference by the tasks running concurrently can be performed.

There are pros and cons for every method. The first suffers from over-estimation and is

independent of the task [34]. The second provides tight WCET estimates, however, we

need to know the tasks that will be executed at system deployment.

In this thesis we perform a maximum latency estimation at network level. Thus, for

WCET estimation, we only consider the interferences of the network. WCET analysis

considering other sources of execution time variability is out of the scope of this thesis.
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2.1.2.3 Time Division Multiple Access (TDMA)

TDMA is one of the classical methods to avoid conflicts in shared-medium networks.

This technique allows to use the same channel among multiple users by splitting access

in different time slots. TDMA is used in a wide set of systems such as 2G cellular systems,

GSM, satellite communications systems and passive optical networks. In automotive or

avionics domains, TDMA is used in Byteflight [35] and FlexRay [36] networks.

In the field of NoCs, Time Division Multiplexing (TDM) is one of the traditional methods

to ensure predictability. By using TDM arbiters the switch is multiplexed in the time

domain thus providing predictability. TDMA arbitration is based on a set of time slots

(scheduling period or TDM window), where each slot can be assigned to a node to control

injection slots.

The TDMA slot assignment targets avoiding conflicts between different communication

flows at network links. The TDMA slot assignment must take into account the topology

and the routing algorithm to derive conflict- free paths for every source-destination pair

of end nodes. To illustrate how a conflict can affect two communication flows, lets assume

a 2× 2 mesh using the Dimension Order Routing DOR [6] algorithm (see Figure2.10a).

Then, we assign the injection slot 0 to node 0 and slot 1 to node 1. From this topology

and based on the routing algorithm we show the resulting paths from time T0 to time

T3 (see Figure 2.10b). For instance, path 0→ 3 will cross links {0− 1}, {1− 3} whereas

path 1 → 3 will cross link {1 − 3}. Notice that these two paths, in red, may create

conflicts since they share {1−3} link and ejection link (red e3) at router 3 (ejection links

are represented by (e#).

The goal of this thesis is the design of TDM-based NoC solutions with scheduling periods

equal to theoretical bounds and not requiring computationally demanding scheduling

processes.

2.1.2.4 Real-Time NoCs

Real-time systems impose complex constraints for interconnections networks and trans-

mission delays must be time-bounded to guarantee a latency. In this regard, a NoC

for real-time systems [37], [38] must provide guaranteed services in terms of bandwidth
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(a) 2×2mesh network. End
nodes shown as circles.

(b) Conflict example
for paths 0 → 3 and
1 → 3 following DOR
routing and using the
assigned TDMA injec-

tion slots.

Figure 2.10: Conflict example between different communication flows at two network
links in a 2× 2 mesh network using the DOR algorithm.

and end-to-end latency. A NoC with Quality of Service (QoS) has the ability to fulfill

application communication requirements.

In terms of QoS we can classify NoC designs into best effort services (BE) and guaranteed

services (GS) [39]. A BE NoC is assumed to provide lossless transmission without QoS

support, hence lack of timing guarantees. On the other hand, GS NoC is able to ensure

performance guarantees in a bounded period of time fulfilling the real-time predictability

demands. Accordingly, GS NoCs are the main focus in this thesis. Next we describe the

existing alternatives for real-time NoCs

Circuit-Switched (CS) NoCs are based on path reservation from the source node. Once

the communication is reserved the packets start being injected. This technique requires

path setup, data transmission and path release phases [40]. A NoC request latency covers

from source node request till whole data transmission is completed, however CS NoCs

do not provide setup latency bounds and suffer from scalability.

Packet-Switching (PS) NoCs are based on priorities using flow-control, routing algorithm

and arbiters to transmit data in packets through the NoC. The priority arbitration rules

and scheduling policies are used to constrain the influence of co-runner tasks interferences

to simplify the WCET estimation and provide performance guarantees depending on the

service priority [41], [42], [43]. Several approaches use buffers at input port switches
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(virtual channels) to allow a higher priority packet to preempt a lower priority packet [44].

Virtual channels (VC) are needed to store packets blocked during its advance. VC-based

NoCs are able to isolate interference between traffic flows. Priority based PS-NoCs must

ensure the lack of starvation between different priority flows.

TDM-based NoCs are an alternative to achieve predictability with higher resource uti-

lization [45]. Shared resources are associated to time tables to define the TDM period

of use where each time slot is exclusively reserved for a specific transmission [46]. A

global TDM scheduler coordinates TDM tables to distribute shared resources to avoid

interferences. By using a TDM scheduler contention free communications through the

network are guaranteed. Hence, end-to-end latencies are guaranteed as communication

flows would not suffer from delays. Switch architecture is also simplified as we do not

need buffers and flow control mechanism [12]. One of the major challenges in TDM NoCs

is the schedule computation process to harmonize all flows among them. TDM-based

NoCs are suitable for mixed-criticality systems since TDMA provides the timing isolation

requirements imposed by safety critical standards to consolidate several tasks of different

criticality levels.

Research in TDM-based NoCs [1] [47] shows that for the most common NoC topologies

it is possible to find an scheduling for time-division multiplexing that allows achieving

conflict-free communication for arbitrary traffic patterns. However, most of TDM-based

approaches rely on a computationally demanding offline scheduling process. The of-

fline process used in traditional TDM proposals puts serious limitations to find optimal

scheduling periods for moderate NoC sizes [1]. Thus, TDM approaches for relatively large

NoCs end up using sub-optimal solutions to find computationally affordable conflict-free

schedules [47]. Regarding WCET calculus TDMA avoids tasks interferences on a shared

resource, hence WCET of a task is not affected by the concurrent running tasks. The

TDMA process isolates tasks providing predictability and simplifying the WCET esti-

mation.

Other approaches combine the use of virtual channels with the time division multiplexing

to provide isolation at domain level (groups of VCs). These techniques ensure contention-

free communications between different domains but not between VCs in the same domain.

TDM scheduling is applied at domain level. In the next section, state-of-the-art real-time

NoCs and COTS NoCs are discussed.
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2.2 Related Work

2.2.1 State-Of-The-Art COTS NoCs and Real-Time NoCs

Research in real-time NoCs can be classified into (1) analysis of COTS NoCs perfor-

mance guarantees and (2) real-time specific NoCs. Works focusing on the analysis of

the real-time properties of COTS NoCs (e.g wormhole NoCs) have shown that although

performance guarantees can be achieved with these designs the achieved guarantees are

generally poor when time composability aspects are also considered [48].

Many NoC proposals rely on virtual channels to ensure non-interfering operations across

domains [49], [2], [50]. These solutions implement one domain buffer at each switch input

port. Thus, no contention arises between different domains but only between VCs within

the same domain which improves performance guarantees with respect to conventional

wormhole NoC designs. In SurfNoC [49] authors implement a deterministic scheduling

between domains creating a wave-like advance of messages. In PhaseNoC [2] authors

propose a deterministic arbitration where a different scheduling domain is triggered in

the different switch stages in order to avoid message delays along the whole path. Ad-

ditionally, in [50] real-time and best effort messages are scheduled in a different way in

order to provide better guaranteed throughput and fulfill application requirements.

Another existing approach to achieve predictable NoC behaviour is using virtual channel

prioritization with flit-level preemption [51]. This approach achieves tight latency bounds

for the highest priority flows. In general, approaches based on using VCs find limitations

due to the significant amount of resources required.

Many previous real-time NoC architectures rely on time-division-multiplexing to achieve

predictable message delivery. However, TDMNoCs have difficulties in finding the optimal

schedules. TDM schedules can be statically [12], [13], [14], [52], [1], [53], [47], [54] or

dynamically computed [55] and may be placed locally at each switch [55] for distributed

routing or globally in the network interfaces (NIs) for source routing [12], [14].

The AEthereal NoC was among the first in this class of architectures: uses a vir-

tual switching network to provide guaranteed services (GS) for performance-critical and

message-switched best-effort (BE) network for applications with fewer requirements. It
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uses an optimized mechanism for the static allocation of the frames which is possible

thanks to the design-time knowledge of the communication requirements of target appli-

cations. AEthereal uses static distributed TDM slot tables contained in the switches that

allows source routing. Aelite, a lighter version with only GS support was proposed to

further simplify switches [13]. In this network routing is done through message headers

and slot tables are placed at NI. A newer version of aelite called dAElite [14], provides

multicast support and consequently the static routing tables are back at the switches.

In Nostrum NoC [15] TDM virtual circuits paths are fixed at design-time with variable

bandwidth at run-time using the concept of looping containers. However, to fit hard real

time applications, even the bandwidth must be fixed at design-time. Lu and Jantsch [52]

propose a configuration technique for the Nostrum NoC allowing multiple virtual circuits

to share buffers of the network. To harmonize routing tables according to global TDM

schedule a backtracking search algorithm is used. In contrast, only a single assignment

of a given set of virtual circuits is needed that satisfies the required bandwidth and a

conflict-free operation of the NoC.

In the majority of recent proposals ([1] [53], [47] [54]) TDM schedules are allocated and

configured off-line to simplify NoC hardware implementation. The theoretical minimum

scheduling period for several NoC topologies and sizes are provided in [1] where an ILP

formulation is provided to achieve schedules close to the theoretical minimum. However,

the computational complexity of the ILP formulation makes unfeasible finding schedules

for network sizes beyond 25 nodes. Thus, the approaches in [47] and [54] propose alter-

native optimization algorithms to find solutions also for larger NoCs. Unfortunately, this

comes at the expense of periods that are significantly worse than the theoretical bound.

Communication between processing nodes is different from nodes to external memory.

Since the first one follows many-to-many communication pattern, the last one requires

many-to-one communication. Consequently, approaches to make many-to-one commu-

nication predictable [56], [57] are not directly comparable to the work presented in this

thesis.

A solution proposed in [55] relies on two independent and parallel networks but uses them

in a different way in order to achieve a distributed and dynamic resource TDM scheduler.

This proposal offers a good compromise between efficiency and implementation costs for
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systems with QoS requirements. This work uses credit-based end-to-end flow control

to avoid data network overflow via best-effort network. These credits travel with no

guarantees for the delivery delay thus can produce bandwidth underutilization and may

break QoS requirements.

2.3 Methodology

2.3.1 Design Process

Computer architecture industry and academia mostly use simulation for evaluation of

novel techniques and designs. Besides, considering the high cost involved in manufactur-

ing a silicon chip in terms of time and money.

The focus of the thesis is to design and implement a novel TDM-based NoC where

conflict-free transmission is based on using a time division multiplexing window. In order

to evaluate how this NoC benefits safety-critical systems we need to integrate it into a

manycore system. To do so, we follow several steps in the design and evaluation process.

As Figure 2.11 shows the design process starts by building blocks at block-diagram level.

Large and complex designs must be modular and hierarchical, and Verilog gives us a

good framework for defining modules and their interfaces. Our entire infrastructure will

be designed using verilog RTL which can be synthetized for FPGAs and ASIC.

Once hierarchy is established, the next step is the wiring of RTL code for modules, their

interfaces and their internal functionality. To do that, we chose the Xilinx Vivado RTL

simulator [58] from Xilinx company. Vivado framework performs a static syntax analysis

at design time.

Once we have written the module code, we compile it using the hardware description

language (HDL) compiler. It analyzes the code for syntax errors and also checks modules

interfaces to be compatible among them. It also creates internal information that is

needed for the simulator to process the design later.

In order to test the designed modules and ensure the system correctness we use the

waveform provided by the Vivado simulator that simplifies the debug and functional

validation stage. These modules must pass a functional validation test using a testbench.
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Figure 2.11: Design and evaluation flow.

A testbench provides input stimulus to the design, and to observe its outputs to check

the correct behaviour.

2.3.2 Evaluation Process

Three evaluation methods have been used to analyse the designs: 1) A performance eval-

uation with synthetic message generators to get throughput and latency. 2) An imple-

mentation evaluation method to get maximum operating frequency and area utilization,

and 3) cycle accurate simulations has been used for quick design space explorations and

for comparison purposes.

2.3.2.1 Performance Evaluation

In order to analyse the system performance we need to run several simulations. To do so,

we use the Vivado event-driven simulator that supports behavioral and timing simulation
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for single language and mixed language designs. This simulator provides cycle accurate

simulation in a waveform viewer and also supports TCL scripts, thus results would match

exactly the number of cycles of a potential manycore implementation. As Figure 2.11

shows, simulations are launched by using TCL scripts coded in bash script.

To generate input stimulus we either use synthetic message generators to feed the net-

work or/and launch kernel applications to stress the whole system. Simulation results

are gathered in log files, later we parse the relevant information to compute evaluation

metrics. Finally, plots are generated from metrics files for performance analysis.

A Synthetic Message Generator has been designed to perform NoC exhaustive verifi-

cations. These are implemented at each network interface. By using message generators

we can test the network at different injection rates. Besides, we can define a particular

message destination distribution, including uniform traffic pattern.

To evaluate the performance guarantees of the manycore we use benchmarks from

mälardalen WCET benchmarks suite [59]. Applications in this benchmark suite

have small memory footprint and thus, have very low communication requirements.

Additionally, we have designed a kernel application resembling applications with high

communication needs. Note that large applications cannot be effectively simulated in a

detailed RTL manycore model.

To generate worst-case scenarios we combine both synthetic message generators and

benchmarks. Owing to evaluate implementation results a new framework is discussed in

the next section.

2.3.2.2 Implementation Evaluation

In order to infer implementation costs, we use the Cadence RC Compiler and the 45-nm

Nangate library [60] to get maximum operating frequency and area utilization of our

RTL designs.

By using both RTL compiler and Nangate library we get schematics and timings of our

designs. Nangate library defines the standard cells used to synthesize the design. This

framework allows us to evaluate our design, compare it with other existing solutions and

also get some insights to improve our design either in terms of area and/or frequency.
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2.3.2.3 Cycle Accurate Simulation

For comparison purposes we model our designs and state of the art TDM algorithms

using cycle accurate simulations too. Cycle accurate simulations enable quicker design

space exploration. Cycle accurate simulations are based on simulation models without

the need of Vivado RTL simulator.

To do so, we build a simulation model of the algorithm and perform a functional veri-

fication to check behaviour correctness. It is important to check the correct behaviour

to validate the simulation models to be useful. Later we build test scenarios to perform

input data stimulus to the simulation models. Then, we run simulations to get evaluation

results and compare designs among them.

Although cycle accurate simulations is a quick method, the main algorithm has been

fully designed in verilog RTL and tested with Vivado RTL simulator.

2.3.3 PEAK Architecture

The network developed in this thesis has been be fully integrated into the PEAK many-

core architecture. PEAK is the acronym Partitioned-Enabled Architecture for Kilocores

developed by the Grupo de Arquitecturas Paralelas (GAP) from Universitat Politècnica

de València (UPV). The aim of PEAK is to develop a fully operational manycore archi-

tecture either for research and academia purposes. PEAK has been used in some research

projects such as the european project MANGO [61], besides in academia projects and its

goal is to study new manycore architectures for large-scale capacity computing scenarios.

The PEAK architecture is described in Verilog RTL, is based on several identical tiles

interconnected using a standard NoC (see Figure 2.12). Each tile includes a 32-bit in-

order core with L1 private instruction and data caches. In every tile there is also a shared

L2 cache bank, which is based on a shared and distributed organization. The coherence

protocol is implemented at L1 and L2 level, using directory structures at L2 level. Core

and cache memories are locally interconnected via the Network Interface (NI) module.

As Figure 2.13 shows the NI provides connectivity between resources within the tile and

to resources to/from other tiles.
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Figure 2.13: Network interface controller using wormhole network with virtual net-
works support to provide intra-tile and inter-tile resource connectivity.

The NI manages the manycore architecture communication needs. To do so, seven in-

jector (to net) and ejector (from net) modules are defined. The core uses three injector

modules L1I (instruction cache), NCA (non-cacheable addresses) and CORE (read/write

to specific control registers). The remaining resources use (L1 data cache, the memory

controller associated to the tile, the L2 cache bank of the tile, and the control register

bank of the tile) have one additional module each. Injector and ejector are intercon-

nected for intra-tile traffic using a buffered crossbar. For inter-tile communications,
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injector modules are connected to the network inject module and serializers are used to

adapt the data width on each specific case. De-serializers are used to adapt the data

width from network eject modules. The network inject module implements similar logic

of a router output port with virtual networks (VNs) support to separate data traffic.

The network eject module demultiplexes incoming messages into corresponding virtual

networks (VN).

The PEAK network implements wormhole switching with XY routing algorithm which

is deadlock-free. The network routers implement virtual networks, each containing a

set of virtual channels (VCs). Virtual networks enable to divide different traffic in a

logic way using one input buffer for each VN supported. The network is configurable,

allowing a variable number of resources and functional units. Different configurations

can be created, each with a different performance/resource ratio.

In this thesis we adapt our time-predictable NoC solution to PEAK.





Chapter 3

DCFNoC: A Delayed Conflict-Free

Time Division Multiplexing

Network on Chip

In this chapter, we propose a NoC design in which conflict-free transmission is achieved

by using a time-division multiplexing (TDM) window. However, unlike other TDM-based

approaches [1] [47] [54] our delayed conflict-free NoC (DCFNoC) is able to naturally in-

ject messages in the appropriate slot using a TDM period equal to the optimal theoret-

ical bound. Interestingly, DCFNoC does not need a computationally demanding offline

scheduling process. Note that, the offline process used in traditional TDM proposals

puts serious limitations to find optimal scheduling periods for moderate NoC sizes [1].

Thus, TDM approaches for relatively large NoCs end up using sub-optimal solutions to

find computationally affordable conflict-free schedules [47].

DCFNoC relies on the utilization of the channel dependency graph (CDGs) associated to

the routing algorithm to identify the existing packet dependencies (potential contention)

and eliminate them by the introduction of delays at strategic router output ports. The

CDG helps to identify where conflicts occur in the NoC, and how these conflicts are

always the consequence of dependencies between messages reaching the destination with

a variable number of hops. In this context, the introduction of delays at the output

ports of the routers located at particular positions in the NoC, ensures transmissions

35
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are naturally serialized and conflicts are avoided by design. With this methodology, the

network is significantly simplified since it does not need scheduling tables. Also, buffers

and associated logic for flow control and arbitration within routers can be removed.

DCFNoC provides the following benefits:

• Straightforward scheduling. Contention is simply avoided when it is enforced

that no more than one node is injecting a packet in the same time slot.

• Scalability. DCFNoC provides better scheduling periods than competing TDM

approaches and is able to find schedules in arbitrarily large NoCs.

• Constant network message latency. Once a message is injected into the net-

work a path is guaranteed to reach its destination node with the same delay since

all paths are forced to have the same delay.

• Timing isolation. Heterogeneous network bandwidth allocation can be assigned

to nodes preventing bandwidth starvation or network interference.

We formalize the DCFNoC properties and prove that when using this NoC paradigm

packet transmission is conflict-free. Besides, we demonstrate that DCFNoC can be ob-

tained for any given topology and any deterministic routing algorithm. A simple end-

to-end flow control is used to avoid saturation at end-points. In this chapter, we also

propose a router design adapted to this new methodology.

The rest of this chapter 1 is organized as follows. First, the DCFNoC theory is formally

described in Section 3.1. A general methodology for designing conflict-free networks by

applying this theory is explained in Section 3.2. Next, a flexible bandwidth allocation

mechanism is briefly detailed in Section 3.4. Later, a detailed router design adapted to

this new methodology is provided in Section 3.6. Finally, the performance achieved by

the proposed network is presented and discussed in Section 3.7.

1The work discussed in this chapter has been published in [62]. Sections 3.1 and 3.3 have been
published in [63].
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3.1 Delayed Conflict-Free Network

This section formalizes DCFNoC, a TDM-based NoC design paradigm in which conflicts

are avoided by serializing message transmissions. Although DCFNoC can be used for

long messages, for the sake of explanation we consider only single-flit messages. We

introduce the following assumptions:

A1 A node can generate messages targeting any other node at any rate, even broadcast

messages.

A2 A message arriving at its destination is eventually consumed assuming an end-to-

end flow control is used preventing final node buffer overflow.

A3 Once a message is injected into the network a path is guaranteed to reach its des-

tination node.

A4 Messages are forwarded following any deterministic or partially adaptive deadlock-

free routing algorithm.

A5 All TDM slots composing a period have the same length.

A6 Every router and link within the network have the same delay (we assume one

cycle).

The following definitions develop a notation for describing networks, routing functions,

conflicts, and dependency graphs. A summary of notations is given in Table 3.1.

3.1.1 Definitions

Definition 1. An interconnection network I is a strongly connected multigraph defined

as I = G(N,C). The vertices of the multigraph N represent the set of communication

nodes. The arcs of the multigraph C represent the set of communication channels.

The source node of a given channel ci is denoted as si and the destination node as di.

Figure 3.1 shows a 2D mesh topology of an interconnection network.
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Table 3.1: Summary of Notation

Sign Description

I interconnection network,
C the set of channels,
N the set of nodes,
cc a current channel,
si source node,
di destination node,
ni a node,
R a routing function,
C1 a channel subset,
Lx an assigned layer,
Mx a message,

P (si, di) a path between src to dst nodes,
D the delay of a layer or a path,
tm specific cycle time,

C(Ma,Mb, tm) a conflict between two messages
at a time tm,

CDG a channel dependency graph,
E the edges of CDG,

CDGl a layered CDG,
Lh a layer of CDGl in position h,

CDGdl a delayed layered CDG,
H the network diameter,

I(cx) a injection channel,
E(cy) a ejection channel,
tslot a time slot,

PTDM a TDM period,

Definition 2. A routing function R : C ×N ×N → C provides the output channel cy

for a message located in the current node nc at an input channel cx and with destination

node nd:

R(cx, nc, nd) = cy (3.1)

Routing functions will determine the existence and severity of contention within the

network as they set the communication flows. As highlighted in other works [30, 48, 64]

NoC contention is a consequence of direct interference between messages, which are in

turn a consequence of channel dependencies. Next, we provide a formal definition for

channel dependencies.
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Figure 3.1: 2× 2 mesh network. End nodes shown as circles.

Definition 3. There is a direct channel dependency from channel cy to channel cx, for

a given interconnection network I and routing function R if cy is needed immediately

after cx for a message located at node nc with destination nd.

Definition 4. A channel dependency graph CDG for a given interconnection network I

and routing function R, is a directed graph, CDG = G(C,E). The vertices of the graph

are the channels of I and the arcs of the graph are direct channel dependencies between

channels determined by R in the following way:

E = (cx, cy) | R(cx, nc, nd) = cy for some n ∈ N (3.2)

Figure 3.2 depicts a channel dependency graph of the 2D mesh topology based on Di-

mension Order Routing (DOR [28]) algorithm. In this plot squares represent the vertices

(channels), and the arcs represent channel dependencies. Circles represent injection and

ejection channels.

Definition 5. A direct conflict C(Ma,Mb, tm) between a pair of messages Ma and Mb

for a given interconnection network I and routing function R may arise at time tm if

R(cx, n, da) = R(cy, n, db) for some n ∈ N, (3.3)

that is, Ma and Mb are in the same node and request the same channel at the same

cycle.
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Figure 3.2: CDG for the 2× 2 mesh topology and the DOR routing algorithm.

Definition 6. A layered channel dependency graph CDGl for a given interconnection

network I and routing function R, is a layered directed graph, CDGl = Gl(C,E). The

vertices of the graph are the channels of I and the arcs of the graph are the channel

dependencies defined by R. In contrast to CDG, all the vertices of CDGl have an

assigned layer id Lh where h represents the position of the layer. Any vertex (channel)

is assigned a unique layer id. Therefore, Lh(v) is a bijective function. A channel cy with

a direct dependency with channel cx will have a higher layer id:

Lh(cy) > Lh(cx) if R(cx, nc, nd) = cy (3.4)

Note that in order to build a CDGl the associated CDG must be acyclic. Therefore,

the routing algorithm R must be a deterministic one or a partially adaptive one. Figure

3.3 shows the CDGl of the 2D mesh with DOR routing. The CDGl serves us to clearly

identify potential conflicts within the network as follows. Let us assume links and routers

have a delay of one cycle each and on every cycle no more than one end node injects a

message in the network. If we use only dependencies not crossing a layer in the CDGl

(black arrows in the figure) then all messages will take the same amount of time to

traverse the path and at every cycle there will be one message at each layer. If, however,

we allow dependencies crossing layers (red arcs in the figure) to be used, then conflicts

may occur at a given channel. Notice channels are located only in one layer. Indeed, the

layer Lh represents the relative cycle time from injection when a specific channel along



Chapter 3. DCFNoC: A Delayed Conflict-Free Time Division Multiplexing Network on
Chip 41

Figure 3.3: CDGl obtained from CDG.

a path P (si, di) is used. Assuming assumption A6 we can deduce that every layer has

one cycle delay.

In order to remove all potential conflicts we just need to enforce two messages will not

be located on the same layer at the same time (one-message-per-layer rule). To do so,

we define a delayed layered channel dependency graph.

Definition 7. A delayed layered channel dependency graph CDGdl for a given intercon-

nection network I and routing function R, is a layered direct graph CDGdl = Gl(C,E),

in which additional delays are introduced to remove potential conflicts. In this graph, as

in CDGl, all the vertices are assigned to a specific layer Lh. In the CDGdl extra delays

are introduced for channel dependencies crossing layers. Every delay is layered also in

the CDGdl. Therefore, all paths P (si, di) have the same delay D(P (si, di)).

Figure 3.4 shows parts of a CDGdl. Notice that all paths have the same latency as

injection channels are located at L0 and ejection channels are located at L3. Indeed,

let H be the network diameter, ci the injection channel and ce the ejection channel.

Thereby, and assuming A6, the delay for any path is:

∀P (si, di) ∈ CDGdl {
D(ci, P (si, di), ce) ≡ L{H}+ 2, (3.5)

In other words, for every possible path in the CDGdl connecting a pair of source and

destination nodes (si,di), the delay of a path is equal to the time required to traverse

the set of layers corresponding to the network diameter plus two (injection and ejection

layers).
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(a) CDGdl to dn = 0 (b) CDGdl to dn = 1

(c) CDGdl to dn = 2 (d) CDGdl to dn = 3

Figure 3.4: CDGdl by destination node.

Forcing all messages to traverse the same number of layers allows us to serialize trans-

missions and avoid conflicts. However, this requires controlling the injection. To do so,

we rely on time-division multiplexing. A TDM arbiter operates by periodically repeating

a schedule, with a fixed number of time slots tslot. The scheduler comprises a number

of slots, each corresponding to single resource access with bounded execution time in

cycles.

Definition 8. A TDM period PTDM is a set of time slots tslot, where each slot can be

assigned to a single node ni to control injection slots, PTDM = N × tslot.

We assume all slots have the same length, according to A5. This ensures every node

can only inject messages in a given time slot and that only one node is injecting in a

particular cycle.

Theorem 1. An interconnection network I for which a CDGdl can be derived is conflict-

free if injection is controlled in such a way that only a message is injected in a given tslot.
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Proof Sketch. We construct the proof by contradiction. Let us assume there is a

conflict C(Ma,Mb, tm) between two messages Ma and Mb. If a conflict exists then a

channel cy will be requested in the same cycle tm by both messages. The channel will be

mapped in the CDGdl in a given layer Lh(cy). The distance from the injection channel

to cy is the same for both messages. Therefore, as each layer in the CDGdl implies one

cycle delay, the delay between injection and cy is the same D(Ma, cy) = D(Mb, cy). This

means both messages have been injected in the same cycle time which contradicts the

injection rule where only one end node can inject at a time.

The previous proof is straightforward. Indeed, assuming the existence of a CDGdl it is

clear conflicts are not present in the network if messages are serialized at injection time.

Therefore, the complexity comes when building the CDGdl for a given network I and

routing function R. In the next section we provide a general algorithm for such purpose

and demonstrate we can build the CDGdl for deterministic and partially adaptative

routing algorithms.

3.2 Building DCFNoC out of layered CDG

As an example, we assume a 3 × 3 mesh network using the Dimension Order Routing

DOR [28] algorithm (see Figure 3.5). From the topology T and routing algorithm R

we build its channel dependency graph (CDG) represented in Figure 3.6. Figure 3.6

highlights dependencies for the sink links (represented by the shaded squares). Sink

links are those that do not have dependencies with others. We represent only links

between routers.

The CDG can be used to derive the paths for every source-destination pair of end nodes.

For instance, path 0→ 8 will cross links {0− 1}, {1− 2}, {2− 5}, {5− 8} whereas path

4→ 8 will use links {4− 5} and {5− 8}. Notice that these two paths may conflict since

they share the link {5−8} and the ejection link at router 8 (ejection links are not shown

in the plot).

Our methodology to avoid conflicts in the network consists of two steps. In the first step

we layer the graph to identify the critical points where conflicts may arise. In the second

step, we add delays to the CDG to remove these conflicts. The computational cost of
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Figure 3.5: 3× 3 mesh topology.

building the layered CDG and the modifications required to implement our DCFNoC are

negligible since this exploration process is restricted and lineal to the set of valid paths

provided by the routing algorithm.

Building a layered CDG. We assign a layer (L#) to each node in the CDG following

a partial order and we derive from the original CDG (Figure 3.6) an equivalent layered

CDG (CDGl). Notice this is always possible when the CDG is acyclic [28] and thus,

DCFNoC is compatible with any deterministic or partly adaptive deadlock-free routing

algorithm. We apply this ordering to the 3 × 3 mesh with DOR routing to label links

starting from X dimension first (see how the different links are assigned to a particular

layer L# in Figure 3.5). In the X dimension we label links from East To West first and

from West to East later (these links correspond to layers L1 and L2). In the Y dimension

we start from North to South first and from South to North later (that correspond to

L3 and L4 layers). Note that in DOR every Y transitions occurs once all X transitions

have been completed.

Once all links are labeled we arrange them in such a way that each network link appears

only in one layer and link dependencies always go in the same direction (downwards in the

figure). The number of layers is defined by the diameter of the network (i.e. the longest

minimal path) plus the injection and ejection links. Figure 3.7 shows the layered channel

dependency graph for our sample network design. Note that to improve readability not

all possible transitions are shown in the plot. Both, injection and ejection links are also

listed attached to the source and destination end nodes (represented by circles). Conflicts
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Figure 3.6: Channel dependency graph of the 3 × 3 mesh, using DOR. Squares rep-
resent links and its name indicates the routers attached to the link.

Figure 3.7: Layered Channel dependency graph. Potential conflicts are represented
by red dashed lines.

in the CDG are identified by transitions between non consecutive layers (e.g. from L1

to L3) or, in other words, by messages targeting the same link but traversing a different

number of layers. In Figure 3.7 potential conflicts are shown by red dashed lines.

Adding additional delays. To avoid conflicts, we modify the layered CDG to enforce

all paths have the same delay. This is achieved by forcing all paths cross all layers in the

same order (from L0 to L5). The key idea is to spread the delays among multiple routers
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Figure 3.8: Layered Channel dependency graph with added delays (paths shown only
from all to 8). Shades represent the TDM-slot of a potential arrangement of messages

in the network.

in the path between the source node and the destination node. To do this, assuming

each original link introduces one cycle delay, we add extra delays to those links that in

a single hop cross more than one layer. The resulting layered CDG with added delays is

shown in Figure 3.8. Extra delays are represented by a horizontal line after the arrow.

Only links and dependencies for paths with destination end node 8 are shown in the

plot. As shown, after this simple modification every path crosses all layers and the delay

within the network is constant for all flows.

The addition of delays allows removing any potential conflict within the network by

enforcing two messages will not be located on the same layer at the same time. In our

NoC design TDM slots are used to guarantee every node can only inject messages in a

given slot and that only one node is injecting in a particular cycle, thus enforcing the

one-message-per-layer rule. Figure 3.8 shows TDM slots used by end nodes and how they

use the slot to inject messages to end node 8. Six messages will be within the network,

one from each end node but each message will be on a different layer. Messages from

end node 0 will take four cycles as they cross four links. On the other hand, messages

from end node 5 will take four cycles but only one network link will be crossed ({5−8}).

Three delay cycles are added to the path to avoid conflicts.

The way in which delays are implemented is design specific. So each router will have a

predefined output port delay configuration depending of its action. Notice that each delay

will need a buffer to store the message. In Section 3.6 we introduce a router architecture
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which can be programmed with such delays (one cycle delay per layer). In our approach,

the extra delays added in CDGl are added to the output link. Shorter paths will have

additional delay cycles to serialize packets and avoid conflicts. It is important to recall

that the delay for every possible path with DCFNoC is equal to the network diameter

plus two (injection and ejection layers/channels).

3.3 Algorithms for the DCFNoC Design Methodology

In this section we propose the algorithm for designing TDM-based networks relying on

the DCFNoC approach. The proposed methodology consists of two steps. In the first

step we start from the CDG and derive the CDGl. Then, in the second step we construct

the CDGdl by inserting delays at certain channels.

3.3.1 CDGl Algorithm

The algorithm is shown in Algorithm 3.1. First, in lines 6-8 the CDG is copied to the

CDGl structure and all channels are labeled with an unassigned layer. Then, for every

possible path (lines 10-27) the channels are visited and a layer id is assigned to each

channel along the paths. The injection channel is assigned always to layer 0 (lines 14-15)

whereas router channels are visited in the order set by the path and incremental layers

are assigned (lines 19-20). Notice that channels may be already assigned by a previous

path. In that case, the channel layer is inspected and if the layer is lower than the one

to be assigned by the current path (lines 21-22) then an update_tree call is performed.

This function searches the graph and increments the layer of channels with direct and

indirect dependencies with the channel by an offset. This guarantees that the channel

will have a higher layer than the previous one in the current path. In the case the channel

already has a higher layer then nothing is done. After each hop, the layer, the input

channel and the current node in the path are updated for the next hop (lines 23-25).

3.3.2 CDGdl Algorithm

Once we have the CDGl algorithm we proceed to obtain the CDGdl. Basically we need

to add delays to some channel dependencies in order to ensure every path will have the
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1: function build_CDGl(CDG , I, R)
2: path p
3: channel c
4: hop h
5: layer l
6: CDGl = CDG
7: for every channel in CDGl (c)
8: CDGl.c.layer = unassigned
9: end

10: for every path (p)
11: cx = injection_channel(p)
12: node = p.src
13: l = 0
14: if (CDGl.cx.layer == unassigned)
15: CDGl.cx.layer = l
16: l = l + 1
17: for every hop of p (h)
18: cy = R(cx , node , p.dst)
19: if (CDGl.cy.layer == unassigned)
20: CDGl.cy.layer = l
21: elsif (CDGl.cy.layer <=l)
22: update_tree(CDGl , cy, l-CDGl.cy)
23: l = CDGl.cy + 1
24: cx = cy
25: node = I.node.next(cy)
26: endfor
27: endfor
28: end function

Alg. 3.1: Algorithm for CDGl

1: function build_CDGdl(CDGl , R)
3: channel cx
4: channel cy
5: CDGdl = CDGl
6: for every channel in CDGdl (cx)
7: for every channel in CDGdl (cy)
8: if (R(cx, any , any) == cy)
9: CDGdl.arc(cx ,cy).delay =

CDGdl.cy.layer - CDGdl.cx.layer
10: end
11: endfor
12: end function

Alg. 3.2: Algorithm for CDGdl

same length in time and that every path will cross all layers. To do this, we add a new

field to each channel dependency (arcs in CDG, CDGl and DCGdl) representing the

delay in cycles that need to be enforced as shows Algorithm 3.2. As a first action, the

algorithm copies CDGl into CDGdl (line 5), then for each pair of channels cx and cy of

CDGdl (lines 6-7) check if they have a direct dependency (line 8). If so, then the delay

of the output channel is set to the difference between layers of both channels (line 9).

Theorem 2. Given an interconnection network I, and a deterministic (or partially

adaptive) routing function R, the CDGl and CDGdl can always be obtained and are

acyclic.
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Proof Sketch. Given R is deterministic or partially adaptive guarantees the CDG

will be acyclic. Therefore, we guarantee that the algorithm used to obtain CDGl and

CDGdl prevent cycles from appearing. Both CDGl and CDGdl have the same structure

but only one or two new fields are added (the layer and the delay) to each arc (channel

dependency). The set of edges and arcs are the same with the same configuration.

Therefore, the same graph shape is inherited. Thus, CDGl and CDGdl are acyclic as

well with added information. As we simply copy the CDG into CDGl and CDGl into

CDGdl then we guarantee both can always be obtained given CDG is available.

Theorem 3. Given a path P defined from a routing function R for a network I and an

associated CDGl, the path crosses always channels in increasing layered order.

Proof Sketch. The way the algorithm is defined guarantees a channel cy with a direct

dependency with channel cx will have assigned a higher layer. Indeed, Lh(cy) = Lh(cx)+

1. As a path is a list of direct channel dependencies, each hop along P the channel used

will have a higher layer assigned.

Theorem 4. Given a path P for a network I, a routing function R, and an associated

CDGdl, the path has a delay of 2 +H where H is the diameter of the network.

Proof Sketch. The path is a set of channels with direct dependencies in the CDGdl.

Each channel dependency has an associated delay which is the difference between layers

of each channel involved in the dependency. As the depth of the CDGdl is H + 2 the

delays associated with the channel sum up H + 2.

3.4 Flexible Bandwidth Allocation

One of the main advantages of DCFNoC over state-of-the-art TDM approaches is that

conflict-free transmission can be ensured by simply enforcing no more than one end node

injects a message at each time slot. This property emanates from the fact that DCFNoC

can be seen as a logical shared bus and thus, conflict-free message transmission can be

ensured by simply enforcing the atomic utilization of time slots. This property can be

exploited to implement heterogeneous bandwidth allocation schemes across end nodes to

accommodate the communication requirements of the different applications running in

the system. For instance, heterogeneous bandwidth allocation is a desirable NoC feature
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Figure 3.9: Different bandwidth allocation options. Each box represents an injection
slot and each label indicates the end node the slot is assigned to.

in the context of automotive applications. Automotive applications using AUTOSAR

are composed of several runnables that can be executed in parallel and have different

computing and communication requirements [65].

Heterogeneous bandwidth allocation can be easily implemented in DCFNoC at the edges.

Figure 3.9 shows four potential allocation windows (A, B, C, and D) in a 3×3 NoC. The

first allocation (A) is the one corresponding to an homogeneous bandwidth allocation

strategy in which all nodes get the same bandwidth (1/9). Example B shows the case

in which nodes 3 and 6 are inactive and this bandwidth is assigned to end node 0 that

gets 3/9 of performance guarantees. Example C shows how increasing the period from 9

to 11 can be used to assign node 0 3/11 of the total bandwidth while the rest get 1/11.

Finally, example D shows a period of 18 cycles in which node 0 gets 4/18, and nodes

3 and 5 get 1/18 each. Each of the rest of end nodes get 2/18 of the total bandwidth.

In general, DCFNoC allows using fine-grained bandwidth allocation to match different

applications needs.

DCFNoC is application agnostic and can be configured to fit the application bandwidth

requirements. Indeed, a profile of the application is usually obtained and the network is

configured to adapt to the traffic requirements between end nodes. Each end node is then

configured with some assigned slots which lets the node to achieve a certain bandwidth

of the network.

3.5 Broadcast Support

One significant advantage of DCFNoC is its natural broadcast support. DCFNoC is able

to support broadcast by simply adding a broadcast bit and forwarding messages at every
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Figure 3.10: Broadcast support using the DOR routing algorithm in a 3 × 3 mesh
(paths shown only from 0 to all). Both, injection and ejection end nodes are represented

by circles and channels are represented by squares.

input port following DOR routing algorithm, see Figure 3.10 (left side). A message that

is injected into the network will be forwarded without any stop following the delays and

links imposed at design time. Broadcast messages duplicate when needed to reach all

destinations. However, every message copy follows the same delay approach using the

latches and therefore, all the paths have the same latency, see Figure 3.10 (right side).

DCFNoC broadcast support is used to avoid wasting a complete TDM window to broad-

cast to all nodes. Thus, every node will broadcast its message on a single slot to the rest

of nodes. Also, DCFNoC guarantees all broadcast messages arrive at the same time to

all nodes which simplifies the scheduler design. Later, we will see how broadcast can be

used to efficiently schedule transmissions of messages.

3.6 Router Design

The structure of the DCFNoC router is shown in Figure 3.11. This router consists of

multiplexers, registers and OR gates. This simple design leads to low resource utilization,

high frequency, and low power consumption as we will show in Section 3.7.4.

The router implements five ports and the DOR routing algorithm. Messages at input

ports are routed and latched at the corresponding output port without needing any

arbitration logic nor flow control. However, the router supports the case of receiving

multiple conflict-free messages through different ports at the same time, and also several
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Figure 3.11: DCFNoC router input/output ports connections with output delay reg-
isters.

of them targeting the same output port but targeting different delay latches. Each output

port implements a de-multiplexer with several single-cycle delay latches. A registered

configuration vector programs the de-multiplexer on each output port. Input port arrival

ID is used to index the configuration register and set appropriately the de-multiplexer.

Notice that depending on the routing algorithm the configuration register may have a

varying number of slots, from two to four when DOR is used. This depends on the

maximum number of output dependencies of a given link accounted in the CDG. Notice

that each configuration slot will impose a varying number of delay cycles to the message

pipeline transmission. This will enable the proper appliance of the CDGdl methodology.

As an example, Figure 3.12 shows delays introduced by DCFNoC for paths 0 → 3 and

2→ 3 in a 2× 2 mesh following the example provided in Figure 3.4d. As we can see in

the plot, the latency for both paths is three cycles since they traverse the same number

of latches. Both, injection and ejection end nodes are also shown (represented by circles).

Note that the extra cycle delay of path 2 to 3 will be set at output port local of router

3. In a N×M Mesh, the maximum number of extra cycle delays implemented in each

output port is (N − 1) + (M − 1)− 1.
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Figure 3.12: DCFNoC mesh with output delay registers for paths 0→ 3 and 2→ 3.

3.7 Performance Evaluation

In this section we compare the performance guarantees provided by DCFNoC with the

ones provided by similar TDM approaches. Additionally, to analyze the feasibility of

implementing the proposed NoC we provide area and maximum attainable clock fre-

quency and compare these numbers with the ones obtained with an standard wormhole

router [28] [29].

3.7.1 Experimental Setup

DCFNoC is described in verilog RTL and can be synthetized in FPGAs and ASIC. We

have simulated DCFNoC using the Xilinx Vivado [58] RTL simulator. DCFNoC config-

uration implemented uses 64-bit width links mesh network. The network is feed by a

message system generator implemented at each network interface using uniform traffic

pattern. For comparison purposes we model DCFNoC and state of the art TDM algo-

rithms. Maximum operating frequency and area utilization are obtained using Cadence

RC Compiler and the 45-nm Nangate library [60]. The wormhole NoC implemented is

also 64-bit width and uses 8 slot input buffers with Stop&Go flow control.
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Table 3.2: A comparison of schedule length and network latency.

3.7.2 Timing Guarantees

For comparison purposes we model DCFNoC and state of the art TDM algorithms. Ta-

ble 3.2 shows the scheduling periods of our approach and compares them with the ones

obtained by other state-of-the-art proposals. As shown in the table our NoC design

achieves the smallest scheduling periods in all configurations. Our approach is able to

improve the period of the ILP-based scheduling [1], an approach that is able to find

computationally viable schedules for meshes up to 25 nodes. Authors in [1], also for-

mulate a minimum period based on theoretical lower bounds. Which is almost equal to

our schedule period. This value is represented in Table 3.2 as TLB. The improvement in

period achieved by our approach w.r.t [1] for a 5× 5 mesh is 26.47%. When compared

with SYM [47], which is able to find schedules for larger NoCs, our approach reaches a

77.67% improvement for a 5 × 5 mesh. PhaseNoC [2] has a TDM period equal to our

schedule period but this network requires one domain buffer at each router input port

incurring in additional area overheads and additional latency at every hop.

Figure 3.13 shows latency results of DCFNoC compared with the optimal ILP schedule

proposed in [1] and PhaseNoC [2] for a 5 × 5 NoC for different message injection rates.

Latency results are computed for randomly generated messages considering that messages

can only be injected in the network in their assigned slot. Latency results shown in

this plot represent end-to-end latency values. Additionally, for DCFNoC the latency

experienced by the messages once injected in the network is the same for all nodes

regardless the target destination since all messages always experience the same latency.
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Figure 3.13: End-to-End latency of DCFNoC vs ILP [1] and PhaseNoC [2]. Y axes
starts at 20 to improve the visibility of the comparison.

On the contrary, in ILP [1] and PhaseNoC [2] the latency experienced once a message is

injected depends on the amount of hops each of the communication flow traverses. Thus,

in the figure we show values for the min and max that represent the flow traversing the

lower and the larger number of hops. The result of averaging out all potential flows

is represented as average. We do not provide results for SYM [47] because scheduling

periods for this implementation are much worse than the ones achieved by our proposal.

Figure 3.14 shows a scalability comparison of DCFNoC compared with the optimal ILP

schedule proposed in [1] and PhaseNoC [2] for different NoC sizes. As shown in Fig-

ure 3.14 for very small injection rates and the smallest NoC sizes DCFNoC latency is

slightly worse than the one achieved in ILP [1] for the shortest paths but better for the

longest ones. Note that for a 3× 3 mesh PhaseNoC and DCFNoC have nearly the same

latency. For higher NoC sizes and/or higher injection rates DCFNoC achieves always

better results. The reason for this is the smaller period of DCFNoC that decreases the

average time each message is waiting until it is aligned with the assigned slot. The

smaller period also enables DCFNoC achieve small latency values for higher injection

rates. Although PhaseNoC [2] and DCFNoC have the same schedule period, the latency

of PhaseNoC is higher. As we can see in Figure 3.14 DCFNoC has better scalability

than other state of the art TDM proposals for large NoC sizes.
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Figure 3.14: Scalability of DCFNoC vs ILP [1] and PhaseNoC [2].
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Figure 3.15: Heterogeneous bandwidth guarantees assignment in a 6× 6 mesh.

3.7.3 Flexible Bandwidth Allocation

In order to test the capabilities of the flexible bandwidth allocation of DCFNoC, we

perform an experiment on a (6× 6) mesh using uniform traffic. At the network edges we

statically allocate 36 1-cycle time slots to nodes. One time slot is equal to 1/36 of total

bandwidth, resulting to a 2.7%. In particular, (0− 3) nodes get assigned four time slots

each, (4− 8) nodes get two slots, and (9− 18) nodes get one slot. Remaining nodes do

not inject traffic.
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Figure 3.15 shows how bandwidth of some end nodes is improved (nodes from 0 to 8) at

the expense of the bandwidth of other nodes. Note also the fact that latency of messages

once they are injected in the NoC is kept constant.

3.7.4 Area and Frequency

For the implementation results we consider a DCFNoC router for a 8 × 8 mesh. The

wormhole router (WH) used for comparison purposes implements one single virtual chan-

nel, round-robin arbitration, and XY routing. We rely on this canonical and pipelined

router implementation since it is one of the most common routers for on-chip networks.

By comparing with this wormhole router we have a clear reference of which is the area

overhead and maximum attainable frequency.

Figure 3.16 shows area overheads for the two routers when targeting high frequency.

The DCFNoC router uses 10.21% less cells than the WH-based one. As a consequence,

we obtain total area savings of 30.42%. The WH router needs additional logic in order

to implement input buffers, flow control logic, routing units, output port arbiters and

crossbar interconnect. On the other hand, the DCFNoC router implements very simple

routing logic in order to compute the output port, a crossbar interconnect as well as

output delay registers.

We have also analyzed the maximum attainable clock frequency by each router. As a

first insight, the DCFNoC router is a one-cycle delay router while the wormhole router is

a 4-stage pipelined router. Figure 3.17 shows, as expected, the simpler DCFNoC router
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design gets a significative boost in clock frequency by improving wormhole router’s one by

50%. The critical path of the wormhole router limits clock frequency to 2.22GHz. How-

ever, the DCFNoC router exhibits a critical path of 300 ps leading to a clock frequency

of 3.33 GHz.

3.8 Summary

In this chapter we have proposed a new methodology for NoC design based on the CDGs

theory, which guarantees by design the avoidance of contention within the NoC. The

proposed approach, DCFNoC paradigm, improves over state-of-the-art TDM proposals

by achieving scheduling periods that almost match the theoretical lower bound. While

traditional approaches have difficulties to find schedules for large networks DCFNoC is

able to find conflict-free scenarios in arbitrarily large NoC sizes without degrading the

quality of the achieved guarantees. Finally, we have also shown the feasibility of the

proposed approach by implementing a high-speed router design with very small area

needs.

However, as possibly deduced from the chapter, our solution limits network throughput

by enforcing one message injection at a time. In following chapters we will address this

issue. In the next chapter we adapt our solution to PEAK, a manycore architecture.



Chapter 4

Enforcing Predictability of

manycores with DCFNoC

Due to the high number of cores competing for the shared resources, the network-on-

chip (NoC) becomes a key resource with a high influence in the experienced contention.

For instance, wormhole NoCs implemented in COTS manycores have been shown to

introduce a huge negative impact in the quality of WCET estimates [48].

On the contrary, DCFNoC, as described in the previous chapter, provides the timing

isolation properties required by safety critical standards to consolidate several tasks of

different criticality levels. Additionally, the good properties of DCFNoC allow easily

allocating heterogeneous bandwidth guarantees to the different tasks executed in the

MPSoC, thus, tailoring the performance bounds of the NoC to the needs of the different

applications while network interference and bandwidth starvation are avoided.

In this work, we show how DCFNoC can be used to control interference in manycore

processors. We show how DCFNoC can be smoothly integrated in the manycore system

when an appropriate network interface is designed or modified. Finally, we show perfor-

mance guarantees achieved with our DCFNoC are much superior to the ones provided

by a baseline default wormhole NoC.

This chapter 1 is organized as follows. First, the DCFNoC integration in a manycore sys-

tem is described in Section 4.1. Next, a performance analysis of the proposed DCFNoC
1The work discussed in this chapter has been published in [63].
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manycore integration without losing its time predictability property is studied in Sec-

tion 4.2.3. Later, a performance evaluation of real workloads is discussed in Section 4.2.5.

Finally, area overhead and maximum attainable frequency are analysed in Section 4.2.6.

4.1 Integrating DCFNoC into a Manycore Design

We start from an existing manycore processor architecture as the one depicted in Fig-

ure 4.1. The design, described in Verilog RTL, is based on several identical tiles inter-

connected using a standard NoC.

4.1.1 Tile Architecture

Each tile includes a 32-bit in-order core with L1 private instruction and data caches.

A shared L2 cache bank is included also on each tile. All the L2 cache banks from all

tiles form the L2 cache of the manycore. To keep data coherent, a coherence protocol is

implemented both at L1 and L2 cache levels. The coherence protocol relies on directory

structures at L2 level. Both the core and cache memories are interconnected via the

Network Interface (NI) module, which provides connectivity between resources within

the tile and to resources to/from other tiles. The NI is connected to a router which, in

turn, is connected to routers of neighbouring tiles, building a 2D mesh topology.

4.1.2 Network Interface

The manycore architecture has a wide variety of communication needs. Indeed, memory

requests are triggered by the cores as well as coherence requests between memory re-

sources are exchanged. In addition, debug and monitoring information is communicated

between the resources. To deal with this communication overhead and complexity, a

sophisticated NI is used, depicted in Figure 4.2 (top part).

Seven injector (to net) and ejector (from net) modules are defined. The core uses three

modules: L1I (instruction cache), NCA (non-cacheable addresses) and CORE (read-

/write to specific control registers). The remaining resources (L1 data cache, the memory
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Figure 4.1: Baseline manycore architecture implementing a configurable number of
virtual networks to separate data traffic.

controller associated to the tile, the L2 cache bank of the tile, and the control register

bank of the tile) have one additional module each.

The injector modules are connected both to the ejector modules (for intra-tile traffic)

and to the network inject module (for inter-tile traffic). In the case of inter-tile traffic,

serializers are used to adapt the data width on each specific case. Ejector modules are

connected also in a similar way to injector modules and to the network eject module.

De-serialisers are used to adapt the data width of the network.

The network inject module implements similar logic of a router output port. In the

manycore architecture the routers implement virtual networks (VNs) to separate data

traffic. A multiplexer separates every input in virtual networks. One input buffer is

used for each VN supported. A switch allocator (SA) module is used to assign network

resources to messages and to grant access to the eject link. The network eject module

is much simpler as it only demultiplexes incoming messages from the network into the

corresponding virtual network (VN). A two slot buffer is used on each VN at eject in

order to guarantee 100% network throughput.
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4.1.3 Modifications to Include TDM and DCFNoC

In order to integrate DCFNoC we modify the network inject and network eject modules.

The remaining NI components are not modified. Moreover, the NoC routers will be

replaced by the DCFNoC router presented above. Figure 4.2 depicts a general view of

this integration at NI level. As we can see, VN multiplexing is performed at the entry

point of network inject module, thereby messages corresponding to the same VN are

multiplexed using a round robin arbiter and allocated at the input port queues (shaded

in green). The previous large multiplexer is replaced by one multiplexer per VN.
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4.1.3.1 End-to-end Flow Control

The DCFNoC routers do not implement flow control. However, end-to-end flow con-

trol will still be needed since applications may saturate end nodes. To support this

functionality, the NI implements an end-to-end Stop&Go flow control protocol based on

notification messages and injection filters placed at every NI module (shaded in orange).

At network eject module one output buffer is allocated per VN.

When an output buffer reaches the Stop threshold the notification table is updated

by using Update_notification signal. At the network inject module, the notification

table generates a notification broadcast message to update every node filter allocated at

network inject module to stop sending messages with this end node as destination. When

a Stop notification broadcast is received at eject module the notification filter is updated

by using Update_filter signal. Only outgoing messages with this destination node are

blocked. Once the saturated destination node reaches the Go threshold the notification

table is updated to resume the communication by sending a Go notification broadcast

message. At injection time the Stop&Go filter avoids message loss when the destination

node experiences saturation.

Notification messages can use preallocated slots for their transmission. Although this

would impact performance (bandwidth wastage) the amount of notification messages is

negligible. Only when end-point queues fill over a threshold a notification message would

be sent. With a proper design, this rarely occurs. Alternatively, a side DCFNoC can be

used for this light weight traffic.

4.1.3.2 Enforcing Deadlock Freedom

As DCFNoC is a buffer-less network (although it contains latches) flow control between

routers is not needed. Indeed, a message that is injected into the network will be for-

warded without any stop following the delays and links imposed at design time. This

means there is no chance of deadlock within the network. Also, broadcast messages

are injected and follow XY paths. Those messages duplicate when needed to reach all

destinations. However, every message copy follows the same delay approach using the

latches and therefore, can not be blocked within the network. The only deadlock that
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could occur is at the edges of the network where injection and ejection buffers are used.

Those buffers have been sized properly and an end-to-end flow control is used to pre-

vent any message overflow. Deadlock is avoided by using different buffers at the edges

of the network to store messages of different types (e.g. requests and responses), thus

preventing protocol-induced deadlocks [30].

4.1.3.3 TDM scheduler

For TDM management a simple scheduler is implemented at the network inject module.

We use a TDM scheduler with a TDM slot wheel where each slot indicates the node ID

that can inject at each time slot. It is important to remark that every node has the same

information stored at its TDM scheduler.

In our manycore system, every node must be able to inject a message in its assigned slot,

thus, a TDM slot should be sized according to the number of flits for the largest message.

However, both single-flit and multi-flit messages (six flits) have to co-exist and therefore,

our scheduler needs to deal with two message sizes efficiently. Long messages are data

read transactions of 576 bits long divided in 6 flits of 96 bits each. We avoid using more

than six flits to achieve a short TDM period. The number of flits in a multi-flit message

directly affects the TDM period length.

A trivial approach to deal with multiple message sizes is to define TDM slots of different

sizes and send single-flit and multi-flit messages via the same network. In this design, the

TDM slot wheel needs to combine single-flit slots and multiple-flit slots for every node

ID resulting in a longer TDM period for both short and long messages. A TDM period

determines the average and maximum amount of time every message is waiting to be

injected into the network and also proportional to the injection bandwidth. Consequently,

a longer TDM period implies lower performance guarantees.

To improve performance guarantees, we also explore a second approach in which single-

flit and multiple-flit messages are split and use different TDM schedulers and DCFNoC

networks. In this setup, the short message and long message schedulers implement slots

of different duration (one and six in our manycore setup). By doing this, every node

is able to inject either a short or a long message, even both at the same time. Thus,

performance guarantees and injection bandwidth are significantly better in this latter



Chapter 4. Enforcing Predictability of Manycores with DCFNoC 65

approach. Assuming one assigned TDM slot per node ID and flow control notification

messages using a different network, the maximum time a message gets delayed at TDM

scheduler until finding its slot is (N−1)×(#flits). For a 16-core system a short message

delay time is (16−1)×1 = 15 and for long messages (16−1)×6 = 90. However, when all

the messages are scheduled using the same TDM scheduler and DCFNoC, the maximum

amount of time that a message can be waiting to get injected is (N−1)+(N−1)×(#flits)

being #flits the number of flits in a long message. Alternatively, in the case that flow

control notification messages use additional TDM slots in the same TDM scheduler as

single-flit messages, a short message delay time is 2× (N − 1) and long messages are not

affected. On the contrary, when all messages are scheduled in the same TDM scheduler,

the maximum waiting time is 2× (N − 1)+ (N − 1)× (#flits) being #flits the number

of flits in a long message.

Figure 4.2 shows the NI implementing two TDM schedulers to separate single-flit and

multi-flit messages (shaded in yellow). For the implementation of the two parallel TDM

schedulers, the network inject module separates messages by length and send them using

the corresponding network.

4.1.3.4 Network Ejection Module

At ejection, incoming messages are first multiplexed by VN and later the message handler

module is the responsible to establish the order between single-flit and multi-flit corre-

sponding to the same VN (shaded in blue). In case two messages from the same virtual

network are incoming, the message handler serializes the messages in order to preserve

the order among the flits they contain and avoid corrupted messages. For example, if a

multi-flit message composed of six flits has delivered three flits and at this moment it

arrives a single-flit message, the message handler will buffer the single-flit message until

the three remaining flits of the multi-flit message arrive.

Additionally, the NI implements receiving buffers from the end node. Those buffers will

be used to store messages generated by the end node until the corresponding time slot

can be used to inject the messages. Therefore, the NI decouples generation from the

local node.
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4.2 Evaluation Results

In this section we analyse DCFNoC performance guarantees in a manycore system and

compare them with the ones provided by wormhole. Next, we provide a performance

evaluation of real workloads. Finally, to analyze the feasibility of implementing the

proposed NoC we provide area and maximum attainable clock frequency, and compare

these results with the ones obtained with a standard wormhole router [28] [29].

4.2.1 Experimental Setup

We design DCFNoC and the whole manycore infrastructure using verilog RTL which can

be synthetized for FPGAs and ASIC. We simulate the system using the Xilinx Vivado [58]

RTL simulator. Thus, results presented in the chapter match the number of cycles of a

potential manycore implementation.

For the experimental setup we use a 2D-mesh NoC topology to interconnect the different

tiles of the previously described manycore system and a memory controller (MC). The

MC is modeled using the IP provided by Xilinx to communicate with the off-chip DRAM

memory. Additionally, to force the worst contention scenario the NoC can be fed by a

message system generator (MS) implemented at each network interface using uniform

traffic pattern. DCFNoC configuration used includes 96-bit width links to implement a

mesh network topology. At network edges we statically allocate 16 1-cycle time slots to

nodes. One time slot is equal to 1/16 of total bandwidth, resulting to a 6.25%.

4.2.2 Timing Guarantees

To analyze the performance guarantees of the manycore with DCFNoC, we have designed

a kernel application in which we can vary the percentage of requests to the NoC with

respect to the total number of instructions. To do so, we inject random non-memory

operations in a kernel containing a specific number of cache accesses that miss in L1 and

L2 caches. We deploy this benchmark with the ability to have three different percent-

ages of memory accesses (2%, 7% and 15%) in order to understand the impact of the

communication of a task in the performance guarantees the same can achieve.
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Figure 4.3: Execution time for benchmarks with different percentage of memory
access instructions.

To generate a worst-case contention scenario in the NoC we replace the regular cores in

the remaining tiles (all but tile 15) with synthetic message generators with destination

router 0 (in which memory controller is placed). See Figure 4.1 that describes the NoC

topology.

First, we take measurements of the benchmark running in core 15 when message gen-

erators are disconnected, to have the baseline timing measurement (Alone) for both

DCFNoC and wormhole. Later, we switch message generators on, in all cores but the

one running the task under analysis, to measure the impact of NoC interference in our

application for both designs. For this experiment, message system generators inject

multi-flit (Long) messages. Figure 4.3 shows total execution time of the different bench-

mark versions when they are executed alone (Alone) and when other nodes are injecting

long messages (Long) at the maximum speed. The first observation we make is that as

expected when the task is executed Alone, DCFNoC execution time is higher than when

using the wormhole setup. The reason for this is that DCFNoC inherently restricts the

injection of messages since they can be only injected in the assigned slot. Additionally,

since we are only using one NoC the TDM scheduler period is high. The slowdown

introduced by DCFNoC in this case is 6.21×, 7.72×, and 8.22×, for the 2%, 7% and

15% benchmarks, respectively. However, as we will show later, this slowdown is reduced

when using two TDM networks. On the contrary, when the task in executed in a high

contention scenario the performance of the wormhole setups is degraded significantly

(around 19.85× in average) while the performance of DCFNoC is simply unaffected.

Another interesting observation is that the percentage of NoC requests does not have a
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Figure 4.4: Average memory transaction latency when using only one network.

significant impact in the slowdown of the application in wormhole. Under such heavy

message injection, the NoC gets saturated quickly. However, requests to the NoC from

the task in progress keeps always at the same speed once the NoC is saturated and in

all benchmarks we have the same amount of memory requests. Note also that since we

are focusing in NoC contention, we avoid end-node contention by ejecting messages at 1

flit/cycle. Given that the percentage of NoC accesses does not have a significant impact

in the worst-contention we use only one of the kernels in the remaining experiments.

4.2.3 Performance Guarantees of DCFNoC Manycore System

In order to characterize how NoC interference affects to applications running in the many-

core system using DCFNoC, we launch the benchmark with 2% of memory instructions

using only one NoC. In this manycore configuration, we can have short (1-flit) and long

(6-flit) messages that correspond to NoC requests and responses, respectively. Control

messages required by the coherence protocol are 1-flit long.

Figure 4.4 shows average memory transaction latency breakdown. Total average latency

in cycles is shown at the top of the bars. We break down the total average latency in

five components. The first two are related to request process, then memory time (L2)

and later two for response part. Request and response contains NI waiting time that

corresponds to waiting time for inject at the assigned time slot and later the network

latency.
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Wormhole baseline NoC latency is 32 cycles (4 for injection plus 5 cycles per router and

ejection), while DCFNoC takes only 8 cycles (6 for the longest minimal path plus the

injection and ejection).

On the contrary, when other tiles inject messages (Long scenario), wormhole NoC ex-

periences message interference along the network and gets congested producing a huge

increase of messages waiting time at input port buffers. As a consequence, the application

suffers prolonged execution time and long NoC request latencies as shown in Figure 4.4

(second column). Note that wormhole NoC suffers an average latency of 2404 cycles

in this case while DCFNoC average latency keeps constant to 683 cycles. Note that

although DCFNoC latency is guaranteed to be equal to the diameter of the NoC the la-

tency of the packets is higher since they are enqueued at the NI. The small TDM period

of DCFNoC decreases the average time each message is waiting until it is aligned with

the assigned slot and also enables DCFNoC achieve smaller latency values for higher

injection rates.

In order to improve the performance guarantees for both wormhole and DCFNoC we

separate short and long messages in two different networks. This allows us to reduce

TDM period for short and long messages. Since the TDM period defines the average

amount of time every message is waiting to be injected into the network, messages

suffer less NI waiting time with this configuration. For wormhole, we also analyze the

performance when splitting messages in two virtual networks (VN). The messages share

physical links between routers while they use separate input port buffers. Using separate

buffers in wormhole avoids head of line blocking problem [26].

As Figure 4.5 shows, we analyse the application when running alone (Alone), when

other tiles inject short messages (Short) and when inject long messages (Long). These

three scenarios are compared in a system using one wormhole network, when using two

wormhole networks either virtual or physical (one for short and one for long messages),

and when using only one DCFNoC for short and long as well as when using two DCFNoC

networks as explained in Section 4.1.

As Figure 4.5 shows, DCFNoC improves execution time of the application by 3.7× with

respect to wormhole when short and long messages are divided in two different NoCs.

This is due to TDM period reduction. On the contrary, for wormhole splitting short
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Figure 4.5: Execution time when using only one or two networks.

Figure 4.6: Average memory transaction latency when using only one or two networks.

and long messages in different NoCs does not reduce the contention suffered by our

application. This is explained by the fact that wormhole does not restrict the injection

of messages as DCFNoC, therefore, both wormhole networks get saturated. As the

previous case, when the application runs alone in the system the wormhole network

takes less execution time than DCFNoC but when using two NoCs the slowdown is only

1.65× as depicted in Figure 4.5.

Figure 4.6 shows average memory transaction latency. As shown in the figure, when the

application is exposed to maximum contention the wormhole network does not guarantee

performance and suffers network interferences increasing NoC request time due to long

waiting time of messages at input port buffers. In contrast, DCFNoC preserves band-

width isolation regardless the amount of network messages and network interferences.



Chapter 4. Enforcing Predictability of Manycores with DCFNoC 71

Figure 4.7: Scalability of execution time for 4× 4 and 8× 8.

Figure 4.8: Scalability of average memory transaction latency for 4× 4 and 8× 8.

To analyse the scalability of DCFNoC, we model a 8 × 8 manycore system. Figure 4.7

shows execution time values for a benchmark with 2% of memory instructions when

it is executed in the farthest node in the NoC. Unfortunately, we were not able to

obtain execution time values for the highest contention scenario for the 8× 8 setup with

wormhole and thus, we only report execution times of the application executed alone for

this NoC. The reason is that when our application is running in core 63 and all other

cores are injecting messages at the maximum speed the bandwidth reduction experienced

by wormhole is so vast that makes practically impossible to run the application in an

detailed RTL simulator as the one we use.

As shown in Figure 4.7, wormhole NoC running alone has higher execution time since

messages need to traverse longer paths when moving from 4×4 to 8×8 NoC sizes. When
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using DCFNoC the increment of execution time is caused by the network size which in

turn affects the TDM period and path length. Execution time impact when using one and

two DCFNoC networks is 8.8× and 4×, respectively. Note also that although DCFNoC

performance decreases, meshes of this size usually have more than one memory controller

which reduces the longest paths and allows improving DCFNoC performance.

Figure 4.8 shows average memory transaction latency. As shown in the figure, request

waiting time increases when moving to a 8 × 8 mesh by 7.17× and 4.93× for one and

two DCFNoCs, respectively. However, NoC latency is only affected by hop count being

8 cycles in 4× 4 and 16 cycles in 8× 8.

DCFNoC provides performance guarantees that are superior to the ones wormhole pro-

vides even for smaller NoCs. DCFNoC guaranteed performance for a 8 × 8 NoC are

2.06× better than those obtained for a 4 × 4 wormhole NoC. Although wormhole NoC

performance is higher when implemented in COTS manycores, it introduces a signifi-

cant negative impact in the quality of WCET estimation, preventing any assumption

on affordable timing quality of messages. Contrarily, DCFNoC provides perfect timing

isolation as well as constant network message latency to fulfill safety-related applications

requirements in manycore systems.

4.2.4 Flexible Bandwidth Allocation in the Manycore

In order to test the capabilities of the flexible bandwidth allocation of DCFNoC, we

perform an experiment on a 4×4 mesh using uniform traffic. Figure 4.9 depicts applica-

tion execution time when running alone (Alone) using wormhole NoC, also when other

tiles inject long messages using DCFNoC with 1/16 of total bandwidth, moreover with

a bandwidth of 2/17.

As figure shows, application execution time using DCFNoC with a bandwidth of 1/16

increases by 2.14 times compared with Alone scenario when using wormhole NoC. As

expected, when the application node has 2-cycle assigned time slots of 17, execution

takes only 1.6 times. Note also the fact that as Figure 4.10 shows, transaction latency

is improved by 35% due to important NI average waiting time reduction.
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Figure 4.9: Execution time using different bandwidth allocations. Application exe-
cuted alone using a wormhole NoC and using DCFNoC with 1-cycle assigned time slot

of 16 and 2-cycle assigned time slots of 17.

Figure 4.10: Average transaction latency using different bandwidth allocations.

4.2.5 Performance Evaluation of Real Workloads in a Manycore

In order to evaluate the benefits of using DCFNoC in safety-related applications, we

have selected (ndes) and (matmult) benchmarks from mälardalen WCET benchmarks

suite [59]. Applications in this benchmark suite have small memory footprint and thus,

have very low communication requirements. For comparison purposes we also include

a kernel application (synth) resembling applications with higher communication needs

(5% of total instructions performing NoC requests). Note that large applications cannot

be effectively simulated in a detailed RTL manycore model.

The three applications are evaluated in two scenarios: low and high contention. To create
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Figure 4.11: Latency for different benchmarks execution at different core positions
(0, 5, 15) in a 4× 4 mesh system using wormhole and DCFNoC NoCs.

this contention scenarios we use synthetic message generators with random destinations

injecting long messages at a 6.66% and 100% injection rates. We perform experiments

placing the kernels at three different cores (0, 5, 15) in a 4× 4 system.

Figure 4.11 shows a latency comparison for these three benchmarks running in cores

(0, 5, 15) in low and high contention scenarios when using wormhole and DCFNoC NoCs.

For wormhole, we present Highest Observed Values (HOV), represented by blue bars,

and average values, represented by a black line. As shown in the plot, the largest HOV

is obtained for the kernel with higher communication needs (synth) and in the high

contention scenario. This is explained by the fact that high contention conditions are

more likely to occur when the NoC is congested. Unfortunately, for hard-real time

systems it is not possible to assume HOV represents actual contention bounds. In fact,

as shown in [66] the worst possible contention is possible with few NoC requests if they

aligned in the worst possible manner. Finally, DCFNoC latency keeps always constant

being its value much lower than the average and HOV values of wormhole.

4.2.6 Area and Frequency of DCFNoC

Maximum operating frequency and area utilization are obtained using Cadence RC Com-

piler and the 45-nm Nangate library [60]. The wormhole NoC implemented is 64-bit width

and uses 8 slot input buffers with Stop&Go flow control. For the implementation results

we consider a DCFNoC router for a 8 × 8 mesh. The wormhole router (WH) used for
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comparison purposes implements a single virtual channel, virtual networks are not used

in this particular router.

Figure 4.12 shows area overheads for the two NI when targeting high frequency. The

DCFNoC NI uses 7.3% more cells than the one used for wormhole and a total area of

25, 750 mm2. This results in an increment of 17.3% of total area with a total area of

31, 137 mm2. Even though wormhole NI multiplexing logic is more complex, it does

not require an end to end flow control and therefore consumes less area. The DCFNoC

NI uses logic to implement VN multiplexers, TDM arbiters and flow control buffers.

End-to-end flow control uses one output buffer per VN.

As a result, total area overhead of DCFNoC router and NI is 60, 072 mm2 and 67, 336

mm2 for wormhole. In summary, we obtain total area savings of 10.79%.

We also analyse the NI maximum attainable frequency. Figure 4.13 shows a slowdown

of 15.57% in clock frequency of DCFNoC NI w.r.t wormhole. Although wormhole NI is

more complex, it is pipelined in several cycles which allows achieving higher frequencies.

On the contrary, TDM arbiters and flow control of DCFNoC NI use only one cycle

simplifying flow control notifications. Even with such critical path, DCFNoC NI clock

frequency reaches up to 2.06 GHz. Other flow control schemes can be considered in the

future to allow reaching higher clock frequencies.
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4.3 Summary

In this chapter, we present a manycore system integrating a novel real-time NoC (DCFNoC)

to enforce predictability. We show that DCFNoC can be smoothly integrated into a

manycore design by introducing small modifications at network interface. Our results

confirm that the resulting manycore provides performance guarantees that are signifi-

cantly better that the ones that can be achieved with wormhole NoC designs.

In the next chapter we target performance improvements of DCFNoC in non congest-

ed/saturated conditions.
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hp-DCFNoC: High Performance

Distributed Dynamic TDM

Scheduler based on DCFNoC

Theory

In a context in which NoCs are becoming ubiquitous in safety-critical real-time sys-

tems [67][38][63] it becomes mandatory finding NoC designs that provide high quality

real-time guarantees. In this chapter, we aim at achieving this goal and propose a

new real-time specific NoC design that provides peak performance close to the standard

wormhole designs while preserving strict real-time guarantees. To achieve this, our NoC

design uses a dynamic scheduler that builds on top of DCFNoC. The combination of the

dynamic scheduler and DCFNoC is termed hp-DCFNoC (high-performance DCFNoC).

We implement the scheduler design in synthesizable verilog RTL showing the feasibility

of this approach and compare its performance against the one provided by DCFNoC and

regular wormhole NoC.

This chapter 1 is organized as follows. First, it presents the distributed dynamic scheduler

design in Section 5.1. Next, a rescheduling technique to improve scheduler performance

is described in Section 5.1.5. Later, performance evaluation of the proposed scheduler is
1The work discussed in this chapter has been published in [68].
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provided in Section 5.2.3. Finally, area overhead and maximum attainable frequency are

analysed in Section 5.2.5.

5.1 A Distributed Dynamic Scheduler Design

DCFNoC limits flit injection to only one node at a time in a given slot. Therefore,

although timing guarantees are preserved, network throughput is severely limited to

one flit per cycle regardless of network size. hp-DCFNoC overcomes this limitation by

introducing a dynamic scheduler design that is able to inject more than one flit per cycle

by exploiting the use of conflict-free paths (paths that do not share any network resource

between them). In particular, we exploit two conflict-free situations: (1) packets from

two nodes injected in the same slot that do not share any resource along their path

and (2) messages injected at different cycles. In both cases they will never conflict in

DCFNoC. Our dynamic scheduler exploits these two properties to maximize the number

of packets that can be injected in the NoC at a given cycle while preserving the real-time

properties provided by DCFNoC.

hp-DCFNoC implements a distributed TDM scheduler at network interfaces of every end

node. The scheduler uses two DCFNoC networks, one for notification and one for data

transmission as shown in Figure 5.1. Two phases are identified. In the notification phase

the scheduler determines which routes will be used by each node in a given time slot. If

routes are compatible (i.e. do not generate conflicts) they can be scheduled in the same

time slot. In the second phase data is actually transmitted. During the transmission

phase all the slots are run. Data transmission and notification phases are overlapped to

maximize both throughput and average message latency.

5.1.1 Scheduler Architecture

The proposed scheduler consists of several modules interconnected as shown in Figure 5.2.

This picture shows a detailed architectural diagram of a 4-way distributed TDM scheduler

for a 16-node system in a 4 × 4 mesh network. Each wayi module has a queue with

pending message, the node wants to inject (4 messages in this particular configuration).

In the scheduler, a route scheduling table (RST), with as many entries as ways keeps
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Figure 5.2: Scheduler to optimize DCFNoC performance and resource utilization.

the following information related to pending messages: valid bit (valid), way id (wayid),

destination node (dst), the set of available slots (slot x), a selected slot vector (selected)

and the corresponding id of the selected slot (slot sel).

During the scheduling phase, each node receives notification messages from other nodes

via the notification DCFNoC. Every time a notification arrives to the scheduler the route

checker modules compare the routes information included in the received notification with

the one for the pending local messages. A notification message can include several routes.

In our implementation we use slots of two cycles for each node to send notifications.

Each cycle ways/2 routes are notified. By using two cycles the width of the notification

network is reduced. The route checker modules determine which routes are disjoint with

the pending messages and which ones are incompatible. The selected slot is updated in

the RST module using a chain of Fixed Priority Arbiters (FPA). Once notification phase

ends, RST information is stored in the data window module. This module injects pending
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messages in the assigned slot by using an enable signal during the data transmission

phase.

In order to maximize performance, the scheduler is pipelined in two stages. In the first

stage, notifications are received (or injected) and checked. In the second stage, the

compatible slots are found.

5.1.2 Notification Phase

At each network interface, newly generated messages arrive in order, and are stored in

a two slot buffer (way). Each message generates a pending route to be scheduled (the

suitable slot must be computed). Routes are determined by a source and destination

pair (src-dst). Message destination and way ID are stored in the route scheduling table

(RST), which is used to find the most suitable slot. Each RST row contains one control

bit per each possible slot in the next transmission window. A control bit set to one means

that this route can use that slot ID for transmission. The scheduler must guarantee two

conflicting paths do not end up using the same slot. We define as many slots as end nodes

and statically assign one slot per node. Each slot will be prioritized by the scheduler to

the assigned node. Thus, the scheduler guarantees that at least one node will be able to

use its prioritized slot and is irrevocable. This is the most valuable guarantee, no one can

use this slot unless it uses a disjoint route. This is key to ensure that DCFNoC timing

guarantees are preserved.

The notification phase uses a TDM network in order to let every node send their notifi-

cations in turns. To avoid wasting a complete TDM window to notify all nodes, we use

DCFNoC native support for broadcast. Thus, every node will broadcast its notifications

on a single slot to the rest of nodes. Also, DCFNoC guarantees all notifications arrive

at the same time to all nodes which simplifies the scheduler design. The notification

reception time (timei) identifies the sender node and therefore is equal to Notification

ID. On every notification window, the first node sending notifications is assigned in a

round-robin fashion.

On every notification reception the end nodes process the notifications. The RST is

updated taking into account the conflicts that may arise between received notifications

and the current assignments of paths to slots. Notice that all nodes update the RST
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Figure 5.3: First priority rule in case of incompatible paths: Notified route uses the
priority slot of the receiver.

at the same time and via the same manner. Also, each end node checks if there is a

pending route (i.e. a route that is waiting to be served) that requests the same network

resources to determine if these routes are compatible. The rules used by the scheduler

to determine priorities in case of incompatible paths are the following:

• The notified route uses the priority slot of the receiver. For the examples provided

below we consider TDM slot i is assigned to node i by default. Given that these

routes are compatible by default no action is required at the receiver side. Figure 5.3

illustrates this case. Notification node 4 uses priority slot of receiver (slot 6).

Receiver has one route in the RST with slot 6. In this case, the receiver has the

priority to use this slot. When the notification turn arrives, the receiver node will

send the notification and other nodes using this slot with incompatible routes must

disable this selected time slot in the RST module.

• The notified route uses the priority slot of the sender. The receiver must disable

the requested time slot in the RST. Figure 5.4 shows an example where notification

node 4 uses its own priority slot (slot 4). Receiver (node 6) has one route in the RST

with slot 4 and both routes have incompatible paths. In this case, the sender has

the priority to use this slot and therefore, receiver node must disable this selected

time slot in the RST row.

• The notified route does not use either the priority slot of the sender or the receiver’s

one. Figure 5.5 illustrates this case. The sender is node 4 and uses slot 15. The

receiver is node 6 and has one route in the RST with slot 15. Both routes have

incompatible paths due to destination node sharing. In this case, the first node
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Figure 5.4: Second priority rule in case of incompatible paths: Notified route uses
the priority slot of the sender.
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Figure 5.5: Third priority rule in case of incompatible paths: Notified route does not
use either the priority slot of the sender nor the receiver’s one.

that notified the route (node 4 in our example), has the priority to use this slot,

therefore, the receiver node must disable this selected time slot in the RST row.

Once notification turn arrives, the slot manager on every node selects one data slot for

each pending route through a chain of FPA. Slot selection process is based on the updated

control bits of the RST. First, by means of a Round-Robin arbiter, one pending route is

selected and uses the first FPA to select a time slot. The FPA selects the first active bit

of each RST row starting from this node’s priority slot. The remaining pending routes

use the next entry of the one provided by FPA. It is important to take into account that

the slot selection process is exclusive. That is, no pending route can select the same slot.

Once slot selection ends the selected control bit is enabled and the selected slot is stored

at the row.
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Figure 5.6: Data phase. At the end of notification phase the slot manager sends
information about the slots assigned to each message.

Selection and notification process take two cycles at each node. The process selects and

notifies half of the pending routes in the first cycle and the other half in the second cycle.

5.1.3 Data Phase

After the notification phase each node knows the exact slot in which the different mes-

sages have to be scheduled. The duration of the data phase that guarantees all nodes

have one slot is a complete TDM window. The size of each slot is the maximum size

among all the routes using the slot and depends on the size of messages scheduled for

that slot.

To maximize performance, transmission phase is overlapped with notification phase.

As Figure 5.6 shows, when a notification phase ends, the slot manager module sends

information about the slots assigned to each message. Once the new data window is

ready the system starts sending stored messages from ways corresponding to an assigned

slot.

The upper part of Figure 5.8 shows how the data window module activates the notifica-

tion phase of the next data transmission phase before the current transmission window is

completed. Note also that shifting notification phase to the end of the current data win-

dow transmission maximizes the chances to find compatible routes, since more messages

are potentially available.
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Figure 5.7: Disjoint paths between node 0 and node 1 in (a). In (b) node 0 and node
15. Paths sharing red resources or destination node are incompatible.

5.1.4 Assignment of TDM slot priorities

The success rate of slot assignments for pending routes is significantly influenced by how

priority slots are designated to the different nodes. Achieving a higher rate of selected

slots requires finding the maximum number of disjoint paths (i.e. without conflict) and

for this a policy for slot assignation has to be designed. In our design, this assignment

is computed by software before the application is deployed.

Let us illustrate this with an example. Figure 5.7a shows a 4x4 network in which packets

are routed using XY. As shown in the plot, nodes 0 and 1 have many potential conflicting

paths since they share many links to the potential target destinations. On the contrary,

as shown in Figure 5.7b, node 0 and node 15 do not have conflicts except those that

target one of these two nodes as destination. For this setup, the best slot assignment is

the one that assigns priority slots to nodes with no or few number of sharing resources

for all potential target destinations.

In this section, we show how to find the optimal slot assignment for uniform traffic with

XY routing in a 2D mesh network. To do so, we have performed an exhaustive search

with an offline program to get the configuration with less number of conflicting paths.

The pseudo-code of this search is shown in Algorithm 5.1. First, in lines 13-16 the

priority slot is copied to the temp_map structure. Then, for every way in the scheduler

(lines 18-24) the selected slot is assigned based on the priority slot, the way id, and the

number of TDM slots. Notice that all the possible destination nodes are also considered

to further check the disjoint routes (lines 26-31). This function, checks the number of

disjoint paths for this temp_map configuration. To do so, for all potential paths and the

number of ways, takes into account the selected slot, and saves the best configuration
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1: function build_pslot_map (#ways , #tiles , #slots)
2:
3: tiles temp_map
4: tiles best_mapping
5: tile tx
6: tile ty
7: way wx
8: int temp_disjoint = 0;
9: int best_disjoint = 0;
10: destination dx
11:
12: for every tile in tiles (tx)
13: temp_map(tx). prio_slot = get_pslot(slots);
14: for every tile in tiles (ty)
15: temp_map(ty). prio_slot = get_pslot(slots);
16: endfor
17:
18: for every way in ways (wx)
19: temp_map(tx).way(wx). sel_slot =
20: (temp_map(tx). prio_slot + wx) % slots;
21: for every tile in tiles (dx)
22: temp_map(tx).way(wx).dest = dx;
23: endfor
24: endfor
25:
26: temp_disjoint = check_disjoint(temp_map );
27: if(temp_disjoint >best_disjoint)
28: best_mapping = temp_map;
29: best_disjoint = temp_disjoint;
30: endif
31: endfor
32:
33: return best_mapping;
34:
35: end function

Alg. 5.1: Algorithm to get best priority slot mapping

in terms of number of disjoint routes. In other words, the algorithm explores for all

potential paths (i.e. source and destination pair) in the network, which is the priority

assignment that maximizes the number of disjoint routes. Note that the algorithm also

takes into account the number of ways in the scheduler.

5.1.5 Rescheduling technique

As explained in Section 5.1.1 the proposed scheduler overlaps notification and trans-

mission phases (see the upper part of Figure 5.8). However, as notification and data

transmission phases have large timing differences, performance may be compromised.

To solve this drawback, we propose a rescheduling mechanism that finds the best way to

seize notification and timing of each phase.
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Figure 5.8: Comparison between common scheduler phases (up) and using reschedul-
ing technique (down). Notification phase configures next transmission window. Data

transmission phase is now broken down in transmX0 and transmX1.

Let us illustrate the proposed mechanism with an example. The timing of the notification

phase depends on the number of nodes (#nodes), the number of cycles required for

notification (#noticy) for each node and the network latency (netL).

Notification delay = (#nodes×#noticy) + netL (5.1)

Data delay depends on the number of nodes (#nodes) and the message length in cycles

(messageL). Both Notification and Data delay refers to the maximum possible delay.

Data delay = #nodes×#messageL (5.2)

A 4×4 DCFNoC mesh has a latency of 7 cycles and needs 2 cycles for node notification.

Using messages of 5 flits:

Notification delay = (16× 2) + 7 = 39 cycles

Data delay = 16× 5 = 80 cycles
(5.3)

As we can see, there is a huge difference between the 39 cycles of the notification phase

and the 80 cycles required for transmitting data. Thus, we propose a rescheduling ap-

proach in which data phase is split. The first half of window slots in a first round and

the other half of the slots in a second one. After this modification notification and data

delay are as follows:

Notification delay = (16× 2) + 7 = 39 cycles

Data delay =
16

2
× 5 = 40 cycles

(5.4)
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Figure 5.9: Example of notification nodes targeting scheduling slots in common sched-
uler phases (up) and using rescheduling technique (down). Note that resulting trans-

mission phase when rescheduling is the addition of transmX0 and transmX1.

Notification delay remains in 39 cycles since we notify routes from all network nodes but

data delay changes from 80 to 40 which results in an almost perfect overlapping.

At the lower part of Figure 5.8 we show the new procedure for notification and trans-

mission using this rescheduling technique. Data transmission phase is broken down in

transmX0 and transmX1. The first notification notX0 deals with the first half of the

data window slots and the second one notX1 schedules the remaining slots.

To maximize efficiency of the rescheduling technique it is important to match the no-

tification phase of all nodes notX0 with the same or less slots for data transmission in

order to maximize the matching at the end of whole data window (see the lower part of

Figure 5.8).

Figure 5.9 shows how the scheduling window is organized in the regular case (top) and

when the rescheduling technique is applied (bottom). In both cases, each node is assigned

the priority in a given slot but routes are notified differently. In the regular scheduling,

the notification phase occurs once every N slots while with the rescheduling technique the

notification phase occurs several times per window (two times in this example). Notifying

routes more frequently increases the chances to schedule packets. Note that nodes can

use any of the slots. However, packet transmission for non-priority nodes only occur if

the node with priority is not using the assigned slot.
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Figure 5.10: 4× 4 mesh system with schedulers using two DCFNoC networks.

5.2 Evaluation

In this section we compare the performance achieved by hp-DCFNoC with DCFNoC and

a regular wormhole NoC.

5.2.1 Experimental Setup

We implement all designs: hp-DCFNoC, DCFNoC, and a wormhole NoC in verilog

RTL. The resulting implementation can be synthetized in FPGAs and ASIC. To obtain

performance numbers we simulate the system using the Xilinx Vivado [58] RTL simulator.

Figure 5.10 shows a schematic of the NoC platform for the 4×4 mesh system. Note that

our approach includes the schedulers and two DCFNoC networks, one for notification

and one for data transmission.

For traffic generation, we create uniform traffic patterns using a message system generator

that is attached to each network interface. In order to create uniform traffic pattern, we

use a pseudo random number generator with Linear Feedback Shift Registers (LFSR [69])

to generate a random destination label for every message, thus all nodes have the same

probability to receive a message. The use of uniform traffic allows us to simulate an

unpredictable network load as well as unpredictable used paths. One thousand warm-up

messages are generated at the beginning of each test. This represents a 5% of total test

time.

We implement NoCs of 16 (4× 4 mesh) and 64 nodes (8× 8 mesh) using this platform.
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5.2.2 Theoretical Worst-Case Performance

hp-DCFNoC preserves the performance guarantees provided by DCFNoC network. hp-

DCFNoC performance is tightly coupled with the scheduling period. While traditional

TDM approaches have difficulties to find schedules for large networks, hp-DCFNoC is

able to find conflict-free scenarios in arbitrarily large NoC sizes. hp-DCFNoC achieves

this without degrading the quality of the achieved guarantees by simply ensuring that

no more than one node is injecting packets in the same time slot unless it uses a disjoint

route. Since only one node is injecting in a particular cycle the resulting NoC guaranteed

productivity is equal to 1/N flits/cycles/node being N the number of network nodes.

Hence, the network injects 1/tslot (one message per TDM slot), at a minimum, resulting

in N/PTDM (N messages per TDM period), or in other words N messages per window.

Regarding message latency, all communication flows experience a latency that is equal

to the time required to traverse the NoC diameter (H) plus the ejection and injection

links (2).

hp-DCFNoC provides TDM periods significantly better than other proposals. For in-

stance, for a 25-node mesh NoC the approach in [1] requires a period of 34 while hp-

DCFNoC requires only 25 cycles. Additionally, approaches using ILP to find optimal

scheduling periods suffer from limited scalability not being able to find schedules for

meshes beyond 25 nodes [1]. Other approaches based on heuristics, although being able

to find schedules for larger NoCs, result in TDM periods that are significantly worse

than the ones achieved by hp-DCFNoC. For instance, in [47] a 64-node mesh requires a

period of 481 cycles while hp-DCFNoC requires only 64.

In terms of latency, for very small injection rates and the smallest NoC sizes DCFNoC

latency is slightly worse than the one achieved in ILP [1] for the shortest paths but

better for the longest ones. For higher NoC sizes and/or higher injection rates DCFNoC

achieves always better results [63]. The reason for this is the smaller period of DCFNoC

that decreases the average time each message is waiting until it is aligned with the

assigned slot. The smaller period also enables DCFNoC achieve small latency values

for higher injection rates. Other similar approaches like PhaseNoC [2] achieve the same

schedule period but at the cost of higher latency. In summary, hp-DCFNoC baseline

performance is in general better than the rest of state-of-the-art TDM approaches.
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(a)
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Figure 5.11: hp-DCFNoC throughput guarantees for a 4× 4 and 8× 8 mesh system.
In (a) node 5 is injecting traffic at 10% injection rate while others are injecting at 50%.
In (b) nodes (10, 20, 30, 40, 50 and 60) inject at 50% injection rate while the rest inject

at 5%.

5.2.3 Testing Worst-Case Performance

Figure 5.11a shows hp-DCFNoC throughput guarantees for a 4× 4 mesh system. Hori-

zontal line represents the throughput guaranteed for each node (1/16 = 0.0625 flits/cy-

cle/node). For this experiment we configure node 5 to inject traffic at 10% injection rate

while the rest of nodes are injecting at 50%. Note that while the guaranteed throughput

is lower than the one injected by node 5 the scheduler is able to meet latency guarantees

also when the other messages are injecting at a high rate. For node 5 throughput reaches

0.10 flits per cycle, above the minimum guaranteed throughput, hence the average mes-

sage latency is kept above the maximum guaranteed.

Figure 5.11b analyzes for an 8×8 NoC a different traffic scenario. In this case, six nodes

(10, 20, 30, 40, 50 and 60) inject at 50% injection rate while others injects at 5%. For

a 64-node configuration hp-DCFNoC guarantees a throughput of 1/64 flits/cycle/node.

However, with the dynamic scheduler we have that nodes injecting at 5% are able to

sustain this throughput that is above the one actually guaranteed in spite of having

several nodes with a very high injection rate. Note however that for nodes injecting at

50% throughput is not preserved.

Impact of the number of ways. Figure 5.12 shows the network throughput achieved

for a 4×4mesh system with the baseline scheduler (BaseSched) without the re-scheduling

technique. As shown, throughput achieved with the scheduler is significantly better than
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Figure 5.12: Network throughput using baseline scheduler (BaseSched) for different
ways in a 4× 4 mesh system.

the one achieved by DCFNoC (0.00625 flits/cycle/node) even with the a small number of

ways (4). Recall that the number of ways represents the maximum amount of messages

that are pending to be scheduled in each notification phase. Thus, increasing the number

of ways increases the potential throughput of the network although this also implies

higher hardware costs. For a 16-node NoC the throughput improves from 0.18 to 0.42

flits/cycles/node when moving from 4 to 16 ways. An interesting observation is that

improvements are not so relevant for more than 8 ways.

Impact of rescheduling. By implementing the rescheduling technique, the scheduler

is able to maximize DCFNoC utilization reaching a significantly higher performance.

Figure 5.13 and 5.14 show results for 4×4 and 8×8mesh systems using DCFNoC without

dynamic scheduler (DCFNoC ), the baseline scheduler (BaseSched) and the improved

scheduler that implements the rescheduling technique (ImpSched). For the 4 × 4 mesh

scheduler we use 8 ways. Data window contains 16 slots (one per node). Figure 5.13a

shows how network throughput has been improved from 0.062 (1/16) to 0.30 when using

the dynamic scheduler reaching 0.43 flits/cycle/node with the ImpSched. In other words,

the number of messages that can be transmitted per slot goes, on average, from 1 in

DCFNoC to 5.8 in the BaseSched to 6.9 in ImpSched. For the ImpSched this results in

nearly 110 messages per window. With respect to latency values Figure 5.13b shows how

average message latency is kept low until 0.48 flits/cycle/node.

For a 8 × 8 mesh, the scheduler implements 16 ways at each node and data window
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Figure 5.13: Network throughput (a) and message latency (b) in a 4× 4 mesh.

(a) (b)

Figure 5.14: Network throughput (a) and message latency (b) in a 8× 8 mesh.

contains 64 slots (one per node). Before analyzing the results, it is important to remark

that in a 8 × 8 mesh the throughput achieved per node is roughly divided by 2 with

respect to a 4×4 mesh. Hence, network performance per node is expected to be reduced

in a similar manner. Figure 5.14a shows network throughput for the 64-node mesh.

DCFNoC obtains 0.015 (1/64), BaseSched gets 0.12 and the improved scheduler reaches

0.23 flits/cycle/node. These throughput numbers show how a network with 64 nodes is

able to improve network capacity up to 14 messages per slot which doubles the capacity

achieved in the 4 × 4 mesh. This means that the network is able to send nearly 900

messages every TDM window. The network keeps message contention low until 0.20

flits/cycle/node, hence Figure 5.14b shows how latency values are kept low.

hp-DCFNoC versus Wormhole. The goal of hp-DCFNoC is to improve the perfor-

mance achieved with DCFNoC while keeping its valuable QoS properties. In this section
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Figure 5.15: Network throughput (a) and message latency (b) comparison versus
standard wormhole in a 4× 4 and 8× 8 mesh.

we show how hp-DCFNoC is able to achieve that goal but also how its peak performance

numbers are very close to the one of wormhole NoCs. Figure 5.15a compares the network

throughput achieved by hp-DCFNoC with the one of a high-performance wormhole NoC.

For the wormhole NoC we use a conventional NoC implementation with canonical and

pipelined routers, one single virtual channel, round-robin arbitration, and XY routing.

As shown in the plots, in both cases, the throughput of hp-DCFNoC is very close to

the one that can be achieved with wormhole being close to 0.45 flits/cycle/node for a

16-node mesh and 0.22 for 64-node mesh. Interestingly, while wormhole NoCs have been

able to provide performance guarantees [48] the latency bounds provided by these NoCs

are much worse than the ones provided by hp-DCFNoC. Figure 5.15b shows how average

message latency is kept low until 0.48 flits/cycle/node for a 16-node mesh and 0.22 for

64-node mesh.

5.2.4 Analyzing the Impact on Applications Behaviour

In order to evaluate the benefits of using hp-DCFNoC on applications execution time

we have designed several synthetic kernels. The synthetic kernels generated produce

a variable amount of instructions and the corresponding network messages targeting

different destinations based on nature of the message. Instructions labeled as L1hit

do not produce any network message. Instructions labeled as L1miss are injected into

the network to a random destination and no further instruction is processed until the

node receives a response. Messages originated from the L1miss instruction that are
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Table 5.1: Different scenarios evaluated. We have modeled three main different sce-
narios for application traffic with four different levels of network congestion.

Scenario L1hit L1miss-L2hit L1/L2miss-MC Inj.Rate

1 95% 4% 1% 5%
2 95% 4% 1% 20%
3 95% 4% 1% 40%
4 95% 4% 1% 60%
5 80% 10% 10% 5%
6 80% 10% 10% 20%
7 80% 10% 10% 40%
8 80% 10% 10% 60%
9 70% 20% 10% 5%
10 70% 20% 10% 20%
11 70% 20% 10% 40%
12 70% 20% 10% 60%

labeled as L2hit do not produce additional traffic. However, messages labeled as L2miss

produce an additional request to the memory controller (MC) and the node originating

the request cannot progress until the response is received. To model requests processing

time L2 requests and MC requests are also delayed at the destination by 10 and 40 cycles,

respectively. L1hit requests are processed in one cycle. To evaluate the behaviour of this

kernel under different levels of contention this traffic model is only executed at one node.

The rest of the nodes inject random traffic at a specified load. All modeled scenarios are

shown in Table 5.1.

We executed 5000 instructions in the considered scenarios when using hp-DCFNoC and

wormhole NoCs. For these experiments we model a 4 × 4 NoC. The application traffic

is executed in node 0 (top left-most node) and the MC is located at node 15 (bottom

right-most node). Figure 5.16 shows the results of this experiment. As shown in the plot

wormhole always provides higher throughput values. This is explained by the fact that

average latency values of hp-DCFNoC are generally higher since a notification phase is

required before transmitting the data. However, the performance differences are lower

in the context of highly saturated scenarios. For these scenarios the network throughput

provided by hp-DCFNoC is very close to the one provided by wormhole and zero load

latency is less important. In particular, for scenario 1 hp-DCFNoC throughput is 20%

lower than the one achieved by wormhole while in scenario 12 the difference is only 12%.

It is also important to mention that these differences do actually represent a corner

case since processor architectures usually include mechanisms to hide memory latency
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Figure 5.16: Normalized throughput comparison for different scenarios in a 4 × 4
mesh system when using hp-DCFNoC and wormhole NoCs. Application is originated

traffic in the farthest node w.r.t to the MC.

like write-buffers, out-of-order execution, data and instruction prefetchers and the like.

In our experiments for each instruction labeled as L1miss the injector is stalled until a

response is received.

The obtained results also indicate hp-DCFNoC is well suited to applications with high-

bandwidth requirements like the ones found in autonomous driving systems [70]. Note

that performance guarantees of hp-DCFNoC are identical to the ones provided by DCFNoC

while the performance that can be guaranteed in a 4 × 4 mesh wormhole NoC is much

lower [48, 63].

5.2.5 Area Overhead and Frequency

Maximum operating frequency and area utilization are obtained using Cadence RC Com-

piler and the 45-nm Nangate library [60]. The scheduler implemented is ImpSched for a

4×4 and 8×8 mesh. The scheduler implements 8 and 16 ways at each node, respectively

and data window contains 64 slots (one per node). The wormhole NoC implemented is

64-bit width and uses 8 slot input buffers with Stop&Go flow control. For the implemen-

tation results we consider two routers: the hp-DCFNoC notification (Noti_sw) router

and the data (Data_sw) router for a 4× 4 and 8× 8 mesh. Data network configuration

used includes 96-bit width links to implement a mesh network topology. Notification
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Figure 5.17: Area overhead at each node.

network implements 38-bit width links in this particular case. The wormhole router

(WH_sw) used for comparison purposes implements (1, 2, and 4) virtual channels.

Figure 5.17 shows area overheads for every component when targeting high frequency.

The 8×8mesh hp-DCFNoC data router uses 30.42% less area than the WH-based one for

a 8×8 mesh, when using one virtual channel (1vc), with a total area of 28, 935 mm2 and

41, 273 mm2, respectively. Wormhole router requires input buffers, flow control logic,

routing units, output port arbiters and crossbar interconnect. On the other hand, the

hp-DCFNoC router implements very simple routing logic in order to compute the output

port, a crossbar interconnect as well as output delay registers. Due to small bit-width

hp-DCFNoC notification router is the lightest router with a total area of 9, 007 mm2

and 17, 715 mm2 for a 4× 4 and 8× 8 mesh implementations, respectively.

However, the 8×8 mesh scheduler uses more area than a wormhole router for a 8×8 mesh

with no virtual channel, although it uses roughly the same area compared to WH-based

using 2 virtual channels with a total area of 123, 551mm2 and 124, 143mm2, respectively.

It is important to remark that in general NoCs found in commercial processor require

at least 2 VCs to avoid request and response messages deadlock and even more virtual

channels when using cache coherence protocols to prevent protocol-induced deadlocks.

Figure 5.17 also shows total area of full hp-DCFNoC implementation including the Imp-

Sched, notification and data routers. The 8× 8 mesh hp-DCFNoC implementation uses

27% more area than the WH_sw for a 8× 8 mesh with 2 VCs, however, is 42% lighter

than a wormhole router when using 4 virtual channels.
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Figure 5.18: Area overhead for ImpSched implementations with different number of
ways in a 4× 4 mesh system.

Figure 5.19: Maximum attainable clock frequency for all modules of hp-DCFNoC.
Wormhole is also shown for comparison purposes.

Figure 5.18 illustrates how area overhead of hp-DCFNoC is affected as the number of

ways increases. As we can seen the area overhead grows linearly as the ImpSched module

implements more ways.

We have also analyzed the maximum attainable clock frequency of the different routers.

Figure 5.19 shows that the simpler hp-DCFNoC routers design gets a significant boost in

clock frequency by improving wormhole router’s one by 55% and 50% for notification and

data router, respectively. The critical path of the wormhole router limits clock frequency

to 2.22 GHz. However, the hp-DCFNoC routers exhibits a critical path of 290 ps and

300 ps leading to a maximum clock frequency of 3.45 GHz and 3.33 GHz for notification

and data router, respectively. Although wormhole router is more complex, it is pipelined

in 4-stages which allows achieving high frequencies.
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For hp-DCFNoC, in addition to the fast hp-DCFNoC routers we have a relatively complex

scheduler that includes arbiters and route checkers. For the scheduling process we use

only one cycle simplifying route notifications and control logic. Even with such critical

path, hp-DCFNoC clock frequency reaches up to 2.74 GHz and 2.60 GHz for 4× 4 and

8× 8 mesh implementations, respectively.

5.3 Summary

Future safety-critical real-time systems will need processor designs able to provide per-

formance guarantees without renouncing to peak throughput numbers. In this chapter

we propose hp-DCFNoC, a new NoC design that satisfies this requirement by providing

throughput numbers that are very close to the ones that can be achieved with standard

best-effort wormhole NoCs. At the same performance level hp-DCFNoC is able to guar-

antee performance to applications with much less resources (area and power) than an

standard wormhole implementation. To achieve the aforementioned demanding features

hp-DCFNoC relies on a distributed scheduler built on top of DCFNoC that maximizes

the number of packets that can be scheduled concurrently.

In this chapter we reached the main goal of this thesis. A NoC solution able to provide

timing guarantees while enabling competitive performance. Nonetheless, in the next and

final chapter we extend our work with a new view of alternative solutions derived from

our gained experience.



Chapter 6

A Study on Conflict-Free

TDM-based NoC Communications

In the context of real-time systems, the use of shared resources such as the NoC be-

comes challenging. Existing Hard real-time NoC platforms fundamentally provide static

resource allocation, which does not fit the requirements of efficient platform manage-

ment and does not take advantage on the context-sensitive nature of most real-time

applications. More dynamism is in fact needed to flexibly allocate resources to real-time

applications over time, while delivering strong isolation for security reasons. In this

chapter, the focus is on analyzing different TDM conflict-free communication alterna-

tives that ensure predictability and isolation between domains in a flexible manner. The

main goal is to explore a wide range of network solutions trading off area for performance

(especially, latency), while preserving domain isolation and time predictability.

This chapter explores different TDM-based real-time NoC solutions and proposes new

TDM-based designs (Section 6.1). We graph and provide different area, performance and

energy trade-offs. All configurations are analysed by inspecting the channel dependency

graph. Finally, performance results are provided as well as area overhead and maximum

attainable frequency in Section 6.2.

This chapter embeds the previous contributions of this thesis. Indeed, the development

of DCFNoC enabled us to widen the set of possible solutions and to reach the definition

of families of solutions based on the use of delays within the network.

99
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6.1 Families of Solutions

Since most of NoC internal resources are shared between packets from different domains,

the NoC is key to preserve domain isolation. A domain is a set of communication flows

belonging to an application or set of applications that must be isolated to avoid external

contention or interference. Different domains can be used to isolate different critical

applications with the same or different criticality level.

This section explores several TDM NoC solutions for conflict-free communications in

safety-critical real-time systems. To do so, we analyse the channel dependency graph

(CDG) of the network to identify potential conflicts and apply different methodologies to

avoid them. Such methodologies revolve around the proper scheduling of communications

in time and the selective insertion of propagation delays along network hops.

As before, our main goal is to achieve conflict-free transmission to allow synchronized

scheduling commands through the network and to obtain a TDM-based implementa-

tion. The scheduling commands are just a means to orchestrate communications in

time. In order to set the communication dependencies, we follow OSR [71] token prop-

agation methodology throughout the CDG. OSR is a static reconfiguration mechanism

for NoCs. This mechanism triggers a token from all end-nodes. Tokens advance through

the network following the CDG to drain the network of packets and provide new configu-

ration commands (routing function). It is important to remark that during this process,

network traffic is not stopped. In this chapter we use the token propagation concept

throughout the CDG as a way to find the TDM schedule that achieves conflict-free com-

munications. We are not actually using token propagation but this concept is useful to

enforce the message ordering along the CDG.

For the analysis, we group the identified solutions in three families, Token propagation-

based, DCFNoC-based and No-Delay. The first family (Token), adds delays on selected

network routers to synchronize packet transmission in the NoC. The second (DCFNoC),

adds delays on I/O paths following the CDG in such a way that all network paths have

the same length. The third (No-Delay), avoids adding delays by properly scheduling

communications in time using a TDM Scheduler within the router injector.

We consider the following assumptions for all the families:
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(a) (b)

Figure 6.1: Router architectures: (a) Two flip-flop router architecture (IOB), (b) One
flip-flop router architecture (OB).

A1 Communications are scheduled in time (TDM) by source nodes to all possible des-

tinations.

A2 Ejection network bandwidth in every node is one flit per cycle. We assume a max-

imum network throughput of one flit per cycle.

A3 All TDM slots composing a period have the same length.

A4 We consider only single-flit messages. For larger messages TDM slots must be equal

to message length.

Additionally, two baseline router architectures are assumed in this chapter.

• Input-Output buffered (IOB) router architecture which implements a flip-

flop at every input/output port (except input local). As Figure 6.1a shows, every

router and link within the network have the same delay (one cycle each), in other

words, two cycles per hop.

• Output buffered (OB) router architecture which implements a flip-flop at

every output port. As Figure 6.1b shows, every router plus link pair within the

network have the same delay (one cycle each), in other words, one cycle per hop.
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Table 6.1: Summary of Concepts

Concept Description

Token injector Initial node where token starts since it has no input
dependencies.

Supported domains (D) Number of temporal conflict-free domains that can be
on the fly in the topology.

Converging point The point where the token propagation is sent from
one output port and get back to the same port.

Round− Trip T ime (RTT ) The number of cycles that takes the token to
propagate from one router and to get back to the same
router from another input port.

Relative latency The difference in cycles from the token arrival time
from one input port to backpropagate to the same
router from another input port. This is always
a multiple of RTT.

Global synchronization Every router gets the same ID at each input port
on every cycle.

6.1.1 Token Propagation-Based Family

This family of solutions relies on the token propagation approach. These solutions follow

the principle of expanding the CDG to get the corresponding layered CDG, in which

dependencies are ordered, but following the OSR token propagation methodology [3], as

explained in more detail below. This is actually a key difference with respect to DCFNoC.

For the shake of understanding the explanation, refer when needed to the summary of

concepts given in Table 6.1.

With the OSR method, we aim to bring scheduling commands to all input ports of a

generic NoC router in a 2D mesh. This is equivalent to ensuring and finding a TDM

conflict-free scheduling in a particular NoC implementation. To do so, we associate TDM

time slots with partitions/domains and add delays on selected network routers in such a

way that every router serves the same domain from its input ports at the same time (see

Figure 6.2). Tokens carry a domain identifier (DI), which identifies the corresponding

domain. The domain determines which packets can be forwarded from a specific router

input port when the token arrives. To achieve strong isolation between domains, to-

ken propagation needs to be synchronized along the network in a way that every router
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Figure 6.2: Token propagation flow with flooding methodology in a specific time slot
for IOB router architecture. Numbers denote the token ID served on a specific NoC
resource at the same clock cycle. The token is injected from the bottom right-most

node.

gets the same ID at each input port on every cycle, see Figure 6.2. This means that a

router will serve messages belonging to the same partition and that messages from dif-

ferent domains will never compete between them. This generates waves of same-ID slots

throughout the network with minimum latency and conflict-free propagation (between

different IDs). The resulting NoC is a bufferless and low-latency TDM implementation.

This approach can be used with mainstream routing algorithms (e.g., XY, Segment-based

Routing), or with more elaborated custom-tailored topologies and routing strategies to

maximally exploit the benefits of this philosophy.

For the sake of understanding, this methodology can be broken down in the following

steps:

Step 1 Compute the round-trip time (RTT) for the token propagation.

Step 2 Once the number of supported domains is known (RTT), configure the network to

support such a number of domains.

Step 3 Define the TDM slot wheel assignment to manage message injection and avoid

conflicts within a domain.

Step 4 Optionally, in order to support higher number of domains, add delays to enlarge

the token propagation path.
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Figure 6.3: Token propagation round-trip time becomes a period of 4 cycles in IOB
router architecture.

The following definitions generalize the token propagation methodology to obtain differ-

ent custom-tailored topologies and routing strategies. We combine different solutions to

fully exploit the benefits of this philosophy.

Definition 1. The optimal number of supported domains in a 2D mesh can be determined

by the shortest relative latency, that is equal to the number of cycles that takes the token

to propagate from one router and to get back to the same router from another input port.

We define this time as the round-trip time (RTT).

Step 1. Let us consider an end node which injects a token to the network and this token

propagates trough the network following a flooding methodology. Let us assume IOB

routers. As Figure 6.3 shows, the router receives the token in time t = 0 and propagates

the token through all output ports. Neighbour routers receive the token in t = 2 because

every hop takes two cycles. Now, neighbour routers return token propagation as they

also use flooding. Consequently, the first router receives the token back from all input

ports in t = 4 resulting in RTT = 4. Indeed, Figure 6.2 shows a general view of a

4-domain token propagation through the network. Recall that token propagation needs

to be synchronized along all the network and every router must receive the same ID at

each input port on every cycle. With this, the router serves messages belonging to the

same domain and enforces strong isolation between domains.

Definition 2. In a 2D mesh, no matter the token propagation path is used, the Maximum

Common Divisor (MCD) of all relative latencies in the network is equal to the shortest

RTT.

Step 2. Let us compute the MCD of a 2D mesh:
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(a) (b) (c)

Figure 6.4: Token propagation using square shape in a 2D mesh using IOB router
architecture.

In order to get a relative latency > RTT we avoid the propagation shape of sending the

token from one output port and getting back to the same port (converging point). Thus,

we search for larger reconvergent paths. Let us bring it, without lack of generality, to an

input test to the next available propagation shape that is a square (four routers).

As Figure 6.4a illustrates, one router receives a token from west and propagates the token

to north. In M ∗ RTT cycles it receives the token form east, being M equal to 2. Now,

the relative latency is ABS (0− 8) = 8.

Next, with an intent to propagate in a square shape, we forward it to the south, see

Figure 6.4b. Therefore, in order to reach this router again, we propagate the token to

west and therefore, the token arrives back in N ∗ RTT cycles from the south, being N

equal to 4. The absolute relative latency is:

Relative latency = ABS (M ∗RTT −N ∗RTT ) = ABS (8− 16) = 8 (6.1)

Now, what is the next move? From this router we have already propagated the token

to the north and also to the west, so the only available move is to propagate either to

east or south. Let us propagate to east as depicted in Figure 6.4c. Once we have other

converging points we need to compute the corresponding relative latency:

Relative latency = ABS ((M ∗RTT +N ∗RTT + 2)− (M ∗RTT − 2))

= ABS (18− 6) = 12 (6.2)
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Now, we have to compute the MCD of all relative latencies following the token through

the square path:

MCD (8, 12, 16, 20, 24) = 4 (6.3)

As we can see, the MCD is 4 cycles being equal to RTT . This is because in a 2D mesh, no

matter which token propagation path we use, the MCD of all relative latencies is always

equal to the shortest round-trip time being 4 cycles in this case. Therefore, a 2D mesh has

a natural period of 4 cycles, and hence, it supports 4 domains. Recall that every router

must receive the same domain ID at each input port on every cycle. This means that we

can associate 4 TDM time slots to 4 domains using the token propagation approach. We

just need to apply the modulo operation of the corresponding token propagation cycle

tx (mod 4) (see Figure 6.2). Finally, the number of cycles for any token propagation

within the network is always multiple of RTT, and therefore global synchronization is

guaranteed.

6.1.1.1 Conflict-Free Intra Domain

Step 3. In order to define the TDM slot assignment that guarantees conflict-free trans-

mission within a domain, we also use the token propagation methodology. In a 2D mesh

topology with IOB routers, every two nodes the token ID coincides, hence the network

supports up to two message injections at the same time. Therefore, injected messages

must be separated more than two cycles to avoid conflicts within a domain. To do that,

we define a 16-slot wheel and assign different starting points in the TDM wheel to dif-

ferent node IDs to enforce two cycles of distance. For instance, a potential mapping that

satisfies that condition (having two cycles of distance) is to classify nodes by ID (odd,

and even). This is so because following XY coordinates, even or odd routers always are

at a distance of two cycles. As Figure 6.2 shows, nodes with token ID 1 will start from

slot 1 and nodes with token ID 3 will start from slot 3, see Figure 6.5. Every cycle the

node slot pointer moves one position forward. In order to better spread the messages

without using additional logic we use the node ID to trigger the message injection when

this is equal to the TDM slot ID. At the end of the wheel every node has injected one

packet, so we achieve an average injection of one flit per cycle.



Chapter 6. A Study on Conflict-Free TDM-based NoC Communications 107

Figure 6.5: TDM slot wheel assignment to manage message injection in a 2D mesh
with support for 4 domains. Every node is allowed to inject when the slot ID is equal
to its node ID. Allowed inject nodes are represented by red circles at TDM slot wheel.
Messages are represented by inject node numbers and subindex represents the propa-

gation time in cycles.

Figure 6.6: Scenario 1, consecutive nodes in the same row injecting to the same X
direction. Message injection mechanism in Period 4 solution based on TDM slot wheel

assignment using IOB routers. Nodes highlighted in red are the ones injecting.

For the sake of understanding, we show four different scenarios to illustrate the message

injection mechanism taking into account the TDM slot assignment. Figure 6.6 illustrates

scenario 1 where consecutive nodes in the same topology row inject messages in the sense

that there is one or more shared links along those message paths. In this particular case,

the assigned slot ID to node 1 at TDM slot wheel is 1, hence node 1 is able to inject

at t0, represented by a red circle in the TDM slot wheel. The message from node 1 will

reach the output port of router ID 2 at t3 (represented by 13). Later, node 0 will inject

the message at t1 and will reach the output port of router ID 2 at t6 (represented by 06).

Finally, node 2 injects the message at t3 and will reach the output port of router ID 2

at t4 (represented by 24). By observing Figure 6.6 we can confirm the messages arrival

time (tx) at every shared link along the path. As we can see, messages arrive in different

time, thus this case is conflict-free.

Figure 6.7 shows scenario 2 where nodes at the topology corner inject messages using

shared links. In this specific case, the assigned slot ID to node 13 at TDM slot wheel
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Figure 6.7: Scenario 2, corner nodes injecting to the north.

is 13, hence node 13 is able to inject at t0, represented by a red circle in the TDM

slot wheel. The message from node 13 will reach the output port of router ID 8 at t5

(represented by 135). Later, node 12 injects a message at t1 and will reach the output

port of router ID 8 at t4 (represented by 124). Finally, node 8 will inject the message at

t13 and will reach the output port of router ID 8 at t14 (represented by 814). As we can

see, messages arrival time at every shared link is different, hence this case is conflict-free.

Figure 6.8 illustrates scenario 3 where consecutive nodes in the same topology row inject

messages to different X direction in the sense that message paths use shared links. In

this particular case, the assigned slot ID to node 13 at TDM slot wheel is 13, hence node

13 is able to inject at t0. The message from node 13 will reach the output port of router

ID 14 at t3 (represented by 133). Later, node 15 injects the message at t2 and will reach

the output port of router ID 12 at t5 (represented by 155). Finally, node 14 will inject

the message at t3 and will reach the output port of router ID 14 at t4 (represented by

144). As we can see, messages arrival time at the shared link of router 14 is different,

hence this case is conflict-free.

Figure 6.9 shows scenario 4 where consecutive nodes in the same topology column inject

messages to the south using shared links along those message paths. In this concrete

case, the assigned slot ID to node 0 at TDM slot wheel is 0, hence node 0 is able to
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Figure 6.8: Scenario 3, consecutive nodes in the same row injecting to different X
direction.

Figure 6.9: Scenario 4, consecutive nodes in the same column injecting to the south.

inject at t0. The message from node 0 will reach the output port of router ID 8 at t5

(represented by 05). Later, node 4 injects the message at t4 and will reach the output

port of router ID 8 at t7 (represented by 47). Finally, node 8 will inject the message at

t8 and will reach the output port of router ID 8 at t9 (represented by 89). As we can see,

messages arrival time at every shared link is different, hence this case is conflict-free.
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Figure 6.10: Flooding propagation in a 2D mesh using IOB routers composing a
period of 16 cycles. This is a Period 4 solution which have a natural period of 4 cycles
and uses additional delays (12 cycles in every red square) to enlarge the period to 16
cycles. Additional delays are represented by red squares at input ports. Some links are

not plotted for representation purposes.

6.1.1.2 Increasing the Number of Domains

Definition 3. In a 2D mesh topology with IOB routers, with D − 4 additional delays

every two hops along the flooding propagation path, the conflict-free synchronized property

is preserved.

Step 4. We have the following situation that is affected by all round-trip times, see

Figure 6.10. In this figure we show the Period 4 solution which has a natural period

of 4 cycles and uses additional delays to enlarge the period to 16 cycles, and hence to

support 16 domains. The token is propagated using the flooding methodology along the

network. Some links are missing for representation purposes. In this figure, we have

three different situations all affected by the round-trip token described in Figure 6.11a.

Note that additional delays are placed at input ports. Figure 6.11a shows a situation

in which a router without additional delays receives the token in t = x. This router

propagates the token and arrives to the next input port at t = x+2. This input port has

twelve additional delays and the token arrives at router in t = x+ 14 and is propagated

back arriving at t = x + 16. Another different situation, depicted in Figure 6.11b, is

when a router with additional delays receives a token to an input port with additional

delays in t = x − 12. Token arrives at router in t = x and is propagated to the next

router arriving there at t = x + 2. Later, this router propagates back the token and

arrives back at t = x+ 16.
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(a) (b) (c)

Figure 6.11: Breaking round-trip time limits by additional delays to support more
domains. Additional delays are represented by red squares.

Figure 6.12: TDM slot wheel assignment to manage message injection in a 2D mesh
with support for 16 domains. Every node are allowed to inject when the pointed slot

ID is equal to its node ID.

Figure 6.11c shows the last situation when a token injector router without additional

delays starts propagation in t = x and arrives to the next router at t = x+2. Later, the

next router propagates back the token and arrives at t = x + 4 to an input port with

additional delays. It takes twelve additional cycles to arrive to the router and the arrival

times becomes t = x+ 16.

As we can see, we have incremented the round-trip time to RTT = 16 cycles in all

possible situations, and now we can support 16 domains.

To define the TDM slot assignment we need to take into account the 12 additional delays.

Starting from Figure 6.5, as the round-trip time has increased 12 cycles, we move the

odd nodes pointer 12 positions forward, see Figure 6.12.

Detailed implementation of this token propagation family as well as additional solutions

are described in Appendix A.
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In general terms, these solutions consist of customizing the 2D-mesh topology to support

larger number of domains by construction as well as for large network size. To do so, the

following techniques are applied:

• In order to support higher number of domains without adding delays, we remove

links to build a topology with combined and overlapped rings. Solutions derived:

Period 8 and Period 16 for a 4× 4 mesh.

• In order to support larger networks, we combine larger unidirectional and over-

lapped rings with and without adding delays. Solutions derived: Period 32,

Period 64 and Period 16 for a 8× 8 network.

• In order to analyse the impact of varying the location of those additional delays, we

spread delays along the network adding router stages. Solutions derived: Token

1 STAGE, Token 2 STAGES and Token 3 STAGES for a 4× 4 topology.

These solutions, although described in the Appendix A, they will be compared to other

solutions in this chapter.

6.1.2 DCFNoC Based Family

DCFNoC is proposed in Chapter 3. DCFNoC follows the routing algorithm to layer the

CDG. Starting from a layered CDG the philosophy is to add delays on I/O paths in

such a way that all paths have the same length to be able to serialize communications.

For comparison purposes, we describe the DCFNoC methodology following the OSR

token propagation concept. Recall that there is no token propagation, but we use this

concept to order and expand the CDG and derive the CDGl. In fact, we realize that

the OSR token propagation methodology with XY routing algorithm obtains equivalent

results to the initial DCFNoC approach proposed in Chapter 3. For DCFNoC family, we

analyse two different solutions, one following DOR (XY) routing algorithm and another

one following Segment-based Routing algorithm (SR) [32].
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(a)

(b)

Figure 6.13: Initial DCFNoC approach link order following XY routing algorithm in
a 4× 4 mesh. Nodes are represented by circles and propagation layers are represented

by arrows. Numbers represents every propagation layer thorough the CDGdl.

6.1.2.1 DCFNoC Following XY Routing Algorithm

In DCFNoC with XY routing algorithm, a packet has to take into account all input

dependencies before leaving a router. So, we cannot use a flooding methodology to prop-

agate scheduling commands, since flooding does not fit very well with dependencies of

the packets and would break the top-down layered CDG rule. Remember that, channels

are assigned to only one particular layer L# in the CDGl.

For comparison purposes, Figure 6.13 shows the initial DCFNoC approach link order

following XY routing algorithm in a 4 × 4 mesh. As we can see in a 4 × 4 network we

use six layers to traverse the whole network. Recall that the number of layers is defined

by the diameter of the network (i.e. the longest minimal path) plus the injection and

ejection links.

Figure 6.14 shows OSR token propagation methodology following XY routing algorithm

to build a layered CDG. Token starts from corner routers since they have no input

dependencies. Initially, X dimension is traversed from phase 1 to 3. Later, Y dimension

transitions start gradually from phase 3 to phase 6 when all X dimension dependencies

are solved. As we can see, initial DCFNoC approach and the OSR token propagation

methodology both use six layers to traverse the whole network, hence results are equiv-

alent.

Based on Figure 6.14 token propagation phases, we use the propagation phase labels

to assign channels to a particular layer L#, and construct the delayed layered CDG

illustrated in Figure 6.15. This is a subgraph representing a CDGdl from all nodes to

node 15. Delays are positioned strategically following XY token propagation phases.
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(a) (b)
(c)

Figure 6.14: OSR token propagation phases following XY routing algorithm in a 4×4
mesh using OB routers. Nodes are represented by circles and OSR token propagation

phases are represented by arrows. Numbers represents every propagation phase.
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Figure 6.15: CDGdl for the 4×4 mesh topology using OB routers and the XY routing
algorithm.

In Figure 6.15, every TDM slot is associated to an injector ID. There is also a color

representation to illustrate a packet position following this TDM slot assignment. Note

that every row represents a network layer in the CDGdl. Since only one injector per TDM

slot is allowed to inject packets, we enforce one packet per layer rule to avoid conflicts.

As we can see, TDM slots can be arbitrarily associated to injectors since messages from

other TDM slot will never compete for the same channel at the same time.

6.1.2.2 DCFNoC Following SR Routing Algorithm

Another way to achieve isolation in NoCs is to use Segment-based Routing algorithm

(SR) [32]. SR splits the network in disjoint sets of interconnected routers and links

called partitions. Some routing restrictions are placed to break dependency cycles. These

routing restrictions avoid packets to take some turns to preserve deadlock freedom (see
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Figure 6.16: Network-level token propagation, with annotated latency, in the order
of the CDG with periodic SR routing (dictating the position of routing restrictions)

and single-cycle routers and links. Source [3].

Figure 6.16). In order to construct the layered CDG, we follow OSR token propagation

methodology with SR routing to construct the layered CDG.

Figure 6.16 shows token propagation methodology following SR routing through the

CDG. Tokens are triggered from the bottom-right corner as proposed in [3]. Bidirec-

tional routing restrictions are placed to break potentially dependency cycles avoiding

packets to take some turns to preserve deadlock freedom. Based on Figure 6.16, we

construct a layered CDG illustrated in Figure 6.17.

Injection nodes represented as blue circles are placed at the top. The SR routing algo-

rithm, following routing restrictions, determines the path from injection nodes to bottom

destination nodes. Since every packet needs to use its path, links following a top down

layers order, every layer represents one hop in time. Red-dashed arrows shows potential

conflicts when using non consecutive links in terms of layers, thus we need to introduce

the same amount of delays as layers we need to skip. Since all injection nodes are in

L0 and all destination nodes in last layer, all paths have the same length. This solution

involves all possible paths, hence is the worst case solution.

6.1.3 No-Delay Based Family

This family of solutions avoids adding delays by properly scheduling communications in

time (i.e using a TDM Scheduler). The philosophy is based on the principle of packets

travelling over the network will not collide with new injected packets as those injections

will be delayed. First, we apply this method to mainstream routing algorithms (e.g.

XY). Later, we adapt the routing algorithm to maximize throughput.
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Figure 6.17: CDGl for the 4×4 mesh topology using OB routers and the SR routing
algorithm.

6.1.3.1 Couples Injection Following XY Routing

In this approach, the packet travelling time determines the injection time of next couple of

injectors. To do so, we need to determine which is the packet travelling time between each

couple of injectors along the network. In this solution, a minimal path routing algorithm

is used (e.g. XY). For the sake of explanation we consider the following scenario, see

Figure 6.18. This scenario would help us determining the packet travelling time between

couples of nodes with IDs (0,1), (4,5) and (8,9). As we can see, couples of nodes (0,1)

inject at t0 (represented by 00 and 10). Those nodes are propagated along the network

following a broadcast routing. This would help us to check packets travelling time at

every point in the network. The message from node 0 will reach the output port of router

ID 5 at t5 (represented by 05). Later, a message from node 1 will reach the output port

of router ID 4 at t5 (represented by 15). Therefore, the packet travelling time between

couples of injectors (0,1) and (4,5) is 5 cycles using the IOB router architecture. In

addition, the couple of nodes (4,5) injects at t5 (represented by 45 and 55). The message

from node 4 will reach the output port of router ID 9 at t10 (represented by 410). Later,
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Figure 6.18: Determining the packet travelling time between couples of injectors
to avoid conflicts with new injected packets. For clear representation purposes, some

packet travelling time are missing.

a message from node 5 will reach the output port of router ID 8 at t10 (represented by

510). So, the injection time of pair of nodes (8,9) should be at t10.

The next injection time of a pair of nodes must be computed following this methodology

taking into account that current injected packets must overtake future couple of injectors.

Figure 6.20 shows worst-case relative latencies between consecutive couples of injectors.

Assuming that one hop takes two cycles and starting by injectors (0, 1), the worst-case

to overtake the next injectors (4, 5) are two hops (4 cycles). This means that following

minimal routing and after 2 hops, packets belonging to injectors (0, 1) will never compete

between packets of injectors (4, 5) since these router positions have been overtaken by

all possible paths of (0, 1) packets. Figure 6.21 shows a CDG of injection nodes (0, 1).

All possible links (represented by squares) are shown for injectors (0, 1) but only some
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Figure 6.19: TDM slot wheel assignment to manage couples message injection in a
2D mesh using IOB routers. Every node are allowed to inject in the pointed slot ID.

ejection nodes are shown for better representation. Since all links are shown, we can

realise that worst-case messages belonging to injectors (0, 1) will be at router 5 (for

injector 0) and 4 (for injector 1) at layer 2 (L2), that is the same, 2 hops afterwards.

Therefore injectors (4, 5) are able to inject 2 hops after (0, 1) injection time.

In order to determine the TDM slot assignment we define a 44 slots wheel in which all

nodes have the same starting point, but the trigger point is changed to preserve relative

latencies between couples of injectors. As Figure 6.20 shows, nodes 0 − 1 will inject at

slot 0 and nodes 4 − 5 will inject at slot 5, see Figure 6.19. Every cycle the node slot

pointer moves one position forward. At the end of the wheel, every node has injected

one packet, so we achieve an injection of 16 messages in 44 slots (lower than one flit per

cycle).

Going back to Figure 6.20 we can see that relative latencies between couples of injectors

in the same column is 4 cycles (2 hops) and between different column is 6 cycles (3 hops).

As a result, in Figure 6.20 injection time of every injector is represented by numbers at

routers. This approach schedules communications in time and avoids adding delays, but

TDM period is large.

6.1.3.2 Diagonal Following Custom Routing

To avoid large TDM periods with this family we introduce a new solution. This approach

follows the principle of overtaking future injectors but in this case we try to increase the

number of current injectors to improve the TDM period. To do so, we customize the

routing algorithm. Additionally, we serialize all messages in a unique router by enforcing

all messages to cross this router (router 15 in a 4× 4 mesh). A serialization router must

be positioned in a topology corner to avoid having lots of dependencies.
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Figure 6.20: Couples injection
solution. Numbers at routers
represent nodes injection time.
Relative difference between in-

jectors by couples.

Figure 6.21: Couples injection CDG of
router 0 and 1. Relative difference between
injector nodes (0, 1) and (4, 5) are two hops.

(a) First routing phase, route to
serialization router (router 15).

(b) Second routing phase, route
to destination node.

Figure 6.22: Diagonal approach. Improving TDM period by using more injectors
at the same time (columns) as well as custom routing to serialize packets in one point
(router 15). Since first phase and second phase are using different network links conflicts

are avoided. Destination nodes are only reached at second phase.

Initialization is triggered by columns, so all routers of the same column are able to inject

at the same time. In order to serialize the messages belonging to each router, we use the

bottom right-most router, thus first phase routing consist of using XY routing to reach

this serialization router, as Figure 6.22a depicts. Once a message reaches a serialization

router, conflicts are avoided and the message is able to use second phase routing to reach

destination router, see Figure 6.22b.

For the sake of explanation we consider the following scenario, see Figure 6.23. This
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scenario would help us to determine the packet travelling time between two columns by

analysing packets from third column injector nodes. As we can see, the third column

nodes (2,6,10,14) inject at t0 (represented by 20, 60, 100 and 140). Those nodes are

propagated along the network to bottom right-most router (15). The message from node

14 will reach the input port of router ID 15 at t2 (represented by 142). Later, message

from node 10 will reach the input port of router ID 15 at t4 (represented by 104). Next,

the message from node 6 will reach the input port of router ID 15 at t6 (represented

by 66). Finally, the message from node 2 will reach the input port of router ID 15 at

t8 (represented by 28). Therefore, the packet travelling time between two columns of

injectors in a 4× 4 mesh is 8 cycles using the IOB router architecture. So, the injection

gap between two consecutive columns of injectors should be 8 cycles.

Regarding initialization and relative differences between columns of injectors at Fig-

ure 6.24, we compute the worst-case path between packets belonging to the third column

(critical path) after reaching serialization node (node 15). Starting by the third column

injectors (2, 6, 10, 14), the worst-case to overtake the serialization router is four hops (8

cycles). This means that following minimal routing and after 4 hops, packets belonging

to third column injectors will be serialized each other since they arrive at serialization

router in different time. Therefore, at Figure 6.25, numbers at injection time of every

injector are represented by numbers at routers.

In order to determine the TDM slot assignment, we define a 32 slot wheel in which all

nodes have the same starting point, but change the trigger point to preserve relative la-

tencies between couples of injectors. As Figure 6.25 shows, first column nodes (0, 4, 8, 12)

will inject at slot 0 and second column nodes (1, 5, 9, 13) will inject at slot 9, see Fig-

ure 6.26. Every cycle the node slot pointer moves one position forward. At the end of

the wheel every node has injected one packet, so we achieve an injection of 16 messages

in 32 slots (lower than one flit per cycle).

This approach improves TDM period but the resulting period is still too long. Ideally,

we need a TDM period equal to the maximum number of domains in the topology thus,

equal to the number of routers. To do so, as explained in next section, we need to fill

routers pipeline stages. By filling routers pipeline stages the diagonal approach is able

to inject 32 messages in 32 slots, hence one flit per cycle.



Chapter 6. A Study on Conflict-Free TDM-based NoC Communications 121

Figure 6.23: Determining the packet travelling time between two columns of injector
nodes to avoid conflicts with new injected packets.

6.1.3.3 Filling Router Pipeline Stages to Improve TDM Period

To improve the network throughput we need to achieve a TDM period equal to the

maximum number of domains in the topology. Since our IOB router contain two flip-

flops there is one pipeline stage. One method to improve the TDM period when we

have a router architecture with pipeline stages is to fill as many router stages as we

have by injecting consecutive packets. By doing this, we avoid bubbles between packets,

hence the number of injected packets is equal to the TDM period resulting to a network

throughput of one flit per cycle.
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Figure 6.24: Columns injection
CDG of third column (worst-case).
Relative difference between third col-
umn injector nodes (2, 6, 10, 14) and
serialization node 15 are four hops.

Figure 6.25: Relative
difference between injector

nodes by columns

Figure 6.26: TDM slot wheel assignment to manage columns message injection in a
2D mesh using IOB routers. Every node are allowed to inject in the pointed slot ID.

(a) (b)

Figure 6.27: Fulfilling pipeline stages of a 4 router ring with a period of 8.

Figure 6.27a shows a ring of 4 routers with a period of 8. All of them are able to inject

in t = x and then have to wait until whole period ends. This means that we are injecting

4 messages every 8 cycles. To fill one pipeline stage of our router we can inject messages

consecutively in two time slots, see Figure 6.27b. Then, we fill the bubbles between

packets, hence injecting 8 messages every 8 cycles. This technique is applied in TOKEN

RING and DIAGONAL solutions using IOB routers.



Chapter 6. A Study on Conflict-Free TDM-based NoC Communications 123

6.2 Evaluation Results

In this section, we compare the solutions of using IOB and OB router architectures.

Scalability results are provided to evaluate which solution scales better and in which

aspect. Additionally, in order to analyze the feasibility of implementing the proposed

solutions, we provide area and maximum attainable clock frequency for the most com-

petitive routers. Finally, we present load latency results to determine which solution is

more efficient.

6.2.1 Experimental Setup

We design all investigated solutions using verilog RTL which can be synthetized for

FPGAs and ASIC. We simulate the system using the Xilinx Vivado [58] RTL simulator.

Thus, results presented in the chapter match exactly the number of cycles of a potential

implementation.

The initial target topology is a 4× 4 2D-mesh, and its derivatives obtained by removing

selected links. The goal is to support 16 domains with all solutions. The network is

fed by a message system generator implemented at each network interface using uniform

traffic pattern. In order to create uniform traffic pattern, we use a pseudo random

number generator with Linear Feedback Shift Registers (LFSR [69]) to generate a random

destination label for every message, thus all nodes have the same probability to receive a

message. The use of uniform traffic allows us to simulate an unpredictable network load

as well as unpredictable used paths. One thousand warm-up messages are generated at

the beginning of each test. This represents a 5% of total test time.

Although those solutions can be used for long messages, for the sake of evaluation we

consider only single-flit messages. Later, we perform the scalability analysis in an 8× 8

2D-mesh configuration with support for up to 64 domains. All configurations include

96-bit-width links. At network edges we statically allocate (16 for a 4 × 4 network) 1-

cycle time slots per node. In a 4 × 4 topology, one time slot is equal to 1/16 of total

bandwidth, resulting to a 6.25% of bandwidth.
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6.2.2 Performance Evaluation for IOB Router Architectures

Figure 6.28 shows achieved results for the different strategies. DFCNoC is implemented

with the XY and SR routing algorithm. The Token strategy uses XY and SR as well,

but then we explored the same philosophy with networks of different latencies (Token x

STAGES) and with custom 2D-mesh topologies (Token PERIOD x). These latter are

detailed in Appendix A. We can observe that DCFNoC XY and Token with period 16

achieve the best zero-load latency. The XY routing algorithm is already a good option

for DCFNoC, since it enables to equalize all I/O paths to the latency of the network

diameter, while the SR routing algorithm implies a longer latency. For Token, the routing

algorithm is not relevant, as long as it implements minimal-path routing. Its results are

not outstanding, since a 2D mesh with 2-cycle hops can natively support only 4 domains,

and a large number of delays is required to make 16 domains conflict-free. One could

think of decreasing the amount of delays required by Token by implementing links of

longer latency (i.e., by spreading delays all around adding router stages), but apart from

the way the individual I/O paths are affected, the aggregated network performance is not

significantly affected. A better approach for Token consists of customizing the 2D-mesh

topology, so that the supported number of domains by construction is larger than 4, for

instance 8 or 16. This leads to a progressive reduction of the number of delays, up to the

16-domain solution that is completely delay-free. In this case, the topology then starts

looking like an augmented ring (i.e., a ring with bypass links), the latency balance is

positive, and the period 16 Token solution matches DCFNoC XY latency. For the sake

of comparison, a pure ring topology is also reported, together with the best state-of-

the-art solution for low-latency TDM NoCs (called Token-PhaseNoC [2] in the picture).

The picture clearly highlights the significant latency savings of the proposed TDM NoCs

over state-of-the-art. Finally, note that a No-Delay configuration with standard routing

strategy (COUPLES XY) is the only one that has a degraded saturation point. Instead,

our customized No-Delay configuration (DIAGONAL) restores the ideal saturation point

with improved latency as well, and no delay insertion.

Figure 6.29 shows network end-to-end latencies for all solutions. As shown, DCFNoC

XY gets always the same latency, thus average latency coincides with the maximum

and minimum ones. COUPLES XY achieves the best network latency but, as shown in

Figure 6.28, is the only one that has a degraded saturation point. The Period 16 and
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Figure 6.28: Load latency comparison for IOB router architectures in a 4×4 network.

Figure 6.29: End-to-End latency comparison for IOB router architectures in a 4× 4
network.

DIAGONAL configurations have the second best average network latency. Additionally,

Period 16 average is better than the pure ring due to the use of two interconnected links

with absence of delays. On the other hand PhaseNoC solution have large differences

between the minimum and maximum latencies. Regarding performance guarantees, con-

figurations with lower maximum latency like DCFNoC XY are the ones that provide

better latency guarantees.

In order to investigate the performance-cost trade-off of the proposed TDM NoC solu-

tions, we report in Figure 6.30 the implementation costs in terms of number of added

delays (in orange) and number of router ports (in blue). Since we are targeting TDM

routers that are conflict-free by construction, router I/O ports can be reduced to simple

retiming stages, therefore they have the same complexity of added propagation delays:
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Figure 6.30: Cost comparison for IOB router architectures in terms of ports and
additional delays in a 4× 4 network.

the two major contributions to area can thus be summed up together. The remaining

components of the router do not count much, since there is no conventional router allo-

cation phase: there is either a single flit in each router per cycle or there are multiple

flits heading to different non-overlapping output ports. Results indicate that DCFNoC

XY pays a significant buffering cost to equalize the latency of each I/O path. At the

same time, DCFNoC with SR routing is clearly unaffordable. Several Token configura-

tions have almost the same implementation cost of DCFNoC. However, customizing the

topology enables the Token philosophy to unfold its benefits, not only in terms of latency

(Figure 6.28), but also in terms of area overhead: see the Period 8 and the Period 16

design points in Figure 6.30. Interestingly, Period 16 is delay-less, therefore only the

contribution of router I/O ports is accounted for. The same delay freedom is achieved

by the No-Delay configurations, although they operate on the 2D-mesh as a whole, thus

they are ultimately more costly. Finally, the picture clearly represents the significant

cost savings of the proposed TDM NoCs over state-of-the-art.

6.2.3 Performance Evaluation for OB Router Architectures

Figure 6.31 shows load curves of most competitive solutions for OB router architectures.

For comparison purposes we also show DCFNoC SR, Token Period 4 XY and Token

Period 4 SR to compare the gains with better approaches of both DCFNoC and Token
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Figure 6.31: Load latency comparison for OB router architectures in a 4×4 network.

Figure 6.32: End-to-End latency comparison for OB router architectures in a 4 × 4
network.

strategies. Note that a pure ring using OB router architecture in a 4×4 network is equal

to a Period 16 solution. Therefore, Period 8 configuration implements two interconnected

links. For Token family, the routing algorithm is not relevant, as long as it implements

minimal-path routing. The results of token family are not outstanding, since a 2D mesh

with 1-cycle hop can natively support only 2 domains, and a large number of delays is

required to make 16 delays conflict-free. DCFNoC XY still having the best zero-load

latency while DIAGONAL is able to match its strong results. On the other side, the

COUPLES XY strategy still suffering from degradation at saturation point.

Network end-to-end latency results for OB router architectures are shown in Figure 6.32.

The No-Delay configuration with standard routing strategy (COUPLES XY) achieves the

best average latency, however, suffers from degradation at saturation point due to longer

TDM period than other solutions. Instead, DCFNoC XY and DIAGONAL solutions are
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Figure 6.33: Cost comparison for OB router architectures in terms of ports and
additional delays in a 4× 4 network.

able to get the best network latency thanks to an optimal TDM period being equal to

the number of network nodes. Period 8 and ring approaches suffer from possible long

delays depending on the position of the source and destination node. On the other hand,

DCFNoC SR, Token Period 4 XY and Token Period 4 SR require large number of delays

to make 16 delays conflict-free. The XY routing algorithm in DCFNoC strategy seems

to be the best option to achieve the best guaranteed latency.

Figure 6.33 shows the implementation cost in terms of number of added delays (in or-

ange) and number of router ports (in blue). Results indicate that Token solutions with

delays increase buffering cost by 17% to make 16 delays conflict-free. Instead, DCFNoC

solutions get a substantial improvement in its results due to reduce hop cost by 50%. In

particular, DCFNoC reduces the implementation costs by 43% and 55% for XY and SR

routing algorithm, respectively.

6.2.4 Scalability Analysis

In order to evaluate configurations for large network size we provide NoC solutions fol-

lowing the same principles as the ones used for 4 × 4 network size. In this case, we

use IOB router architectures in 8× 8 networks. Note that Token solutions with custom

2D-mesh topologies as well as for large network size are provided in Appendix A.
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Figure 6.34: Load latency comparison for IOB router architectures in a 8×8 network.

Figure 6.35: End-to-End latency comparison for IOB router architectures in a 8× 8
network.

Figure 6.34 shows load curves for IOB router architectures in a 8× 8 network. DCFNoC

XY get the best zero-load latency for large NoC size followed by Token Period 64 and

DIAGONAL configurations. Period 64 configuration is a good performance-cost an scal-

able solution. On the other side, RING suffers from performance degradation for large

network size.

Figure 6.35 shows network latency results for a 8× 8 network. Token configurations im-

plementing high amount of delays suffers from longer load latency. RING and Period X
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Figure 6.36: Cost comparison for IOB router architectures in terms of ports and
additional delays in a 8× 8 network.

approaches suffer from possible long delays depending on the position of the source and

destination node. On the other hand, DIAGONAL and specially DCFNoC XY config-

urations achieves better guaranteed latency. The average network latency for DCFNoC

and DIAGONAL configurations increases 2.23×, leading to the best performance results.

For Period 64 approach and RING increases 3.69× and 3.76× respectively.

Figure 6.36 shows the implementation cost for a 8 × 8 network. Note that in terms

of scalability DCFNoC router output port complexity increases as it implements more

delays. For Period 32 and Period 16 large number of delays are needed to make 64

delays conflict-free. For the rest of approaches delays are implemented at scheduling

level. Therefore, the implementation cost for DCFNoC and DIAGONAL configurations

increases 4.63× and 4.57× respectively. For the Period 64 approach and RING increases

3.82× and 4× respectively.

Regarding DCFNoC scalability using IOB/OB architectures, DCFNoC achieves the best

zero-load latency for large NoC size, however the IOB architecture is not able to squeeze

the best of this methodology, as doubles the number of additional delays to implement

compared to IOB architecture. In fact, DCFNoC using OB routers is able to improve

the network latency being reduced to 15 cycles, half compared to IOB architecture.

Moreover, the number of additional delays are also halved. Therefore, DCFNoC achieves
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the best attainable maximum network latency (guaranteed latency) of all conflict-free

solutions using OB architecture.

6.2.5 Area Overhead And Frequency

In order to implement different routing algorithms in a simply and efficient way, we use

the Logic Based Distributed Routing (LBDR) algorithm [72]. LBDR is a distributed and

implementation-efficient methodology adapted to irregular networks. By using LBDR

mechanism we are able to implement XY and SR routing algorithms in a simple and effi-

cient way. This technique provides a good scalability as LBDR complexity just depends

on the number of router I/O ports and not on the network size [73].

Maximum operating frequency and area utilization have been obtained using Cadence

RC Compiler and the 45-nm Nangate library [60]. Regarding area overhead results, we

already reported topology-level ports and added delays for all router proposals. In this

section we focus on the most competitive routers.

Figure 6.37 shows area overheads for IOB router architectures when targeting high fre-

quency. Those routers are DCFNoC, Token Period 4 SR, Period 16 and DIAGONAL in

a 4×4 network and also DCFNoC XY in a 8×8 network. The 4×4 mesh Period 16 data

router uses 82.57% less area than the DCFNoC XY one and 17.95% less area than the

DIAGONAL for a 4× 4 mesh. DCFNoC XY router implements a crossbar interconnect

as well as output delay registers. On the other hand, the DIAGONAL router is delay-less

but implements more output ports as well as routing logic to compute the output port.

Due to the small number of ports the Period 16 router is the lightest router for a 4× 4

mesh implementation with a total area of 2, 593 mm2.

Figure 6.37 also shows total area of DCFNoC XY router implementation for a 8 × 8

mesh, as it achieves the best zero-load latency for a 8× 8 network, with only 12% more

area overhead compared with the 4× 4 implementation. The DCFNoC XY router area

overheads may be reduced using the OB architecture.

We have also analyzed the maximum attainable clock frequency of the different routers.

Figure 6.38 shows that the simpler Period 16 router design achieves a significant boost

in clock frequency by improving Token-based Period 4 router’s one by 25%. The critical
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Figure 6.37: Area overhead for IOB router architectures in a 4 × 4 network and
DCFNoC in a 8× 8 network.

Figure 6.38: Maximum attainable clock frequency for IOB router architectures in a
4× 4 network and DCFNoC in a 8× 8 network.

path of the Token-based Period 4 router limits clock frequency to 3.125 GHz. However,

the Period 16 router exhibits a critical path of 240 ps leading to a maximum clock

frequency of 4.17 GHz.

For the DCFNoC XY router, even with such best low zero-load latency is able to reach

a clock frequency above the average of most competitive routers. DCFNoC XY clock

frequency reaches up to 3.22 GHz for both 4× 4 and 8× 8 mesh implementations.
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6.3 Summary

In this chapter, we have characterized the cost-performance trade-offs of a wide range of

options to build a low-latency and low-cost TDM NoC which will be beneficial in current

and future safety-critical real-time systems. All solutions analysed in this chapter are

inspired by the observation of the channel dependency graph, and significant improve-

ments are achieved over state-of-the-art: up to 20× lower area and 40% latency savings

for Period 16 and DCFNoC XY, respectively.
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Chapter 7

Conclusions

In this chapter we summarize the main conclusions drawn in this thesis. First, we

summarize the specific contributions of the proposals, then we follow a discussion about

future work, and finally we provide an enumeration of the scientific publications related

with this dissertation.
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7.1 Contributions

MPSoCs have been recently introduced in new environments like avionics or automotive.

These new domains introduce challenging requirements, such as time predictability and

performance isolation, that demand for alternative NoC designs. Future safety-critical

real-time systems will need processor designs able to provide performance guarantees

without renouncing to peak throughput numbers.

In this thesis, we target a time-predictable NoC design paradigm able to provide timing

guarantees while enabling competitive performance. To address the communication con-

tention problem we rely on TDM scheduling to provide configurable bandwidth reser-

vation, guaranteed latency and throughput. We aim to find TDM schedules close to

the theoretical lower bound without using a computationally demanding offline process.

Next, we integrate our time-predictable NoC into a manycore design to test performance

guarantees in non congested/saturated conditions. Then, we test the strong temporal

isolation between communication flows needed in safety-critical MPSoCs. Finally, in or-

der to provide peak throughput numbers while preserving strict real-time guarantees we

propose a dynamic scheduler.

As a first contribution, a new time-predictable NoC design paradigm based on the CDGs

theory has been proposed. DCFNoC guarantees by design the avoidance of contention

within the NoC. The proposed approach improves over state-of-the-art TDM proposals

by achieving scheduling periods that almost match the theoretical lower bound. While

traditional approaches have difficulties to find schedules for large networks, DCFNoC

is able to find conflict-free scenarios in arbitrarily large NoC sizes without degrading

the quality of the achieved guarantees. Finally, we have also shown the feasibility of

the proposed approach by implementing a high-speed router design with very small area

needs.

As a second contribution, DCFNoC has been integrated in a tile-based manycore system

and adapted to its memory hierarchy designing a new network interface module. Ex-

perimental results show that DCFNoC guarantees time predictability avoiding network

interference among multiple running applications. DCFNoC always guarantees perfor-

mance and also improves wormhole performance in a 4 × 4 setting by a factor of 3.7×
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when interference traffic is injected. For a 8 × 8 network differences are even larger.

In addition, DCFNoC obtains a total area saving of 10.79% over a standard wormhole

implementation.

As a third contribution, a dynamic and distributed scheduler has been presented to

improve peak performance. The proposed scheduler builds on top of DCFNoC to ex-

ploit its unique features and is able to achieve peak performance that is very close to

a wormhole-based NoC design. At the same time, this design keeps the real-time guar-

antees of DCFNoC. Experimental results show that the proposed scheduler achieves an

overall throughput improvement of 6.9× and 14.4× over a baseline DCFNoC for 16 and

64-node meshes, respectively. When compared against a standard wormhole router 95%

of its network throughput is preserved.

Finally, as a fourth contribution a study of the best TDM NoC approaches is provided.

The cost-performance trade-off of a wide range of solutions has been characterized to

achieve TDM-based NoC with low-latency and low-cost. All solutions are inspired by the

observation of the channel dependency graph, and in some cases significant improvements

are achieved over state-of-the-art, up to 20× lower area and 40% latency savings.

As a result, all the purposes outlined in this thesis have been reached successfully by

these contributions.

7.2 Future Directions

In this Section we highlight possible future research directions coming from this disser-

tation. The following is a list of possible extensions:

• Define a framework to design TDM-based real-time NoCs. This disser-

tation has been focused to implement different TDM NoC solutions. All of these

solutions are based on the CDGs theory to identify potential conflicts within the

NoC. In Chapter 3, a TDM-based NoC design paradigm has been presented and

formalized where conflicts are avoided by serializing message transmissions. In this

sense, a new framework based on the CDGs theory to identify potential conflicts

within the NoC can be properly defined and will serve to tailor NoC designs to

specific applications.
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• Implement a predictable snoopy coherence protocol exploiting DCFNoC

properties. Snoopy protocols have a non-negligible complexity when implemented

in 2D meshes due to the need for broadcast support. DCFNoC have broadcast na-

tive support. DCFNoC broadcast support is used in Chapter 5 for notification

phase between nodes. DCFNoC makes a mesh network to behave like a bus, thus

being easier to implement and validate a time predictable cache coherence proto-

col. DCFNoC broadcast benefit can be exploited to implement a time predictable

snoopy coherence protocol. How to design time predictable cache coherence pro-

tocols for safety-critical real-time systems is an open research problem.

• Implement a time predictable and partitioned manycore solution by us-

ing hierarchical DCFNoC networks. In future MPSoCs, as the number of

implemented IP cores increases, efficient communication among them and with

off-chip resources becomes key to achieve the intended performance scalability. In

fact, the TDM-based NoC architectures should be customized to enable full recon-

figurability. At run-time, the number of running partitions/domains on the NoC

can range from 1 to the number of processing cores, and the number can change over

time depending on instantaneous resource requirements of each real-time applica-

tion. Therefore, the chosen scheme should enable such dynamic reconfiguration of

the number of running partitions, while still delivering low latency and partition

isolation. In Chapter 6 we tackle the DCFNoC implementation with LBDR mech-

anism that provides partition support as well as partition reconfiguration mecha-

nism, while strict timing predictability and partition isolation property is kept. In

this sense, a partitioned manycore solution should implement one DCFNoC net-

work per partition and another DCFNoC network at a higher hierarchical level to

provide main memory access guarantees. How to implement such architectures in

an efficient manner is an open problem.

7.3 Publications

The following papers related with the main contributions of this dissertation has been

submitted and accepted for publication in different international journals and conferences

with peer review.
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Journals:

• T. Picornell, J. Flich, J. Duato, and C. Hernández. hp-DCFNoC: High Performance

Distributed Dynamic TDM Scheduler based on DCFNoC Theory. IEEE Access,

volume 8, pages 194836-194849, 2020.

• T. Picornell, J. Flich, C. Hernández, and J. Duato. Enforcing Predictability of

manycores with DCFNoC. IEEE Transactions on Computers (TC), volume 70,

issue 2, pages 270-283, 2021.

Conferences:

• T. Picornell, J. Flich, C. Hernández, and J. Duato. DCFNoC: A Delayed Conflict-

Free Time Division Multiplexing Network on Chip. In Proceedings of the 56th

Annual Design Automation Conference 2019 (DAC), pages 1-6, Las Vegas, NV,

USA, 2019.

In addition, other related papers have been published in international summer schools

and domestic conferences:

• T. Picornell, J. Flich, C. Hernández, and J. Duato. DCFNoC: A new time-

predictable NoC design paradigm. In Proceedings of the 15th International Summer

School on Advanced Computer Architecture and Compilation for High-Performance

and Embedded Systems (ACACES), pages 139-142, Fiuggi, Italy, 2019.

• T. Picornell, J. Flich, R. Tornero, and JM. Martínez. Router Design for Bandwidth

Reservation Guarantees. In Proceedings of the 13th International Summer School

on Advanced Computer Architecture and Compilation for High-Performance and

Embedded Systems (ACACES), pages 291-194, Fiuggi, Italy, 2017.

• T. Picornell, J. Flich, R. Tornero, and JM. Martínez. Arquitectura de Red con

Reserva de Anchos de Banda para Sistemas Heterogéneos Basados en FPGAs. In

Actas de las XXVIII Jornadas de Paralelismo (JP), Málaga, Spain, 2017.
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All works listed above are exclusively related with this thesis. The specific contributions

of the Ph.D. candidate reside mostly in the design and implementation of the proposed

designs, as well as the execution of the performed experiments, the analysis and discussion

of the results, the writing of the paper drafts describing the work, and the presentation

of the papers in the conferences. Along these processes, the co-authors have repeatedly

provided useful hints and advices, which the Ph.D. candidate has then applied to make

the work evolve into its final version.



Appendix A

Extending Token Propagation-Based

Family

This appendix extends from token propagation-based family presented in Chapter 6.

These solutions consists of customizing the 2D-mesh topology to support larger number

of domains by construction as well as for large network size. Additional definitions are

provided to generalize this philosophy.

A.1 Supporting Specific Topologies with Unidirectional Links

Definition A1. An unidirectional ring of 4 routers has a period of 8 cycles using IOB

routers.

As an alternative, in order to support higher number of domains without adding delays,

remove links to build a topology with combined and overlapped rings. Therefore, avoiding

the addition of delays.

Let us consider a ring of 4 IOB routers in which an initial router receives a token in

t = x, see Figure A.1. Since every propagation hop takes two cycles and the token takes

four hops, the token arrives back in t = x+8. Therefore, the relative latency is 8 cycles.

Definition A2. If we combine unidirectional rings of 4 routers in a 2D mesh we preserve

an optimal number of domains equal to 8.
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Figure A.1: Uni-
directional ring of 4
routers with a period
of 8 cycles using IOB

routers.

Figure A.2: Combining multiple unidirectional
rings of 4 preserving a relative latency of 8 cycles

in every converging point using IOB routers.

Figure A.3: Optimal number of domains equal to 8 in a 4×4 mesh using IOB routers
by only combining unidirectional rings of 4 routers. The token is injected from the

bottom right-most node.

Let us consider the following combination of rings, see Figure A.2. Numbers represent

token propagation latency in cycles. As we can see, by following token propagation to

connected rings, we can preserve a relative latency of 8 cycles in every converging point.

We exploit this property and present a new topology with a full combination of unidirec-

tional rings of 4 routers in a 2D mesh, see Figure A.3. This topology is a minimum-cost

and delay-free solution in a 2D mesh.

Definition A3. Given two combined and overlapped rings with period 8, the minimum-

cost solution to achieve a token ID synchronization is by adding a D−8 number of delays

on the shared link. As a result, a token ID propagation process is synchronized.
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(a) (b) (c) (d)

Figure A.4: Breaking unidirectional rings by additional delays to support more do-
mains using IOB routers. Additional delays are represented by red rectangles.

Let us consider the following situation shown in Figure A.4a with an unidirectional ring

of 4 IOB routers. In order to enlarge the period at converging points, we add a D − 8

delay either in shared or non-shared links.

With D > 8 domains the ways to synchronize are:

A Add delays on non-shared links (arbitrarily) have a cost of two delay points, see

Figure A.4b. If you change the position you get the same result.

B Add delays on a shared link have a cost of one delay point, see Figure A.4d. Therefore,

is the minimum-cost solution.

A.2 Algorithm To Insert Delays on Overlapped Rings

The algorithm is shown in Algorithm A.1. For the sake of explanation, when two over-

lapped rings or squares are combined, we call this an eight shape formation (i.e., see

Figure A.4c). First, in lines 7-12 all links of all rings are labeled as an unsolved. Then,

for every eight shape formation (lines 13-24) the direction is obtained to get the shared

link between two rings in this eight shape formation. Additional delays are assigned to

the shared link and all links included in this eight shape are labeled as solved. Once all

eight shapes are solved, rings are inspected to be solved (lines 25-33). Notice that rings

may be already solved in an eight shape. When all eight shapes are solved there is only

one remaining ring to solve and delays have to be added in one of the unsolved links that

does not appear into a previous solved eight shape. An important rule is that a ring has

to be broken only once by adding delays.
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1: function insert_delays(I,D,P)
2: domains = D
3: period = P
4: eight e
5: ring r
6: link l
7: for every ring in I (r)
8: for every link in r (l)
9: l.stat = unsolved

10: l.delays = 0
11: endfor
12: endfor
13: for every eight in I (e)
14: if (e.direction == vertical)
15: l = get_vertical_shared_link(e)
16: l.delays = D-P
17: end else
18: l = get_horizontal_shared_link(e)
19: l.delays = D-P
20: end
21: for every link in e (l)
22: l.stat = solved
23: endfor
24: endfor
25: for every ring in I (r)
26: for every link in r (l)
27: if (l.stat == unsolved)
28: l.delays = D-P
29: l.stat = solved
30: break
31: end
32: endfor
33: endfor
34: end function

Alg. A.1: Algorithm to insert delays

As a result we provide a full combination of unidirectional rings of 4 IOB routers with

a period of 16 by adding delays, see Figure A.5. This is a Period 8 solution which have

a natural period of 8 cycles and uses additional delays (8 cycles in every red square)

to enlarge the period to 16 cycles, and hence support 16 domains. As we can see,

Algorithm A.1 is applied to insert delays.

To define the TDM slot assignment we need to take into account the token propagation

shown in Figure A.5. In this particular case even nodes and odd nodes do not coincide

as previous solutions. In this case, we assign pointers in the following manner, see

Figure A.6.
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Figure A.5: Period 8 solution in a 4× 4 mesh by combining unidirectional rings of 4
IOB routers and adding delays (8 cycles in every red square) to enlarge the period to
16 cycles. Algorithm A.1 is applied to insert delays. Additional delays are represented

by red squares.

Figure A.6: TDM slot wheel assignment to manage message injection in a 4×4 mesh
by combining unidirectional rings of 4 IOB routers with support for 16 domains.

A.3 Extending to 16 Domains

Definition A4. An unidirectional ring of 8 routers has a period of 16 cycles. If we

combine unidirectional rings of 8 IOB routers in a 2D mesh we preserve an optimal

number of domains equal to 16.

Figure A.7 shows an unidirectional ring of 8 routers with a period of 16 cycles.

As a result we present a new delay-free topology with a full combination of unidirectional

rings of 8 IOB routers in a 2D mesh, see Figure A.8. This a Period 16 solution which has

a natural period of 16 cycles, and hence supports 16 domains. As we can see, relative

latencies are always 16 cycles at every converging point.

To define the TDM slot assignment we follow the same methodology as the previous

solution taking into account the token propagation shown in Figure A.8. In this case,

we assign pointers in the following manner, see Figure A.9.
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Figure A.7: Unidirectional ring of
8 routers with a period of 16 cycles.

Figure A.8: Period 16 topology in
a 4×4mesh by only combining unidi-
rectional rings of 8 routers using IOB
routers. This is a delay-free solution.

Figure A.9: TDM slot wheel assignment to manage message injection in a 4×4 mesh
by combining unidirectional rings of 8 routers with support for 16 domains.

A.4 Extending to Larger Networks

Following the last definitions we can get solutions for large network size such as 8 × 8

mesh using IOB routers. Figure A.10 shows a new topology with a combination of

unidirectional rings of 16 routers with relative latencies of 32 cycles. This is a Period 32

solution which has a natural period of 32 cycles and uses additional delays (32 cycles in

every red square) to enlarge the period to 64 cycles, and hence support for 64 domains.

In order to enlarge the period we extend every ring using additional delays of 32 cycles

following Algorithm A.1.

A delay-free solution merges from Period 32 by making rings longer. Figure A.11 show a

delay-free solution with a combination of unidirectional rings of 32 routers with relative

latencies of 64 cycles. This a Period 64 solution which has a natural period of 64 cycles,

and hence support for 64 domains.

On the other hand, a different solution emerges from Period 32 by using shorter rings and

using more delays. Figure A.12 shows a solution using a combination of unidirectional
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Figure A.10: Period 32 topology in a 8 × 8 mesh by combining unidirectional rings
of 16 routers and adding delays (32 cycles in every red square) to enlarge the period to
64 cycles. Implemented delays are 32 cycles at every red point. This is an extension of

Period 16 for a 4× 4 mesh

Figure A.11: Period 64 topology in a 8 × 8 mesh by combining unidirectional rings
of 32 routers. This is a delay-free solution.

rings of 8 routers with relative latencies of 16 cycles. This a Period 16 solution in a 8×8

mesh which has a natural period of 16 cycles and uses additional delays (48 cycles in

every red square) to enlarge the period to 64 cycles, and hence support for 64 domains.

As a result of this family of solutions we presented the following solutions:

Solutions for a 4× 4 network:

• Period 4: Natural period of 4 cycles and uses additional delays (12 cycles in every

red square) to enlarge the period to 16 cycles, and hence support for 16 domains.
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Figure A.12: Period 16 topology in a 8×8 mesh by combining unidirectional rings of
16 routers and adding delays enlarge the period to 64 cycles. Implemented delays are

48 cycles at every red point.

• Period 8: Natural period of 8 cycles and uses additional delays (8 cycles in every

red square) to enlarge the period to 16 cycles, and hence support for 16 domains.

• Period 16: Delay-free solution with natural period of 16 cycles, and hence support

for 16 domains.

Solutions for a 8× 8 network:

• Period 32: Natural period of 32 cycles and uses additional delays (32 cycles in

every red square) to enlarge the period to 64 cycles, and hence support for 64

domains.

• Period 64: Delay-free solution with natural period of 64 cycles, and hence support

for 64 domains.

• Period 16: Natural period of 16 cycles and uses additional delays (48 cycles in

every red square) to enlarge the period to 64 cycles, and hence support for 64

domains.
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(a) (b)

Figure A.13: Period between two consecutive routers in Period 4 topology (a). In
order to spread the added delays, we move them from some input ports to all output

ports, and hence adding one pipeline stage (b).

A.5 Tuning Router Pipeline Stages to Make Latency Hotspots

Lighter

Previous solutions uses additional delays. Now, we analyze the impact of varying the

location of those additional delays. This would spread the delays along the network. To

do so, we first analyse the period between two consecutive routers in Period 4 topology,

see Figure A.13a. Additional delays are located once every period of 16 cycles. In order

to spread the delays we can move those delays along the network as Figure A.13b shows.

With this method we move the additional delays located at some input ports gradually

by adding delays at all output ports. As Figure A.13b shows we are adding one pipeline

stage.

By following the same methodology we can study how spreading the additional delays

by adding additional pipeline stages affects the network latency. Figure A.14a shows a

setup of three additional pipeline stages. We end up by equally spreading the additional

delays in pipeline stages, see Figure A.14b. In this setup, every network hop becomes

equal in terms of cycles, hence latency hotspots are avoided.
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(a) (b)

Figure A.14: Gradually moving the added delays by adding two pipeline stages (a).
By adding six pipelines stages every hop have the same length (b).
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