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Resumen 

Los ecosistemas riparios presentan una gran variabilidad, desde un punto de vista 

geomorfológico como hidrológico y ecológico, incluyendo las complejas interacciones 

que la morfología y la vegetación de ribera puede presentar. La vegetación se presenta 

como un factor físico muy influyente en los sistemas fluviales, con una relación directa 

en los procesos geomorfológicos que tienen lugar en los corredores fluviales. La 

detección, monitoreo y evaluación de los procesos que se desarrollan en el espacio ripario 

son clave a la hora de poder entender las funciones ecológicas y el desarrollo de dichos 

hábitats, y por tanto para tomar decisiones para su conservación y restauración. Según la 

distribución de especies y los rasgos de las plantas, las comunidades vegetales y su 

dinámica presentan distintas características en el ecosistema ripario, a las cuales los 

métodos de detección y monitoreo deben adaptarse.  

Los constantes cambios que sufren estos espacios a lo largo del tiempo se deben 

en gran parte a procesos físicos relacionados con las dinámicas de erosión y 

sedimentación, las variaciones de la trayectoria del cauce, variaciones en la distribución 

de especies y vegetación en el bosque de ribera, etc., pero también se deben al impacto 

antropogénico, que puede llegar a generar grandes desajustes en la dinámica ecológica de 

los ecosistemas en cuestión. Debido a las interacciones de diversos procesos y 

alteraciones antropogénicas, y las complejas dinámicas espacio-temporales, resulta 

necesario continuar desarrollando metodologías teóricas y prácticas para la 

monitorización y caracterización de estos ecosistemas. 

La teledetección, incluyendo el uso de drones, se presenta como una herramienta 

muy interesante y óptima para el mapeo y recogida de información en estos espacios 

naturales. Los beneficios que demuestran las aeronaves no tripuladas –UAV– incluyen 

las mejoras en la resolución espacial y temporal de los datos capturados, así como la 

cartografía de áreas extensas en poco tiempo, lo que los convierte en instrumentos clave 

en tareas de gestión y conservación de los espacios riparios.  

La necesidad de estudiar la dinámica geomorfológica que se produce en los cauces 

fluviales ha sido la principal motivación en los estudios que se presentan en esta tesis 

doctoral. Los capítulos 2 y 3 se basan en técnicas de captura de datos con láser escáner 

terrestre (TLS) y en el modelado de los datos obtenidos en vuelos fotogramétricos de 

UAV. Con ellos se han caracterizado los procesos que tienen lugar en una cierta área de 

estudio, un cauce efímero del sureste de la Península Ibérica, la Rambla de la Azohía 

(Murcia). Estos estudios también han permitido comparar el ajuste y precisión de los 

datos capturados a partir de dos técnicas distintas. 

Además, el interés en caracterizar los cauces fluviales con un flujo permanente ha 

motivado el estudio de la topografía sumergida en un tramo de río, segmentado por tipos 

de mesohábitat. Así pues, el capítulo 4 presenta un algoritmo y una herramienta de 

corrección para el efecto de la refracción en un tramo del rio Palancia (Castellón), para 

llevar a cabo la correcta representación de la morfología del lecho sumergido. A partir de 

la metodología planteada y el algoritmo desarrollado, es posible minimizar los efectos de 

distorsión debidos a la presencia del agua, para obtener la reconstrucción tridimensional 

del lecho a partir de imágenes tomadas con UAV. La construcción del modelo 3D se llevó 

a cabo mediante la técnica de Structure from Motion. 



Finalmente, y como elemento clave en la dinámica de los ecosistemas riparios, el 

capítulo 5 desarrolla una metodología para clasificar las fases de sucesión de la vegetación 

del bosque ripario. Dichas fases de sucesión se basan en la metodología del proyecto 

RIPFLOW, que también está implementada en el modelo dinámico CASiMiR-vegetation. 

En concreto, el caso de estudio en un tramo del río Serpis (Valencia) ha permitido 

comparar cinco métodos de clasificación, basados en técnicas de remote sensing y 

modelación matemática. La posibilidad de integrar herramientas que nos permitan 

monitorizar los cambios ante eventos de distinta magnitud, en ecosistemas riparios 

mediterráneos, facilitará el mejor entendimiento de los escenarios presentes y posibilitará 

la modelización precisa de posibles escenarios futuros, con los que poder prever 

trayectorias de la dinámica ecológica y proponer medidas que mejoren el estado ecológico 

y reduzcan la alteración antrópica.  

  

  



Abstract 

Riparian ecosystems show great variability, from a geomorphological, 

hydrological and ecological point of view, including the complex interactions that 

riparian morphology and vegetation can present. Vegetation appears as a very influential 

physical factor in river systems, with a direct relationship in the geomorphological 

processes that take place in river corridors. The detection, monitoring and evaluation of 

the processes that take place in the riparian space are key when it comes to understanding 

the ecological functions and development of these habitats, and therefore for making 

decisions for their conservation and restoration. According to the distribution of species 

and plant traits, plant communities and their dynamics present different characteristics in 

the riparian ecosystem, to which detection and monitoring methods must be adapted. 

The constant changes that these spaces undergo over time are largely due to 

physical processes related to the dynamics of erosion and sedimentation, variations in the 

path of the channel, variations in the distribution of species and vegetation in the riparian 

forest, etc. These processes also are due to the anthropogenic impact, which can generate 

major imbalances in the ecological dynamics of the ecosystems in question. Due to the 

interactions of various anthropogenic processes and alterations, and the complex spatio-

temporal dynamics, it is necessary to continue developing theoretical and practical 

methodologies for the monitoring and characterization of these ecosystems. 

Remote sensing, including the use of drones, is presented as a very interesting and 

optimal tool for mapping and collecting information in these natural spaces. The benefits 

demonstrated by unmanned aircraft –UAV– include improvements in the spatial and 

temporal resolution of the captured data, as well as the mapping of large areas in a short 

time, which makes them key instruments in the management and conservation tasks of 

riparian spaces. 

The need to study the geomorphological dynamics that occur in river channels has 

been the main motivation in the studies presented in this doctoral thesis. Chapters 2 and 

3 are based on ground-based laser scanner (TLS) data capture techniques and modelling 

of UAV photogrammetric flight data. They have characterized the processes that take 

place in a certain study area, an ephemeral riverbed in the southeast of the Iberian 

Peninsula, the Rambla de la Azohía (Murcia). These studies have also made it possible to 

compare the fit and precision of the data captured from two different techniques. 

In addition, the interest in characterizing the fluvial channels with a permanent 

flow has motivated the study of the submerged topography in a stretch of river, segmented 

by types of mesohabitat. Thus, chapter 4 presents an algorithm and a correction tool for 

the effect of refraction in a stretch of the Palancia river (Castellón), to carry out the correct 

representation of the submerged bed morphology. From the proposed methodology and 

the developed algorithm, it is possible to minimize the distortion effects due to the 

presence of water, to obtain the three-dimensional reconstruction of the bed from images 

taken with UAVs. The construction of the 3D model was carried out using the Structure 

from Motion technique. 

Finally, and as a key element in the dynamics of riparian ecosystems, chapter 5 

develops a methodology to classify the phases of succession of riparian forest vegetation. 

These succession phases are based on the RIPFLOW project methodology, which is also 



implemented in the dynamic CASiMiR-vegetation model. Specifically, the case study in 

a section of the Serpis River (Valencia) has made it possible to compare five classification 

methods, based on remote sensing techniques and mathematical modelling. The 

possibility of integrating tools that allow us to monitor changes in the face of events of 

different magnitude, in Mediterranean riparian ecosystems, will facilitate a better 

understanding of the present scenarios and will allow the precise modelling of possible 

future scenarios, with which to predict paths of ecological dynamics. and propose 

measures that improve the ecological status and reduce human disturbance.  

  



Resum 

Els ecosistemes riparis presenten una gran variabilitat, des d'un punt de vista 

geomorfològic com a hidrològic i ecològic, incloent les complexes interaccions que la 

morfologia i la vegetació de ribera pot presentar. La vegetació es presenta com un factor 

físic molt influent en els sistemes fluvials, amb una relació directa en els processos 

geomorfològics que tenen lloc en els corredors fluvials. La detecció, monitoratge i 

avaluació dels processos que es desenvolupen en l'espai ripari són clau a l'hora de poder 

entendre les funcions ecològiques i el desenvolupament d'aquests hàbitats, i per tant per 

a prendre decisions per a la seua conservació i restauració. Segons la distribució 

d'espècies i els trets de les plantes, les comunitats vegetals i la seua dinàmica presenten 

diferents característiques en l'ecosistema ripari, a les quals els mètodes de detecció i 

monitoratge han d'adaptar-se.  

Els constants canvis que pateixen aquests espais al llarg del temps es deuen en 

gran part a processos físics relacionats amb les dinàmiques d'erosió i sedimentació, les 

variacions de la trajectòria del llit, variacions en la distribució d'espècies i vegetació en el 

bosc de ribera, etc., però també es deuen a l'impacte antropogènic, que pot arribar a 

generar grans desajustaments en la dinàmica ecològica dels ecosistemes en qüestió. A 

causa de les interaccions de diversos processos i alteracions antropogèniques, i les 

complexes dinàmiques espaciotemporals, resulta necessari continuar desenvolupant 

metodologies teòriques i pràctiques per al monitoratge i caracterització d'aquests 

ecosistemes. 

La teledetecció, incloent l'ús de drons, es presenta com una eina molt interessant 

i òptima per al mapatge i recollida d'informació en aquests espais naturals. Els beneficis 

que demostren les aeronaus no tripulades –UAV– inclouen les millores en la resolució 

espacial i temporal de les dades capturades, així com la cartografia d'àrees extenses en 

poc temps, la qual cosa els converteix en instruments clau en tasques de gestió i 

conservació dels espais riparis.  

La necessitat d'estudiar la dinàmica geomorfològica que es produeix en els llits 

fluvials ha sigut la principal motivació en els estudis que es presenten en aquesta tesi 

doctoral. Els capítols 2 i 3 es basen en tècniques de captura de dades amb làser escàner 

terrestre (TLS) i en el modelatge de les dades obtingudes en vols fotogramètrics de UAV. 

Amb ells s'han caracteritzat els processos que tenen lloc en una certa àrea d'estudi, un llit 

efímer del sud-est de la Península Ibèrica, la Rambla de la Azohía (Múrcia). Aquests 

estudis també han permés comparar l'ajust i precisió de les dades capturades a partir de 

dues tècniques diferents. 

A més, l'interés a caracteritzar els llits fluvials amb un flux permanent ha motivat 

l'estudi de la topografia submergida en un tram de riu, segmentat per tipus de mesohábitat. 

Així doncs, el capítol 4 presenta un algorisme i una eina de correcció per a l'efecte de la 

refracció en un tram del va riure Palància (Castelló), per a dur a terme la correcta 

representació de la morfologia del llit submergit. A partir de la metodologia plantejada i 

l'algorisme desenvolupat, és possible minimitzar els efectes de distorsió deguts a la 

presència de l'aigua, per a obtindre la reconstrucció tridimensional del llit a partir 

d'imatges preses amb UAV. La construcció del model 3D es va dur a terme mitjançant la 

tècnica de Structure from Motion. 



Finalment, i com a element clau en la dinàmica dels ecosistemes riparis, el capítol 

5 desenvolupa una metodologia per a classificar les fases de successió de la vegetació del 

bosc ripari. Aquestes fases de successió es basen en la metodologia del projecte 

RIPFLOW, que també està implementada en el model dinàmic CASiMiR-vegetation. En 

concret, el cas d'estudi en un tram del riu Serpis (València) ha permés comparar cinc 

mètodes de classificació, basats en tècniques de remote sensing i modelatge matemàtic. 

La possibilitat d'integrar eines que ens permeten monitorar els canvis davant 

esdeveniments de diferent magnitud, en ecosistemes riparis mediterranis, facilitarà el 

millor enteniment dels escenaris presents i possibilitarà la modelització precisa de 

possibles escenaris futurs, amb els quals poder preveure trajectòries de la dinàmica 

ecològica i proposar mesures que milloren l'estat ecològic i reduïsquen l'alteració 

antròpica.   
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1. Introduction 
 

The study of biodiversity and the natural environment in any setting and ecosystem is 

key to understanding the behaviour of the processes that take place in them (Naiman et 

al., 1993; Pollock et al., 1998; Tockner and Ward, 2001). Knowing how the natural 

variables behave and monitoring their dynamics and interrelations allow us to define the 

state of these scenarios reliably and precisely, as well as the possible conditioning factors 

that may affect them (Dufour et al., 2013; Džubáková et al., 2015). 

Riparian ecosystems are considered spaces with a large spatio-temporal variability 

and biodiversity, where the very active dynamics of ecological processes make it 

necessary to apply different techniques and methods of modelling (Stella et al., 2013). 

The possibility to characterize their natural state and quantify the variations and unfolding 

events allow to understand their behaviour and trends (Greet et al., 2011). 

Ephemeral streams are watercourses in arid and semi-arid environments with 

unstable morphology and high temporal variability of runoff. The episodes of sudden and 

extreme discharges that are isolated in time alternate with long periods of drought 

(Conesa-García et al., 2020). These types of currents are particularly sensitive to short-

term climatic changes, and human impacts can alter their degree of response, sometimes 

leading to large morphological adjustments during flash floods (Segura-Beltrán and 

Sanchis-Ibor, 2013). 

The energy flows and the sediment transport in the river networks is not only 

related with physical aspects of sediment and organic matter storage, but also with 

chemical and biological aspects that are related to plant species (Viles et al., 2008). The 

consideration of this dual implication allows the development of geomorphology as an 

interrelation between physical processes and biological evolutionary processes, 

incorporated into geomorphology in the last two decades (Corenblit et al., 2007, 2008).  

With the study of the river ecosystem dynamics, we can better develop and 

understand its biogeomorphic approach (Corenblit, 2006; Gurnell and Petts, 2006). 

Hydrogeomorphic processes, geomorphology, and vegetation communities and 

distribution show very strong interrelations in river corridors (Steiger et al., 2005; 

Tabacchi et al., 2005). The continuous mechanical processes of immersion, sediment 

erosion, transport and deposition, destruction and removal of plants, import and export of 

new pioneer species due to flow dynamics (Naiman and Décamps, 1997; Tabacchi et al., 

1998) drive vegetation successions regressive or progressive (Bendix, 1998). In addition, 

the distribution of vegetation can strongly interact and affect the flow of water and 

therefore the transport of sediments (Samani and Kouwen, 2002; Yen, 2002) with which 

a significant effect is exerted on the river corridors and the margins of the rivers. 

The geomorphological characterization of the river channels and the modelling of 

their dynamics is crucial when it comes to understanding the processes that occur (Hupp 

and Osterkamp, 1996; Bennett and Simon, 2013; Gregory et al., 1991). And, in addition, 

the implication that river flow fluctuations has in the riparian vegetation is key to 

understanding and modelling the development of the plants (Vesipa et al., 2017; Perucca 

et al., 2007). 
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In this sense, Mediterranean riparian ecosystems present characteristics and 

conditions that cause the changes and variability have a strong impact on natural 

processes development (Stella et al., 2013; Martínez- Fernández et al., 2018). During the 

year these ecosystems usually present a distinctly cool and wet season followed by a 

warm and dry season, they are influenced by a sequence of regular and often extreme 

flooding with strong storms and rainfall and drying periods (Gasith and Resh, 1999). The 

irregular flows throughout the year are partially related to the meteorological nature of 

the Mediterranean climate. However, furthermore, anthropic elements of flow sectioning 

cause alterations in the quantity and quality of the water that flows through the 

Mediterranean riparian ecosystems (Alba-Tercedor et al., 2002). 

The rainy seasons in the Mediterranean climate are very short and with a tendency 

to torrential and not gradual discharge, which causes a defect in the continuity of the flow. 

In addition, the continuous presence of elements of channel segmentation for irrigation 

and transport of water outside of the river, together with the discharge and presence of 

chemical substances bring on the impoverish of the quantity and quality of the transported 

water. These facts are presented as risks for the normal development of the riparian 

ecosystem (Munné and Prat, 2011), thus its monitoring and control is necessary to take 

care of these ecosystems. 

 1.1 Ephemeral streams 
 

Mediterranean ephemeral streams are particularly sensitive to short-term climatic 

changes, and the impacts related to human activities may affect the degree of response of 

them (Conesa-García et al., 2020). Heavy rainfalls can produce large volumes of torrential 

runoff and therefore an increase in the energy load in the transport of sediments. That is 

why the morphology of the channel is modified and contributes to the dynamics and 

changes in the riparian habitats (Latron and Gallart, 2008; Lana-Renault et al., 2007). 

The need to monitor the meteorological events and quantify their effects on fluvial 

forms implies the opportunity of integrating efficient and precise methodologies for the 

control and study of these processes. The geomorphological dynamics produced in the 

erosion and sedimentation processes are associated with changes in the trajectory and 

redistribution of the geological forms present in the channel. To be able to model their 

behaviour and control the possible adverse effects associated, it is important to develop 

methodologies that allow their trends to be analysed (González-Hidalgo et al., 2007; 

García-Ruiz et al., 2013). Geomorphological mapping of river forms and 

geomorphological units is a useful tool to recognize the evolution, changes and response 

of ephemeral river adjustments to hydrological events (Ibisate et al., 2021). 

Traditionally, these measurement tasks of the study areas have been carried out 

with topographic instrumentation such as total stations, levels, GPS stations, etc. 

Employing point-to-point data capture techniques on the ground and complementing the 

information through photointerpretation of aerial and satellite images (Lee, 2001; Knight 

et al., 2011). The evolution in measurement systems has made it possible to develop 

massive information capture instruments with sufficient precision and accuracy to be able 

to validate the resulting digital models. The emergence of the terrestrial laser scanner 

(TLS) has allowed us to generate dense point clouds in a short time, collecting detailed 

information from the measured areas and enabling the generation of true-to-reality digital 

terrain models in a fast and reliable way (Williams et al., 2011; Heritage and Milan, 2009). 
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However, the use of these methodologies proposes the survey of areas of reduced 

extension in each of the field campaigns, and therefore the use of drones is presented as 

a precise, reliable and very optimal alternative. The use of drones allows us to survey 

large areas in less time and provides us with a better perspective to analyse the channel 

behaviour and to carry out this continuous changes and trends monitoring (Wójcik et al., 

2019; Flener et al., 2013). In addition, in the case of ephemeral streams, the use of UAVs 

in the study of the hydromorphological processes is key, due to their intermittent activity 

and the need for a rapid response to provide with a precise survey. 

1.2 Permanent streams and riparian forest 
 

The Mediterranean riparian ecosystems are not only constituted by ephemeral and 

semi-temporary river channels; in many locations we find permanent channels with an 

intense interaction between the hydrological dynamics, the hydraulic conditions and the 

riparian and aquatic vegetation. Some variations in the river flow have connections with 

the development and shaping of riparian vegetation (Rivaes et al., 2013). 

The structure of the Mediterranean riparian ecosystem and its lateral and vertical 

water connections present a direct relation with the distribution of plant communities 

(Richter et al., 1997). The interrelationship between fluvial geomorphic processes and 

riparian vegetation dynamics creates topographic diversity, soil moisture gradients, and 

patches of fluvial disturbance that characterize riparian ecosystems (Merritt et al., 2010). 

Traditionally, the study and characterization of the vegetation that develop in the 

riparian forest has been carried out by means of photointerpretation of aerial images and 

analysis of multispectral satellite images (Bertoldi et al., 2011; Alexandridis et al., 2008). 

The constant evolution of technology and sensors has made it possible day by day to 

improve the spatial resolution of the products obtained, smaller pixel size, improve the 

temporal resolution of the captured images, allowing continuous monitoring with a 

shorter time between captures (Huylenbroeck et al., 2020; Kollár et al., 2013). 

This evolution of technology has made it possible to improve the analysis and 

discussion methodologies of the processes at the same time, managing to carry out much 

more precise characterizations that are faithful to reality. This has made it possible to 

understand the dynamics that occur in the riparian forest and define techniques and 

actions that improve the ecological status of these ecosystems and guarantee the correct 

development and quality of these natural spaces (Rivaes et al., 2013; Akay et al., 2014). 

An interesting study on riparian forest dynamics and dynamic modelling was the 

RIPFLOW Project, whose main objective was the definition of sequences and 

retrogressions as response to physical parameters in order to simulate the distribution of 

riparian vegetation over time and space (Garcia-Arias et al., 2011). This model used 

succession vegetation phases which represent the physiology and phenology evolution in 

time of the vegetation (Frances, 2009). 

Our study has been based on the definition of succession phases for the analysis 

of the vegetation through remote sensing techniques. Both tools, the RIPFLOW and the 

CASIMIR-vegetation, based on succession phases, require the development of tools or 

models that allow automatic classification from remote sensing large areas, applying 

these works to study areas of greater extension than those used in research projects. 
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The possibility of classifying the riparian vegetation is considered as a key tool in 

the study of the riparian habitat (Corbacho et al., 2003) The limitations arisen in this field 

are largely due to the remote data and the spatial and temporal resolution of such an 

information. In addition, the ability to provide accurate and reliable information on the 

characteristics of the land cover is a decisive factor when it comes to understanding the 

dynamics that develop in these scenarios. In addition to the data, it is necessary to carry 

out studies and practical cases in different scenarios to understand the potential of existing 

tools and methodologies and to be able to develop and adapt new techniques.  

1.3 General characteristics of riparian vegetation in relation to the 

biogeomorphological succession 
 

The term ecological succession defined by (Clements, 1916) identifies these as 

plant species that tend to change and their progressive replacement due to the 

relationships between organisms and the natural space where they are located and develop 

their life. 

Through multiple studies and research in this field, this concept evolved and 

transformed over the years, adapting to both environmental and physical conditions 

(Pickett et al., 1989; Tilman, 1990). In general, it is considered that small-scale changes 

in the environment could cause changes in the trends of the vegetation series and therefore 

opening the possibility of studying various trends in the successions (Cattelino et al., 

1979; Cooper et al., 2003). 

Variations in characteristics of the environment such as the topography of the area, 

the local humidity, the availability, or shortage of nutrients, or in general any type of 

variation or change over the study area, will affect more or less the autogenic and 

allogenic drivers developing interactions and modifications in the successional 

trajectories. 

An example of this behaviour is reflected in the scenarios that configure river 

ecosystems where riparian zones and alluvial plains are defined (Bridge, 2003; Naiman 

et al., 2005). In these natural spaces, the geomorphology and vegetation tend to support 

important modifications due to variations in hydrosedimentary dynamics. Due to this 

behaviour, the types of vegetation present in the area tend to develop adaptation, 

development and survival strategies in multiple scenarios and space-time scales (Hupp 

and Osterkamp, 1996; Bornette et al., 2008). 

These dynamics and natural processes have motivated various authors such as  to 

deepen and investigate in this area (Corenblit et al., 2009; Corenblit et al., 2007; Gurnell 

et al., 2016). The definition of phases of the succession of plant species, adapted to the 

possible hydrogeomorphological and ecological effects, allows us to understand the 

dynamics that these species are undergoing and to be able to corroborate it with 

multitemporal field data. 

The analysis of the changes in the succession phases from a floristic point of view 

(Amoros and Wade, 1996) presents certain limitations when it comes to being able to 

generalize trends and behaviours. Attending to considerations taken based on this 
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approach, we can observe certain limitations due to local and regional conditions derived 

from habitat characteristics. For its part, the taxonomy and detailed study of the species 

does not allow a definitive understanding of the mechanisms of adaptation of the species 

to the biological processes that they may have undergone. 

In the case of riparian environments, there has been a tendency in recent years to 

monitor and understand the functional changes that vegetation presents and the effects to 

develop during environmental variations (Aguiar et al., 2018; Stromberg and Merritt, 

2016; Garófano-Gómez et al., 2017). 

The great variability of species present in most of the riparian ecosystems is 

difficult to discriminate due to the environmental conditions that develop in these areas, 

which causes the inclusion and convergence of multiple species with similar traits in 

equivalent taxa. An example of this process is observed in pioneer riparian plant species 

that present similar morphological, biomechanical, and life-history attributes, which 

optimizes their recruitment and establishment (Tabacchi et al., 2019). The recruitment 

phase consists of the natural regeneration and colonization of plant species in the available 

spaces within the riparian ecosystem. For its part, the establishment phase is the fixation 

of these species and their viability to development and growth (Dixon, 2003). 

The species that are distributed in different riparian areas may be different, but 

they occupy a place in a geomorphological and hydrogeomorphological succession phase, 

such as the recruitment or establishment phase, with similar characteristics. Therefore, it 

is possible to develop a generic description that serves at the same time for different sites 

and river basins. Then, a great advantage of the succession phase approach is that we can 

make an analogy even if the species are different instead of site-specific features. This 

permits worldwide application and eliminates divergences (e.g. species composition, 

ecoregion differences) that make generalized application unfeasible in many other models 

(Rivaes et al., 2014).  

A relevant recent study by Tabacchi et al. (2019) has developed the definition of 

the succession phases based on the characteristic features or traits of the riparian plants. 

In this work, two phases of the vegetation succession have been defined: the 

biogeomorphological successional phase (B) and the ecological phase (E). According to 

the proposed model, the plant communities in phase B are mainly characterized by 

pioneering herbaceous and woody species capable of resisting floods (resistant strategy) 

and colonizing flood-disturbed areas (resilient strategy). These communities tend to fix 

and stabilize sediment loads with variable textures according to the intensity of the 

process along the successional gradient. The variations produced in this phase of 

succession are more or less reversible depending on the degree of connection with the 

hydrogeomorphological alteration. 

In the second successional phase (E), the drivers of the community (the main 

processes) are biotic interactions such as facilitation, tolerance, interspecific competition, 

or herbivory. This phase with such processes dominates in higher areas with less flooding, 

and the plant communities are mainly competitive species. In general, only exceptional 

floods of great magnitude can reverse this phase. 

This approach of succession phases has been used in the RIPFLOW model as well 

as in other studies (Tabacchi et al., 2019; Corenblit et al., 2007; Rivaes et al., 2013), 
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facilitating the comparison between different countries and characterizing in a generic 

way the succession phases in the different riparian ecosystems. 

The use of succession phases facilitates the analysis of the 

succession/retrogression of riparian plant communities in different hydrological 

scenarios. In addition, it facilitates the analyses of results with a large amount of spatio-

temporal information that can be very useful in decision-making, and the comparison 

between different management hypotheses of these ecosystems (Garcia-Arias et al., 

2011). 

In addition, the succession phase approach allows us the conceptual modelling of 

life-cycle dynamics and the analysis of how vegetation evolves and takes different paths 

and scenarios (Corenblit et al., 2007), thus presenting itself as a study and research line 

with many possibilities and alternatives in its future application. 

1.4 Objectives and structure of the thesis 
 

This thesis has the general aim of developing methodologies for the 

characterization and study of the riparian ecosystem, from the geomorphological and 

ecological perspective, oriented to their practical application in river research and 

management. In all the case studies, the scenarios to carry out the experimental 

developments were Mediterranean riparian ecosystems. 

This general aim comprised four phases, corresponding to four general objectives, as I 

explain here: 

• The geomorphological characterization of ephemeral rivers and the 

characterization of their fluvial forms to assess the event-scale sediment budget, 

using techniques of remote sensing and data collected with terrestrial laser scanner 

(TLS) and unmanned aerial vehicles (UAVs). 

 

• Spatially-explicit analysis of stream power and transport efficiency in accordance 

with the areas of erosion and deposition, in multitemporal studies in ephemeral 

rivers, using TLS and UAV and comparing this two methodologies.  

 

• Development of an algorithm and a tool (coding in C++) to develop 3D models 

of the submerged morphology in rivers using UAVs techniques, in order to make 

point-by-point correction of the refraction effect of water. This algorithm allows 

the extraction of hydraulic characteristics such as depth and river cross sections 

in permanent rivers under certain conditions. 

 

• Analysis and comparison of mathematical models for the classification of riparian 

vegetation according to its succession phases in a natural environment, from a 

multispectral satellite image (QuickBird©). Such classification is relevant to 

develop dynamic models of riparian vegetation in ample and representative river 

segments. 

To achieve these four objectives, this doctoral thesis is configured in several 

chapters, and each of them is structured in the format of a scientific article. For each of 

them, the study area and its characteristics, the methods used, and the results are 
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explained, to later discuss those results and draw conclusions from the methodology and 

workflow developed. Here below, a summary of each of the chapters is described. 

Chapter 2: Combining Structure from Motion (SfM) photogrammetry and Terrestrial 

Laser Scanning to Assess Event-Scale Sediment Budgets along a Gravel-Bed Ephemeral 

Stream. The power of the flow along the river streams is directly related to the rate of 

energy expenditure associated with that river flow. Being able to calculate this 

information through reliable and precise topographic data is very important for the correct 

morphological characterization of the riverbed. In this chapter, we wanted to 

quantitatively relate the morphological variations in an ephemeral stream of gravel bed, 

the Rambla de la Azohía, with the gradients of power, critical power and energy, along a 

series of study sections. For this, high resolution digital terrain models were used, 

combined with orthophotographs and 3D point clouds in the period 2018-2020. These 

products were developed from terrestrial laser scanner techniques and UAV flights. With 

the proposed work, it was possible to estimate the spatial variability of the sediments and 

evaluate the mobility of the channel riverbed during the study period at different spatial 

scales. This article was published in Remote Sensing 2020, 12, 3624; doi: 10.3390 / 

rs12213624. 

Chapter 3: Stream power and morphological bed changes in an ephemeral channel. The 

deposition and removal of sediments and the geomorphological dynamics in streams have 

a direct relationship with the velocity and power of the river flows. Therefore, the stream 

power causes local spatial variations in the erosion and deposition, and also depends on 

the quantity and frequency of events over time. This dependence on isolated and discrete 

events makes their analysis and study complex. This chapter aims to quantitatively 

analyse the relationship between morphological processes and the stream power in some 

reference sections in the Rambla de la Azohia in the period 2018-2020. To carry out this 

study, high resolution digital terrain models were used in combination with aerial images 

and 3D point clouds. The process of generating these cartographic products was based on 

two different techniques: terrestrial laser scanning and UAV flights. From the 

combination of these two technologies, we estimated the spatial variability of the 

sediments and the mobility of the stream bed as a function of the events that took place 

in that time period. This article has been accepted for publication in the international 

journal Geomorphology. 

Chapter 4: Spatial validation of submerged fluvial topographic models by mesohabitat 

units. The management of river systems requires to a large extent the characterization and 

mapping of the morphology of the river bed, in order to analyse the processes and trends 

that are developed and to be able to design river restoration projects with accurate 

information. Therefore, to make 3D models of the river bed, it is necessary to consider 

the effect of water refraction, if remote sensing techniques are to be applied. Traditionally, 

remote sensing techniques have required a high cost in time and risk for the technicians 

due to the access and travel along these natural areas. At present, the appearance of 

detection and determination systems for topobathymetric light and images captured from 

UAVs are becoming promising and effective topographic methodologies. The use of this 

type of aircrafts, together with advanced photogrammetric processing techniques, provide 

with a novel and high-resolution approach to modelling underwater river morphology. 

This chapter is an extension of this article published in an international congress: DEM 

generation in a Mediterranean river using structure from motion algorithm on HD video 
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recorded from a UAV (Palancia River, Spain), International Symposium and Exhibition 

on Hydro-Environment Sensors and Software (HydroSenSoft 2017), ISBN/ISSN 978-90-

824846-2-5. Also this complete article was published by The International Journal of 

Remote Sensing 2020, VOL. 42, NO. 7, 2391-2416; doi: 10.1080 / 

01431161.2020.1862433 

Chapter 5: Classification of riparian vegetation types based on supervised classification 

algorithms. A case study in a Serpis River segment (Valencia). The development of 

methodologies for the classification of riparian vegetation types is very important to 

model the trends and dynamics that take place in the riparian ecosystem and its evolution 

throughout the years and in response to hydrological alteration. The main objective of 

this work was to analyse and compare different classification models and their validity in 

the automatic classification of vegetation succession phases over a specific study area of 

the Serpis River (Valencia). This vegetation succession phases were based on those used 

in the dynamic simulation model RIPFLOW.  For this, different methods of classification 

were used on QuickBird© satellite images, such as minimum distance, maximum 

likelihood, parallelepiped, Mahalanobis distance, and neural networks in three cases. This 

chapter is an extension of this article published in an international congress: 

Caracterización de vegetación riparia aplicando algoritmos de clasificación supervisada. 

Caso de estudio Río Serpis (Valencia). Pp. 797-804 in RESTAURARIOS, III Congreso 

Ibérico de Restauración Fluvial. Actas del Congreso. ISBN: 978-84-09-11806-9. 
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2. Combining SfM photogrammetry and Terrestrial 

Laser Scanning to assess event-scale sediment 

budgets along a gravel-bed ephemeral stream 
  

Abstract 

Stream power represents the rate of energy expenditure along a stream flow and can be 

calculated using topographic data acquired via SfM photogrammetry and Terrestrial 

Laser Scanning. This study sought to quantitatively relate morphological adjustments in 

the Azohía Rambla, a gravel-bed ephemeral stream in southeastern Spain, to stream 

power gradients along different reference channel reaches of 200 to 300 m in length. 

High-Resolution Digital Terrain Models (HRDTM), combined with ortophotographs and 

point clouds from 2018, 2019, and 2020, and ground-based surveys, were used to estimate 

the spatial variability of morphological sediment budgets and to assess channel bed 

mobility during the study period at different spatial scales: reference channel reaches 

(RCR), pilot bed survey areas (PBSA), and representative geomorphic units (RGU).The 

optimized complementary role of the SfM technique and TLS allowed the generation of 

accurate and reliable HRDTM, upon which 1D hydrodynamic models were calibrated 

and sediment budgets calculated. The resulting high-resolution maps allowed a spatially-

explicit analysis of stream power and transport efficiency in relation to volumes of erosion 

and deposition in the RCR and PBSA. In addition, net incision or downcutting and 

vertical sedimentary accretion were monitored for each flood event in relation to 

bedforms and hydraulic variables. Sediment sources and sinks and bed armoring 

processes showed different trends according to the critical energy and power gradient, 

which were verified from field observations. 

Keywords: SfM Photogrammetry, Terrestrial Laser Scanning, stream power, 

morphological sediment budget, bedforms, gravel-bed ephemeral channel, southeastern 

Spain. 
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2.1 Introduction 
 

Ephemeral streams are dry, irregular, and often unpredictable watercourses, 

particularly sensitive to short-term climatic changes and to human impacts. Consequently, 

their response can be highly variable, ranging from slight river-bed adjustments (Segura-

Beltrán and Sanchis-Ibor, 2013) to overall changes in channel geometry after flash floods 

(Conesa-García, 1995; Sutfin et al., 2014; Norman et al., 2017). This type of streams is 

found in large areas around the world, in arid and semi-arid environments, where quite 

fragile hydromorphological systems often form, subjected to a metastable dynamic 

equilibrium that strongly depends on the frequency and magnitude of floods. During 

periods of relatively more frequent and lower magnitude peak flows, surface bed washing 

and downcutting phenomena can produce secondary channels, lateral erosion, and partial 

destruction of low bars (Graf, 1988). Infrequent and large floods affect the entire main 

channel, modifying its global geometry, and create prominent features of aggradation and 

incision, depending on the bed materials (Conesa, 1995). 

 

Although ephemeral streams tend to maintain similar flow characteristics over long 

periods of time (Bull and Kirkby, 2002), there are semi-arid Mediterranean areas whose 

dry and intermittent streams are being subjected to the effects of the current climate 

change and have begun to show signs of relatively rapid geomorphic adjustment. A clear 

example of this is the coastal drainage system in southeastern Spain, mainly composed of 

ephemeral gravel-bed streams (EGBS). These ephemeral channels usually transport a 

high tractive load from heavily weathered headwater areas and alluvial channel banks, 

producing an abundant amount of coarse sediment (gravel and pebbles). In general, they 

are channels with a high width-to-depth ratio, which, except in sections of structural 

geological control, run through poorly consolidated alluvial formations, showing great 

dynamism and instability. Their upper reaches dissect steep alluvial fans, giving rise to 

entrenched and deep channels subjected to downcutting and basal erosion, which cause 

frequent breaks and collapses of material. In addition, downstream, these EGBS 

experience channel widening, aggradation and bed armoring (Török et al., 2017). As a 

result, the streambed often is very permeable, so flood peak discharges decrease sharply 

downstream due to transmission losses (Goodrich et al., 1997; Shaw and Cooper, 2008). 

Due to high infiltration rates, incision and transport capacity decrease, while vegetation 

tends to grow locally on stable bars and subsurface moisture storage increases, promoting 

positive feedback for instream aggradation (Meritt and Wohl, 2003; Camporeale et al., 

2006; Reid and Frostick, 2011). Downstream, alluvium within the channel increases in 

thickness and smooths the bed slope, creating a channel profile that is straighter than 

concave, unlike in perennial rivers (Martín-Vide, 1997; Chen et al., 2019). 

 

The scientific literature on spatial morphological variability in EGBS in relation to 

erosion volumes, deposition, and sediment transport (sediment budget) on a detailed scale 

is scarce. Recently, high resolution techniques, such as Structure‐from‐Motion (SfM) 

photogrammetry and Terrestrial Laser Scanning (TLS), have been tested to evaluate 

morphological adjustments in ephemeral streams (Brasington et al., 2012; Picco et al., 

2013; Calle et al., 2018; Flatley and Rutherfurd, 2018; Galea et al., 2019). 

 

In this paper we propose an approach to assess the event-scale sediment budget along 

an ephemeral gravel-bed channel, that couples the results of the Structure-from-Motion 

Multi-View Stereo (SfM-MVS) and TLS techniques. The use of SfM-MVS in a low-

altitude unmanned aerial vehicle (UAV) allows the development of orthomosaics and 
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high-resolution digital elevation models (<5 cm per pixel) (Clapuyt et al., 2016; Marteau 

et al., 2017). This survey product offers significantly better resolution and much lower 

processing costs than others generated by traditional imaging platforms, such as satellites 

or aircraft (Remondino et  al., 2011; Shintani  and Fonstad, 2017; Legleiter and Harrison, 

2019; Tonina et al., 2019). In geomorphological studies, UAV technology has already 

been applied to monitor fluvial system changes and dynamics (Mosbrucker et al., 2017; 

Salmela et al., 2020; Rowley et al., 2020). The high temporal resolution offered by UAV 

allows assessment of the rapid evolution of river ecosystems. The UAV-SfM technique, 

when compared to traditional photogrammetry and other topographic surveying 

approaches (e.g., total station and DGPS), has proven to be particularly effective for the 

detection of channel morphological changes (Cook, 2017; Vázquez-Tarrío et al., 2017; 

Conesa-García et al., 2019).  

 

Laser scanning is a land surveying technique that accurately measures and collects 

millions of points in a few minutes, providing geometrical information from a scene by 

precisely measuring the time-of-flight of laser beams. A laser scanner device can be 

mounted on moving vehicles, such as UAVs or ground-based vehicles (for TLS). The 3D 

point cloud (3DPC) datasets obtained from these techniques have usually exploited 

geometrical features identification and extraction, providing unlimited possibilities in 

geomorphology and, more specifically, in fluvial geomorphology (Clapuyt et al., 2016; 

French, 2003; Heritage and Hetherington, 2007; Notebaert et al., 2007). 

 

In order to estimate the morphological sediment budgets in EGBS three analyses 

were performed using SfM-MVS and TLS, as follows: 1) An analysis of hydraulic 

variables at the cell scale was performed for the flash floods under study, based on 

rasterized information from cross-section data and using 1D hydrodynamic modeling and 

High-resolution Digital Terrain Models (HRDTM); 2) Erosion and deposition values and 

net sediment budgets were extracted from datasets of SfM and TLS for periods with 

different numbers and magnitudes of events; 3) The 3DPC datasets were used to calculate 

a set of statistical parameters, regarding elevation and volume differences after each event 

in reference channel reaches (RCR), pilot bed survey areas (PBSA), and representative 

geomorphic units (RGU). 

 

The paper is organized as follows. Section 2 describes the study areas and the field 

surveys performed. The methodology adopted is outlined in Section 3. The main results 

are presented and discussed in Section 4, and Section 5 comprises the conclusions. 

 

2.2 Study area and field surveys 
 

The SfM and TLS surveys were carried out in the Rambla de la Azohía, located in 

southeastern Spain (Region of Murcia) (Figure 2.1). The area drained by this ephemeral 

stream and its tributaries is relatively small (13 km2), to the point that it could be 

completely covered by a single storm. The climate of the study area presents strong 

seasonal contrasts, with extreme droughts and monthly ETP values higher than 140 mm 

in the summer season. These conditions, together with a scarce vegetation cover and very 

irregular and intense rains, with records above 50 mm/h, often cause large flash floods 

(Ortega et al., 2014). This watercourse is part of a littoral hydrological system made up 

of numerous ephemeral gravel-bed channels, draining directly into the Mediterranean 

Sea. Steep slopes modeled on metamorphic, poorly permeable materials (mainly 

phyllites, schists, and quartzites), subjected to intense weathering, constitute an important 
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source of sediments and ensure the supply of coarse particles to the channel when heavy 

rains occur. As a result of this, the Rambla de la Azohía exhibits a particularly active 

morphodynamics, ranging from minor bed alterations to large morphological channel 

changes. 
 

 

Figure 2.1. Study area and location of the different channel stretches monitored by 

UAV-SfM and TLS during the period September 2018 to January 2020. 

The first two flow events of the analysis period (November 18, 2018 and April 

19-20, 2019) were monitored by UAV and TLS, covering survey areas with different 

extensions (Figure 2.1). The UAV-SfM of September 2018 covered a wide area (> 600 

m in length) along the upper, middle and lower sections of the study stream, while the 

TLS only comprised the RCR, upper (UPR) and middle (MDR) shortened reaches (<200 

m long), and their respective PBSA within them. After the aforementioned peak flows, a 

date and common study area were chosen to carry out both SfM-MVS and TLS, in order 

to obtain the same georeferencing, compare the associated errors, and analyze the 

possibility of the complementary optimal use in time of both techniques. In fact, the 

morphological changes produced after the peak flows of September 12-13 and December 

2, 2019 were only detected by TLS (Figure 2.2).  



19 

 

Figure 2.2. Chronogram of the flow events and of the field surveys (FS) performed using 

UAV-SfM and/or TLS techniques. 
 

2.3 Materials and Methods  
 

The affected areas, elevation differences, volumes of erosion and deposition, and 

sediment budgets were obtained for the two RCR (Upper -UPR- and Middle -MDR- 

stretches), using data derived from UAV-SfM and TLS. To detect changes in bedload 

budgets at bed level exclusively, an analysis was performed using TLS in pilot survey 

bed areas (PSBA) with higher point density. The RCRs were delineated using the limits 

of the water sheet generated by the hydraulic model for each flood event. In addition, the 

values of the total area of interest (m2) (TAI), total volume difference average (m3) 

(TVDA), net thickness difference (m) for the area of interest (NTD), and percent 

imbalance (departure from equilibrium) (PI), among other variables, were provided by 

both techniques for each of RGU. 

 

2.3.1. SfM-MVS photogrammetry 

 

The remote information was collected with a Phantom 4 Pro, with 20 Mpx camera 

and 1-inch sensor. The photogrammetric parameters of the flights were set before the 

development of the first field survey and the inspection of the study area, using the 

software tool DJI GS Pro© with equivalent values for all the surveys; this procedure 

ensured optimum comparability among the digital elevation models generated at different 

sites and on different dates. The average flight height was c. 50 m above ground level, 

resulting in images with a resolution of c. 1-cm. 
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Standard targets extracted from Agisoft PhotoScan Pro 1.2.2© (Agisoft, Russia) were 

used as Ground Control Points (GCPs) for georeferencing and analyzing the quality of 

the reconstructed HRDTM. These targets were randomly distributed throughout each of 

the stream segments and were surveyed using a Prexiso G5© (Leica, Germany) GPS-RTK 

instrument. The GPS-RTK instrument was connected to the regional network of GPS 

GNSS (Network of Reference Stations in the Autonomous Community of Murcia 

“Meristemum”) via mobile signal, to obtain differential corrections in real time. In each 

survey, c. 66 % of the measured points were subsequently integrated into the model for 

georeferencing purposes and the remaining 34 % were used as checkpoints for the 

validation of the HRDTM. Permanent GCPs were also installed, using FENO survey 

markers in each of the GRS to define common reference points for all surveys and 

methodologies. All the GPS points were recorded in the WGS84 global reference system. 

 

We selected images with a high level of overlap (80-90%) to ensure successful 

subsequent image matching (Eisenbeiss and Sauerbier, 2011). These images and the 

coordinates of the GCPs’ were uploaded into structure-from-motion photogrammetry 

software, Agisoft PhotoScan Pro v.1.2.2© (Agisoft, Russia), and aligned using high 

precision settings and generic pair preselection to create a sparse point cloud (Puig-

Mengual et al. 2017; Puig-Mengual et al. 2021). We optimized the image alignment using 

the GCPs’ data and regenerated the model using the same settings as previously; 

consequently, the HRDTM, orthophoto, and dense point cloud were exported for further 

analysis in a global georeferencing system (WGS84). 

 

The DTM of difference (DoD) between the UAVs-collected HRDTM in different 

field surveys, as well as between the TLS-generated HRDTM, was calculated in ArcGis 

10.5 © (ESRI, USA), by subtracting the final topography from the previous topography 

for the same area (Calle et al. 2018). The same polygon was used for the comparison of 

the complete RCR, and similarly for the RGU, to maintain the boundaries for change 

detection, and the HRDTM were created with equal pixel size (0.02 × 0.02 m), starting 

from a specific point, so that the grid cells were fully coincident. To assess the sediment 

budgets and morphological bed changes, we used statistics such as the TAI, TVDA, NTD 

and PI of each of the RGUs. In addition, histograms of the volume and bar graphs were 

used to represent the trends of elevations. 

 

2.3.2. Terrestrial Laser Scanning (TLS) 

 

In this study a terrestrial 3D laser scanner (Leica ScanStation C10 model) was used. 

This instrument captures the coordinates of points up to 200 m away and the returned 

energy, and estimates the RBG color using a digital camera. The precision of the 

instrument is 2 mm. The TLS captures the evenly spaced points when the surface is 

vertical, but when it is sub-horizontal the scanned points are sparse. Consequently, to scan 

the bedforms it is necessary to choose elevated positions for the scanner, when possible. 

Another option is to perform multiple scanning stations and to register them, merging 

sparse point clouds and reducing the point spacing and the shadow areas. 

 

Several scans were made from different stations placed strategically along the 

bedforms for detailed geometrical definition using TLS. For each date several scanning 

stations were made and registered using HDS targets. In addition, the FENO survey 

markers were also scanned in order to register the TLS point clouds described in the 

previous section and the SfM datasets. The scan performed on September 5, 2019 was 
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used as the benchmark for all the TLS scans. On that date, the SfM and TLS data were 

acquired. The coordinates of the FENO survey markers were extracted from that SfM 

dataset and the TLS dataset was registered using those coordinates. Consequently, the 

2018 and 2020 scans were registered to that benchmark using existing buildings as the 

reference. The registration was performed using the ICP plugin of CloudCompare and 

was applied to existing buildings, which were considered as stable areas for the whole 

study period. Then, the registration was evaluated using the M3C2 plugin of 

CloudCompare. Both registrations had a mean error of 2 mm. 

 

To study the elevation differences and volume changes, two pilot bed survey areas 

(PBSA) with higher point density, within the UPR and MDR reference channel reaches, 

were selected: the upper area (8.55x17.7m2), and the middle area (16.3 x 27.55 m2). The 

existing vegetation (scrub, bushes, and trees) was removed using the Canupo 

(CAractérisation de NUages de POints) CloudCompare plugin with specific trainings for 

both areas (Brodu and Lague, 2012) (Figure 2.3). Then, each area was rasterized using a 

5-cm grid and empty areas were interpolated. 

 

 

Figure 2.3. (a) View of the raw 3DPC; (b) 3DPC classified by means of the 

CANUPO plugin of CloudCompare, showing in blue the points classified as ground 

and in red those classified as vegetation; (c) 3DPC after removal of the points 

classified as vegetation; (d) the previous 3DPC rasterized using the rasterization tool 

of CloudCompare, computing the average height for each 5-cm cell and interpolating 

the empty cells with the nearest neighbors. 

2.3.3. Criteria for the selection of reference channel reaches (RCR), pilot bed survey 

areas (PBSA), and representative geomorphic units (RGU) 

 

Reference upper and middle reaches (Upper and Middle RCR) were chosen 

depending on the accessibility and the presence of potentially active surface areas. In 

addition, these stream stretches better represent the variations in the sediment budget and 

morphological adjustments within the main channel, as opposed to the lower reach, whose 
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global changes are the product of sediment-laden flood water spills, affecting crevasse 

splays and a wide active flood bed. In fact, the choice of the Upper and Middle RCR in 

this EGBS is intended to reflect the clear influence that coarse grain-sizes and bedload, 

as the dominant transport modality, have on the morphological sediment budget within 

the channel itself (Zapico et al., 2018). Downstream, along the lower reach to the mouth 

of this stream, a distributary drainage system exists, which implies that the budget of more 

complex sediments needs to be evaluated, accounting for mixed sources (hillslopes and 

secondary channels), for the temporary storage of sediment in bars and alluvial plains 

(Ali and De Boer, 2003). 

 

The Upper RCR is an entrenched channel stretch that enabled one scanning station 

at an elevated position. The rest of the scans were performed on the ground close to the 

bedforms. In the Middle RCR, where bedforms arises and the vegetation cover is scarce, 

only scanning stations on the ground were performed, reducing the density of the points. 

The choice of PBSA is intended to detect and quantify precise changes in bed sediment 

budgets and bed load mobility, while the RGU monitoring allows us to analyse behaviour 

patterns and spatial variability of forms associated with scouring and deposition areas 

within the channel.  

 

2.3.4 Hydrometeorological and hydraulic data 

 

A rainfall-runoff model was used to simulate runoff on the basis of rainfall events 

during the budget period. Five pre-simulated runoff events were defined on the basis of 

the rainfall amount, initial wetness conditions, and initial discharge and were 

subsequently adjusted according to the real flow heights measured by water pressure 

sensors. The HEC-HMS 3.5 program (Sharffenberg and Fleming, 2010) was combined 

with a DTM in grid format and 4 x 4 m cell resolution (NATMUR-08) in order to generate 

the drainage patterns and catchment limits. Then, in accordance with (Nanía, 2007), we 

assembled the headwater sub-basins that are homogeneous in texture and roughness and 

individualized those affected by confluences with important breaks in the bed slope. The 

main abstraction used was the infiltration curve number (NC) of each sub-basin, 

following the methodology of the Soil Conservation Service of the US Department of 

Agriculture (SCS, 1972). The geometries and data tables, referring to the vector 

lithological layer of the Geological and Mining Institute of Spain (IGME) at a scale of 1: 

50,000, and the land use map of the Corine Land Cover (CLC), Level 3 (2012) were 

combined using GIS to estimate this parameter, according to the different hydrological 

soil groups and substrate textures. Using the antecedent conditions of dry soil and 

pluviometric data for intervals of 5 minutes at the Cuesta del Cedacero station, we 

calculated the dimensionless unit hydrograph of the SCS and its peak unit flow (qp) (m
3/s) 

(Eq. 2.1). 

p

p
T

A
=q

 2.08
 

(2.1) 

where A is the area of the basin (km2) and Tp the time to peak (h), estimated 

according to Eq. 2.2. 

pp t+
D

=T
2

 
(2.2) 

where D is the duration of the effective rainfall (h) and tp is the lag time, in our case 

0.6 times the concentration time of the catchment (Nanía and Gómez Valentín, 2006). 
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The output data (Figure 2.4) were then transferred to the 1D hydrodynamic model 

HEC-RAS (USACE, 2016), supported by HRDTM, to obtain the channel profile and 

cross-sections and hydraulic variables. A total of 212 cross-sections were used, with an 

average separation of 2.0-3.5 between them in both channel reaches. The theoretical 

hydrometeorological discharge, estimated for the conditions of a subcritical flow regime, 

was calibrated using that from the real water height data. Variations in the water level 

during each flood event were recorded with levelogger sensors and corrected using 

barometric calibration devices (barologger sensors), located in a station intermediate 

between the upper and middle reaches. For all the cros- sections, information concerning 

the flow surface area, hydraulic radius, velocity, shear stress, and stream power was 

obtained. The power per unit length of stream (Ω) and mean stream power (ω) at peak 

flood discharge (Qp) were calculated, according to Eq. 2.3 and Eq. 2.4, respectively 

(Leopold et al., 1964), for each cell i between each pair of cross-sections. 

 

𝛺 =  𝛾𝑄𝑆𝑤 

(2.3) 

𝜔 =  𝛺/𝑤 
(2.4) 

 

Where γ is the specific weight of water (Nm-3), Q is the discharge (m3/s), Sw is the 

water surface slope (m/m), which is used to estimate the energy gradient, w is the water-

surface width (m), Ω represents the energy dissipation per unit channel length (Wm-1), 

and ω the energy expenditure per unit bed area (Wm-2). 

 

Figure 2.4. Hydrographs and associated parameters for the flood events of April 19-

20, 2019 and September 12-13, 2019, estimated in intermediate cross-sections of the 

UPR and MDR stretches. Q = discharge (m3/s); tp = time of peak (h); tb = base time 
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(h); th = hydrograph duration (h); tp* and tb* =  time of peak and base time of the 

unit hydrograph (h). 

The mean stream power gradient (∂ω/∂s) was calculated by subtracting ω in cross-

sectional cell i from ω in cell i−1 and dividing the difference by the distance between the 

centroid of each pair of consecutive cells along the channel centerline. In this way, 

positive ∂ω/∂s values indicate downstream increases in ω, while a negative ∂ω/∂s 

indicates that ω is decreasing from one cell to the next (Lea and Legleiter, 2016). The 

energy expenditure beyond the critical mean stream power (ωc) and the stream power (ω) 

/ resisting power (ωc) ratios (ω/ωc) were estimated in each cross-sectional cell to 

determine the spatial variability of the energy available for sediment transport and explain 

morphological changes during peak flows. The ωc was obtained using Eqs. (2.10) and 

(2.16) from Parker et al. (Parker et al., 2011), which relate ωc to slope and grain size. A 

representative reach pebble count was made in the RCR along transect stretches from one 

stream bank to the other, while the RGU were sampled by volumetric extraction of bed-

material to differentiate surface and subsurface particle-size distributions. The median 

grain size (D50) and 84th percentile (D84) were calculated for each transect and set of cross-

sections. 

 

2.3.5 Sediment budget calculation and detection of RGU adjustments 

 

The sediment budgets in an EBGS accounts for the rates and processes of erosion 

and bedload transport within the channel, and for the temporary storage of coarse grain-

size material in bars and pools along bends and runs. Significant rates of weathering and 

breakdown of sediment, during transport or storage, are also frequent in semi-arid 

environments, such as this one (Ali and De Boer, 2003). Variations in bedload transport 

downstream lead to adjustments in the erosion and deposition volumes, affecting the 

sediment budget, and vice versa, changes in this budget could condition the amount of 

material entrained (Wasson, 2002). This premise makes the estimation of sediment 

budgets a useful and necessary task for the determination of the magnitude of 

morphological bed changes. An analysis relating event-scale bedload transport to changes 

in channel morphology is generally difficult, because this requires a detailed topographic 

survey of the channel immediately before and after each flow event (Kasprak et al., 2015). 

This consideration is particularly relevant in ephemeral streams, where the channel 

remains dry most of the time and only carries water in flash floods that last a few hours. 

Consequently, the monitoring of morphological bed adjustments and the calculation of 

sediment budgets at the event scale can provide more realistic results than the analysis of 

long study periods. In our case, a strategy based on the combined use of high definition 

topographic products was adopted to reveal the geomorphological effects of isolated 

events or, at most, two events of different magnitudes. 
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Figure 2.5. RGU extracted within the boundaries defining each peak flow in the 

Upper and Middle RCR: a. Active channel, secondary minor channel inter-bars or 

run; b. Low, active non-vegetated bar; c. Low, scarcely vegetated bar; d. High, active 

non-vegetated bar; e. High, scarcely vegetated bar; f. High, vegetated bar; g. Non-

vegetated talus or steep bank; h. Non-vegetated steep bank with falling rock blocks; 

i. Scarcely vegetated talus or steep bank. 

High-density 3DPC and HRDTM, generated from SfM-MVS and TLS, were overlain 

to obtain good accuracy in the sediment budget calculation. At the event level, this 

evaluation went further, because it allowed us to relate the net bed variations to the 

characteristics of the hydrograph in question. The errors associated with the use of two 

surface models to determine volumetric sediment budgets were described and assumed 

for each comparative survey analysis, according to Brasington et al. (Brasington et al., 

2003). The same procedure was applied to detect morphological adjustments attributed 

to erosion or deposition in the RGU (Figure 2.5), overlaying the 3DPC on the raster image 

derived from a vector layer that contained the polygons of these geomorphic units within 

the wetted channel perimeter in each flow event. 

 

2.4 Results and discussion 
 

2.4.1 Stream power maps 

 

The mean stream power (ω), energy gradient (∂ω/∂s), and mean stream power (ω) / 

resisting power (ωc) ratio (ω/ωc) were estimated discreetly along each of the RCR for the 

most significant flood events: April 19-20, 2019 and September 12-13, 2019. Figure 2.6 
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shows the grids of these variables for the UPR and MDR during these events. Theresulting 

maps were then related to the spatial patterns of sediment budgets in order to explain 

better the processes that control the morphological channel adjustments.  

 

 

Figure 2.6. Values of ω, ∂ω/∂s, and ω/ωc obtained for each cell by spatial 

interpolation of HEC-RAS data related to equidistant (2.0-3.5 m) cross-sections in 

the RCR(UPR) and RCR(MDR). Peak floods of 19-20 April, 2019 (upper graph) and 

12-13 September, 2019 (lower graph).  The maximum color limits encompass the 

95% of the data sets. 

In the study RCR, the ω during the peak flow of April 19-20, 2019 varied from 0.6 

to 371.4 W m-2 and the stream power gradient from -40.8 to 51.2 Wm−2/m (the upper 

limits of color displayed in Figure 2.6 for these variables encompass 95% of the data; that 

is, 338.3 Wm-2 and 37.7 Wm−2/m, respectively). Note, however, that more than 75% of 

the set of values of ∂ω/∂s in this event fell within the range 15 to -15 Wm−2/m and that 

the extreme data reflect sharp local changes in ω. As in the case of the flow velocity and 
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the shear stress, the highest values of ω were concentrated in entrenched channel cross-

sections, along straight to slightly sinuous stretches, and locally over steep riffles 

characterized by high near-bed velocity gradients. This pattern is linked to incision 

processes in several Mediterranean ephemeral streams (Ortega et al., 2014; Garzón and 

Alonso, 2002; Hooke, 2006). However, we observed a significantly different behaviour 

in the gravel beds studied here, where important transitory erosion was often accompanied 

by extraordinary bedload mobility and high deposition rates, which tended to cause 

channel aggradation. 

 

The distribution of the ω/ωc ratios was also skewed for both RCR and the flood 

events, with maximum values very distant from the mean and median. In the events of 

April and September maximum ratios around 10 and 7 were reached, respectively, in the 

two reference stretches, with much lower and different medians depending on the section. 

Specifically, during the peak flood of 19-20 April, 2019, the ω/ωc medians ranged from 

2.7 in RCR (UPR) to 1.2 in RCR (MDR). 

 

2.4.2 Spatial sediment budgets and morphological changes along RCR and PBSA 

 

2.4.2.1. Sediment budgets in RCR determined from SfM data 

 

Gravel-bed erosion and aggradation are recurrent geomorphological processes that 

discretely affect the global evolution of EGBS over time. Changes at the event scale are 

usually very disparate, in some cases scour and downcutting phenomena predominate, 

and in others deposition. The present study contributes to a better understanding of the 

current behaviour of this type of channel and the subsequent trend of its minor 

adjustments, but it contributes little in relation to possible long-term morphodynamic 

changes. A good indicator of these adjustments is the sediment budget in the reaches with 

the highest bedload. In particular, in the RCR analysed here, the bedload experienced 

important spatial variations at the event scale, significantly affecting the sediment sources 

(areas of erosion) and sinks (areas of deposition) in the short period of analysis. In the 

September 2018 - September 2019 stage, lateral erosion from steep alluvial banks, active 

low bars, partially destroyed coarse bar heads, and finer-grained bar tails provided a large 

bedload in the downstream direction. As a result, the greatest deposition thicknesses were 

recorded in the flanks of the longitudinal and medial alluvial bars, in both RCR (see 

Figure 2.7, drawn up on the basis of SfM-MVS data).  

 

Previous field observations suggest that during low-water stages, as in the event of 

November 2018, when the top of the bar emerged, vertical accretion of these bars ceases 

and new secondary channels form, causing small island bars to migrate. The flash flood 

of April 19-20, 2019 resumed the aggradation process, with very widespread increases in 

bed height. The SfM statistical data in Table 2.1 show significant cumulative changes in 

ground surface elevation after the flow events of November 19, 2018 and April 19-20, 

2019. An average net thickness difference of around 22 and 21 cm was found in the UPR 

and MDR, respectively. The sedimentary balance was positive in both RCR, verifying a 

clear dominance of deposition over erosion. The proximity of both reaches to abundant 

sources of coarse sediment, mainly due to locally strong connectivity between the channel 

bed and active alluvial banks, together with a similar bed slope, promoting a notable 

mobility of the bedload, explains the scarce variation between the RCR in the average 

sediment budget. The high average deposition rate observed in the MDR (unit TVSL = 

0.218 m3/m2) was not accompanied by equally significant unit volumes of erosion 
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upstream in the UPR (unit TVSR = 0.128 m3/m2). This suggests that the sources of 

sediments include not only the UPR, but also other more entrenched sections close to the 

headwater area and intermediate sections between the two RCR, where bank breaking 

and gravel bar removal are especially active processes. In addition, the minor unit net 

erosion recorded in UPR during this event decreased even more, reaching 0.086 m3/m2 in 

MDR (Table 2.1), so the bed cutting could not progress in a downstream direction. 

 

Heterogeneities due to differences in grain-sizes and bedforms may create substantial 

velocity and shear stress variations across the channel or downstream during a single 

discharge (Wohl, 2000). This can explain the patchwork of ω values in both reaches 

(Figure 2.7) and, thus, the spatial changes in sediment budgets displayed in Table 2.1. 

The UPR registered the highest average unit volume of surface raising and lowering (0.13 

and 0.23 m3/m2, respectively), in line with the highest mean values of ω (72.4 Wm-2), but 

also the highest SD in the net thickness differences and in the ∂ω/∂s gradients (16.4 

Wm−2/m). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. Surface elevation differences (m) found for the Upper (UPR) and Middle 

(MDR) RCR, using HRDTM derived from SfM-MVS, for the period September 

2018 to September 2019, including the events of November 18, 2018 and April19-

20, 2019. 
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Table 2.1. Statistical descriptors relating to the morphological sediment budgets 

calculated for the overall (OVR) and reference channel reaches (RCR) in the UPR 

and MDR for the period September 2018 to September 2019 (SfM data). 

Statistical TAI TNVD ANTD PI TASL TASR UVSL UVSR SD* 

Channel reach 

type 
m2 m3 

% 

Error 
m 

% 

Error 

% 

Value 
m2 m2 m3/m2 

% 

Error 
m3/m2 % Error m 

UPR 
OVR 4657 958 0.045 0.206 0.045 0.470 3728 4285 0.083 0.107 0.231 0.043 0.137 

RCR 2763 614 0.044 0.222 0.044 0.486    67 2695 0.128 0.069 0.231 0.043 0.118 

MDR 
OVR 8720 2093 0.040 0.240 0.040 0.489 234 8486 0.103 0.086 0.249 0.040 0.121 

RCR 4885 1013 0.046 0.207 0.046 0.486 168 4717 0.086 0.102 0.218 0.046 0.106 

TAI = Total  Area of Interest (m²); TNVD =Total Net Volume Difference (m³); ANTD =Average Net 

Thickness Difference (m) for the Area of Interest; PI =Percent Imbalance (departure from equilibrium); 

TASL =Total Area of Surface Lowering (m²); TASR =Total Area of Surface Raising (m²); UVSL = 

Average Unit Volume of Surface Lowering (m³/m2); UVSR = Average Unit Volume of Surface Raising 

(m³/m2); SD* =Standard Deviation of the Net Thickness Differences (m); UPR = Upper reach; MDR = 

Middle reach; OVR = Overall channel reach; RCR = Reference channel reach. 

2.4.2.2. Sediment budget and stream power in PBSA estimated from TLS data 

 

The results in Table 2.1 (SfM-based results) differ from those obtained using TLS for the 

same RCR during the period of December 2018 to September 2019, for two reasons. 

Firstly, there were differences caused by the fact that the UAV-SfM surveys included an 

event (the peak flow of November 18, 2018) that was not monitored with TLS. Secondly, 

it is widely accepted that the evaluation of sediment budgets is sensitive to differences in 

DTM quality and in the process used to suppress vegetation cover, since they inherently 

incorporate errors into the generated terrain models (Brasington et al., 2003). Although 

this type of error was considered small in the two RCR, given the high resolution of the 

DTMs used, this factor cannot be completely discounted in the more vegetated areas. 

 

In addition, the high-density 3D point clouds generated from TLS were applied to 

pilot bed areas (PBSAs) in order to detect detailed changes in bedload budgets. In Figures 

2.8 and 2.9 and Table 2.2, the results obtained during three periods are shown: November 

2018 - September 2019, September 2019 - January 2020, and November 2018 - January 

2020. The first of these periods offers information on the morphological sediment budgets 

attributable to the flash flood of April 19-20, 2019; the second includes the peak flows of 

September 12-13, 2019 and December 2, 2019; and the third covers all three events. In 

the areas detailed, a positive balance was detected after the first event, with an average 

unit volume of 21.55 dm3/m2in PBAS (UPR) and 10.03 dm3/m2in PBAS (MDR), whereas 

there was a negative average balance during the second period, when erosion removed 

54.12 and 26.25 dm3/m2, respectively, in these two areas. 
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Figure 2.8. (a) View of 3DPC captured in 2019; (b-c) M3C2 comparison of the 

2018-2019 and 2019-2020 3DPCs, respectively; (d) height difference between 2018, 

2019, and 2020 in the Upper and Middle PBSA; (e) view of 3DPC captured in 2019; 

(f-g) M3C2 comparison of the 2018-2019 and 2019-2020 3DPCs respectively. 
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Table 2.2. Changes in unit volume (dm3/m2) and total mean volume per budget cell 

(dm3) obtained for elevation intervals of 10 cm and global height differences (Δe) in 

each pilot bed survey area (PBSA), based on TLS datasets covering the periods 2018-

20191, 2019-2020 2 and 2018-20203. 

Unit volume (dm3/m2) Total mean volume per budget cell (dm3) 

 PBSA (UPR) PBSA (MDR) PBSA (UPR) PBSA (MDR) 

Δe 

(m) 

2018 

20191 

2019 

20202 

2018 

20203 

2018 

20191 

2019 

20202 

2018 

20203 

2018 

20191 

2019 

20202 

2018 

20203 

2018 

20191 

2019 

20202 

2018 

20203 

-0.5/-0.4 -0.05 -0.15 -0.05 -3.59 -0.15 -3.15 -1.9 -5.3 -2.1 -312.7 -10.0 -243.5 

-0.4/-0.3 0.00 -0.21 -0.02 -2.46 -0.02 -4.65 0.0 -7.4 -0.6 -214.1 -1.3 -359.1 

-0.3/-0.2 -1.47 -7.67 -4.80 -3.86 -0.23 -8.83 -59.4 -270.0 -181.1 -335.7 -15.8 -682.3 

-0.2/-0.1 -6.60 -22.54 -22.90 -16.14 -9.35 -19.74 -266.0 -793.6 -865.0 -1405.4 -631.2 -1525.8 

-0.1/0 -11.32 -26.36 -19.95 -11.35 -23.91 -14.32 -456.4 -928.4 -753.6 -987.7 -1613.6 -1106.5 

ΔV<0 -19.44 -56.93 -47.72 -37.40 -33.66 -50.69 -783.7 -2004.7 -1802.4 -3255.6 -2271.9 -3917.2 

0/0.1 21.80 2.68 11.18 18.52 3.09 15.23 878.9 94.3 422.3 1612.5 208.7 1177.2 

0.1/0.2 17.38 0.05 3.56 22.84 1.14 12.82 700.7 1.6 134.3 1988.9 76.7 991.1 

0.2/0.3 1.38 0.01 0.19 4.67 0.79 2.94 55.6 0.3 7.0 406.3 53.6 227.0 

0.3/0.4 0.16 0.01 0.01 0.57 0.70 1.28 6.3 0.2 0.2 49.3 46.9 99.1 

0.4/0.5 0.27 0.07 0.22 0.83 1.69 2.19 10.9 2.5 8.4 72.0 114.4 169.1 

ΔV>0 40.99 2.82 15.16 47.43 7.41 34.46 1652.4 98.9 572.2 4129.0 500.3 2663.5 

ΔV 21.55 -54.12 -32.58 10.03 -26.25 -16.23 868.7 -1905.8 -1230.2 873.4 -1771.6 -1253.7 

Note: Specifically, these periods are as follows: 1 November 2018 to September 2019, 2 September 2019 

to January 2020, and 3 November 2018 to January 2020. 

The analysis of budgets expressed in unit volume for 10 cm elevation intervals show 

that the largest volumetric variations implied morphological adjustments, ranging 

between -0.2 and + 0.2 m in bed elevation (Table 2.2). Within these intervals, the greatest 

unit volume of deposition (41.3 dm3/m2) corresponded to PBSA (MDR) after the April 

2019 event, and the greatest erosion volume (48.9 dm3/m2) to PBSA (UPR) after the two 

minor events of the period September 2019 to January 2020. These data are consistent 

with those displayed for both cases in the normalized histograms of elevation differences 

(Figure 2.9), where the interval from 0 to +0.2 m had a cumulative frequency greater than 

60% and that from 0 to -0. 2 m exceeded 70%. 

 

Likewise, the variations and signs of the mean energy gradient faithfully reflected 

the different patterns observed in the bedload budgets of each PBSA. Assuming that 

∂ω/∂s represents the clearest expression of sediment change in the nearest cell 

downstream, we can hypothesize that this hydraulic variable had a strong influence on 

the net erosion or deposition, and on the total mean bedload volume per unit area. 

However, while the net deposition pattern expected with a higher positive ∂ω/∂s did 

occur, the same did not happen with the net erosion pattern, since the most negative ∂ω/∂s 

registered in PBSA (UPR), during the flood peak on April 19, 2019, finally translated 

into a unit net volume of downcutting lower than the one accumulated by the minor events 

of September 2019 and January 2020. The larger flow event in April generated 
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significantly higher mean ∂ω/∂s values than the minor peak flow in September, with a 

negative sign in PBSA (UPR) and a positive one in PBSA (MDR), which resulted in a 

decrease from -3.8 to -0.4 Wm−2/m for the first case and from 1.9 to 1.6 Wm−2/m for the 

second. This suggests that in the major event a much larger bed load was mobilized and 

replaced than in the minor event, and that during the latter the energy expenditure was 

used for scouring and there was not enough surplus (ω/ωc = 1.6,vs 2.6 in the April flood) 

to drag and deposit the material transported from upstream. 

Figure 2.9. Normalized histograms of the elevation differences shown in Figure 2.8 

for the Upper and Middle PBSA, comparing the 2018, 2019, and 2020 3DPCs. 

Table 2.3. Basic statistical data for the stream power variables estimated for the 

events of April 19, 2019 and September 12, 2019 in the Upper and Middle PBSA. 

 PBSA (UPR) PBSA (MDR) 

  ω 

(W m-2) 

∂ω/∂s  

(Wm−2/m) 

ω/ωc 

(-) 

ω 

(W m-2) 

∂ω/∂s 

(Wm−2/m) 

ω/ωc 

(-) 

Flash flood Mean Max Min Mean Max Min Mean Mean Max Min Mean Max Min Mean 

19/04/2019 163.4 +8.9 -28.8 -3.8 3.8 1.5 2.6 145.8 +34.1 -26.3 2.8 2.8 0.5 1.9 

12/09/2019 99.4 +23.4 -15.2 -0.4 2.9 0.5 1.75 87.9 +14.2 -13.2 1.2 2.4 0.5 1.6 

Such results seem to corroborate the hypothesis that in this EGBS the events of 

greater magnitude (Qp ≥ 30 m3/s) produce vertical sedimentary accretion on the bed, 

exceeding even the critical stress of the coarsest particles (gravel and pebbles) in PBSA 

(UPR) (mean ω / ωc> 2) and thus moving a large bedload downstream. In contrast, more 

moderate peak flow rates (Qp ≤ 10 m3/s) were only able to exert a surface washing action, 

selective transport, and local scouring. In both cases, all the events analysed tended to 

reinforce and arm the bed, as seen in situ, making it more resistant to erosion in future 

floods. 

 



33 

 

2.4.2.3 Morphological bed adjustments observed in RCR from TLS data 

 

The detailed topographic survey performed for each channel reach prior to and 

following a bedload-transporting flow event made it possible to detect precise changes in 

channel morphology in relation to event scale bedload fluxes. Such an approach was 

highly recommended by Kasprak et al. (Kasprak et al., 2015), when an HRDTM is 

available, and by Singer and Michaelides (Singer and Michaelides, 2014) for the case of 

ephemeral channels, where topography appears to remain unchanged. In Figure 2.10 are 

shown the morphological changes observed along the channel center line of both RCR 

using TLS datasets. From this, different patterns of spatial variability were inferred, 

depending on the reference site, the magnitude of the flood, and the textural and 

topographic characteristics immediately prior to the occurrence of each event. 

 

In the Upper RCR the major morphological bed changes corresponded to two types 

of channel narrowing: at the exit of a meander and that due to structural control in less 

sinuous reaches. In the first case, the forms of excavation and vertical accretion reflected 

a marked bed alteration just 15 m in length, the incision prevailing in the largest event 

and the deposition in the least torrential (Figure 2.10c in UPR). In the second case, 

downstream narrowing, the major event caused significant variations in the topography 

of the bed, creating new active bars that later, in the event of September 2019, were 

partially or totally destroyed. These morphological adjustments must have been caused 

by high stream power values concentrated in short distances -as already suggested by 

Conesa-García et al. (Conesa-García et al., 2020) for entrenched channel cross-sections- 

along stretches with sudden changes in bed roughness. This pattern has been found to be 

linked to channel degradation in semi-arid ephemeral streams (e.g., (Ortega et al., 2014; 

Hooke, 2006)).  

 

However, we observed significantly different behaviour in the gravel beds studied 

here, where important transitory erosion was often followed by considerable 

replenishment of coarse-grained sediments, finally producing bed aggradation. The rest 

of the stretch showed slight changes in the inter-bends or runs transition zones and 

significant homogeneous variation in the final part, where progressive erosion 

downstream caused by the flash flood of April 2019 was partially offset by aggradation 

processes during the following minor event. 

 

The Middle RCR presents two spatial patterns of geomorphic change: one of them 

around an extensive central bar (65 m long), characterized by important variations of 

different sign, depending on whether it is the anterior sector, the bar itself, or the posterior 

area in a downstream direction. At the back of the bar head, an incision of 0 to -0.5 m was 

observed, while the head and platform of the bar experienced vertical accretion in both 

events, and the tail suffered a lowering in height of up to -0.3 m. The minor event in 

September introduced hardly any variations in this reach except in the final part of the 

platform, which was lowered by around -0.4 m (Figure 2.10c in MDR). The second 

pattern, represented in the rest of the RCR, arises from a certain bed stability, only 

interrupted by slight alternative adjustments of incision and vertical accretion, resulting 

in net elevation differences between +0.2 and -0.2 m. 
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Figure 2.10. Thickness of the bed elevation differences caused by the flow peak of 

September 2019 in relation to those attributed to the flood of April 2019, using gross 

data with a 10-cm interval (a) and moving averages of band 9 (b) along the channel 

center line. The type (c) profiles represent the incision and aggradation sites for both 

peak flows with a band 9 smoothing. The profiles are based on TLS datasets. 
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2.4.3 Sediment budgets for different RGU in relation to stream power data and field 

surveys 

 

In Table 2.4 are shown standard variables commonly used in sediment budgeting 

(sediment area and volume) for each representative geomorphic unit (RGU) and RCR, 

derived from SfM and TLS data, concerning the peak flows produced during their 

respective field surveys. As mentioned above, the SfM monitoring periods included one 

more event than those of the TLS; therefore, despite offering fairly similar surface area 

data for each RGU, they provided different volume data and errors. 

 

Although the time interval considered (September 2018 to September 2019) is 

relatively short, and only covers one or two events, depending on the type of survey 

performed, the fact that almost all RGUs registered a positive total average balance in 

favor of deposition is striking (Table 2.4 and Figure 2.11). Only the inter-bar active bed 

in the Upper RCR scored a slightly negative budget, according to the TLS data, after the 

flash flood of April 19-20, 2019. This, added to the fact that the difference in average 

total thickness (ATTD) or the average unit volume difference (UVDA) for each RGU 

was always lower with TLS than with SfM, undoubtedly shows that the November 2018 

peak flow, although lower than that of April 2019, also contributed to the deposition. 

 

In summary, it can be considered that almost all the bed forms experienced over-

sedimentation and, therefore, vertical accretion. The maximum accumulation produced 

after both events (0.18 to 0.23 m3/m2) took place on the active bed zones and on the 

scarcely vegetated gravel bars, which behaved as somewhat unstable forms (Table 2.4 

and Figure 2.11). Even the main active bed in run stretches within the middle reach rose. 

The positive sediment budget in lateral tali and high bars could be misleading (ATTD 

around 0.20 m), but, nevertheless, corresponds to local collapses of material caused by 

basal undermining in high detrital banks (Figure 2.12.1 and 2.12.2) and lateral accretion 

by the adjoining of finer sediments (sand and gravel) in alternate and central bars (Figure 

2.12.4). However, this contribution was not sufficient to explain the large imbalance 

between the average volume of sediment returned to the channel through bank collapse 

(equivalent to 11% of the total flux) and the net volume of sand and gravel deposited on 

the bars (66% of the total budget). 

 

Consequently, most of the bedload mobilized and deposited in both stream stretches 

could come from upper sediment sources, associated with intense downcutting processes 

in deep gullies that dissect the apical zone of thick alluvial fans. López-Bermúdez et al. 

(López-Bermúdez et al., 2005), Harvey (Harvey, 2011) and Aguilar et al. (Aguilar et al., 

2020) found similar results when studying steep alluvial fans dissected by gullies in semi-

arid and arid environments. Simultaneously, low-order gravel bed tributaries at the 

headwaters currently develop high geomorphic activity, leading to considerable 

variations in downstream sediment yield, which is consistent with the pattern described 

by Lisle et al. (Lisle et al., 2000) and Yuill et al. (Yuill et al., 2010) for this type of EGBS. 
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Table 2.4. Descriptors used to evaluate sediment budgets (sediment area and 

volume), and the associated errors, for RGUs within each of the RCR, in periods 

overlapped by the initial SfM and TLS surveys between September 2018 and 

September 2019. 

   TAI TVDA ATTD PI 

RCR Method RGU m2 m3 
% 

Error 
m 

% 

Error 
% 

UPR 

SfM 

Active inter-bar bed (a) 1367 318.2 0.043 0.233 0.043 0.50 

Active non-vegetated bar (b) 321 73.4 0.043 0.228 0.043 0.50 

Low, scarcely vegetated bar 

(c) 
629 140.9 0.043 0.224 0.043 0.48 

High, scarcely vegetated bar 

(e) 
233 41.8 0.051 0.179 0.051 0.44 

Vegetated talus or bank (j) 62 12.7 0.043 0.205 0.043 0.45 

TLS 

Active inter-bar bed (a) 1371 -32.7 -0.287 -0.024 -0.287 -0.14 

Active non-vegetated bar (b) 322 4.5 0.455 0.014 0.455 0.11 

Low, scarcely vegetated bar 

(c) 
647 35.3 0.121 0.055 0.121 0.19 

High, scarcely vegetated bar 

(e) 
235 11.9 0.134 0.051 0.134 0.16 

Vegetated talus or bank (j) 65 10.7 0.044 0.165 0.044 0.35 

MDR 

SfM 

Active inter-bar bed (a) 2270 497.4 0.045 0.219 0.045 0.49 

Active non-vegetated bar (b) 790 141.7 0.052 0.179 0.052 0.48 

Low, scarcely vegetated bar 

(c) 
925 188.1 0.046 0.203 0.046 0.47 

High, scarcely vegetated bar 

(e) 
670 136.1 0.048 0.203 0.048 0.49 

Scarcely vegetated talus (i) 97 20.0 0.048 0.207 0.048 0.49 

TLS 

Active inter-bar bed (a) 2254 163.0 0.096 0.072 0.096 0.22 

Active non-vegetated bar (b) 778 26.0 0.200 0.033 0.200 0.14 

Low, scarcely vegetated bar 

(c) 
919 105.2 0.063 0.114 0.063 0.29 

High, scarcely vegetated bar 

(e) 
669 100.7 0.050 0.150 0.050 0.33 

Scarcely vegetated talus (i) 103 3.2 0.203 0.032 0.203 0.07 

TAI = Total area of interest (m2); TVDA = Total volume difference average (m3); ATTD = Average total 

thickness difference (m) for Area of Interest; PI = Percent Imbalance (departure from equilibrium). 
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By comparing the sediment budgets obtained sing TLS after the flash flood of April 

2019 with the stream power indicators referring to this event (see Figure 2.6), we 

observed that the ω/ωc ratio exerted a greater influence than ∂ω/∂s on the incision and 

vertical accretion processes, depending on the predominant type of RGU in each set of 

cells. Specifically, in sites with dominant changing RGU - such as active channel interbars 

or runs (a), low, active non-vegetated bars (b) and low, scarcely vegetated bars (c) - strong 

relationships were found between the ATTD and the ω/ωc ratio (r2 ≈ 0.89 in both channel 

reaches). The relationship of ATTD with ∂ω/∂s was also statistically significant, but not 

as strong as that with the average relative excess energy (r2 = 0.83 and 0.66 in UPR and 

MDR respectively, p-Value < 0.05 for the 95%confidence interval). In any case, a 

different behaviour could be intuited in the most unstable bars of each of the RCR in 

relation to the ratios ∂ω/∂s and ω/ωc estimated for each channel stretch. In the Upper RCR 

cell sets, where these RGU predominated, average values of ∂ω/∂s and ω/ωc of -4.4 

Wm−2/m and 2.3, respectively, were found, which led to a slight lowering in the active 

bed (ATTD = -0.024 m) and an average surface raising of only 5 cm in longitudinal non-

vegetated bars (Figure 2.12.4). In contrast, smaller values of ∂ω/∂s and ω/ωc (-1.6 

Wm−2/m and 1.5, respectively) at the front and head of a mid-channel bar (central island), 

crossing the Middle RCR, caused a thicker deposit (ATTD of 11 to 15 cm) and greater 

morphological adjustments (Figure 2.12.5).  
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Figure 2.11. Average depth of lowering (ADL) and raising (ADR) and average total 

thickness difference (ATTD) obtained from SfM-MVS and TLS for the GRUs in the 

Upper and Middle RCR, after the peak flow of April 19-20, 2019. Letters refer to the 

RGU according to the legend in figure 2.5. 

Field observations immediately after this event showed that such sediment budgets 

were accompanied by a relocation of the bed material and changes in bed texture. Along 

all the Upper RCR, riffles proved to be the most stable bedforms and preserved the 

coarsest particles. Also, a large amount of gravel was deposited on runs or pool exit-point 

bars in bed stretches, in agreement with the results obtained by Thompson et al. 

(Thompson et al., 1996) and Wohl (Wohl, 2000) in steep bed-gravel streams. In the 

ascending part of the hydrograph, the steepened water-surface gradients over alternate 

bars and runs in the Upper RCR must have promoted bed dissection and removal of finer 

particles, which were then stored in pools downstream. This geomorphic process was 

described by Lisle and Hilton (Lisle and Hilton, 1999) when studying the fine bed 

material in pools of natural gravel-bed channels. 
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Figure 2.12. Local material collapses in composite detrital banks after basal 

undermining caused by the flash flood of April 2019 (1 and 2); entrainment and 

surface washing of non-cohesive basal bank deposits during the peak flow of 

September 2019 (3); after the larger event, greater morphological adjustments 

occurred: lateral accretion of central longitudinal bars in the Upper RCR (4), vertical 

accretion at the head of a central bar and slight incision on the thalweg bed in MDR 

(5), a strong net deposition between the upper and Middle RCR (see the levelogger 

plate that was deeply buried) (6), and high transitory erosion in the main active 

channel (see a clear example in the Upper RCR) (7). 

Downstream, in the Middle RSR new deposits at the head of the mid-bar referred to 

earlier contributed to raising its surface, mainly with sand and fine gravel (Figure 2.12.5). 

The somital platform of the central bar was not totally submerged and acted as a 

roughness element that must have locally increased the vertical velocity of the flow on 

the flanks, in turn driving the lateral vortex cells, with the consequent start or reactivation 

of entrainment of the less coarse particles. As the flow cells enlarged and moved locally, 

incision occurred in secondary active channels around the bar, increasing the bedload 

pulses downstream. 
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Figure 2.13. Differences in absolute net volumes versus variations in elevation 

(lowering and raising) of the bed surface detected with SfM and TLS for each GRU 

in the Upper and Middle RCR, after the peak flow of April 19-20, 2019. Letters refer 

to the RGU according to the legend in figure 2.5. 

A similar contrast is provided by the comparison of the differences in absolute net 

volumes with the corresponding variations in elevation (negative or positive) detected 

with SfM and TLS. The total net deposition volumes were considerably higher than the 

erosion in all RGUs and in both RCR, according to the SfM data. Among these bedforms, 

within the Upper RCR, the active bed registered the highest absolute volume increase (12 

to 14 m3), associated with bed raising of 0.2 to 0.3 m (Figure 2.13). Active bars and 

unstable scarcely vegetated low bars also experienced a significant increase in volume, 

but with different ranges of heights. The largest net deposition volumes (from 4 to 8 m3) 

meant increases in height from 0.15 to 0.30 m in the first case (leptokurtic distribution), 

and from 0.1 to 0.4 m in the second (dominant mesokurtic distribution). The high, 

sparsely vegetated bars and vegetated tali only exhibited occasional variations that had 

little impact on the overall channel adjustments. The Middle RCR showed a somewhat 

different pattern, characterized by Gaussian distributions and a single mode in most 

RGUs. Here, the active bed once again scored by far the highest volume charge, with 

maximums of 30 to 37 m3 accompanied by the same bed rises (0.20 to 0.35 m) as in the 

Upper RCR. The rest of the bedforms received, with respect to the upstream reference 

reach, a greater sedimentary contribution, that did not translate into substantial 

morphological changes since the accretion height hardly varied. The reason for this could 

be the greater wetted channel width and the presence of transverse and central bars in the 

Middle RCR, compared to the relative channel narrowness and development of 

longitudinal bars in the upper reach.  

 

The TLS results for the April event provided quite different patterns, with single-

mode leptokurtic distributions in the most unstable bed forms: in a, b and c of the Upper 

RCR and in a and c of the Middle RCR. The only exception was in the behavior of the 

active bars without vegetation, whose distribution showed two pointed curves in the 

central part, representing modes of erosion (ADL of -0.1 to -0.2 m) and deposition (ADR 

of 0.20 to 0.35 m), respectively. This was probably due to unequal morphological 

adjustments, after transitory erosion occurred in both cases. Field observations verified 

lower rates of transitory erosion (only 5 cm for this event) in this morphosedimentary unit 

than in the active bed itself, where depths of 20 to 25 cm were reached (Figure 2.12.7). 

In the rest of the RGUs, the net volumes of deposition exceeded those of erosion. 

 

On a local scale, it is worth noting the bimodal distribution observed in the scarcely 

vegetated banks or tali, especially in the Middle RCR, where the maximum volume of 

erosion supposed an average lowering of the bed surface of around 5 cm and that of 

deposition an average raising of 7 cm.  

 

Consequently, all the patterns of spatial variability in the sediment budgets, described 

with SfM and TLS data, showed a clear tendency to increase bedload and granular bed 

armouring. The supplies of gravel in both RCR exceeded the volume of scour, causing an 

increasing alluvium that tends to make it more and more difficult to lower the bed surface 

by downcutting, increases the hydraulic resistance of the bed materials, and redirects the 

energy expenditure towards the banks. The result is a gradual widening of the channel 
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and an increase in the width-to-depth ratio, particularly significant in sites of the middle 

and lower reaches, not subject to geological constrictions. 

 

2.5 Conclusions 
 

An excess or deficit of sediment in a sediment budget implies different responses of 

the channel morphology and bed forms. In the case of EGBS, where the morphological 

adjustments are the product of complex flow dynamics at the event scale, the approach 

proposed here, based on the integrated use of UAV-SfM and TLS, has allowed this budget 

assessment to be satisfactorily addressed. Also, such an approach means economic 

savings and optimization of monitoring resources, through the synchronized application 

of both techniques, and the use of one or the other, depending on the magnitude of the 

event and the type of geomorphic change (overall channel adjustments or changes in 

bedforms). The SfM-MVS proved to be an appropriate technique for estimating sediment 

budgets in longer stream stretches, such as RCR over 100 m in length, while TLS 

provided excellent results for the determination of changes in bedload budgets at more 

detailed spatial scales (PBSA and RGU). Different complex morphodynamic processes, 

including total scouring-and-bedload transport and transitory erosion, that must have 

taken place simultaneously during each flood, could not be directly quantified.  

 

Nevertheless, the sediment budgets expressed in terms of net bed elevations and 

volumes were calculated with high accuracy for the wetted channel perimeter and the 

RGU during the monitored peak flows. This information was very useful, especially when 

coupled with in situ observations made after each event and the stream power parameters, 

obtained from the calibrated 1D hydrodynamic model. The results from the study sites 

provided detailed information on the bed loading budgets, location of sediment sources 

and sinks, and changes in bedforms, but also contributed to a better knowledge of the 

current morphodynamic trend of this type of EGBS in semi-arid Mediterranean coastal 

areas. With the support of field research, several hypotheses were verified, the most 

significant of which relates the magnitude of the events with the geomorphic process and 

morphological adjustments: specifically, we found that large floods tend to produce 

vertical sedimentary accretion (0.20 < ADR < 0.35 m for a peak flow of 31 m3/s on April 

20, 2019), after having mobilized a large amount of bedload upstream, due to high stream 

power gradients and excess energy (-15 < ∂ω/∂s < 15 Wm−2/m;  ω/ωc> 2 for the same 

event). By contrast, more moderate peak flows (≤ 10 m3/s) were only capable of exerting 

surface washing, selective transport, and local scouring, mainly affecting active low bars.  

 

The lowest net thickness of deposition detected by SfM and TLS in the upper stretch 

(ATTD < 0.06 m) often masked an extraordinary mobility of the gravel deposits, crossing 

riffles and inter-bar runs, which could only be proved by measuring transitory erosion in 

the field (0.20 to 0.25 m at the Upper RCR). Regardless of the magnitude of the monitored 

events, bed armouring was identified in situ, which tends to make the bed more resistant 

to erosion in future floods. If an increase in the frequency of flash floods due to climate 

change is confirmed in southeastern Spain, it is foreseeable that in the short and medium 

term the trend of bed aggradation will continue in these ephemeral gravel streams, fed by 

the increasing inputs of coarse particles from the slopes, thus promoting lateral erosion 

and widening the channel, as has already occurred in more arid environments. 
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Notation 

 

D50 median grain size (m) 

D84 particle size corresponding to the 84% of the sample weight (m) 

∂ω/∂s  mean stream power gradient [Wm−2/m] 

γ  specific weight of water (N/m3), 

i  cell ati cross-section 

Ω  cross-sectional stream power [W m−1] 

ω  mean stream power [Wm−2] 

ωc  critical mean stream power [W m−2] 

ω/ωc  

qp  peak unit flow (m3/s) 

r2  determination coefficient 

Sw  water surface slope [m m−1] 

tb  base time (h) 

tb*  base time of the unit hydrograph (h) 

th  hydrograph duration (h) 

tp  time of peak (h) 

tp*  time of peak of the unit hydrograph (h) 

w  water-surface width (m) 

ADL Average depth of lowering 

ADR Average depth of raising 

ANTD Average Net Thickness Difference (m) for the Area of Interest 

ATTD  Average total thickness difference (m) for Area of Interest 

3DPC  3D point cloud 

EGBS Ephemeral gravel bed stream 

GCPs  Ground Control Points 

GNSS Global Navigation Satellite System 

HRDTM High-resolution Digital Terrain Models 

MDR Middle reach 

MVS Multi-View Stereo 

OVR Overall channel reach 

PBSA Pilot bed survey area 

PI   Percent Imbalance (departure from equilibrium) 

RCR Reference channel reach 

RGU Representative geomorphic unit 

RPAS Remotely Piloted Air Systems 

SfM Structure from Motion 

TAI Total area of interest (m2) 

TASL Total Area of Surface Lowering (m²) 

TASR Total Area of Surface Raising (m²) 

TLS Terrestrial Laser Scanner 

TNVD  Total Net Volume Difference (m³)  

TVDA  Total volume difference average (m3) 

UAV Unmanned aerial vehicles 

UPR Upper reach 

UVSL Average Unit Volume of Surface Lowering (m³/m2) 

UVSR Average Unit Volume of Surface Raising (m³/m2) 

SD* Standard Deviation of the Net Thickness Differences (m) 
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3. Changes in stream power and morphological 

adjustments at the event-scale and high spatial 

resolution along an ephemeral gravel-bed channel 
 

Abstract  
 

Sediment budgets and morphological channel adjustments are closely related to changes 

in stream power. In ephemeral channels, whose geomorphic response depends on the 

magnitude and frequency of discrete hydrological events isolated in time, such 

relationships are often difficult to establish. This study sought to quantitatively relate 

morphological adjustments to stream power along different reference channel reaches for 

the period 2018-2020 in the Azohía Rambla, a Mediterranean gravel-bed ephemeral 

stream in southeastern Spain. Very high resolution digital terrain models (VHRDTM), 

combined with ortophotographs and 3D point clouds, generated via SfM photogrammetry 

and terrestrial laser scanning (TLS) for pre- and post-event stages, together with ground-

based surveys were used to estimate the spatial variability of morphological sediment 

budgets and to assess channel bed mobility and changes in net sediment flux during the 

study period in two spatial scenarios: reference channel reaches (RCRs) and pilot bed 

survey areas (PBSAs).The hydraulic variables (flow velocity, Froude number, shear 

stress, mean stream power and energy gradient, among other) were estimated using a 1D 

hydrodynamic model calibrated with field information. The high resolution maps allowed 

a spatially-explicit analysis of stream power and transport efficiency in accordance with 

the areas of erosion and deposition in each RCR. The incision and bed armoring processes 

showed different trends according to the stream power (ω), cumulative excess energy (εc), 

and relative bed stability (RBS). The greatest morphological adjustments at the event 

scale coincided with ω values above 300 Wm-2, εc higher than 3 MJ, and RBS below 0.5. 

The relationships between the mean stream power gradient at peak flood discharges and 

the changes in bed elevation verified the bed aggradation (an average surface raising of 

0.17 to 0.22 m for δω/δs of -6.2 to -14.5 Wm−2/m) during the major flood and bed scour 

(average surface lowering of 0.16 to 0.19 m for δω/δs of 5.8 to 10.6 Wm−2/m)in the 

moderated events at the bankfull and sub-bankfull stages.  

 

Keywords: Stream power, morphological sediment budget, bedforms, SfM 

photogrammetry, terrestrial laser scanning, gravel-bed ephemeral channel, Southeastern 

Spain.  

  



49 

 

3.1 Introduction 
 

Bed permeability and transmission losses, transport of mixed grain size materials, 

and especially the episodic and sudden nature of runoff events, are factors that make it 

quite difficult to get flow rates and assess morphodynamics in ephemeral gravel channels. 

In these streams sediment budgets and morphological channel adjustments depend on 

runoff, which is mainly controlled by the type of rainfall and the environmental conditions 

of the watershed area and the channel itself (Rojan et al., 2020). Particularly in arid and 

semiarid basins, they are settings for extreme morphological dynamics, associated with 

irregular and torrential peak flows, capable of reaching very high stream power values 

and sediment loads. The geomorphic response of these dry streams varies according to 

the magnitude and frequency of the flow events, which are especially sensitive to short-

term climatic changes and human impacts (Segura-Beltrán and Sanchis-Ibor, 2013; 

Conesa-García et al., 2020a). The nature and impact of this response depend on the entity 

of each event, since larger and more energetic discharges mobilize and deposit a greater 

bed load, and minor events promote scouring and down-cutting phenomena (Pryor et al., 

2014; Lotsari et al., 2018). The consequent effects vary from local bedform disturbances 

in low-flow stages to overall channel adjustments after flash floods (Conesa-García et al., 

1995; Benito et al., 2011; Norman et al., 2017).  

 

Evaluation of the magnitude of geomorphic changes in ephemeral gravel-bed 

streams (EGBSs) is difficult because of the lack of gauging records, the permeability of 

the bed, abrupt variations in bedload, and their highly changeable hydromorphological 

dynamics. This explains why the literature on EGBSs is relatively scarce and requires 

more effort on empirical analysis and morphodynamic modeling (Bizzi and Lerner, 2015, 

Lotsari et al., 2018). In particular, the spatial and temporal morphological variability in 

EGBSs, as a function of variations in stream power, has been little studied (Levick et al., 

2008; Ortega et al., 2014). Sutfin et al. (2014) proposed a non-metric multidimensional 

scale ordering, based on geometric and hydraulic variables: width-to-depth ratio (W/D), 

stream gradient (S), stream power (Ω), and shear stress (τ). Other authors related 

morphological adjustments in EGBSs to systematic changes in the mean stream power 

(ω) / resisting power (ωc) ratio (ω/ωc) (Bull, 1997), and hence in the transport efficiency, 

associated with the mean stream power gradient (∂ω/∂s) and excess energy (Conesa-

García et al., 2020b). Nor are there many studies aimed at evaluating these morphological 

changes in relation to erosion volumes, deposition, and sediment transport (sediment 

budgets) on a detailed scale. The multi-temporal application of very  high resolution 

digital terrain models (VHRDTM) (pixel size <5 cm), generated using Structure-from-

Motion Multi-View Stereo (SfM-MVS) from low-altitude unmanned aerial vehicles 

(UAV), has recently demonstrated its proficiency in the monitoring of submerged 

physical habitats of perennial and temporary streams  (Woodget et al., 2019; Rowley et 

al., 2020; Salmela et al., 2020; Puig-Mengual et al., 2021) and morphological adjustments 

in dry channels (Calle et al., 2018; Flatley and Rutherfurd, 2018; Galea et al., 2019; 

Conesa-García et al., 2020a,b). Furthermore, this ability also extends to the detailed 

analysis of stream bed grain size and bedforms (Woodget and Austrums 2017; Vázquez-

Tarrío et al., 2017) as well as rapid geomorphic changes, which affect the fluvial 

ecosystem dynamics (Rusnák et al., 2018). In addition, the 3D point clouds (3DPC) and 

VHR DTM, produced using terrestrial laser scanning (TLS), with a pixel size lower than 

3 cm, offers higher performance to detect spatial differences in surface bed texture caused 

by specific events (Notebaert et al., 2009; Conesa-García et al., 2020a). 
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In this paper we propose an approach to assess, at the event scale, the relationships 

between sediment fluxes and stream power along an ephemeral gravel-bed channel, 

combining VHRDTM, provided by SfM-MVS and TLS, and a 1D hydrodynamic model 

calibrated using field information. Specifically, there were two primary objectives: (1) to 

detect spatio-temporal patterns of sediment budgets and morphological adjustments along 

stream reaches with high bedload, and (2) to evaluate the relationships between changes 

in stream power and variations in erosion and deposition rates. These objectives were 

achieved in three steps: 1) the 3DPC datasets were used to test significant changes in 

height and volume after each event in reference channel reaches (RCRs) and pilot bed 

survey areas (PBSAs); 2) the results of hydraulic modeling during flash floods, including 

flow competence and bed stability indices, were analyzed at the cell scale; 3) erosion 

values, deposition, and net sediment flux were averaged for each budget cell from datasets 

of SfM and TLS; 4) the resulting maps of stream power, total volume difference average, 

and net thickness difference were combined to determine spatial relationships between 

these variables for each event. The work related to the first objective was focused on 

defining the spatial patterns of bed elevation changes, and associated processes of erosion 

and deposition, attributable to the magnitude of the flood or the combination of events. 

  

To test the second objective different hypotheses were examined:  

 

(1) Spatial changes in ω values do not have a direct relationship with variations in bed 

stability associated with variable critical bed-shear stress and moving bed forms.  

(2) The ω thresholds usually related to morphological changes in perennial gravel streams 

may differ from those required in unstable, ephemeral gravel-bed channels.  

(3) The variability patterns of ω reflect the fluctuations in the flow velocity, shear stress, 

and Froude number.  

(4) Greater changes in bed elevation and net sediment flux are mainly due to larger 

positive and negative values of the mean stream power gradient (∂ω/∂s) and the ω/ωc 

ratio. 

(5) Sites with the greatest ω/ωc ratios will have the highest values of cumulative excess 

energy per unit bed area (εc) and total sediment flux (T), which will promote bed scouring 

and vertical accretion processes. Conversely, locations where ωcequals or surpasses ωwill 

show the lowest εc and T, and the most stable bedforms. 

 

3.2 Study area and environmental setting 

 

This research was carried out in the Azohía Rambla, an EGBS draining a small 

coastal mountainous basin (13 km2) in southeastern Spain (Region of Murcia) (Figure 

3.1). The study site is located in the Internal Zones of the eastern Betic Cordillera, so it 

takes part in the geological characteristics of its three major complexes (Nevado-

Filábride, Alpujárride, and Maláguide) (Egeler and Simon, 1969). The present-day 

contacts of these complexes are extensional detachments and low-angle normal faults. 

Metamorphic, poorly permeable materials (mainly phyllites, schists, and quartzites), of 

Permian and Triassic age, mainly appear in the headwater areas, while Quaternary detrital 

sediment and Miocene marls predominate in the alluvial fans and marginal zones of the 

valley bottom, respectively. 
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Figure 3.1. Location of the study area (Azohía Rambla basin) in southeastern Spain, and 

indication of the monitored channel reaches (upper and middle RCRs and their respective 

PBSAs).  

 

Semiarid environmental conditions (precipitation of 310 mm/year, with a 

maximum 30-minute rainfall intensity above 50 mm h-1, extreme droughts, and very high 

monthly potential evapotranspiration values (> 140 mm in the summer months) play a 

relevant role here in weathering and erosion processes. Added to this is scarce vegetation 

cover and steep slopes, which often lead to large flash floods and intense fluvial 

geomorphic activity. A dense network of steep gullies in the headwaters area and detrital 

channel banks act as highly productive sources of sediment, especially coarse material 

(gravel and pebbles). As a result, the Rambla de la Azohía exhibits an active 

morphodynamics (rapid changes in bedform type and channel geometry). Two RCRs (the 

upper and middle RCR), of 160 m in length, were chosen based on the accessibility and 

type of geomorphic adjustment. These stream stretches better represent the changes in 

stream power and their relationships with the variations in net sediment fluxes and 

bedforms. In contrast, in the lower reach, global changes are the product of sediment-

laden floodwater spills, affecting crevasse splays and a wide, active flood bed, making it 

difficult to apply this approach (Ali and De Boer, 2003). 
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3.3 Materials and methods 
 

VHRDTM derived from UAV-SfM, Global Navigation Satellite System (GNSS) 

data, and TLS were used to determine sediment budgets and changes in bed elevation in 

pre- and post-event stages and to establish the topographic base before each flash flood. 

In both RCRs, erosion and deposition areas and volumes were obtained at the pixel level 

for each event, while at the cell scale morphological sediment budgets and net sediment 

fluxes were averaged. The hydraulic datasets were obtained from the application of a 1D 

hydrodynamic model fed by theoretical hydrographs, previously calibrated and validated 

with direct water measurements during the runoff, made using pressure sensors. Using a 

GIS to integrate all this information, spatial sediment budgets and stream power values 

were mapped and their relationships were calculated under different balances (negative 

or positive) between ω and ωc for each pair of consecutive cells. Seven significant rainfall 

events (>35 mm/day) occurred in the analysis period (September 18, 2018 to January 9, 

2021), but only three of them generated peak discharges capable of causing perceptible 

geomorphic effects: a larger one, characterised by a bank overtopping discharge (flash 

flood of 19–20 April 2019), and two other moderate peak discharges at bankfull and sub-

bankfull stages, the peak flow of 24 March 2020, and 12 September 2019, respectively 

(Table 3.1).  

 

Table 3.1. Dates of occurrence of flow events and field surveys using UAV-SfM and/or 

TLS techniques, with indication of rainfall data and peak discharges for each channel 

reach. 

 

Event/ 

Field Survey 
Date P 

(mm) 

Rainfall 

Duration 

(h) 

I1h 

(mm h-1) 

I30' 

(mm h-1) 

Qp (m3 s-1) 

UPR MDR LWR 

UAV-SfM 18 September, 2018  

Peakflow 18 November, 2018 35.6 9.3 17.6 32.4 0.1 0.1 0.2 
TLS 29 November, 2018        
Peakflow 19-20 April, 2019 123.2 21.2 37.3 46.0 21.9 31.3 46.1 
UAV-SfM/TLS 5 September, 2019        
Peakflow 12 September, 2019 93.9 16.9 20.2 26.4 8.4 10.9 15.1 
Peakflow 2 December, 2019 59.3 20.3 9.8 17.8 1.2 1.7 2.9 
TLS 16 January, 2020        
PeakFlow 20 January, 2020 66.3 20.8 10.6 12.8 2.7 3.6 5 
Peakflow 23-24 March, 2020 119.3 34.2 22.9 28.8 11,6 15,4 20,8 
UAV-SfM/TLS 26 July, 2020        
Peakflow 9 January, 2021 41.0 34.0 2.7 - 0.3 0.4 0.8 

P = precipitation (mm); Qp = peak discharge (m3 s-1); I1h = rainfall intensity (mm h-1); I30' = maximum 

30-minute rainfall intensity (mm h-1); UPR = upper channel reach; MDR = middle reach; and LWR = lower 

reach. 

 

Specifically, five follow-up stages resulted from the combination of the two 

techniques. Two of them were covered by SfM data: 1) September 2018 to September 

2019, including the events of November 18, 2018 and April 19-20, 2019, and 2) 

September 2019 to July 2020, during which four moderate or low peak flows occurred. 

The other three survey periods were defined from the TLS surveys: 3) December 2018 to 

September 2019, including only the flash flood from April 19 to 20, 2019, 4) September 

2019 to January 2020, in which the flood of September 12-13, 2019, was the key event, 

and 5) January 2020 to July 2020, which monitored the peak flow on March 24, 2020. 

Changes in morphological sediment budgets were quantified for all stages using channel-
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bed pixels extracted from the two types of VHR MDT. However, relationships between 

stream power variables and changes in bed elevation and bedload sediment mass balance 

at the event scale could only be analyzed with the pre and post-event TLS surveys. 

 

3.3.1. Changes in ground elevation and sediment budgets derived from VHR MDT 

datasets 

 

Changes in bed elevation, areas and volumes of erosion and deposition, and 

sediment fluxes (net -∆V- and total -T- flux) were calculated for both RCRs (upper -UPR- 

and middle -MDR- stretches) using VHR MDT and high-density 3DPC, generated from 

the SfM-MVS and TLS surveys. In particular, average difference in total volume, net 

thickness difference, total area of surface lowering and raising, and percent imbalance 

(departure from equilibrium), among other variables, were provided by both techniques 

for the two RCRs. Comparison of each pair of successive high resolution images at the 

pixel level (2-3 cm pixel size) yielded very good accuracy in the calculation of sediment 

budgets based on the monitored events. The errors associated with these estimates were 

described and assumed for each comparative survey analysis, according to Brasington et 

al. (2003). The areas with the highest density 3DPC (PSBAs) were used to monitor 

modifications of the detail in the bedforms. 

 

3.3.1.1. SfM-MVS photogrammetry 

 

The selected channel stretches and adjacent areas were surveyed using a Phantom 

4 Pro, with a 20-Mp camera and 1-inch sensor, at an average flight height of 50 m, in 

order to gain very high resolution aerial images (≈ 1-2 cm resolution). The flight track 

and common parameters were pre-programmed for the software tool DJI GS Pro© for all 

the surveys. Ground Control Points (GCPs) and Check Points (CPs) were established in 

the field, using coded targets printed from Agisoft PhotoScan Pro 1.2.2 © software 

(Agisoft, Russia). In each of the surveys, approximately 66 % of the measured points 

corresponded to GCPs, for geo-referencing purposes, and the remainder corresponded to 

CPs for the validation of the VHRDTM (Conesa et al., 2020a; Puig-Mengual et al., 2021). 

The topographic survey of the coded marks was carried out by a GPS-RTK Prexiso G5 

© station (Leica, Germany), connected via a mobile signal to the regional network of 

differential corrections, GPS GNSS (Network of Reference Stations in the Region of 

Murcia "Meristemum"). Among these points, some were permanently marked with 

FENO survey markers. All field support points were measured in the WGS84 global 

reference system. 

 

In order to ensure the correct definition of homologous points between images, 

consistent overlaps of 80 to 90% were applied (Seifert et al., 2019). The captured images, 

the GCPs, and the CPs were used in the Agisoft PhotoScan Pro v.1.2.2© (Agisoft, Russia) 

structure-from-motion photogrammetry software, which allowed the generation of point 

clouds, a continuous textured mesh, VHR DTM (pixel size 0.02 m), and an orthomosaic 

(Conesa et al., 2020a; Puig-Mengual et al., 2021). These final products were geo-

referenced in a global system (WGS84) for further analysis. The digital elevation model 

of the topographic difference (DoD) between the UAVs-collected VHR DTM in different 

field surveys, as well as between the TLS-generated VHR DTM, was developed in ArcGis 

10.5© (ESRI, USA), by subtraction of the final topography from the previous one for the 

same area (Wheaton et al., 2010). The extraction mask for the water sheet at different 

peak flows in each RCR was applied to all the DoDs, thus enabling the precise 
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comparison of the morphological channel changes and sediment budgets associated with 

each event. 

 

3.3.1.2. Terrestrial Laser Scanning (TLS) 

 

A Leica ScanStation C10 model terrestrial 3D laser scanner was used to get a high 

resolution sediment budget. This scanner captures point cloud geometrical information at 

a velocity of 50,000 points per second at a distance of up to 300 m, with a precision of 2 

mm. This information was combined with high resolution and high quality 2D RGB true 

color camera information. Multiple overlapped scans were performed from different 

benchmarks intentionally selected along the channel bed to cover the total area of interest 

for a detailed geometrical definition. The output 3D point clouds (3DPC) were then 

registered, using HDS targets from the dataset of September 5th, 2019 as the master 3DPC 

for all the TLS scans. On this date a field survey was jointly carried out with SfM-MVS, 

using FENO survey marks as the common reference for both techniques, TLS and UAV-

derived 3DPC. The scans performed in November 2018, January 2020, and June 2020 

were registered at that benchmark, with a mean error of 2 mm, using the iterative closest 

point (ICP) plugin of CloudCompare software and some stable nearby buildings as 

reference points. Then, the differences in elevation and the volume changes after each 

flow event were calculated for both pilot bed survey areas (PBSAs), one within the upper 

RCR (8.55 x 17.7 m) and the second in the middle RCR (16.3 x 27.55 m). The vegetation, 

mainly composed of scrubs and shrubs, was removed using the CANUPO CloudCompare 

plugin (Brodu and Lague, 2012; Girardeau-Montaut, 2020; Lague et al., 2013). 

Subsequently, the 3DPC data captured for the different dates were rasterized, resulting in 

a 5-cm grid, and were interpolated for those pixels in which no TLS information was 

available. Figure 3.2 shows the steps taken to reach the rasterized 3D point cloud, once 

the vegetation cover had been removed. 
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Figure 3.2. Rasterization process for the MPR presented as a grid. Each row corresponds 

to a scan and the labels show the respective dates. The first column shows the raw 3DPC, 

the second the classification using CANUPO (Lague et al., 2013), the third the extraction 

of the ground points, and the fourth the rasterized 3DPC. 

 

3.3.1.3. Morphological sediment budgets at the cell scale  

 

Areas of erosion and deposition were quantified by comparing each pair of 

successive VHR DTM and high-density 3DPC generated from SfM-MVS and TLS 

surveys, respectively. The resulting bed elevation change maps were used to determine 

sediment budgets within a series of 212 budget cells with a lateral extent defined by the 

union of the water sheet polygons for each flood event and a downstream length of 2.5-

3.0 m. Average bed elevation differences were calculated for each budget cell from all 

the pixel values in that cell. Net sediment fluxes (ΔV) were given for each budget cell 
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and for the entire 160 m upper and middle RCRs by expressing negative (bed scouring) 

or positive (vertical accretion) differences in bed elevation, while total sediment flux (T) 

was calculated as the sum of gross erosion (E) and gross deposition (D). 

 

3.3.2. Rainfall-runoff method and hydraulic modeling 

 

Hydrographs were estimated using a rainfall-runoff model, at the beginning of 

each RCR, for the flood events that occurred during the analysis period (2018-2021). 

Field indicators, such as evidence of high-water marks (HWM), and water levels 

measured by pressure sensors (Levelogger Edge LT and Baralogger Edge) were used to 

test and calibrate the hydrograph data for each event. The most common HWM found 

were vegetation debris, which may be close to the water level during peak flow. In 

addition, pressure level sensors (PLS) were placed between both RCRs. The barometric 

compensation was automatically performed, so the delay to compensate for the 

fluctuations in atmospheric pressure recorded by the levelogger was minimal, leading to 

accurate water level data. The SCS dimensionless unit hydrograph (SCS, 1972) was 

calculated for the soil moisture conditions before rainfall-produced floods and from 

hyetograph data for intervals of 5 minutes at the Cuesta del Cedacero station. By 

combining the HEC-HMS 3.5 program, the HEC-GeoHMS 1.1 of ArcView 3.x, and a 

DTM with a grid resolution of 4 × 4 m (Project Natmur, 2008), we generated the drainage 

networks and watersheet areas. As the main hydrological abstraction, the infiltration 

curve number (NC) of each sub-basin was used. Maps were drawn up in a GIS 

environment to define soil types, vegetation, and slopes, using the lithological layer in 

vector format from the Geological and Mining Institute of Spain (IGME) (1:50,000), soil 

mapping of the LUCDEME project (1:100,000), Corine Land Cover maps (CLC2012), 

and 1:5,000 orthophotographs. 

 

The peak discharge data were then transferred to the 1D hydrodynamic model 

HEC-RAS (USACE, 2016), supported by VHR DTM, in order to get the flow cross-

sections, channel profiles, water sheet limits, and hydraulic variable datasets. A total of 

100 cross-sections were drawn in the upper RCR and 112 in the middle RCR, with an 

average separation of 2.0-3.5 m between them, for subcritical flow regimes. The results 

obtained in the calibration and validation events were evaluated using the Nash-Sutcliffe 

efficiency (NS) and percent bias (PBIAS). The respective values of NS and PBIAS were 

0.86 and 7.81% in the calibration period and 0.81 and -4.1% in the validation events. 

 

3.3.3. Mapping spatial changes in stream power during peak discharges 

 

The peak discharges used to calculate stream power along the RCRs included a 

major flash flood (19-20 April, 2019) and two moderate flow events (12-13 September, 

2019 and 24 March, 2020), all having different geomorphic impacts. For each cross-

sectional flow area, information was obtained about the hydraulic radius (R), velocity (υ), 

Froude number (Fr), shear stress (τ), and stream power. Power per unit length of stream 

(Ω) and mean stream power (ω) at peak flood discharge (Qp) were calculated according 

to Eqs. 3.1 and 3.2, respectively (Leopold et al., 1964). 

 

𝛺 =  𝛾𝑄𝑆𝑤     (3.1)  

    𝜔 =  𝛺/𝑤     (3.2)  
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where γ is the specific weight of water (Nm-3), Q is peak discharge (m3/s), Sw is the water 

surface slope (m/m), which is used to estimate the energy gradient, and w is the water-

surface width (m). Ω represents the energy dissipation per unit channel length and ω the 

energy expenditure per unit bed area. The width, average depth, and maximum water 

depth for each cross-section and its corresponding raster cell were acquired from the 

cross-sectional polygons of flow. The stream power values extracted by cross-section 

were averaged by budget cell level (i.e. ω) to compare with the sediment budgets at the 

same scale (Figure 3.3). For this purpose, a spatial interpolation of the values obtained in 

the consecutive cross-section pairs (Conesa García et al., 2020b) was performed, resulting 

in raster maps with cells of similar size to those got for the calculation of sediment budget. 

 

The mean stream power gradient (∂ω/∂s) was calculated by subtracting ω in cross-

sectional cell i from the average ω in cells i−1 to i-3 and dividing the difference by the 

distance between the centroids of the extreme cells in each set of consecutive four budget 

cells along the channel centerline. This distance was normally around 10 m, as each cell 

is 2.5-3.0 m long. Positive and negative ∂ω/∂s values show downstream increases and 

decreases in ω, respectively (Lea and Legleiter, 2016).The parentheses refer to the 

location of a given cell (for example, ω in cell i would be expressed as ω (i)). 

Figure 3.3. (A) Diagram of budget cells showing how ω, ∂ω/∂s and ΔV were estimated. 

(B) VH DTM (at the top), and raster layer (at the bottom) showing bedforms within the 

peak flow limits; red vector segments display cross-sections for which BFSpf was 

calculated. 

 

The energy expended beyond the critical mean stream power (ωc) and the ω/ωc 

ratio in each cross-sectional cell were also estimated to assess the spatial distribution of 
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energy available for sediment transport and morphological bed changes during peak 

flows. The excess energy per unit bed area (ε) expended above ωc in these stages was 

determined by calculating ω from each peak discharge (Qpf) and comparing the values to 

ωc obtained using Eqs. (3.10) and (3.16) from Parker et al. (2011), which calculate ωc as 

a function of slope and grain size. The bed slope was extracted from the VHR DTM 

described above. Volumetric grain-size sampling was performed for representative cross-

sections in each RCR, differentiating the armored surface layer and the subsurface 

material. The median grain size (D50) and the 84th percentile (D84) were calculated for 

both layers in different bedforms within each cross-section. For the events in which ω 

was greater than ωc, the difference between ω and ωc was multiplied by the number of 

seconds that elapsed while the maximum flow lasted, in order to get the excess energy 

accumulated per unit area of the bed (εc), in joules. Finally, the εc values were related to 

ΔV and total flux (T). 

 

3.3.4 Relative bed stability indices and transport efficiency 

 

The transport efficiency in this EGBS was tested by combining two substrate 

stability indices: 1) the "Relative Bed Stability" (RBS), and 2) the "Bed-form Stability" 

(BFS). We adopted the RBS index from Olsen et al. (1997), defined as the ratio between 

the critical bed shear stress required to mobilize the D84 size particle (τc84) and the shear 

stress reached in each flow peak (τ0) (Eq. 3.3). 

 

RBS = τc84/τ0 (3.3) 

τc84 = τc
∗(ρs − ρ)gD84 (3.4) 

 

where ρs and ρ represent the sediment and water densities, respectively, g is the 

acceleration due to gravity, and τc
∗ is the critical value of the dimensionless Shields 

parameter. Finally, the shear stress for the discharge peak in each flow event was 

estimated as:  

 

τ0 = ρgRS (3.5) 

 

where R is the hydraulic radius and S is the water surface slope. If RBS is greater than 1, 

the bed is presumed to be fully mobilized only for peak discharges larger than that 

considered and the channel bed is relatively stable under such conditions. Conversely, if 

RBS is less than 1, the bed is mobilized at the sub-peak flow stage and the bed is presumed 

to be unstable, the transport efficiency increasing as the index approaches 0. 

The BFS index, described by Conesa-García et al. (2020b), defines the relative stability 

of the bed forms according to the particle grain-sizes, vegetation cover, and height on the 

bed; for peak flow events(BFSpf), it was calculated using Eq. 3.6.  

 

BFSpf (i) =  [(∑ vrbgu(i) · wbgu (i)) Wpf (i)⁄ ] nbgu (i)⁄  (3.6) 

 

where vrbgu is the value assigned to each type of bed geomorphic unit (𝑏𝑔𝑢), depending 

on its resistance to erosion observed in recent torrential flows, wbgu is the width of each 

𝑏𝑔𝑢 in a channel cross-section, Wfp is the flow width, and nbgu is the number of 𝑏𝑔𝑢. In 

our case, the maximum nbgu = 8, with the corresponding values of vrbgu, as follows (from 

samller to larger resistance): 1. Active channels, secondary minor channels/runs, pools, 
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and gully beds; 2. Low active bars; 3. High active bars; 4. Bank-failure deposits and non-

vegetated talus; 5. Scantly vegetated bars; 6. Scantly vegetated bars with blocks and 

scantly vegetated talus; 7. Vegetated bars and talus; 8. Exhumed rocky beds (substrate 

outcrops) and old sediment areas (rock blocks and cohesive bars) (Figure 3.3). Such 

classes were extracted from the 𝑏𝑔𝑢 affected by each peak flow. This index varies 

between 0 and 1, and the value of 0.5 is a threshold that discriminates in relative terms 

between stable (BFSpf > 0.5) and unstable bed forms.  

 

3.3.5. Relationships of stream power with sediment budget and bed stability 

 

Values of the volumes of erosion (EV) and deposition (DV), net volume fluxes 

(∆V), and elevation differences (∆e) averaged for each budget cell i, from high resolution 

data of UAV-SfM and TLS, were got along the two RCRs and for the time intervals under 

study. 

 

The mean stream power gradients at cell i for the budget cells meeting thecriteria 

in Table 3.2 were compared to the E and D values at the same cell and to the ΔV volumes 

at cells i through i + 3 downstream. 

 

Cross-correlation between ∂ω/∂s and the net sediment flux at cell i + j was used 

as described by Lea and Legleiter (2016) to assess the spatial relationship between 

changes in stream power and transfers of sediment downstream. According to these 

criteria, it is assumed that only budget cells with ω greater than ωc can experience 

sediment transport at the peak flow stage, the bedload being negligible in cells with a 

ω/ωc ratio lower than 1. We included in the cross-correlation analysis four conditions, 

which are described in Table 3.2, and we discarded those that implied the premise of ωc 

being greater than ω.  

 

Table 3.2. Cases considered for the comparison of ∂ω/∂s(i) and εc(i) with ΔV(i+j) and 

T(i+j) in each flood event and the hypothesized geomorphic trend in budget cell i or 

downstream budget cells i+j, according to Lea and Legleiter (2016). 

 

Case Description Hypothesizedgeomorphictrend 
% 

UPR 

% 

MDR 

1: ω(i) > ω(i − 1) >ωc ω increases downstream and exceeds ωc for both 

budget cells 

Erosion 46.2 23.3 

2: ω(i) >ωc> ω(i − 1)  ω increases downstream and exceeds ωc in cell i Minorerosion 0.0 11.7 

3: ω(i − 1)> ω(i) >ωc ω decreases downstream but exceeds ωc for both 

budget cells 

Minordeposition 52.3 55.0 

4: ω(i − 1) >ωc> ω(i)  ω decreases downstream and falls below ωc in cell i Deposition 1.5 10.0 

 
The percentages refer to the frequency of each case in the upper and middle RCRs for the flow peak of 19-20 April, 

2019. 

 

Hypotheses (1) and (2) were tested by using scatter plots to relate ∂ω/∂s(i) to E(i), 

D(i), and ΔV(i + 1 to 3). By interpreting these scatter plots, the effect of the downstream 

spatial lag on the relationship between ∂ω/∂s and sediment flux was evaluated. 

Furthermore, the excess accumulated energy per unit area of the bed, εc (i), was plotted 

against the total accumulated flux (T) to examine hypothesis (3), that there is a positive 

correlation between these two variables. 
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3.3.6. Assessment of bed elevation profiles using channel central and lateral lines 

 

To assess changes in bed elevation a comparison of the longitudinal and transverse 

channel profiles was performed throughout the two RCRs and PBSAs. Specifically, three 

longitudinal profiles derived from SfM data and four from TLS surveys during the 

November 2018 to July 2020 period were compared. Perpendicular to these profiles, three 

transverse profiles were delineated for each survey date: one central and two at the end 

of both RCRs and PBSAs. We first obtained the channel centerline (CL) from the flow 

sheet boundary lines, using the method described by Golly and Turowski (2017). In order 

to define patterns of lateral bed change regarding the central channel axis, two lateral lines 

(one separated from the centerline by 3 m in the upper RCR and one separated by 1.5 m 

in the middle RCR) were drawn: one to the right (RL) and another to the left (LL). From 

the centerlines and lateral lines, their bed elevation difference values (∆e) were extracted 

after each of the main study events (April 19, 2019, September 12, 2019, and March 24, 

2020). To eliminate the effect of the surface roughness of gravel and pebbles, the pixel 

values were averaged in 20-cm length intervals. The relationships of ∆e CL with ∆e RL 

and ∆e LL were plotted. In addition, scatter plots comparing the differences in ∆e RL and 

∆e LL with respect to ∆e CL according to downstream distance were displayed for the 

bed sites with higher density of points and less distortion in the elevation values. The 

elevation variation patterns thus detected will reflect differential changes in bedload 

transport and channel bed morphology (e.g. the downstream cross-sectional balance 

between erosion and deposition) (Kasprak et al., 2015). This is particularly relevant in 

ephemeral channels, where bed elevation often appears to remain unchanged after a 

bedload-transporting flow event (Singer and Michaelides, 2014). 

 

3.4 Results and discussion 
 

3.4.1. Morphological sediment budgets at very high spatial resolution 

 

The DoDs derived from each successive VHR DTM pair made it possible to 

evaluate very precisely the changes in bed elevation and sediment budget caused by a 

single isolated flash flood or two or more events of different magnitude. Specifically, in 

the  RCRs studied here, the SfM-MVS data showed very different sediment budget 

patterns, associated with the magnitude of the monitored events. During the first stage 

(September 2018–September 2019) the upper RCR functioned as a sink for coarse 

sediments due to high instantaneous bedload fluxes at the peak flows on November 18, 

2018 and April 19-20, 2019, while the middle RCR experienced channel deepening and 

bar accretion. As a result, the greatest deposition thickness was found in pre-existing 

alluvial bars (Figure 3.4). In the second period (September 5, 2019 to July 26, 2020), 

during which two moderate events and two others of very low flow occurred, superficial 

bed washing and scouring predominated, causing a  general surface lowering. 
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Figure 3.4. DEMs of difference (DoDs) for the upper and middle RCRs, using VHR 

DTM derived from SfM-MVS, for the periods from September 18, 2018 to September 5, 

2019, from September 5, 2019 to July 26, 2020, and the two consecutive periods together 

(2018-2020). 

 

Table 3.3 shows significant cumulative changes in ground surface elevation for 

both periods. For the upper and middle reaches, the average net thickness differences 

were, respectively, +22 and +21 cm in the first stage and -19 and -16 cm in the second. 

The DoDs of these two periods revealed a higher average deposition rate in the middle 

reach (UVSR = 0.218 m3 m−2 and 0.317 m3 m−2, respectively) than that of the upstream 

erosion (UVSL = 0.128 m3 m−2 and 0.229 m3 m−2, respectively). This suggests that the 

sources of sediments included not only the upper RCR but also gullies close to the 

headwater area and intermediate channel sections between the two RCRs, where bank 

breaking and gravel bar removal are especially active processes (Conesa et al., 2020a). 

Regarding the Total Net Volume Difference of both DoDs, the increase in net deposition 

was 2.26 % for the upper RCR and 31.13 % for the middle RCR. 

 

The TLS data provided further information on changes in source-to-sink sediment 

transfer at the event scale. In particular, morphological sediment budgets in the RCRs and 

PBSAs were calculated using DoDs for the studied peak events. The PBSAs offered the 

best results, as they were defined by higher density 3-D point clouds (Figure 3.5).  
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Table 3.3. Statistical descriptors relating to the morphological sediment budgets 

calculated for the overall channel reach (OVR) and reference channel reaches (RCRs) in 

the UPR and MDR for the period September 2018 to July 2020 (SfM data). 

 
Statistic TAI  TNVD  ANTD  PI  TASL  TASR  UVSL  UVSR  SD * 

Channel 

Reach Type 
m2 m3 

% 

Error 
m 

% 

Error 

% 

Value 
m2 m2 m3 m-2 

% 

Error 
m3 m-2 

% 

Error 
m 

Period September 2018 to September 2019 

UPR 
OVR 4657 958 0.044 0.206 0.044 0.470 372 4285 0.083 0.107 0.231 0.043 0.137 

RCR 2763 613 0.044 0.222 0.044 0.486 67 2695 0.128 0.070 0.231 0.043 0.118 

MDR 
OVR 8720 2092 0.040 0.240 0.040 0.489 234 8486 0.103 0.086 0.249 0.040 0.121 

RCR 4885 1013 0.046 0.207 0.046 0.486 168 4717 0.086 0.102 0.218 0.046 0.106 

Period September 2019 to July 2020 

UPR 

OVR 

4887 -830 

-

0.053 

-

0.170 

-

0.053 

-

0.400 4430 457 0.211 0.047 0.225 0.042 0.171 

RCR 

2976 -575 

-

0.048 

-

0.193 

-

0.048 

-

0.420 2744 232 0.229 0.043 0.237 0.040 0.162 

MDR 

OVR 

7795 -1318 

-

0.051 

-

0.169 

-

0.051 

-

0.331 6728 1068 0.246 0.040 0.314 0.031 0.256 

RCR 

4707 -742 

-

0.055 

-

0.158 

-

0.055 

-

0.319 4044 663 0.235 0.042 0.317 0.030 0.243 

Period September 2018 to July 2020 

UPR 
OVR 4614 93 0.074 0.020 0.070 0.091 2193 2421 0.095 0.068 0.125 0.066 0.185 

RCR 2750 13 0.072 0.010 0.071 0.024 1466 1284 0.087 0.066 0.110 0.067 0.173 

MDR 
OVR 8553 637 0.090 0.074 0.090 0.219 3365 5188 0.121 0.076 0.201 0.047 0.273 

RCR 4805 231 0.072 0.048 0.071 0.152 2142 2663 0.124 0.076 0.186 0.051 0.252 

TAI = Total Area of Interest (m²); TNVD =Total Net Volume Difference (m³); ANTD =Average Net Thickness 

Difference (m) for the Area of Interest; PI =Percent Imbalance (departure from equilibrium); TASL =Total Area of 

Surface Lowering (m²); TASR =Total Area of Surface Raising (m²); UVSL = Average Unit Volume of Surface 

Lowering (m³ m-2); UVSR = Average Unit Volume of Surface Raising (m³ m-2); SD* =Standard Deviation of the Net 

Thickness Differences (m); UPR = Upper reach; MDR = Middle reach; OVR = Overall channel reach; RCR = 

Reference channel reach. 

 

In these areas, the major event produced a positive generalized sediment budget, 

with an average unit volume of 21.55 dm3 m−2 in the upper PBAS and 10.03 dm3 m−2 in 

the middle PBAS. The two moderate flow events had different behavior patterns: the 

bankfull discharge caused the highest incision rates in the upper PBAS, with an average 

unit lowering volume above 90 dm3 m−2, and the largest deposition in the middle PBAS, 

where the average unit volume of surface raising was 51.9 dm3 m−2. By contrast, at the 

sub-bankfull stage more moderate vertical erosion and bed lowering predominated along 

both channel stretches. 

 

The analysis of budgets expressed in unit volume for 10-cm elevation intervals 

shows that the more extensive morphological adjustments coincided with the largest 

volumetric variations, the bed elevation ranging between −0.2 and +0.2 m (Table 3.4). 

Within these intervals, the greatest unit volumes of deposition (86.1dm3 m−2) and erosion 

(83.2 dm3 m−2) were recorded in the middle and upper PBSA, respectively, during the 

bankfull discharge of March 2020.  
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Figure 3.5. DEMs of difference (DoDs) and normalized histograms of the height 

differences for the upper and middle PBSAs, comparing the 2018, 2019, and 2020 3DPCs, 

based on the TLS survey. They display the sediment budget primarily attributable to the 

peak flow events of (a) 19-20 April, 2019, (b) 12 September, 2019, (c) 24 March, 2020, 

and (d) the whole analysis period (November 2018 to July 2020). 

 

These results suggest that effective discharge for bed load transport occurs at 

higher water stages and greater recurrence intervals than bankfull discharge, which is 

consistent with the cases studied by Emmett et al. (2001) and Gomez et al. (2007). In both 

RCRs the channel width is constrained by the stability of the bank material and its 

resistance to erosion during flows at or near the bankfull stage, which also scour the bed. 

In addition, constraints on the mobility of bed material, due to channel armoring 

processes, mean that a higher peak discharge is required to transport the greatest amount 

of bedload. The budgets at the cell level reflected the same erosion-deposition patterns 

and relationships between channel reaches as at the pixel resolution. 
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Table 3.4 also provides the total mean volumes per budget cell for the two PBSAs 

in each time interval. For the entire analysis period, erosion exceeded deposition, 

resulting in a final positive net sediment flux. From the net sediment flux volumes in each 

budget cell, the height of scour and fill were obtained for the three survey stages and the 

two RCRs (Figure 3.6). 

 

Table 3.4. Changes in unit volume (dm3 m−2) and total mean volume per budget cell 

(dm3), got for elevation intervals of 10 cm, and global height differences (∆e) in each 

pilot bed survey area (PBSA), based on TLS datasets covering the periods November 

2018 to September 20191, September 2019 to January 20202, and January 2020 to July 

20203. 

 
Unit volume (dm3m-2) Total mean volume per budget cell (dm3) 

 PBSA (UPR) PBSA (MDR) PBSA (UPR) PBSA (MDR) 

Δe 

(m) 

2018 

20191 

2019 

20202 

2020 

20203 

2018 

20191 

2019 

20202 

2020 

20203 

2018 

20191 

2019 

20202 

2020 

20203 

2018 

20191 

2019 

20202 

2020 

20203 

-0.5/-0.4 -0.05 -0.15 -0.64 -3.59 -0.15 -0.39 -1.9 -5.3 -10.4 -312.7 -10.0 -10.5 

-0.4/-0.3 0.00 -0.21 -0.17 -2.46 -0.02 -0.13 0.0 -7.4 -57.3 -214.1 -1.3 -3.5 

-0.3/-0.2 -1.47 -7.67 -8.76 -3.86 -0.23 -0.10 -59.4 -270.0 -507.5 -335.7 -15.8 -2.8 

-0.2/-0.1 -6.60 -22.54 -56.53 -16.14 -9.35 -14.65 -266.0 -793.6 -1281.7 -1405.4 -631.2 -398.5 

-0.1/0 -11.32 -26.36 -26.69 -11.35 -23.91 -36.49 -456.4 -928.4 -222.6 -987.7 -1613.6 -992.4 

ΔV<0 -19.44 -56.93 -92.79 -37.40 -33.66 -51.76 -783.7 -2004.7 -2079.5 -3255.6 -2271.9 -1407.7 

0/0.1 21.80 2.68 2.30 18.52 3.09 43.04 878.9 94.3 31.7 1612.5 208.7 1170.6 

0.1/0.2 17.38 0.05 0.28 22.84 1.14 43.12 700.7 1.6 78.0 1988.9 76.7 1172.9 

0.2/0.3 1.38 0.01 0.02 4.67 0.79 13.31 55.6 0.3 4.5 406.3 53.6 362.0 

0.3/0.4 0.16 0.01 0.01 0.57 0.70 2.52 6.3 0.2 0.1 49.3 46.9 68.6 

0.4/0.5 0.27 0.07 0.08 0.83 1.69 1.66 10.9 2.5 0.6 72.0 114.4 45.1 

ΔV>0 40.99 2.82 2.69 47.43 7.41 103.65 1652.4 98.9 115.0 4129.0 500.3 2819.2 

ΔV 21.55 -54.12 -90.10 10.03 -26.25 51.89 868.7 -1905.8 -1964.6 873.4 -1771.6 1411.5 

Figure 3.6. Normalized net sediment flux for each budget cell in the three peak flows 

analyzed along the two reference channel reaches (RCR). 
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3.4.2. Changes in the bed elevation profiles determined using VHR DTM  

 

Variations in the longitudinal and cross-sectional bed elevation profiles make up 

an indicator of changes in flow velocity and competence, which condition erosion and 

deposition. Considering the LiDAR-derived bed elevation change along the channel 

centerline between 2018 and 2020, a substantial variation was observed along both RCRs 

during the survey periods (Figure 3.7). From November 2018 to September 2019 net 

deposition predominated, increasing the bed height by between +0.12 and + 0.33 m, 

especially in the middle RCR. In the following period (September 2019 to January 2020) 

the pattern of change differed between the two channel stretches, erosion dominating in 

the upper RCR and the spatial variability of sediment budgets in the middle RCR. In the 

latter, the sub-bankfull discharge of 12 September, 2019 caused scouring upstream and 

vertical accretion downstream, without affecting the raised zone of an intermediate high 

bar, which remained almost completely submerged. Finally, the longitudinal profile of 

July 2020, due mainly to the bankfull peak flow of 24 March 2020, reflected a general 

lowering, so that the initial bed surface profile was largely recovered. These changes 

suggest that, overall, there was more bed aggradation during the flash flood event and 

more erosion when the events of moderate magnitude occurred. For the analysis period a 

quasi-equilibrium is observed for the bed profile in the more entrenched upper RCR, since 

the mean elevation of the active bed did not experience significant temporal variations. 

 

 

Figure 3.7. Longitudinal bed elevation profiles extracted from TLS datasets for each 

monitoring survey and RCR. 

 

The shapes of the initial (2018) and final (2020) thalweg profiles are relatively 

similar here, except in certain locations of bedforms: the formation of a new longitudinal 

bar and the destruction of another, pre-existing one led to a bed raising and lowering, 

respectively. In contrast, the middle RCR underwent a relatively greater variation in bed 

elevation as a result of spatial differences in grain size and its pre-existing topography, 

conditioned by a high and stable central bar that acted as an obstacle to the flow at high 

water stages. Similar effects have been described by other authors for this type of channel, 
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during recent monitoring periods (Norman et al., 2017). The rectilinear form of both 

series of profiles is interrupted only by local ruptures associated with transverse bars that 

produce short-distance variations in the stream power. Similar to the findings of Pitlick 

and Cress (2002), these are not strongly influenced by transitions in reach type (alluvial 

to quasi-alluvial) or by junctions with tributaries. 

 

The spatial variation downstream of the differences in transverse changes in bed 

elevation for each event and section is depicted in Figures 3.8 and 3.9. Specifically, the 

scatter plots in Fig. 3.8 show the spatial patterns of the relationships between the changes 

in the bed height of the center line (CL) and the changes to the left along lateral lines 3 m 

(CLL) and 6 m (LL) from the CL and to the right, also at 3 m (CLR) and at 6 m (RL). 

Ten patterns of lateral net sediment fluxes were found, with a marked differentiation 

between the upper and middle reaches. During the April 2019 event, with respect to the 

CL, in the upper RCR, the erosion rates and deposition were similar on the left and the 

deposition decreased towards the right bank. In this stretch an equilibrium between 

erosion and deposition in the CL seemed to break slightly in favor of erosion, which was 

more prevalent on both lateral bed sides. By contrast, the morphological adjustments in 

the middle RCR showed more marked differences between the CL and the lateral bed 

extremes. In the major flood, aggradation processes were dominant in the entire 

transversal bed, being more evident towards the banks than in the center of the channel. 

At sub-bankfull discharge, the balance between erosion and deposition close to the CL 

gave way to a relative increase in sedimentation in the lateral zones, while under bankfull 

conditions, represented by the March 2020 event, deposition predominated in the CL and 

downcutting in the LL. 

 

The profiles in Figure 3.9 display the difference in behavior between the CL and 

the lateral bed zones for each peak flow, according to the distance downstream. This was 

defined by calculating the differences in bed height (∆e) of RL and LL relative to the ∆e 

CL.  

 

For the larger flood event, the difference profile of the CL showed greater 

similarity to that of the right part than to that of the left, although downstream the ∆e RL 

values tended to homogenize with those of the rest of the bed within a general process of 

bed aggradation. In the middle RCR the values of ∆e LL (0.25 to 0.40 m), higher than the 

positive differences of ∆e CL (ranging from 0 to 0.22 m), suggest erosion rates for this 

event on the left lateral bed ranging from 0.18 to 0.25 m, coinciding with the greatest 

deposition in a transverse medial bar. The rest of the section registered more deposition 

in the lateral zones than in the central zone, as can be inferred from the position of the LL 

and RL difference profiles below CL when they adopt negative values. The September 

2019 event involved a more uniform bed downgrading in the upper RCR than in the 

middle RCR. Along the upper reach, the LC change profile remained almost entirely 

below 0 m with ∆e values generally lower than those of LL and RL, which denotes greater 

erosion in the areas closest to the banks. Downstream, in the middle RCR the left margin 

had a geomorphic activity similar to that of the central part, while the area near the right 

margin acted alternately as a site of scour and vertical accretion. 

 

There was a noticeable dispersion in the bed elevation balances at the beginning 

of RCR-MDR 2; this may represent interpolation errors caused by low TLS point density 

and inconsistent spatial geometry between the surveys in this portion of the survey area. 
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Figure 3.8. Relationships between ∆e CL and bed elevation differences in lateral channel 

lines with a separation distance of 3 and 6 m on the right (∆e CLR; ∆e RL) and left (∆e 

CLL; ∆e LL) sides. Events of 19-20 April, 2019, 12 September, 2019, and 24 March, 

2020. 
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Figure 3.9. Scatter plots comparing the differences in ∆e RL and ∆e LL with respect to 

∆e CL, versus the downstream distance in the upper and middle RCRs (UPR and MDR 

respectively). Peak flow events of 19-20 April, 2019 (Event A19) on the left and 12 

September, 2019 (Event S19) on the right. 

 

The longitudinal and cross-sectional channel profiles got for the PBSAs (Figure 

3.10) show, in great detail, the changes produced at the geoform level. The A'-A to F-F' 

profiles  show the partial disaggregation of a longitudinal central bar and the lowering of 

the main active channel during the analysis period in the upper RCR. 

 

It is worth noting the contrast between the uniform lowering that the profile of 

July 2020 exhibits with respect to the initial profile at the head of the bar  (D-D') and the 

inversion of the zones of bed accretion and scour downstream (F-F'). Field surveys 

confirmed that the central part of the bar (2-4 m in E-E'), composed of the coarsest 

material (gravel and pebbles) and with an imbricated and massive structure, was the most 

stable site. 

 

The PBSA in the middle reach encompasses the transition zone to the medial bar 

head, with crude horizontal bedding and small-scale gravel cross-strata. As the RCR-scale 

longitudinal profiles have already reflected, the bed surface along the talweg rose during 

April 2019, fell slightly in September 2019, and recovered its initial profile after the 

March 2020 bank flow (G'-G). Considering the entire period, a slight net deposition of 

0.1 to 0.2 m (J-J') (K-K') in the zone of entry to the bar platform and a decrease of 0.05 

to 0.23 m (L-L') in the bar supra-platform deposits were observed. 
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Figure 3.10. Longitudinal and cross-sectional channel profiles, extracted from TLS 

datasets, for each peak flow and monitoring bed survey area (upper and middle PBSAs). 

 

3.4.3. Stream power maps and relationships 

 

Hydraulic variables related to stream power (including υ, τ0, τc, ω, ∂ω/∂s, and ε) 

were estimated continuously along each study RCR for the three main peak flows. Table 

3.5 shows  some statistical descriptors for them and Fig. 3.11 displays the grids of the ω 

and ε (ω-ωc). The resultant maps allowed us to infer variations in their values that were 

then related to the spatial patterns of sediment budgets in order to explain better the 

processes that control the morphological channel adjustments. The flow velocity ranged 
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from 1.10 m s-1, in sections with greater roughness, dominated by pools, blocks, and 

scrubs, to 2.65 m s-1, at riffle sites. Specifically, the greatest increases in flow velocity 

occurred in the steepest and narrowest stretches composed of cohesive materials. This is 

consistent with the view that an entrenched channel tends to remain narrower in bedrock 

than in gravel bed at similar flow stages (Finnegan et al., 2005). 

 

A more effective indicator for the calculation of the sediment carrying capacity is 

the relationship between the boundary shear stress (τ0) and the critical shear stress (τc). 

The spatial variability of both parameters was highly significant in the analyzed reaches, 

where alternating changes in the bed roughness caused appreciable turbulence and 

velocity fluctuations. Heterogeneities due to variations in grain sizes and bedforms may 

create substantial velocity and shear stress variations across the channel or downstream 

during a single discharge (Wohl, 2000). Consequently, the maps exhibit, in both reaches, 

a wide patchwork of τ0 values, ranging from 1.2 to 160 N m-2, and somewhat less 

variability in τc (23.1 to 79 N m-2). These ranges were practically maintained downstream, 

although the variability among sections regarding shear stress was lower in MDR than in 

UPR. The τ0/τc ratio also varied from one stretch to another, so that its average value was 

considerably higher in the upper reach (2.4), compared to that in MDR (1.6). In 

accordance with this, the shear stress was more than double the critical shear stress in 

UPR, which implies a high bed-load capacity and channel degradation. Downstream, 

incision in the middle reach was likely, but morphological adjustments associated with 

high rates of sediment entrainment and mobility remained. 

 

Table 3.5. Statistical descriptors for hydraulic variables related to stream power during 

the peak flows of 19 April, 2019 (A19), 12 September, 2019 (S19), and 24 March, 2020 

(M20) in the upper and middle RCRs. The values are extracted from the set of cells (i) in 

each RCR. 

 
 

SV 
υ τ0 ω δω/δs ε 

A19 S19 M20 A19 S19 M20 A19 S19 M20 A19 S19 M20 A19 S19 M20 

U
p

p
er

 R
C

R
 

mean 2.16 1.66 1.83 96.5 70.2 78.4 212.9 119.1 146.2 -0.6 -0.1 -0.5 157.3 59.6 85.1 

min 1.34 1.12 1.10 34.2 28.1 31.8 46.5 32.2 35.4 -14.5 -8.3 -10.7 -72.9 -89.2 -119.5 

max 2.65 2.10 2.30 160.3 103.8 118.8 371.4 209.5 245.2 14.9 10.6 5.8 333.4 166.1 189.2 

error 0.03 0.02 0.02 2.21 1.44 1.66 6.25 3.29 3.93 0.80 0.55 0.35 7.69 4.42 5.00 

σ 0.29 0.21 0.23 24.7 16.1 18.6 69.9 36.8 43.9 6.3 4.3 3.3 86.0 49.4 55.9 

K 0.53 -0.11 0.72 -0.12 -0.21 0.00 -0.37 -0.36 -0.03 1.01 1.26 0.06 0.29 0.15 1.11 

Sk -0.73 -0.54 -0.80 0.43 -0.48 -0.53 -0.44 -0.34 -0.58 0.58 0.57 0.56 -0.84 -0.68 -1.03 

M
id

d
le

  
R

C
R

 

mean 1.95 1.50 1.55 84.7 59.8 69.9 170.8 93.8 113.6 -0.6 -0.4 0.0 102.8 22.6 31.0 

min 0.50 0.37 0.28 1.2 0.73 0.39 0.59 0.27 0.11 -14.1 -6.2 -8.0 -98.8 -176.5 -136.2 

max 2.38 1.95 2.05 146.1 110.6 125.6 344.3 215.9 253.9 15.8 6.8 7.2 306.6 149.3 167.9 

error 0.03 0.03 0.03 2.55 1.89 2.20 6.56 3.98 4.88 0.73 0.37 0.31 9.49 6.00 6.19 

σ 0.29 0.25 0.28 25.2 18.6 21.7 64.7 39.2 48.0 6.0 3.0 2.7 92.5 58.5 60.4 

K 8.56 6.50 5.73 1.55 1.63 1.26 0.53 0.93 0.28 0.37 -0.08 0.50 0.47 0.93 0.16 

Sk -2.12 -1.69 -1.37 -0.32 0.03 -0.26 0.26 0.67 0.47 0.57 0.57 0.56 0.42 -0.45 0.07 

υ = flow velocity (m s-1); τ0 = shear stress (N m-2); ω = mean stream power (W m-2/m); δω/δs = mean stream 

power gradient (W m-2/m);ε = excess energy (W m-2/m). 

 

Since ω(i) results from the multiplication of υ by τ0 for a given cell i, the spatial 

pattern of ω shows a large variability, because of fluctuations of both variables. 

Particularly, the ω values had an excellent power function fit with υ and τ0 (r
2 = 0.91 and 

0.98, respectively). The mean stream power also showed an excellent fit with the Froude 

number (r2 = 0.84) and the energy slope (r2 = 0.87) when using the same function type, 
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but its relationship with the hydraulic radius was worse (r2 = 0.45 for a polynomial 

regression). 

 

In the RCRs studied, the mean stream power during the peak flow of 19-20 April 

2019 varied from 0.6 to 371.4 W m-2, the excess energy from 333.4 to -98.8 W m-2 (Table 

3.5, Figure 3.11), and the stream power gradient from -14.5 to 15.8Wm−2/m (Fig. 3.12) 

(the upper limits of color displayed in Figs. 3.11 and 3.12 for such variables encompass 

95% of the data).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11. Values ofω, ∂ω/∂s, and ω/ωc calculated by cell using spatial interpolation of 

Hec-RAS data at equidistant (2.0-3.5 m) cross-sections, estimated for the three peak flows 

in the upper and middle RCRs (UPR and MDR respectively). The maximum color limits 

encompass 95% of the datasets. 
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Note, however, that over 75% of the ∂ω/∂s values fell within the range 6 to -6 

Wm−2/m and that the extreme data reflect local abrupt changes in ω. 

 

As for the flow velocity and the shear stress, the highest values of mean stream 

power were concentrated in entrenched channel cross-sections, along straight to sinuous 

stretches, and locally over steep riffles characterized by high near-bed velocity gradients.  

 

This pattern is linked to incision processes in several Mediterranean ephemeral 

streams (e.g., Garzón and Alonso, 2002, Hooke, 2006, Ortega et al., 2014). However, we 

observed a significantly unconventional behavior in the gravel beds studied here, where 

an important transitory erosion was often followed by extraordinary mobility of the bed 

materials, which caused channel aggradation in the more important events. 

 

 
Figure 3.12. Values of ∂ω/∂s calculated by cell using spatial interpolation of Hec-RAS 

data related to equidistant (2.0-3.5 m) cross-sections in the upper and middle RCRs, for 

the peak flood of 19-20 April 2019. The maximum color limits represent 95% of the 

datasets. 

 

The distribution of the ω/ωc ratios was also skewed for both RCRs and the distinct 

flood events, with maximum values very distant from the mean and median. In the April 

and September events maximum ratios around 10 and 7, respectively, were reached in the 

two reference stretches, with much lower and different medians depending on the reach. 

Specifically, during the peak flood of 19-20 April 2019, the ω/ωc median was 2.7 in UPR 

and 1.2 in MDR.  

 

Furthermore, we have verified that the pattern described by other authors for 

gravel-bed ephemeral streams with a more heterogeneous channel geometry and planform 

is not fully reproduced here. Conesa-García et al. (2020b) found higher energy balance 

values in less entrenched and less incised cross-sections transitioning to channel 
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widening. By contrast, along the straight and slightly sinuous stretches analyzed here the 

most significant energy balances occurred locally in the more entrenched sections with a 

low to moderate width-to-depth ratio and high transport capacity. It should be considered 

that in such gravel-bed streams the grain roughness may become more influential than 

the changes in bed slope with regard to variations in ωc (Rickenman, 2011; Camenen et 

al., 2012; Conesa-García et al., 2020b). 

 

The spatial variability of ω was contrasted with that of other significant hydraulic 

variables (τ0, R, Fr, and ∂ω/∂s) in a downstream direction along the entirety of the 

stretches under analysis. Figure 3.13 depicts these comparisons for the flood of April 

2019, considering all the cross-sections included in the complete stream reaches and the 

RCRs. As described above, variations of ω in both RCRs closely followed the pattern of 

variability observed in the shear stress and Fr distributions. The only nuance was found 

in the frequency with which Fr reached the value 1 in both stretches, depending on the 

mean stream power registered. The ω versus Fr relationship enabled us to establish, in 

our case, the value 200 W m-2 as the threshold above which the limit defining the 

subcritical regime is exceeded. This condition occurred in more than 50% of the cross-

sections along the UPR, but it was barely reached in the MDR. On the other hand, ω 

maintained a poorer spatial relationship with the hydraulic radius (R), which was often 

due to a greater influence of the slope and bed roughness on the stream power. This was 

particularly evident in the UPR, outside and within the RCR monitored using UAV-SfM 

and TLS, where increases in ω coincided with decreases in R, and vice versa.  

 

The relationship between ω and ∂ω/∂s revealed downstream changes in the energy 

gradient as a function of the mean stream power generated in each budget cell. In the case 

of the April 2019 event, the highest values of ∂ω/∂s were often preceded by high values 

of ω (above 300 W m-2), while the ∂ω/∂s close to zero or with a negative sign occurred 

along sections with low-to-moderate mean stream power (ω< 200 W m-2). Except for the 

final part of the middle reach, where road-crossing drainage culverts locally disturbed the 

flow, the fluctuations in ∂ω/∂s were less pronounced and lower in the MDR than in the 

UPR.  
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Figure 3.13. Spatial variability in the relationships of ω with τ0, R, Fr, and ∂ω/∂s along 

the UPR (223 equidistant cross-sections, 2.0-3.5 m apart) and the MDR (191 cross-

sections), including their respective RCR covered by UAV-SfM and TLS. Peak flood of 

19-20 April 2019. 

 

3.4.4. Stream power variations versus changes in bed stability 

 

Transport and high incision efficiency often occur when the limiting shear stress 

and stream power exceed the resistance of the bed materials to be mobilized (Lague, 

2014). The bed stability indices used here follow this criterion, but in armored bed 

channels such as ours the heterogeneity of mixed-grain-size material- including sand, 

gravel, and pebbles- implies non-unimodal distributions that have an important influence 

on the initial bedload motion and complicate the bedload transport-rate estimations 

(Almedeij, 2002).In addition, transport-capacity-based assessments in this type of gravel-

bed stream produce results that are sometimes not very consistent with the observed net 

sediment fluxes, due to discrepancies attributed to non-uniform grain sizes, bed surface 

armoring, and bedform variability (Buffington and Montgomery, 1997; Hassan et al., 

2008; Lisle and Church, 2002). 
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In the RCRs of this study, high bed armoring and a coarsening-upward trend in 

most bed deposits led to a relationship between the stability of the armored surface layer 

and sub-surface detrital layer with the topographic changes observed using VHR DTM. 

Specifically, relationships between the RBS index attributable to each of these layers and 

the differences in net bed elevation provided by these spatial models (∆e (SfM-TLS)) 

after the April flood event were obtained, with the following results: 

 

∆e (SfM-TLS) = 0.167ln(RBSsup) + 0.409    R² = 0.715  (3.7) 

∆e (MfS-TLS) = 0.122ln(RBSsub) + 0.506   R² = 0.637  (3.8) 

 

Using regression equations with a logarithmic function, the best fit was achieved 

for the materials that make up the surface armored layer. This conclusion together with 

the recommendation to use D84 for the bed stability calculations in these cases (Martín-

Vide, 2007) led to the adoption of both criteria to estimate RBS. By comparing the map 

of stream power (Figure 3.7) with the spatial distribution of bedforms and bed stability 

indices, we explored whether the stream power thresholds set by other authors (e.g. 

Magilligan, 1992; Stacey and Rutherfurd, 2007) to evaluate transport efficiency classes 

in non-ephemeral, gravel-bed streams are valid for this GBES type. Concerning the 

stream power thresholds, these authors proposed 35 Wm-2 for riverbed erosion and 300 

Wm-2 for overall morphological channel changes. In our case, and as already evidenced 

by Conesa-García et al. (2020b) in the upper Mula stream, a high spatial heterogeneity of 

bed forms and sediment grain sizes was observed, leading to stability changes over 

relatively short distances, which locally affected the stream power required for sediment 

entrainment.  

 

The threshold of 35 Wm-2 did not coincide with that of bed instability in many of 

the cross-sections studied here (Fig. 3.14), and in other cases it did not coincide with the 

removal threshold, established from negative values of ∆e when TLS was used. The ω 

thresholds to initiate particle movement in unstable bed sections (RBS<1) ranged between 

35 and 43.7 Wm-2 for the minor peak flow. In the April flood event these thresholds were 

exceeded in almost all cases because of the greater flow energy generated. In addition, a 

minimum of 46.5 Wm-2in the upper RCR and of 66.4 Wm-2 in the middle RCR was 

required to cause bed incision along the stretches monitored by TLS. Both events 

exhibited a very efficient transport capacity, with τ exceeding τc in more than 95% and 

86% of the cross-sections in the upper and middle reaches, respectively (Table 3.6).  
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Figure 3.14. Mean stream power (ω) versus the Relative Bed Stability (RBS) and Bed 

Form Stability (BFS) indices estimated in cross-sections along the upper and middle 

RCRs, in a downstream direction. Flow peaks of 19-20 April 2019 (a) and 12-13 

September 2019 (b). 

 

Although the results found for RBS>1cannot be considered statistically 

significant, the difference in the mean ω between the stable and unstable RCR beds was 

quite relevant, with the event magnitude being as influential on the sediment transport as 

the bed grain size. This contrast was somewhat similar in both stretches, which contradicts 

a progressive decrease in downstream flow competence. The ω needed for transport to 

start varied only slightly from section to section, so, according to the relationships 

between the driving forces and sediment loading, particle size and bedforms became two 

crucial factors in the assessment of morphological bed alterations.  

 

The interval of ω commonly associated with moderate to significant 

morphological changes in non-ephemeral gravel-bed streams (35-300 W m-2) showed 

different patterns here in terms of magnitude and frequency. The unstable bed sections 

supported a substantially higher average energy in the upper RCR than in the middle 

RCR. In particular, most of the ω values along the upper RCR (72nd percentile) on 19-

20 April 2019 were in the 150-300 Wm-2 interval, scoring a mean of 211.2 Wm-2, while 

in the middle RCR the 72nd percentile dropped to 45% and the mean to160.5 Wm-2. For 

a peak discharge of 21.9 m3/s, the upper reach stream showed a higher transport capacity 

than the middle stretch (31.3 m3/s) to trigger bed degradation processes (e.g. bed scouring 

and downcutting). Active bed forms predominated upstream, while erosion-resistant bed 
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forms and aggradation gravel layers had a greater presence downstream in the middle 

stream reach. 

 

Table 3.6. Statistical descriptors got for ω from different ranges of bed stability indices 

(RBS and BFS), using the stream power thresholds proposed by Magilligan (1992) and 

Stacey and Rutherfurd (2007) for the evaluation of flow competence in relation to 

morphological change in perennial, gravel-bed streams. 

 
 Peak flow of 19-20 April 2019 Peak flow of 12-13 September 2019 

U
p

p
er

 R
C

R
 

RG  ω for RBS < 1 ω for RBS > 1 ω for RBS < 1 ω for RBS>1 

I(ω) <35 35-150 150-300 >300 <35 35-150 150-300 >300 <35 35-150 150-300 >300 <35 35-150 150-300 >300 

Ncs 0 22 90 9 0 4 0 0   1 89   29 0.0 1 5 0 0 

% T 0.0 17.6 72.0 7.2 0.0 3.2 0.0 0.0   0.8 71.2   23.2 0.0 0.8 4.0 0.0 0.0 

% Ac  96.8    3.2    95.2    4.8   

% I(ω) - 18.2 74.4 7.4 - 100 - -   0.8 74.8   24.4 - 6.7 83.3 - - 

Min - 74.3 152.4 302.8 - 47.7 - - 34.8. 51.2   150.3 - 32.2.

3 

36.1 - - 

Med - 123.7 

 

230.9 321.8 - 49.8 

 

- - 34.8 110.3 

 

  164.2 - 32.2

3 

47.7 

 

- - 

Max - 270.9 299.0 371.4 - 54.8 - - 34.8 144.5   209.5 - 32.2 61.7 - - 

σ - 41.2 41.5 22.1 - 3.6 - -   0.0 25.4   13.3 - 0.0 10.1 - - 

M
id

d
le

 R
C

R
 

RG  ω for RBS < 1 ω for RBS > 1 ω for RBS < 1 ω for 1 > RBS 

I(ω) <35 35-150 150-300 >300 <35 35-150 150-300 >300 <35 35-150 150-300 >300 <35 35-150 150-300 >300 

Ncs 3 29 54 3     0    9 0 0   3    74   8 0   0 13 0 0 

% T 3.1 29.6 55.0 3.1   0.0     9.2 0.0 0.0   3.1    75.5   8.1 0.0  0.0   13.3 0.0 0.0 

% Ac  90.8        9.2       86.7    13.3   

% I(ω) 3.6 34.1 63.6 3.6     -     100 - -  3.5    87.1   9.4 -   -   100 - - 

Min 0.6 91.8 151.2 303.1     -      57.1 - - 0.2   43.7   150.1 -   -   36.8 - - 

Med 0.9 130.2 

 

203.4 325.8     -      92.2 - - 0.3   93.4 

 

  177.9 -   -   58.8 - - 

Max 1.2 149.6 293.4 344.3     -     128.1 - - 0.3  149.7   215.9 -   -   86.1 - - 

σ 0.4 16.0 42.3 21.0     -      30.9 - - 0.0   26.3   24.19 -   -   17.0 - - 

I(IR) = IR interval; RG = RBS range for which ω (mean stream power) values are calculated; I(ω) = ω interval; Ncs = 

Number of cross-sections with ω value included in each I(ω); % T = percentage of the number of cases in each ω 

interval regarding the total number of cases in the entire channel reach; % Ac = accumulative percentage of %T;  % 

I(ω)= percentage of cases in each ω interval regarding the total number of cases in each RBS range. Min, Med, and σ 

= minimum, median, and standard deviation values of ω for each I(ω) within each RBS range. 

 

This is reflected in the third quartile of the BFS values (Q3 between 0.2 and 0.4 

in the upper RCR and between 0.4 and 0.6 in the middle RCR, considering the wetted 

perimeter during the largest runoff) (Figure 3.14). Regarding the frequency of the ω 

values within this range, the percentage was slightly higher (89.6%) in the upstream reach 

than downstream (84.6%). However, ω values above a new sub-threshold around 150 

Wm-2 were found to cause high mobilization of surface gravels and active alluvial bars. 

The most entrenched and steepest stretches involved a higher percentage of cases above 

this limit than those with less embedding and bed slope. In fact, the % ω for the 150-300 

Wm-2 interval increased from 17.6% in the upper RCR to 29.6% downstream (Table 3.6). 

By contrast, values from 35 to 150 Wm-2 were associated with the removal of bank-failure 

deposits and moderate changes in active low bars. The greatest morphological 

adjustments, related to ω values above 300 Wm-2, were more frequent along the upper 

channel reach, where phenomena of lateral erosion and intense reactivation of high, 

scarcely-vegetated bars occurred. In all of these situations, gravel-bed armoring was 

reinforced by new inputs of coarse sediments. With the lower peak flows, such as the 

September 12-13, 2019 event, selective transport dominated, as gravel and sand were 

mobilized, but not pebbles. 



78 

 

Table 3.7 lists the relationships of ∆e with ∂ω/∂s, ε, and RBS in the flash flood of 

April 2019, based on SfM-MVS and TLS datasets. A relatively close relationship of ∆e 

with excess energy and bed stability was achieved using SfM data, which provided the 

best fit (r2 of 0.56 to 0.60 for ∆e versus ε, and around 0.65 for ∆e versus RBS). However, 

the TLS technique gave good results, with some statistical significance, only when 

associating ∆e with RBS, mainly along the upper reach (r2 = 0.61, p-value <0.05). 

 

The higher correlation established with RBS reflects the strong influence that flow 

competence exerted, through the selective transport of inhomogeneous granular material 

(such as sand, gravel, and pebbles), on the bed stability. The excess energy expenditure 

implies a more moderate fit with the morphological variations at the cell level, a better 

result being foreseeable when a certain consecutive number of budget cells are considered 

downstream. 

 

Table 3.7. Regression equations defining the relationships of ∆e with ∂ω/∂s, ε, and 

Relative Bed Stability (RBS) at the scale of cell i in the flash flood of April 2019. Datasets 

of SfM-MVS and TLS extracted for the upper (UPR) and middle (MDR) reaches. 

Significance level (p-value) < 0.05. 

 

RCR ∆e vs HV Method Num. cells Equation r2 

UPR ∆e vs ∂ω/∂s 
SfM 73 --- 0.001 

TLS 73 --- 0.000 

MD ∆e vs ∂ω/∂s 
SfM 72 --- 0.020 

TLS 72 --- 0.003 

UPR ∆e vs ε 
SfM 50 ∆e (SfM) = 0.0004 ε + 0.179 0.597 

TLS 42 ∆e (TLS) = 0.0005 ε - 0.097 0.453 

MDR ∆e vs ε 
SfM 38 ∆e (SfM) = -0.0002 ε + 0.221 0.564 

TLS 46 ∆e (TLS) = -0.001 ε + 0.053 0.521 

UPR ∆e vs RBS 
SfM 50 ∆e (SfM) = -0.135 RBS + 0.296 0.639 

TLS 42 ∆e (TLS) = -0.218 RBS + 0.078 0.606 

MDR ∆e vs RBS 
SfM 44 ∆e (SfM) = 0.137 8RBS + 0.132 0.648 

TLS 40 ∆e (TLS)= 0.321 RBS - 0.198 0.520 

 

3.4.5 Sediment budgets and fluxes versus stream power 

 

The point clouds in Figure 3.15 show the D and E values for the peak flows of 

April 2019, September 2019, and March 2020 for each cell i, in relation to the mean 

stream power gradient (∂ω/∂s). Positive and negative values depict surface lowering and 

raising, respectively. In situ field observations made after these events corroborated the 

morphological adjustments in both directions, with the concurrent deposition and erosion 

on a metric and centimeter scale. Assuming ∂ω/∂s in a given cell leads to the strongest 

expression of sediment change in the nearest cell downstream from it, scatter plots 

relating ∂ω/∂s(i) to ΔV(i+1 to i+3) were also used to explain the influence of the energy 

gradient on the net flux variations immediately downstream (Figure 3.16). 

 

In all cases, the effect of the four hypothesized geomorphic trends described in 

Table 3.1 was discriminated at the cell scale. Several patterns of variation were found in 

this type of relationship, depending on the section in question, the predominant 

geomorphic process, and the event magnitude: 1) For the three events, regardless of the 
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peak flow reached, the pattern differed greatly between the two stretches, in relation to 

the premises established for the balance ω - ωc in each pair of neighboring cells. 

 
Figure 3.15. Plots of ∂ω/∂s(i) versus E(i+ 1) and D(i + 1) for the three peak flows studied 

along the upper and middle RCRs and the set of both RCRs. Each symbol represents one 

of the four conditions listed in Table 3.2. 

 

Among the upper RCR relationships practically only cases 1 and 3 were present, 

while in the middle RCR all cases were represented. 2) During the event of greatest 

magnitude, the upper section experienced greater net erosion than the middle section, 

especially in the cells, where ω increased downstream and exceeded ωc for both budget 

cells (case 1), coinciding with ∂ω/∂s values having a positive sign. Also, there were quite 

a few cross-sections with excess energy despite a decrease in ω downstream (case 3), 
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resulting in minor deposition that was unable to compensate for transitory erosion. A 

similar response was found by Conesa-García and García-Lorenzo (2009) in EGBSs 

draining metamorphic terrains. Consequently, during this type of event the upper reach 

acts as an important source of sediment for downstream reaches. 

 

Regarding deposition, it was slightly higher in the middle stretch than in the upper 

section, but the distribution pattern in relation to the energy gradient and the type of case 

differed considerably between the two channel reaches. 

 

Along the upper RCR the values of D were highest where ∂ω/∂s approached zero, 

and they gradually decreased as the ∂ω/∂s values became more positive, which bears some 

resemblance to the trend described by Lea and Legleiter (2016) for non-ephemeral gravel 

streams. In contrast, this behavior did not occur in the middle RCR, whose scatter diagram 

shows a large dispersion of values in all cases. Despite this, the cases representing a minor 

deposition over a significant accretion dominated here, it being relatively rare thatω 

decreased downstream and fell below ωc in cell i (case 4) (Figure 3.15). As a result, the 

middle RCR frequently acted as a sink for material eroded from the closest upstream 

reach. This is consistent with the results obtained at a large scale by Wilcock and Crowe 

(2003) and Török et al. (2017), using flume experiments of mixed-size bed sediment, 

according to which eroded particles tend to be deposited immediately after the erosion 

zone. There was a lack of a strong and consistent relationship between negative ∂ω/∂s 

values and net deposition in both stretches and all the events. In contrast, the net erosion 

volumes were always associated with positive values of ∂ω/∂s for case 1 at the different 

flow stages in the reference upper reach but only at the flood discharge in the middle 

stretch. Energy gradients below 0 produced scour in case 3, when ω exceeded ωc despite 

decreasing downstream. 

 

Scatter plots relating lags in ΔV to ∂ω/∂s show a limited relationship between 

these variables at any lag distance between 0 and 3 budget cells (2.5-3.5 m/cell), 

regardless of the RCR affected. Although the dispersion was high in all cases, we can 

distinguish two slightly different patterns, according to the RCR. In the upper RCR the 

net sediment flux, represented in numerous cells by case 3, was more variable as the lag 

distance increased, passing the 3rd quartile of values from an initial range of +5 to -10 m3 

in cells i to + 10 to -15m3 in cells i+3.The opposite occurred with the cells depicting case 

1, since the starting cells (i) had more dispersed ΔV values in a wide range of ∂ω/∂s, and 

the most distant budget cells (i+3) showed a concentration of flux volumes of both signs 

between -5 and +10 m3 for -5 <∂ω/∂s < 10 W m-2/m.  

 

The spatial variation pattern of ΔV in relation to ∂ω/∂s found for the reference 

MDR was characterized by a lack of change with the immediate lag distance (i+2) (Figure 

3.16). At most, only a few budget cells i that met the condition in case 4 showed variation 

in short downstream paths. For cell i+1, all the net flux values, corresponding to this class 

of cases, were positive and variable (0 to 45 m3), most occurring within a relatively 

narrow negative ∂ω/∂s range (between 2 and 7 W m-2/m). 
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Figure 3.16. Plots of ∂ω/∂s(i) (W m-2/m) versus ΔV (i+1 to i+3) (m3) for the upper (A) 

and middle (B) reaches and the sum of both channel stretches (C) for the flood of April 

2019. These values represent the net sediment fluxes observed for downstream average 

lags of 3 m (i + 1) to 9 m (i + 3). Each symbol represents one of the four conditions 

highlighted in Table 3.2. 

 

The response immediately downstream (cell i+2) translated into a concentration 

of ΔV (0 to 20 m3) for the same range of energy gradient, part of that variability being 

recovered in the next cell. In addition, isolated lags in high net fluxes belonging to case 3 

were marginally significant, the influence of ∂ω/∂s declining as the distance increased. 

These results are not significantly consistent, since the association of ΔV with negative 

values of ∂ω/∂s in cases 1 and 2 and with positive values of ∂ω/∂s in cases 3 and 4 suggests 

that ∂ω/∂s was not strongly related to E and D, which agrees with what was shown by 

Lea and Legleiter (2016). 

 

Regarding the total net flux, ∂ω/∂s (i) maintained the same variation pattern with 

T as with ΔV (i+1), having a positive sign in the cells encompassed by cases 1 and 2, and 

a negative sign in those belonging to cases 3 and 4 (Figure 3.17). Normally, we would 

expect greater values of ∂ω/∂s and εc to be associated with a larger total flux. 
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Figure 3.17. Plots of T (i + 1) versus εc (i) in MJ - for the event of April 2019, the events 

of April and September, 2019, and all three events analyzed - along the upper (A) and 

middle (B) reaches and both channel stretches (C). Each symbol represents one of the 

four conditions listed in Table 3.3. 

 

However, a high dispersion of these values was a common feature for each 

channel stretch and study case, as a result of discontinuous changes in bedload and 

channel morphology. The scattered and skewed distributions of both hydraulic variables 

could be related to non-homogeneous bed forms or changes in granular texture. Conesa-

García et al. (2020b) associated this lack of relationship in another complex gravel-bed 

dry channel (upper Mula stream, in Southeastern Spain) with the presence of blocks from 

the bank breaks, pools-riffle sequences, and local transitions from alluvium to substrate 

outcrop and vice versa. Note that the ephemeral stream studied here is characterized by 

mixed-size bed materials, predominantly gravel, and highly mobile alluvial bars, mostly 

active bars without vegetation or that are not very stable, that constantly change shape 

and extension. Especially in the upper reach, isolated groups of blocks deposited by recent 

collapses or exhumed ancient boulders disturb the flow regime and alter the total sediment 

flux over short distances. Zapico et al. (2018) analyzed this type of relationship in a steep, 

sand-gravel ephemeral channel and  found, by contrast, a clear relationship between the 

variation in bedload flux, texture, and total bedload yield (measured directly in the field) 

and changes in channel shape and bed texture (derived from topographic surveys using 

SfM and TLS). 

 

The RBS showed a greater mix of dispersed cases regarding the total sediment 

yield, perhaps due to a different bed response that released various particle sizes at 

contrasting critical stresses, versus spatial variations in the mean stream power. As other 
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authors (e.g. Billi, 2011) have verified for ephemeral channels during flash flood events, 

the bedload here made up most of the total sediment flux. Consequently, variations in the 

amount and thickness of gravel available for entrainment could lead to fluctuations in the 

downstream bedload and hence in T values. 

 

In Figure 3.16, εc(i) was plotted against T(i) to examine the hypothesis that these 

two variables could be correlated. All these scatter plots display point clouds, which 

represent the relationships between these variables for the flood of April 2019, and the 

two following minor events, for which ε(i) values were added in chronological order. The 

condition ω (i)> ω (i −1)>ωc (case 1), which represents an erosional trend, occurs at an εc 

value above 0.2 MJ in the upper RCR and above 0.1 MJ in the middle RCR. Below these 

thresholds the cumulative excess energy per unit bed area (εc) over the flow peak time is 

insufficient to cause scour, although the movement of the bed material load is negligible. 

Up to an εc value of approximately 1 MJ, budget cells prone to deposition predominated, 

whereas from this threshold onwards the number of cells with a tendency to suffer erosion 

increased. 

 

The largest flood, in April 2019, generated a high total net flux, fluctuating 

between 0.2 and 20 m3 per cell in the upper reach and between 0.8 and 50 m3 per cell in 

the middle section, associated with εc values of 0.1 to 3.3 MJ. The event of September 

2019 had little impact on the T values. On the other hand, the additional consideration of 

the bankfull event of March 2020 meant an increase of 1 and 2 MJ in the upper and middle 

stretches, respectively, and a maximum increase in T of 20 m3/cell. Along both reaches, 

in the entire analysis period, a mean T of 12 m3/cell was mobilized for a mean εc of around 

3 MJ. The scarcest movement of bed material corresponded to the budget cells belonging 

to case 4, with the lowest εc, and the highest T values to cells 1 and 3, with εc values 

ranging from 3 to 6 MJ. However, the total accumulated flux was quite considerable in 

relation to the basin size and the peak flow generated, especially in the middle section, 

where 1.5 MJ was enough for T(i) to reach 50 m3. As has been shown in previous studies 

(Reid and Laronne, 1995), the bed load flux produced in this type of dry stream during 

torrential flows often exceeds the maximum order of magnitude measured at similar 

levels of stream power in perennial counterparts. 

 

An ANOVA and the Tukey HSD test were performed to determine if the behavior 

of each of the four cases of erosion, deposition, and net sediment flux differed among the 

peak flow events and between the RCRs (Table 3.8).  

 

The results show that there were no significant differences among the means of 

the four cases for each of the groups identified as variables referring to sediment budgets, 

which contrasts with the hypothesized conditions from Table 3.2. By contrast, the cases 

of the ∂ω/∂s group generally reflected a significant relationship, with rejection of the null 

hypothesis of equality of variances and, therefore, important differences between the 

cases. Considering the entire period, a closer relationship was found for the cases of 

deposition in the upper RCR and for the cases of erosion in the middle RCR (Table 3.9). 
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Table 3.8. ANOVA and Tukey range test P-values for the evaluation of whether the 

means among the four cases described in Table 3.2 are significantly different for the 

sediment budget variables in each peak flow and RCR (asterisks represent significant 

differences, p < 0.05). 

 

  19-20 April, 2019 12 September, 2019 24 March, 2020 

  E D ∆V δω/δs E D ∆V δω/δs E D ∆V δω/δs 

U
p

p
er

 R
C

R
 

ANOVA 0.95 0.40 0.14 0.01* 0.93 0.90 0.78 0.01* 0.41 0.74 0.54 0.01* 

1 vs. 2 - - - - - 0.99 0.81 0.01* - 1.00 0.75 0.54 

1 vs. 3 0.96 0.40 0.143 0.01* 0.94 0.87 1.00 0.01* 0.76 0.87 0.75 0.15 

1 vs. 4 0.97 - 0.68 0.42 0.99 1.00 0.95 0.01* 0.54 0.97 0.87 0.01* 

2 vs. 3 - - - - - 0.99 0.80 0.01* - 0.97 0.88 0.25 

2 vs. 4 - - - - - 1.00 0.98 0.01* - 0.99 0.97 0.03* 

3 vs. 4 0.99 - 0.93 0.98 0.98 0.99 0.95 0.32 0.43 0.77 0.99 0.13 

M
id

d
le

 R
C

R
 

ANOVA 0.73 0.44 0.07 0.01* 0.88 0.83 0.14 0.01* 0.73 0.98 0.63 0.01* 

1 vs. 2 0.71 1.00 0.77 0.26 0.87 0.67 0.79 0.15 0.77 0.99 0.98 0.47 

1 vs. 3 0.94 0.99 0.43 0.01* 1.00 0.99 0.95 0.01* 0.85 1.00 0.68 0.01* 

1 vs. 4 - 0.50 0.04* 0.01* 0.99 0.22 0.26 0.04* 0.92 0.99 0.95 0.08 

2 vs. 3 0.79 0.99 1.00 0.01* 0.88 0.66 0.50 0.01* 0.92 0.99 0.81 0.03* 

2 vs. 4 - 0.54 0.41 0.01* 0.99 0.73 0.10 0.01* 0.94 0.98 0.91 0.04* 

3 vs. 4 - 0.48 0.26 0.99 1.00 0.13 0.37 0.98 1.00 0.99 0.99 0.99 

 

 

Table 3.9. ANOVA and Tukey range test P-values for the evaluation of whether the 

means among the four cases described in Table 3.2 are significantly different for the 

sediment budget variables in the entire analysis period and both RCRs (asterisks indicate 

significant differences, p < 0.05). 

 

 29 November 2018 to 26 July 2020 

 Upper RCR Middle RCR 

 E D ∆V δω/δs E D ∆V δω/δs 

ANOVA 0.62 0.80 0.74 0.01* 0.98 0.30 0.21 0.01* 

1 vs. 2 - 0.96 0.78 0.01* 1.00 0.99 0.96 0.01* 

1 vs. 3 0.83 0.99 0.98 0.01* 0.99 0.93 0.83 0.01* 

1 vs. 4 0.78 0.80 0.99 0.01* 0.98 0.23 0.15 0.01* 

2 vs. 3 - 0.98 0.72 0.01* 0.99 0.99 1.00 0.01* 

2 vs. 4 - 0.99 0.91 0.01* 0.99 0.59 0.61 0.01* 

3 vs. 4 0.66 0.84 0.98 0.33 0.99 0.39 0.34 1.00 

 

3.5 Conclusions 
 

It is known that the morphodynamics in ephemeral streams are subject to non-

continuous geomorphic activity associated with hydrological events of different 

magnitudes, discrete in time. Understanding the morphological adjustments derived from 

such events in ephemeral gravel-bed channels is often complex, due to the influence of 

variations in the bedload on the location of sediment sources and sinks within the channel, 

bed armoring, and changes in bedforms. In such cases, the applicability limits of the 

existing sediment transport formulas still constrain the accuracy of the numerical 

modeling, making it advisable to adopt a sediment budget approach. In this case study an 

excess or deficit of sediment at the event scale implied short-term changes in the bed 

elevation depending on the peak flow. Such changes were satisfactorily evaluated through 
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the combined use of SfM-MVS and TLS, according to the spatial scale and geomorphic 

scenario. The SfM-MVS technique turned out to be suitable for quantifying sediment 

budgets in RCRs more than 100 m in length, while TLS provided excellent results for the 

assessment of changes in bedforms at more detailed spatial scales (e.g. PBSAs). In 

addition, the VHR DTM generated from the combination of both techniques increased 

the accuracy of the 1-D hydrodynamic model previously calibrated with field data. The 

ground-based LiDAR-derived bed elevation change depicted the common trend towards 

a dynamic equilibrium in the upper RCR and a more variable behavior in the middle 

section, where sediment transport of more variable bedload composition occurred — both 

in time and space —. The scatter plots relating ∂ω/∂s (i) to ∆e(i) and ∆V(i) along the 

middle RCR showed the sparsest distributions and reflected the smallest lag effect (i+n), 

which also extended to the morphological response. 

 

Hypotheses concerning the relationships between spatial patterns of stream power 

and changes in bed elevation and sediment fluxes were tested for different conditions of 

flow competence. The spatial variation pattern of ΔV with ∂ω/∂s was not significantly 

consistent, since the association of ΔV with negative values of ∂ω/∂s in cases 1 and 2 and 

with positive values of ∂ω/∂s in cases 3 and 4 suggests that ∂ω/∂s was not strongly related 

to erosion and deposition rates. However, a different geomorphic response was found in 

relation to three discharge thresholds. The largest events, with overtopping flows above 

30 m3 s-1, showed the highest values of stream power (ω> 300 Wm-2) and great spatial 

variability in both the mean power gradient (σ> 6 Wm-2/m) and the excess energy (σ> 80 

Wm-2). These peak flows mobilized a vast amount of bedload, causing notable transitory 

erosion and leading to overall vertical accretion. By contrast, ω values from 35 to 150 

Wm-2were associated with the removal of bank-failure deposits and moderate changes in 

active low bars. Bed aggradation especially dominated in the lateral zones, due to bank 

breakage and displacement of medial gravel bars.  

 

Contrarily, moderate peak flows, at the bankfull and sub-bankfull stages, mainly 

produced surface washing, selective transport, and scour processes. The effective 

discharge for bed load transport occurred at stages higher than bankfull discharge. If, as 

is to be expected in southeastern Spain, climate change implies - in the short and medium 

term - an increase in the frequency of large events to the detriment of low-water 

discharges, it is most likely that ephemeral gravel-bed streams will undergo processes 

more typical of arid regions, such as bed degradation, armoring, lateral erosion, and 

channel widening. In conclusion, this study provides a useful approach to analyze, at the 

event scale and very spatial resolution, relationships between stream power variations and 

morphological bed changes in a typically Mediterranean ephemeral gravel-bed stream. 

Furthermore, the results, also based on changes in bed stability and sediment fluxes, are 

applicable to protection and restoration plans in a wide range of ephemeral Mediterranean 

channels, whose recent dynamics reflects the effects of climate change. 
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Notation 

 

bgu  bed geomorphic unit [-] 

D50  median grain size (m) 

D84  particle size corresponding to the 84% ofthe sample weight (m) 

g   acceleration of gravity [m s−2] 

i  cell ati cross-section 

j   cell lag at j cross-section 

R  hydraulic radius [m] 

RBS relative bed stability index [-] 

BFS bedform stability index [-] 

r2  determination coefficient [-] 

Sw  water surface slope [m m−1] 

D  gross deposition (m3) 

E  gross erosion (m3) 

Fr  Froude number [-] 

PBSA pilot bed survey area 

Qpf  Peak flow discharge (m3 s-1) 

RCR reference channel reach 

T  total sediment flux (m3) 

ΔV  net sediment flux (m3) 

∂ω/∂s  mean stream power gradient [Wm−2/m] 

ε(i)  excess energy per unit bed area over ωc at cell i [W m−2] 

εc   cumulative excess energy per unit bed area (MJ) 

γ  specific weight of water (N m-3), 

Ω  cross-sectional stream power [W m−1] 

ω  mean stream power [W m−2] 

ωc   critical mean stream power [W m−2] 

ω/ωc mean stream power (ω) / resisting power (ωc) ratio [-] 

ρ  density of water [kg m−3] 

ρs  density of sediment [kg m−3] 

υ  flow velocity (m s-1) 

τ  shear stress (N m-2) 

τbf  shear stress at bankfull flow (N m-2) 

τc84  critical shear stress required to mobilize D84-size particles (N m-2) 

τc
*  critical values of the dimensionless Shields parameter [-]
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4. Spatial validation of submerged fluvial topographic 

models by mesohabitat units 

 

Abstract 

Mapping the streambed morphology is crucial for understanding fluvial forms and 

processes, for advancing both our knowledge and best management practice of riverine 

systems. It is often done by wading streams but recently topobathymetric Light Detection 

and Ranging (LiDAR) and imagery captured from airborne platforms are becoming 

promising and effective surveying methodologies. The recent use of remotely piloted 

aerial systems (RPAS) combined with structure-from-motion (SfM) photogrammetric 

processing provides a novel, high-resolution approach to modelling fluvial morphology. 

Nevertheless, a complicating factor of such data acquisition in fluvial settings is linked to 

water bodies, whose presence introduces errors and distortions because of light reflection 

and refraction at the air–water interface. Although proof-of-concept research has shown 

it is possible to reduce the effects of refraction in certain settings (e.g., clear waters, 

unbroken surfaces), corresponding validation methods remain limited to point-based 

assessments of error, these being typically limited to accessible parts of the channel. Here, 

we provide the first high-resolution, spatially-continuous validation of a stream reach 

bathymetry surveyed with SfM and corrected with an advanced refraction method. This 

method required only the camera co-ordinates and is available as open source, coded in 

C++. We used RPAS imagery from a regulated reach of the Palancia River, Spain, where 

a diversion structure fully dewatered the reach and let us obtain the entire streambed 

topography, which we used as spatially-continuous control topography to compare the 

bathymetry surveyed from imagery during normal flow conditions. We compared this 

method with the small angle refraction correction (SARC), which has less data 

requirements, and analysed the error distribution across habitat types (i.e., pools and 

riffles). These results showed that our approach had smaller errors than SARC in both 

habitat types, especially in the riffle. By analysing the relationship between error and 

channel roughness obtained from our dry-bed model, we found that the greatest errors 

arise in the peripheral zones of the water surface and in its areas where streambed 

roughness generates more turbulence. Quantitative validation confirmed the reliability of 

our method as a relatively low-cost tool for the modelling and management of 

geomorphology and habitat within small- to medium-sized streams.  

Keywords: bathymetry, photogrammetry, refraction correction, structure-from-motion 

(SfM), remotely piloted aerial systems (RPAS) 

  



93 

 

4.1 Introduction 

Remotely piloted aerial systems (RPAS) technology, along with its associated 

data processing and analytical methods, are gaining importance in the scientific 

community and are now applied in a variety of land-use management and geoscience 

settings (Pajares, 2015; Gallagher and Lawrence, 2016; Eltner et al., 2016). Utilizing low-

altitude RPAS, it is now possible to take successive images and process them using 

structure-from-motion (SfM) photogrammetry, to derive image and topographic products 

which have an unprecedented high spatial (< 10 centimetres per pixel) and temporal 

resolution (as permitted by weather and lighting conditions). Compared with products 

derived from other imaging platforms, such as satellites or aircraft (Legleiter et al., 2019; 

Tonina et al., 2019), this resolution is considerably better and the procurement costs are 

also much lower (Remondino et al., 2011; Shintani and Fonstad 2017). For streams, 

RPAS technology can be applied to monitor riverine system changes and dynamics. A 

case in point is where the high temporal resolution offered by RPAS enables an 

assessment of the rapid evolution of river ecosystems (Polat and Uysal, 2015; Lane et al., 

2010; Carbonneau et al., 2012; Rusnák et al., 2018).  

Unlike traditional photogrammetry and other topographic surveying approaches 

(e.g., total station and Differential Global Positioning System - DGPS), this RPAS-SfM 

technique allows us to characterize and model river fluvial morphology in a way that is 

neither too expensive nor time consuming (Eisenbeiss and Sauerbier, 2011; Westoby et 

al., 2012; Fonstad et al., 2013). Moreover, it provides a method for obtaining high 

resolution, spatially continuous topographic models (Marcus, 2012). Because the type of 

data obtained in a given field campaign depends on the type of sensor or camera mounted 

on the RPAS, this approach is highly versatile (Haala et al., 2012). The evolution and 

development of RPAS technology’s applications are accelerating in different fields of 

riverine ecology; for instance, the information provided by RPAS-SfM surveys allows 

for the analysis of physical river characteristics, such as river morphology (Woodget et 

al., 2017; Woodget and Austrums, 2017), including river bed grain size (Woodget et al., 

2015; Woodget and Austrums, 2017; Vázquez-Tarrío et al., 2017) and 

erosion/sedimentation rates processes (Calle et al., 2018; Alfonso-Torreño et al., 2019), 

as well as general hydromorphology (Rivas Casado et al., 2017; Woodget et al., 2016; 

Woodget et al., 2019; Dietrich, 2017).  

The use of Digital Elevation Models (DEMs) generated using SfM (Clapuyt et al., 

2016; Westoby et al., 2012), georeferenced using ground control points (GCPs) 

(Micheletti et al., 2015; Calle et al., 2018), has become commonplace in geomorphology 

studies. These models permit the analysis of fluvial behaviour and its associated impacts 

on sedimentary dynamics of river systems and the evolution of riparian vegetation 

(Vargas-Luna et al., 2015; Belmar et al., 2013; Coveney and Roberts, 2017). Recent 

applications of RPAS include the study, quantification and modelling of vegetation (Berni 

et al., 2009; Avtar et al., 2020; van Iersel et al., 2018), which can serve as a decision tool 

for the maintenance and conservation of riparian habitats (Muñoz-Mas et al., 2017). 

Furthermore, the remote monitoring of aquatic macrophytes (Biggs et al., 2018) has 

emerged as a new challenge in the field of ecohydraulics.  

For submerged riverine environments, a fundamental problem when extracting 

morphological information is the refraction of light that occurs at the air–water interface 

(Wackrow et al., 2015). Snell’s Law is the physical theory that explains this phenomenon 
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which causes the channel bed to appear at a higher elevation than it really is; thus, its 

effect must be accounted for, to obtain accurate DEMs and subsequent products. This is 

a common problem also for topo-bathymetric Light Detection and Ranging (LiDAR), 

which uses green wavelength light. Topo-bathymetric LiDAR (Bailly et al., 2010; Feurer 

et al., 2008; Kinzel et al., 2013; Tonina et al., 2019) enables the direct acquisition of dense 

point clouds in submerged environments (Pan et al., 2015; Mandlburger et al., 2015). It 

has proven useful in those areas where the depth and dimensions of the river 

accommodate its use, but its coarse spatial resolution (at the meter scale), lack of 

reliability in areas with abrupt topographical changes (Tonina et al., 2019) and its high 

cost preclude it as a viable and effective tool for reach scale applications (tens channel 

width or few kilometres) or in small streams (approximately channel width less than 7 m) 

(Kinzel et al. 2013; McKean et al., 2009; Nouwakpo et al., 2016). 

In recent years, two key methods have emerged to correct the refraction of RPAS-

SfM generated topographic data, which has led to improved estimates of water depth and 

submerged elevation in small streams (Woodget et al., 2015; Dietrich, 2017). Woodget et 

al. (2015) proposed a method based on a constant correction that could be applied to an 

entire stream reach, using SfM-generated DEMs, without considering either point-to-

point characteristics or the relative position of the RPAS at the time of image capture. 

This method generates an estimated water surface position and uses its difference from 

the underlying DEM to approximate water depths. The constant correction of depth under 

refraction effects is then applied, as derived from Snell’s Law and the refractive index of 

clear water. 

 Dietrich (2017) proposed a more complex method, which considers the RPAS’s 

relative position for each image, thereby yielding a three-dimensional (3D) model; the 

corrected elevations of the streambed were obtained by applying trigonometric principles 

to obtain the beams projected for each point. In practical terms, this method relies on an 

algorithm, for which the parameters correspond to the angles of rotation on each axis, 

type of image, focal length, and sensor type. Dietrich (Dietrich, 2017) also reported a 

relationship between the highest positive errors and streambed areas with higher 

roughness. Both Woodget et al. (2015) and Dietrich (2017) validated their refraction-

corrected models using point-based elevation measures acquired using a Global 

Positioning System - Real-time kinematic  (GPS-RTK) station and thus they were 

restricted to wadeable and accessible parts of the stream. Accordingly, neither validation 

was performed on the entire streambed modelled and thus may not be wholly 

representative of the site. This drawback limits further investigation into the factors 

affecting error distributions in refraction-corrected models. 

In this article, we introduce and implement a procedure to generate a refraction-

corrected model of submerged topography in a regulated stream reach, to address three 

critical objectives: 

i. To provide the first validation of a refraction-corrected submerged fluvial 

topographic model in situ, using a digital elevation dataset of stream 

topography, obtained when the stream reach was completely dry. This 

allowed us to compare the DEMs of the same streambed mapped during a 

wet and a dry period, with resolution of 15 millimetres per pixel. With this, 

we can assess the pattern of error distribution in a way not previously 

possible by point-based error evaluations. We can also compare our 
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outputs with those from the widely applied method of Woodget et al. 

(2015). 

ii. To analyse the elevation error patterns within two mesohabitat types of the 

stream differing in their hydromorphologic characteristics (namely, pools 

versus riffles). This constitutes a spatially-continuous validation of the 

DEM within each of the two mesohabitat types (i.e., all pixels of each 

model were evaluated). Doing this will assist other researchers develop a 

more realistic appreciation of the strength of this approach in different 

types/areas of streams and rivers characterised by different habitat types. 

iii. To develop a refraction-correction method available as an open-source 

software tool in C++ (code included in this article as supplemental 

material). 

 

4.2 Methods 
 

4.2.1 Study site 

We studied a reach of the Palancia River, located in the province of Castellò 

(Eastern Iberian Peninsula), Spain, that was 74 metres long with an irregular and 

intermittent flow regime throughout the year due to water diversion for irrigation. We 

selected this site because of its variability in morphology (e.g., grain size range: 10 to 500 

millimetres) and flow characteristics. The stream reach has an average depth of 30 

centimetres and a width of 10 metres.  Specifically, as Figure 4.1 shows, we visually 

identified mesohabitat units characterised by different hydromorphological patterns 

(Alcaraz-Hernández et al., 2011); three mesohabitat types were observed in the study 

area: pool, rapid, and riffle. We selected the two largest areas for further analysis by 

mesohabitat type, namely pool and riffle. One represents a habitat of relatively greater 

hydraulic depth and lower mean velocity (pool) and the other represents a shallow habitat 

with higher velocity (riffle). The central segment of the stream’s reach we classified as 

rapid, due to its characteristics and behaviour. In this area, the study and validation of the 

applied refraction correction method was not carried out because the presence of rough 

white waters in this area made it impossible to generate a reliable model for the water 

surface and the streambed. We surveyed the stream channel during a wet period (16 May 

2016), when some stream flow was present, and during dry channel conditions (24 June 

2016), when water was being extracted into nearby irrigation channels. The stream had 

low base flows with no storms between these two dates, hence any alteration of the 

streambed morphology was negligible or minimal. Accordingly, we considered the DEM 

obtained during dry streambed conditions as the ground truth, with which to validate our 

refraction-corrected elevation models of the submerged streambed. 
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Figure 4.1. Location of the Jucar River Basin District (Eastern Spain), and study area 

(water surface) with different mesohabitat types in the Palancia River, where the two 

cross-sections were used for comparison in detail (CS1, CS2). 

 

4.2.2 Data acquisition 

To obtain aerial imagery of our study site, we used a GoPro Hero 2© (GoPro, USA) 

High Definition (HD) camera mounted on a DJI Phantom 1© (DJI, China) RPAS. We first 

extracted images (1920  × 1080 pixels size) from a video recorded along the whole stream 

reach, and then selected the most representative frames to use as still images, with ca. 750 

images used in each campaign. We adopted this approach because we lacked access to 

the real time image feed from the RPAS or an autopilot system at the time of survey. 

Therefore, by collecting video we ensured that sufficient imagery was obtained for the 

whole site to ensure 80% to 90% overlap between images. The GoPro camera was 

selected because its video output has a high stability and high resolution (1080p 

resolution), which is essential for a camera on an airborne platform that vibrates because 

of rotors and variable atmospheric conditions. The average flight height was 10 metres 

above the stream channel and the camera was set to a zenith angle of 20°. Recent GoPro© 

camera models (HERO5 Black and newer) can record Global Positioning System (GPS) 

positional information of the camera at the time of capture. In both campaigns the images 

were taken around noon, to minimise differences in the incidence of natural light between 

surveys; the total flight time on both occasions was similar, at ca. 30 minutes. 

Before both aerial surveys, we established a network of ground control points 

(GCPs) around the site and surveyed their positions using a Prexiso G5© (Leica, 

Germany) GPS-RTK instrument. These GCPs were distributed throughout the stream 

reach, and unique standard markings from the software tool Agisoft PhotoScan Pro 1.2.2© 

(Agisoft, Russia) were used to identify them in the images. The GCPs were randomly 

distributed in three dimensions, following common practice (Martínez-Carricondo et al., 

2018). 

The GPS-RTK instrument was linked to the regional network of Global 

Positioning System/Global Navigation Satellite System (GPS/GNSS) (Network of 

Reference Stations in Valencia “ERVA”), via mobile signalling, to obtain differential 

corrections by Network Transport RTCM Internet Protocol (NTRIP) of the coordinates 
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in real time.  Each GCP position was recorded in the WGS84 reference system, having 

an accuracy of 1 centimetre in both planimetry and altimetry. In each campaign, 70% of 

the measured points were used for georeferencing and scaling purposes; the remaining 

30% were used to quantify the accuracy of the derived topography. During the first flight 

campaign (wet period), we surveyed 74 metres of the stream length and used 31 ground 

control points (GCPs) and 14 check points (CPs). During the second survey (dry period), 

we covered the same reach and used a smaller number of GCPs (29) and CPs (12) (Figure 

4.2). The latter’s slightly lower sampling effort (fewer GCPs) was justified since it would 

not affect the accuracy of the georeferencing model (Tonkin and Midgley 2016). 

 

Figure 4.2. Spatial location of the Ground Control Points (GCPs) and checkpoints on the 

stream channel for the field campaign with dry channel (Dry phase). 

 

4.2.3 Image and Data Processing 

In both surveys (wet and dry), we selected a series of still frames from the video 

footage. Specifically, we only selected images having a high level of overlap (80% to 

90%) to ensure that the image matching was successful and robust (Eisenbeiss and 

Sauerbier, 2011). For the first survey, during wet channel conditions, we selected those 

images with the least distortion, and which gave a clear view of the water’s edge, as this 

is a key parameter for correcting the effects of refraction. For the second campaign, during 

dry channel conditions, we instead selected those images giving a clear view of the 

channel bed, to obtain a real ground model for validation purposes. In the surveys, we 

divided the video into individual image frames with a time interval of 1 second, among 

which the most representative frames of our area of interest, and of the highest quality, 

were selected. Any frames that were unfocused, redundant or showed sun reflection were 

discarded. Figure 4.3 shows the DEM built in the Agisoft PhotoScan Pro program. 
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Figure 4.3. (a) Digital surface model with texture of the study area at dry phase, from 

which the models for the two mesohabitats units where extracted. (b) Digital surface 

model without texture of the study area at dry phase. Both generated by Agisoft 

PhotoScan Pro© and showed on an isometric view. 

The selected images were uploaded into structure-from-motion photogrammetry 

software, namely Agisoft PhotoScan Pro v.1.2.2© (Agisoft, Russia). The workflow 

comprised several key steps: image import, image alignment, geometry building, texture 

building, georeferencing, optimization of image alignment, and re-building of scene 

geometry and texture (Woodget et al., 2015). The images were aligned using high 

accuracy settings and generic pair preselection, to create a sparse point cloud. Next, we 

densified the point cloud using the “Build Dense Cloud” setting, and created a surface 

mesh, which was then textured using the original input images. To georeference the 

model, we located each GCP and assigned their respective coordinates recorded in the 

field survey. Finally, we optimised the image alignment using the GCP reference data and 

regenerated the model using the same settings, before exporting the DEM, orthophoto, 

and dense point cloud for further analysis (Figure 4.4).  
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Figure 4.4. Workflow of the photogrammetric process. 
 

4.2.4 Refraction correction 

The presence of water causes a distortion when defining the correct depth and 

morphology of the fluvial streambed when relying solely on photogrammetric methods 

(Westaway et al., 2001). This results in elevation models typically overestimating the true 

elevation of the channel bed. The correction method we developed and describe here is 

based on coordinates that describe the position of the RPAS at the point at which each 

image (frame) is actually captured. We used these positions to apply a geometric 

correction to the light beam as it is refracted at the water–air interface, as detailed below. 

This methodology is similar to that developed by Dietrich (2017). Yet Dietrich’s 

algorithm requires knowing different parameters of the camera, namely those of its 

exterior orientation (pitch, roll, and yaw) and internally (focal length and sensor size). By 

contrast, our algorithm only requires data of the camera’s position when each image was 

taken.  
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Figure 4.5. Geometric representation of the elements involved in the correction of the 

refraction effect. Where (C) represents the coordinates of each point at each surface, and 

the vertical distance (DZ) between each DEM point and his counterpart of the streambed 

represents the value of the refraction correction. 

Figure 4.5 shows the geometric elements we used to generate the mathematical 

equations and to resolve the refraction effect problem, to better estimate the true elevation 

of the streambed. The "C Camera" position refers to the camera’s 3D coordinates at the 

moment when each image was captured; the “C DEM" position represents the 3D 

coordinates of each point within the dense cloud, before applying any refraction 

correction; this point cloud was obtained from the SfM reconstruction by PhotoScan with 

the whole RPAS imagery at the wet period. The “C Water Surface" position corresponds 

to the point at which the light beam crosses the water–air interface, for each point on the 

channel bed observed by the camera. This continuous water surface was generated via 

interpolation of the 3D coordinates of 190 points measured by the GPS-RTK station 

(recorded approximately every 1 metre) along the streambanks during the wet campaign. 

Thus, this continuous water surface and the points defined by the visual rays between the 

camera and the points of the SfM DEM (C DEM) are defined before the algorithm starts. 

The “C Streambed" position represents the corrected 3D coordinates of each point that 

contributes to defining the stream’s morphology. The geometric configuration lets us 

compute the value of the Z-coordinate difference between the SfM DEM (C in Figure 4.5) 

and the streambed position in the same vertical (C Streambed), i.e. DZ. This procedure, 

as it is explained in detail below, enables us to correct for any elevation overestimation 

of the submerged topography. Table 4.1 includes the symbols and descriptions of the 

variables used in all the calculations. 

Table 4.1. Descriptions of the variables in Figure 4.5 and throughout the text and 

equations. 
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The first step was the calculation of the horizontal and vertical distance values 

from the camera to each of the points of the water surface within the camera’s 

Instantaneous Field Of View (IFOV). Those distances are calculated from the camera’s 

3D coordinates and the water surface points obtained as described above (see Figure 4.5). 

For each camera’s position, we define the vertical straight line, and the line between the 

camera’s position and each of the points of the water surface (visual ray). Then,  the 

distances are calculated, being the vertical distance the difference in elevation (Z 

coordinate) between the camera and the intersection of the vertical line with the water 

surface, and the horizontal distance the Euclidean distance between their planimetric 

coordinates. To do this, the external and internal orientation parameters of the camera at 

each position were obtained from the SfM reconstruction software (PhotoScan®); then, 

we define each camera’s IFOV, based on the approximate ground coordinates of the four 

image’s footprints.  

The second step was the calculation of the angles between the rays as depicted in 

Figure 4.5. The angle Ɵ2 is the tangent of the triangle where a and b are known, and α is 

the complementary angle. Then, applying Snell’s law, the β angle is derived from the α. 

These angles are based on the physical principles of Snell’s Law, where the passage of 

the light from one medium to another of different density can be defined by a refractive 

index (n). In our case, Snell's Law was defined according to the Equation (4.1), where nair 

= 1, and nwater = 1.34, as follows: 

nair × sin α = nwater × sin β  (4.1) 

As depicted in Figure 4.5, for each point, there is an initial geometric environment 

before the ray enters the water, and a second geometric environment once the ray is in the 

water. Thus, to solve the corrected DZ value, we must take the aforementioned angular 

values and the coordinates of the DEM generated via SfM (C DEM). The following 

equations (Equation (4.2) to Equation (4.4)) were applied to develop the trigonometrical 

environment. The angles in Figure 4.5 (α, β) define the position and orientation of each 

of the projected rays in the equations, for correcting the position of each point (C DEM); 

Ɵ3 is then calculated to allow the calculation of the correction, DZ. Table 4.1 provides 

the variables’ description; 

α = 90° - Ɵ2  (4.2) 

Ɵ1 = α - β  (4.3) 

Ɵ3 = 90° - β  (4.4) 

In the third step, these angular values are applied in trigonometrical equations to 

solve the corrected Z coordinate for each “B DEM”, getting the “C Streambed”. Those 

trigonometrical equations use several parameters which represent distances depicted in 

Figure 4.5 and defined in Table 4.1 (t, w, m, g, q, s, DZ) (Equation (4.5) to Equation 

(4.10)): 

t2 + s2 = m2   (4.5) 

t = w × cos β  (4.6) 
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w2 = t2 + q2  (4.7) 

g = s – q  (4.8) 

g = (DZ) × tan β (4.9) 

  The last step is to calculate the Z coordinate of the Streambed with Equation 

(4.10); 

 ZStreambed = ZDEM – (DZ)  (4.10) 

Where ZDEM is the elevation or Z coordinate of each point of the SfM DEM. To 

implement this correction, we used the point cloud generated from RPAS imagery of the 

stream reach acquired during its wet period. We computed light rays’ angles by projecting 

a line from each point of this cloud with the RPAS coordinates when the corresponding 

image had been acquired. We then defined the position of the water’s surface from the 

orthoimagery and extracted this as a 3D-surface in a point cloud form. 

By knowing the camera’s position (C camera), the generated position of the channel 

bed (C DEM), the position of the water surface (C water surface), and the refractive index 

of clear water, we could compute the position of a refraction-corrected channel bed (C 

streambed) for each point in the cloud. Each point of the water surface point cloud and its 

corresponding DEM point were solved individually by the algorithm processes for all the 

stream bed. We have identified which points were defined by each camera position 

attending to the IFOV and the external and internal camera parameters. The point cloud 

was then rasterized to create a refraction-corrected DEM. This generated DEM has a pixel 

size of 15 millimetres, this being the minimum possible pixel size obtained from the point 

cloud generated in the photogrammetric process. Table 4.2 provides the error statistics 

for both the wet and dry surveys; note that each pixel is defined by a point in the cloud. 

Finally, the performance of the method is quantified by comparing the topography 

between the wet and the dry survey, with the latter being considered the true topography. 

We coded the algorithm in  C++ Programming Language and Software (Dennis 

Ritchie and  Bell Laboratories 1972), taking advantage of different math functions 

implemented in its C++ libraries (distributed in the Supplementary Material). Due to the 

time needed to calculate all the equations involved, we opted to divide the reach into five 

distinct sections; this process, while not strictly necessary, did save some time as we could 

test the algorithm’s results while the other blocks were processed, and it guarded against 

potential data loss due to blackouts. Afterwards, we merged all the corrected values to 

obtain the continuous digital model with the corrected stream depth. 

 

 

 

 

 

https://es.wikipedia.org/wiki/Dennis_Ritchie
https://es.wikipedia.org/wiki/Dennis_Ritchie
https://es.wikipedia.org/wiki/Laboratorios_Bell
https://es.wikipedia.org/wiki/1972
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Table 4.2. Statistical descriptors of the errors (m) in the two DEMs generated; wet 

campaign (top), dry campaign (bottom). 

Statistical descriptor  ∆X (m) ∆Y (m) ∆Z (m) 

Mean 0.011 0.023 0.022 

Standard deviation 0.013 0.023 0.031 

Average 0.005 0.034 0.011 

RMSE 0.013 0.083 0.027 

P25 -0.007 0.024 -0.004 

P75 0.021 0.042 0.017 

Statistical descriptor  ∆X (m) ∆Y (m) ∆Z (m) 

Mean 0.037 0.022 0.044 

Standard deviation 0.041 0.032 0.046 

Average 0.014 -0.014 0.026 

RMSE 0.054 0.050 0.096 

P25 -0.034 -0.039 -0.001 

P75 0.050 0.004 0.067 

 

4.2.5 Validation 

To assess the quality of our refraction-corrected model, we relied on three 

methods: (a) comparing it to the model of the dry streambed, which we consider to 

represent the true morphology of the stream; (b) comparing it to the results of another 

method proposed by Woodget et al. (2015) (hereon: small angle refraction correction, or 

SARC), and; (c) assessing the spatial distribution of point cloud roughness. These 

methods try to independently define the accuracy and variability of our proposed method. 

Given the relevance of substrate size (i.e. channel bed roughness) for turbulence, and thus 

for potential sun reflection and the quality of the images and subsequent DEMs, the spatial 

distribution of roughness was considered a relevant factor worth evaluating in the 

comparison. Dietrich (2017) had already established the relation between the error of a 

digital model and sediment size of the stream. Furthermore, assessing streambed 

roughness has important consequences for further calculations of hydraulic modelling in 

streams, such as the inundation area for a given discharge, simulated depth, shear stress, 

and bed mobility (Brasington et al., 2012; Dietrich, 2017). 

In this work, the proposed method was compared with the SARC method which 

only accounts for changes in light velocity but not in change in light direction—we 

wanted to understand the behaviour and errors in these two opposite approaches. 

Furthermore, in the Discussion section of this paper, these obtained values are compared 

and interpreted in the context of values supplied by other correction methods, including 

the refraction correction based on a similar methodology to ours (i.e. Dietrich, 2017), 

albeit generated for different study areas and datasets under differing validation process.  

For validation methods (a) and (b), we compared our refraction-corrected DEM 

with the DEM of (a) the dry streambed and (b) the channel bed derived with the SARC 
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method, by computing the difference between DEMs using the raster calculator tool 

within ArcGIS© and statistically analysing these differences. We also generated a dataset 

composed of random points, distributed throughout the stream reach; this was done to 

compare with similar point to raster analysis done in previous works (Govedarica et al., 

2018; Koci et al., 2017) and typically done when the full DEM as reference is not 

available. We extracted the DEM elevations for each point in this dataset from all three 

models (dry bed, our method, SARC method), for further statistical comparisons and to 

carry out linear regression. Additionally, we compared the relative positions of the water 

surface and DEM bed morphologies using two channel cross-sections (positions defined 

in Figure 4.1, in pool and riffle). With such a comparison, differences among the three 

models of this stream reach can be visualised (Grabowski et al., 2014). We extracted the 

elevation values along these cross-sections for all models, to analyse the data through 

linear regression. The outputs of the linear regressions were discussed using measures of 

goodness-of-fit (R2), based on the Kolmogorov-Smirnov test and the kurtosis z-value. In 

making these comparisons, however, we ignored elements that could have emerged from 

the stream water surface (e.g., rocks, boulders, vegetation), which if found were first 

removed from the analysis (with the masking tool in ArcGis©).  

For method (c), we analysed the relationship between the point cloud roughness 

and DEM elevation error. For this, elevation error was defined as the difference between 

our refraction corrected DEM and the DEM of the dry streambed. In this way, our analysis 

aimed at exploring how the morphology and irregularities of the sediments that define the 

stream can influence the correct definition of the DEM result (Brasington et al., 2012; 

Dietrich, 2017). Point cloud roughness was computed for the location of 850 randomly 

distributed points; it is defined as the standard deviation (SD) of elevation within 25 

centimetres kernels (Vázquez-Tarrío et al., 2017) and obtained by the ArcGIS© Kernel 

Function (Zucchini, 2003). The roughness values for each point were then plotted against 

the error values computed under the validation method (a), using the model of the dry 

streambed (i.e., the true DEM). This comparison was also made for the correction method 

proposed in this work versus that of the Woodget’s–SACR-method.  

 

4.3 Results 

A visual assessment indicated the presence of different mesohabitat types in the 

study site with contrasting physical characteristics. However, it was impossible to 

evaluate the rapid zone of our stream reach (central segment, Figure 4.1) using any 

refraction correction methods, due to its turbulent water surface and suspended sediments, 

neither of which could be accounted for in modelling underwater morphology. Average 

depth within the pool was 48 centimetres, dropping to 25 centimetres in the riffle. 

Variations in surface velocity were also evident between the habitat types. The lengths of 

the pool and riffle respectively were 34 metres and 31 metres. 

Our refraction correction algorithm was designed and run on an Intel Core i7 with 

16Gb of RAM and a Nvdia Gforce 8Gb graphic card. The time needed to fully develop 

the entire stretch of the stream was ca. 45 hours (i.e., for 800 m × 800 m of stream habitats 

in total, approximating the blue area in Figure 4.1). The computing time can vary 

depending on the density of the input point cloud. The refraction correction process works 

on a point–to-point in generating these individual corrections. 
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4.3.1 Performance of our method: methods (a) and (b) 

Figure 4.6 shows the spatial pattern of the elevation differences between our 

method and the model of the dry streambed (top row) computed using the whole rasters. 

The highest errors are evident in peripheral areas and near emergent rocks of the stream 

reach.  

Table 4.3 provides the statistical differences between all three models of the 

channel bed (dry, our method, SARC method). These values were estimated as the 

difference between the computed DEMs and the DEM of the dry campaign. Here, we 

highlight that in our method the mean error is lower in comparison to the SARC method; 

accordingly, the maximum error was slightly reduced (8%). Furthermore, in the pool, the 

reduction of the mean error was 9%. By contrast, the standard deviation of the errors was 

smaller for SARC method. The difference between the SARC and dry stream channel 

indicates a large influence of mesohabitat type in the error assessment, because the 

average error was 40% higher in the pool (36 millimetres) with respect to the riffle.  

Table 4.3. Statistical summary of the raster differences of the three digital elevation 

models (DEM) in the study site of the Palancia River by mesohabitat type, i.e., pool and 

riffle, and all together (emerging rocks were discarded). That is, the proposed method, 

the small angle refraction correction method-SARC (Woodget et al. 2015) and the dry 

streambed (true DEM). 

  Difference; 

Proposed Method vs. Dry streambed 

Difference; 

SARC Method vs. Dry streambed 
 

 Statistical descriptor  Pool Riffle 
Pool+Riffle 

combined 
Pool Riffle 

Pool+Riffle 

combined 

Mean Error (m) 0.119 0.066 0.074 0.145 0.114 0.125 

Standard Deviation (m) 0.125 0.086 0.133 0.103 0.085 0.096 

Minimum (m) -1.744 -1.682 -1.744 -1.462 -1.532 -1.532 

Maximum (m) 0.765 0.753 0.765 0.771 0.810 0.810 
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Figure 4.6. Raster difference between the proposed method and DEM of the dry 

streambed (top), (a) Proposed method (pool), (b) Proposed method (riffle). Raster 

difference between small angle refraction correction - SARC method and DEM of the dry 

streambed (bottom), (c) SARC method (pool). (d) SARC method (riffle). 

 

Figure 4.7. Frequency histogram of the raster difference between the proposed method 

and DEM of the dry streambed (Top), (a) Proposed method (pool), (b) Proposed method 

(riffle). Frequency histogram of the raster difference between small angle refraction 

correction - SARC method and DEM of the dry streambed (bottom), (c) SARC method 
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(pool). (d) SARC method (riffle). In all histograms the mean and standard deviation (SD) 

of the error distribution (m) are displayed. 

Frequency histograms generated for the analysed rasters allows us to better 

understand the behaviour of the refraction corrections applied to our stream reach (Figure 

4.7), separated by mesohabitat type (pool versus riffle). The comparison of the two 

methods with the dry DEM showed a positive skew of the error distribution, which 

indicates a small systematic error in the corrected elevation models. In Figure 4.8, we 

present the data from two cross-sections (positions defined in Figure 4.1), so as to observe 

the different models from a transverse viewpoint. We see that the vertical distances 

between the digital model corrected by the SARC method and the dry streambed are 

consistently higher than our proposed method. Thus, our proposed method is more 

accurate and better at representing the true morphology of the channel bed. We also note 

that differences between our model and the dry streambed were consistently smaller in 

the pool ((b), Figure 4.8) than riffle habitat ((a), Figure 4.8). 
 

 

Figure 4.8. Comparison of each of the two models with the real DEM in two cross 

sections of the stream channel at different mesohabitat type, (a) riffle and (b) pool. SARC 

refers to the small angle refraction correction method. 

Figure 4.9 compares the elevation data from our method and the dry-bed DEM, 

acquired from a series of randomly selected points (N = 850). We found a strong 

correlation between the submerged terrain elevation obtained by our method and the true 

DEM, as indicated by the robust linear trend (slope of 0.92), with the coefficient of 

determination R2 = 0.85. Furthermore, Figures 4.6, 4.7, and 4.9 collectively show that our 

method generated a trend in modelling that overestimated elevation, to a different extent 

depending on whether the pool or riffle habitat was analysed. This suggests that the 

method has reduced but not eliminated the effects of refraction. 
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Figure 4.9. Correlation between elevations calculated with our method of refraction 

correction and elevations measured on the dry stream channel. 

 

4.3.2 Comparison with point cloud roughness: method (c) 

The spatial representation of elevation error revealed the largest errors occurring 

at the edges of the 3D model (Figure 4.6). In addition, some errors arose in areas of the 

stream reach where emerging elements were not totally removed (e.g., boulders, 

vegetation), thus producing some distortion. A comparison of DEM accuracy and 

morphology roughness values of the stream reach is provided in Figure 4.10 and 4.12. 

Furthermore, in Figure 4.11 the roughness values are presented in the form of histograms, 

allowing us to better understand the behaviour of both models. 

Finally, bivariate scatterplots (Figure 4.12) showed the relationship between 

elevation error as a function of roughness for the 850 checking points validated in the 

previous sections, for the two methods of refraction correction. 
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Figure 4.10. Representation of elevation error after proposed correction method with 

respect to the roughness model with standard deviation (SD) of 25 centimetres kernel 

(Top), (a) Proposed method (pool), (b) Proposed method (riffle). Representation of the 

elevation error based on the small angle refraction correction method –SARC by Woodget 

(Woodget et al. 2015), with respect to the roughness model with standard deviation (SD) 

of 25 centimetres kernel (Bottom), (c) SARC method (pool), (d) SARC method (riffle). 

 

Figure 4.11. Frequency histograms of elevation errors for the proposed correction 

method with respect to the roughness model with standard deviation (SD) of 25 

centimetres kernel (Top), (a) Proposed method (pool), (b) Proposed method (riffle). 

Frequency histograms of the elevation error based on the small angle refraction correction 
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method –SARC by Woodget (Woodget et al., 2015), with respect to the roughness model 

with standard deviation (SD) of 25 centimetres kernel (Bottom), (c) SARC method (pool), 

(d) SARC method (riffle). 

 

Figure 4.12. (a) Relationship between standard deviation (SD) of 25 centimetres kernel 

after small angle refraction correction method -SARC (Top). (b) Relationship between 

standard deviation (SD) of 25 centimetres kernel after our proposed correction method 

(Bottom). 

 

4.4 Discussion 

This investigation provides the first spatially-continuous, quantitative validation 

of a refraction based algorithm for correcting the location of submerged points extracted 

from SfM-based approach mapping stream bathymetry in complete mesohabitat units (or 

channel geomorphic units) at the pixel scale. The direct pixel-to-pixel validation of the 

SfM derived bathymetry is only possible by having both the stream model with water 

present and dry stream model, where water is absent. Using this method and the 

associated C++ code, we were able to reconstruct the submerged topography with lower 

mean errors with respect to the small angle refraction correction method (SARC) 

proposed by Woodget et al. (2015), when applied to our data. Furthermore, the continuous 

validation in situ by mesohabitat types fostered a more detailed assessment of the error 

distribution, both spatially and statistically. 
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Through a comprehensive comparison of our results against leading approaches, 

we could identify the key benefits and disadvantages of our method. Firstly, our approach 

permitted the generation of a high spatial resolution (15 millimetres per pixel) model, 

with sufficient quality to model the submerged topography of a stream reach. This small 

pixel size results from the very low flight altitude, facilitating the correction for refraction 

and data evaluation in much more detail than would be possible had we relied on coarser 

resolution remote sensing datasets – which are often the only datasets available openly. 

This is a highly relevant factor, because depending on the flight heights taken in projects 

of this type, the error rates and accuracies obtained can vary considerably (James and 

Robson, 2012). Several prior studies that used RPAS, such as Immerzeel et al. (2014) and 

Fugazza et al., (2015) relied on higher flight heights and fewer GCPs (250 metres 

maximum flight altitude; 20 GCPs), mainly due to the difficulties in accessing their study 

sites. Conversely, we decided a priori to acquire imagery at a much lower altitude because 

the flight platform would not provide sufficient stability at higher altitudes than 10 metres, 

and the winds in the area are occasionally quite strong.  

Secondly, the use of many GCPs and CPs in this study strengthened our ability to 

georeference the model, thereby improving the DEM’s accuracy and comparability of the 

datasets acquired on different dates (Table 4.2). However, and crucially, we anticipate 

that errors derived from the water surface are significant (e.g. elevations, waves, turbulent 

water and sun glint (Dietrich, 2017). Such inherent difficulties in accurately defining the 

position of a water body’s surface would generate a chain of error within our proposed 

algorithm, since the construction and resolution of the mathematical equations that define 

the projection rays for each point in 3D space are reliant on knowing the exact, 

instantaneous position of the water surface. Recent work by Woodget, Dietrich, and 

Wilson (2019) provides a more robust method for estimating the water surface position. 

Although this work was not available for implementation in our model when it was built, 

it nonetheless warrants future consideration in refraction correction workflows.  

Thirdly, subdividing the study site’s stream reach into two sections with well-

differentiated characteristics, as pool and riffle, strengthened our inference. Specifically, 

this let us verify how the proposed method of refraction correction generates less error in 

shallow areas with low water turbulence and greater errors in deeper areas with a more 

unstable water surface. 

Relative to those reported by Dietrich (2017) and Woodget et al. (2019), albeit 

using different datasets, our results yielded higher mean error and standard deviation 

(Table 4.4). This discrepancy may be due to disparities in the density of the point cloud 

between the two methods; however, this is tentative, since there are studies showing 

similar accuracy when a larger cell size is used (Woodget, Dietrich, and Wilson 2019; 

Booth 2014; Schumann, Muhlhausen, and Andreadis 2019). Nevertheless, pixel size 

could be generally considered as a determining factor for the accuracy in areas where the 

geomorphological features are small and are marked by strong variability. In addition, the 

quality of the camera used will directly affect the products generated from the captured 

images; hence, the GoPro camera used in our method is also a potential factor contributing 

to the quality of results. Dietrich (2017) worked with a point cloud resampled at 300 

millimetres spacing, whereas we worked with distances between points of just 12 

millimetres. Our finer-scale point spacing may have increased the minimum irregularity 

in the generation of the rays that form the mathematical equations, thereby increasing the 

standard deviation of the error. This is further highlighted by the use of a smaller pixel 
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size in the resulting digital models, since they are subject to less smoothing or averaging 

of the error per cell. Further, our method was validated using a spatially continuous 

surface rather than discrete isolated points (in each of the two models), likely forcing it 

to be far more sensitive to minor errors in spatial positioning, and the effects of distorting 

parameters such as turbulence, sun glint, and vegetation. These effects, however, did not 

impact the Dietrich method so significantly, since the validation of that model is carried 

out at discrete sampling locations, via averages and ratios, rather than by a continuous 

dry model of the entire stream reach. Further quantitative comparison of these two 

approaches, on an identical dataset, is required to elucidate the reasons for the observed 

statistical differences.  

Woodget, Dietrich, and Wilson (2019) have presented promising results in 

mapping submerged topography with a method to correct the effect of refraction with 

special attention in modelling the water surface. Their accuracy values are better than 

those of our proposed method which could be due to the enhanced representation of the 

water surface but also to the lower number of comparison points (Table 4.4). 

Table 4.4. Statistical descriptors of the different campaigns of each correction method 

and the values obtained with our proposed method, in pool and riffle mesohabitat types. 

Statistical descriptor  Mean error (m) Standard deviation (m) 

Woodget's SARC method (2015) 0.008 to 0.053  0.064 to 0.086  

Dietrich’s method (2017) -0.011 to 0.014 0.059 to 0.077 

(Woodget, Dietrich, Wilson 2019) 0.006 to 0.041  0.061 to 0.101 

Proposed Method (Pool) 0.119 0.125 

Proposed Method (Riffle) 0.066 0.086 

Comparing our results with those of the SARC method, using the same dataset, 

shows that our method provides a refraction-corrected model with smaller elevation 

errors than the SARC method (Table 4.3). Such a reduction is particularly notable in the 

riffle habitat, where the mean error obtained was 60% lower than that of the SARC 

method (i.e., 0.066 vs. the 0.114 for SARC). There was also an error reduction in the pool, 

but the magnitude of this was smaller (20% lower mean error). By contrast, the standard 

deviation of the errors was smaller when the SARC method was applied, and those of the 

proposed method exceeded those of other methods; this would seem justified, given our 

study site contains several points in critical areas that distorted the statistical results. 

Specifically, areas of the banks and areas close to the emerged elements produced larger 

variability in the correction, thus generating larger residuals from the sample mean. 

Again, the use of the refined water surface estimation method of Woodget, Dietrich and 

Wilson (2019) might help to eliminate these larger residuals. 

In contrast to SARC, our analyses of the Palancia River results revealed larger 

mean errors than the original work by Woodget et al. (2015) based on a dataset from the 

United Kingdom (UK), and likewise differences in the observed standard deviations 

(Table 4.4). This may be because the SARC method uses a blanket application of 

refraction correction at the level of the DEM for the entire reach, without performing an 

individual correction for each and every point in the cloud. This is likely to produce an 

average and smoothed out version of possibly anomalous values. Moreover, the stretch 

of stream we investigated here featured abundant emergent elements that inevitably 

introduced many distortions, creating greater difficulties in accurately defining the 
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position of the water surface. Despite the use of a mask to remove these elements from 

the final model, we note that these features still produced some distortion in the estimated 

water surface position near those areas, and consequently an increase in elevation error 

(Figure 4.6). The presence of vegetation and shadows along the banks of the Palancia 

River also make it difficult to generate the model in a few areas. In some places, the 

velocity and morphology of the stream generate rapids and eddies, which caused 

significant irregularities in the point cloud, thus introducing additional errors. Further 

research is required to fully understand and ameliorate these complex issues. However, 

for this study site in Spain, we note that our proposed method provides a closer 

approximation of the true channel bed position than the SARC method, in two types of 

mesohabitats.  

Concerning the potential relationship between elevation errors and roughness, 

several pertinent factors merit consideration. In the roughness calculation, those areas of 

emerged large sediment have been eliminated from the process, because the refraction 

correction operates only below the water surface. The contours of those large rocks, 

whose patterns are very irregular, are one predominant source of error in the calculations 

underpinning the refraction correction (see Figure 4.4). However, eliminating those 

emerged elements (high roughness) from the calculation leaves roughness not properly 

evaluated in the areas immediately surrounding these features, thereby limiting the 

potential relationship between the errors and roughness. A second factor is the size of the 

kernel used to calculate the roughness; it was a constant value for the entire stream, 

following previous studies (e.g., Vázquez-Tarrío et al., 2017).  However, due to the 

sediment sizes in this stream and, furthermore, the different dominant substrates across 

river morphological types, differing kernel sizes could have been selected for each stream 

segment, to optimise the correct roughness calculation. Thirdly, the variability of 

sediment size is relatively low, in our study site dominated by medium-large substrate. 

This fact, coupled with the stream’s dominant medium-low depths, seems to limit the 

range of errors, thereby contributing to the observed lack of relationship between 

elevation errors and roughness. 

Other sources of error are likely to affect all refraction correction methods relying 

on imagery processed via SfM when they include areas of low radiometric resolution 

within the RPAS imagery. During the SfM process, errors are known to arise in those 

areas with a low chromatic spectrum, which makes point-matching a more difficult task 

(James and Robson, 2014; Carbonneau and Dietrich, 2017). Low roughness of the point 

cloud can also make it difficult to accurately discern the area of interest (Fonstad et al., 

2013) but in our case this did not represent a significant problem. 

Our independent analysis of the refraction-corrected models by mesohabitat type 

permitted an assessment of method performance in a manner not yet tried before. In the 

pool area, although the irregularities on the water surface are smaller and the flow velocity 

is lower, due to the greater water depth we observed higher error values than within the 

riffle section (likewise in the SARC method). Despite the emerging elements and the 

eddies formed in the riffle, the errors are lower in these shallower habitats. This indicates 

that water depth is a key factor limiting the success of our approach and suggests we did 

not fully eliminate the effects of refraction. Consequently, stratifying the survey by 

mesohabitat types, which account for both water depth and streambed roughness, may 

help better understand the elevation error distribution because error statistics based on the 

entire reach may be misleading. Thus, the presented approach may help other researchers 
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consider the potential errors for their specific applications in different morphological river 

types, with different proportions of mesohabitat units. 

In terms of its practicality, the method we presented here is a computationally 

intensive approach, so its application to larger spatial scales is likely constrained at 

present. We also note that obtaining accurate results is more challenging in areas 

characterized by highly turbulent waters, whose shadows fall on the stream surface, and 

where external elements or glitters and flashes occur due to the sunlight’s reflection on 

the water’s surface. We anticipate better accuracy will be obtained in areas with smooth 

water surfaces, clear water, channel beds adequately illuminated to permit sufficient 

radiometric resolution for image matching, and limited shadows and reflections on the 

water surface. In these settings, our approach holds much promise for quantifying the 

topography of the channel bed and it could also be used to reliably estimate water volumes 

in future research. 

In our proposed method, refraction correction is achieved through a more 

parsimonious algorithm, in terms of parameters and calculations, relative to the Dietrich’s 

method (2017). Although both methods treat the data as clouds of independent points, for 

which the correction is calculated individually, our proposed method does not require 

additional parameters of camera configuration during the acquisition of images remotely. 

Therefore, an advantage of our method is its direct applicability to many types of image-

capturing devices, whether fixed or mobile, such as mobile phones and cameras installed 

on airborne platforms or on raised poles above the water body surface, which can be 

processed. For instance, fixed poles with cameras are widely relied on in river 

geomorphology to monitor river-channel evolution and measure bank erosion rates 

(Fugazza et al., 2015; James and Robson, 2014, Visser et al., 2019), and to determine 

flow velocity and carry out bathymetric mapping (Tauro et al., 2016). Therefore, in 

similar cases, the use of several fixed cameras coupled to the application of our method 

may be especially valuable. As such, our method provides a simple and economical tool 

for general widespread use in the fields of river morphology and ecology.  

In our opinion, the proposed approach deserves more ample testing in future 

research. Though our study site represents a natural space with notable morphological 

irregularities, testing in other more complex river sections, where the mesohabitat 

stratification is also implemented, is necessary. We expect to test this approach in a river 

section with a more diverse sediment arrangement, as well as in river habitats with more 

turbulence, to further establish its scope and application limits.  

 

4.5 Conclusion 

Quantifying river morphology is an essential part of monitoring and managing 

fluvial geomorphology, flow dynamics, and riparian habitats. Here, we presented an 

alternative methodology that explicitly accounts for the effects of refraction for the 

generation of digital elevation models (DEMs) of streambeds. The regulated nature of our 

study site provided an ideal opportunity to survey a section of the Palancia River during 

both its wet and dry period, and to use the dry-period topographic model to validate the 

outputs of our wet-period model computed using our refraction correction approach. To 

our knowledge, this is the first spatially continuous and high resolution validation of 

quantitative submerged river morphology models, which was performed on all the pixels 
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of the model within distinct mesohabitat types. Our novel refraction-correction 

processing algorithm computes the correction required for each point within a point cloud 

derived from an RPAS-SfM approach, by applying the principles of trigonometry and the 

rules of Snell’s Law.  

We show that our method produced smaller mean errors than those obtained using 

the small angle refraction correction method for the same dataset, especially in the 

mesohabitat of riffles. Yet the standard deviations of error are not significantly nor 

consistently better than those published by other studies (Woodget et al., 2015; Dietrich, 

2017). We suggest that this may be related, in part, to our use of exceptionally high-

resolution data, which has not been smoothed or filtered. Accuracy issues persist 

concerning areas of vegetation, shadowing, emergent features, and, perhaps most 

significantly, in areas where the water surface cannot be modelled adequately due to 

surface distortions, i.e., turbulence and reflections. Less accurate results are also obtained 

in areas of deeper water (i.e., pool mesohabitats) suggesting we have reduced rather than 

eliminated errors resulting from refraction. With future improvements of SfM mapping 

of submerged topography, we anticipate our method has promising potential in diverse 

applications within aquatic and riparian zones, including hydraulic modelling, habitat 

modelling, computing flow velocities, monitoring sediment evolution, and granulometry 

analysis. 
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5. Classification of riparian vegetation types based on 

supervised classification algorithms. A case study in 

the Serpis River (Valencia) 
 

 

Abstract 

The classification of riparian vegetation types is a key factor when modelling the 

behaviour of the river and its evolution over the years. The main objective of this work 

was to analyse and compare different algorithms for the automatic analysis and 

classification of succession phases of riparian vegetation, over a study area of the Serpis 

River (Valencia). For this, different methods of classification were applied to QuickBird© 

satellite images (2.4 m of spatial resolution), minimum distance, maximum likelihood, 

parallelepiped, Mahalanobis distance, and artificial neural networks in several cases (with 

different number of iterations to obtain stable results). In addition, all the classification 

methods were tested with a different number of vegetation classes (6, 5 and 4 classes). 

For each of the defined cases, a stretch of river was segmented into patches to obtain a 

calibration area and a validation area independent of each other. The best performing 

method was the maximum likelihood with 4 vegetation classes, according to the 

validation with vegetation patches surveyed in the field (Overall accuracy value 0.35). 

This classification model showed the best performance; although the accuracy was not 

high, the models of maximum likelihood and artificial neural networks provided a method 

to classify riparian succession phases that can be applied to the entire river length in a 

continuous manner, with the advantage of being faster and more operative than traditional 

methods of classification in the field. The different models showed different patterns in 

terms of omission and commission errors, which indicate future directions of research for 

modelling riparian vegetation dynamics when mature riparian trees, shrubs (young 

succession phases), pioneer plants or invasive species should be the target of applied 

studies for river conservation and management. 

 

Keywords: Remote sensing, Riparian vegetation, Supervised classification, Fluvial 

restoration.  
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5.1 Introduction 
 

Over the last few years, the use of remote sensing has become increasingly 

common and important, generating new applications in various areas of science that study 

the earth and its characteristics (Casagli et al., 2017; Rwanga and Ndambuki, 2017). This 

factor is also favoured by the great possibilities and advantages that this technology can 

generate, such as the location of geographical spaces, the observation and monitoring of 

multi-temporal phenomena and the integration of the results obtained in a Geographic 

Information System (GIS), which favours the reduction of work flow and therefore the 

investment and use of resources applied to these studies on the land surface (Blasch et al., 

2015; Christopoulou et al., 2019; Ghamisi et al., 2018). The advantages that arise with 

the use of these data are, for instance; the total coverage one can obtain and the broad 

perspective that this type of data allows us to work with, detailed multiscale observation, 

specific information on non-visible spectral regions, temporal variability in the execution 

of the observations, transmission and reception of data in real time and its recording in 

digital databases (Cheng and Han, 2016; Chuvieco, 2008; Tewkesbury et al., 2015). The 

classification of elements of the land cover with remote sensing techniques allows us to 

develop inventories with quantitative aspects of their presence, constituting a key tool in 

management and conservation measures (Zeballos et al., 2020; Douda et al., 2016).  

The presence of riparian vegetation has a direct implication on the processes that 

the riparian ecosystem can undergo. The flora and fauna in these spaces have a very 

marked relationship, so the events and changes that may be experienced can affect their 

natural development (López-Baucells et al., 2017; Kontsiotis et al., 2019). The riparian 

ecosystem accumulates a large proportion of terrestrial biodiversity (Blondel and 

Aronson, 1999; Naiman et al., 2008); its study and monitoring are therefore key for the 

ecosystems conservation and management. In addition, the hydro-geomorphological 

dynamics developed in the riparian ecosystem are also related to the presence, extension, 

and type of riparian vegetation (Corenblit et al., 2015; Politti et al., 2018; Garófano-

Gómez et al., 2011). 

Currently, the conservation of biodiversity and the normal functioning of 

ecosystems is a critical challenge, thus it is necessary to generate and develop new 

methodologies and algorithms to be able to know those elements better and subsequently 

to manage them in an optimal way (Cabello and Paruelo, 2008; Garófano-Gómez et al., 

2011; Orimoloye et al., 2020; Vihervaara et al., 2017). In this line of action, remote 

sensing is a key tool, since it allows us to analyse the riparian habitats at different spatial 

and temporal scales, supporting deeper studies on the behaviour of their environmental 

elements. Traditionally, riparian vegetation areas have been studied using maps, 

photointerpretation, fieldwork and laboratory analysis, but satellite images offer 

additional information based on electromagnetic energy stored using several spectral 

bands. The methodology proposed by the supervised classification allows the delimitation 

of different vegetation succession phases, where the different vegetation classes obtained 

are the result of a subdivision of space based on objective characteristics and their 

response to the different wavelengths of the electromagnetic spectrum (Piramanayagam 

et al., 2018; Zanotta et al., 2018). Thus, it is possible to obtain valuable information on 

its characteristics, not perceptible in conventional aerial photographs (Houborg et al., 

2015; Kaneko and Nohara, 2014) and its application over large areas by monitoring their 

main trends and characteristics (De Roeck et al., 2008; Feng et al., 2015). 
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The riparian ecosystem is threatened by the channelling of many river sections of 

the drainage network, the construction of hydraulic infrastructures and the replacement 

of these natural areas with agricultural and forestry crops. In addition, the appearance and 

proliferation of invasive species is a reality in these riparian habitats, so their monitoring 

and delimitation on a recurring basis can safeguard the integrity of the riparian forest and 

avoid imbalances and loss of native species (Zaimes, 2020; Nadal-Sala et al., 2017). In 

general, the diverse alterations of rivers and floodplains by human activity, including the 

presence of organic pollution, morphological alterations and modifications of the 

drainage network have caused a proliferation of invasive species in most riparian 

ecosystems in Europe (Schnitzler et al., 2007; González et al., 2017). The riparian forests 

in Mediterranean ecosystems comprise a wide variability of species in areas of land that 

are sometimes small; therefore, the proliferation of invasive species causes a direct 

harmful action on the natural development of the autochthonous ecosystem (Stella et al., 

2013; Bruno et al., 2021). The possibility of developing classifications of plant species in 

these areas is a key tool in the river restoration of these spaces (Martínez-Fernández et 

al., 2018; Zema et al., 2018). 

On the other hand, the study of riparian vegetation in Mediterranean areas by 

means of remote sensing techniques presents certain limitations due to the complexity of 

its distribution and the similarity in the spectral response that many of its species present 

(Huylenbroeck et al., 2020; Dufour et al., 2019). An additional difficulty for automatic 

classifications comes from the strong variability of its vegetative phases throughout the 

year and its different adaptation to the environment according to its location and 

environmental conditions (Rivaes et al., 2013; Camporeale and Ridolfi, 2006). 

More specifically, in the Serpis river Basin (Júcar River Basin District) the 

ecological status (CHJ, 2019) is worse than good in the water bodies downstream of the 

Beniarrés dam, which constitutes the study area of this piece of research. Regarding the 

hydromorphological status, it presents some degree of hydrological alteration due to the 

dam operation, as well as morphological alteration or channelization, especially in the 

lower segments in the county of La Safor. Its biological status is good according to the 

macroinvertebrate biological indicator (IBMWP) and its chemical status is not good due 

to the chemical pollution associated with the presence of a surplus of nitrogen, derived 

from the intensive agricultural exploitation in the annexed areas. In the area of influence 

of the Serpis River, there is a notable extension of invasive plant species, such as the giant 

cane, which means specific threats to the correct development of the natural aquatic 

habitats, causing imbalances in their dynamics. The possibility of separating this invasive 

vegetation as an independent class from the rest will allow us to evaluate their distribution 

and colonization areas to carry out control and conservation tasks. The characteristic 

morphology and physiology of the giant cane (Arundo donax) in comparison with native 

riparian species allow it to dominate the riparian forest in most environmental conditions 

and therefore negatively affect the development of common native species (Coffman, 

2007). 

Considering the aforementioned threats and opportunities, this piece of research 

can contribute with a methodology for the classification of riparian vegetation, using 

remote sensing techniques on multispectral satellite images.  
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The main objective of this work was to propose a workflow and analyse the 

capability of remote sensing techniques and geographic information systems (GIS) in the 

classification of different succession phases of riparian vegetation, in a target section of 

the Serpis River. Due to restrictions in budget and image availability at the time of the 

study, this study is based on images of the QuickBird© platform. To carry out this general 

objective, the present work has been structured into various work phases: 

 

• Analysis of the study area in the field to determine the phases of riparian vegetation 

succession to be classified in the riparian zone (Garófano-Gómez et al., 2013; García-

Arias et al., 2013; Garófano-Gómez et al., 2010). 

• Pre-treatment of radiometric and topographic correction of the multispectral QuickBird© 

images on which the supervised classification was performed. 

• Application of different supervised classification methods on the multispectral image, 

in the calibration segment. 

• Validation of the classification methods in the validation segment. 

• Comparison of classification methods and discussion on the images quality and its 

suitability to classify vegetation in the riparian zone in Mediterranean regulated river 

systems. 
 

5.2 Methods  
 

5.2.1 Study area 
 

The study area comprises the section of the Serpis River within the gorge named 

as “Estret del Infern” (translated as “Hell’s gorge”) below the Beniarrés dam, in the 

municipality of Villalonga (Figure 5.1). 

The Beniarrés dam is the only one in the Serpis River from its source in the 

vicinity of the town of Alcoi to its mouth in the sea. The total length of the river is 74.5 

km and its river basin has an area of 752.8 km2. The predominant type of climate in the 

basin is the Mediterranean coast, with an average annual temperature of 16.3 ºC and an 

average annual rainfall of 630 mm (Garófano-Gómez et al., 2011). Its hydrological 

regime develops its maximum values of river flow in the month of January and its 

minimum in August, something very common in Mediterranean rivers. Along the river 

course we can find some areas with native riparian vegetation, related to the variable 

conditions in the channel morphology, the permanent water course and the abundant 

springs that it presents (Garófano-Gómez et al., 2011). However, there is an increasing 

presence of invasive species, especially the giant cane or elephant grass (Arundo donax), 

especially downstream of the gorge, which completely hinder the natural development of 

the riparian ecosystem. 
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Figure 5.1. Location of the study area. The red square defines the Estret del Infern 

extension. 

In the upper sections of the Serpis River, between Beniarrés dam and the Estret 

del Infern the variability of species is greater than in the lower sections, between the gorge 

and the Mediterranean Sea. In addition, along this low-lying area that circulates near the 

towns of Potries, Gandía, among others, the overpopulation of giant cane is very visible 

(Garófano-Gómez et al., 2011), which has a great impact on the natural course of the 

riparian ecosystem and the human activities in this territory, with a high cultural and 

environmental interests. 

5.2.2 Classification of vegetation in succession phases 
 

The succession phases were used to classify the habitats of riparian vegetation, 

based on the scientific report of the project "Riparian vegetation modelling for the 

assessment of environmental flow regimes and climate change impacts within the Water 

Framework Directive" (RIPFLOW). These phases allow us to observe and analyse how 

the riparian succession takes place, in relation with the hydrological conditions and the 

Mediterranean climate forest. The RIPLOW it is a distributed and dynamic model that, 

by establishing successions and retrogressions in response to physical parameters, is 

capable of simulating the distribution of riparian vegetation in time and space. It has an 

annual time step and is divided into five modules, corresponding to the five processes 

considered: recruitment, destructive effect of floods, duration of floods, plant 

transpiration and succession change (Garcia-Arias et al., 2011).  

The classification of vegetation in phases of vegetation succession is key when 

entering the necessary data for the development of the model in its different modules. In 
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the first module of the RIPFLOW model (i.e., recruitment), the changes in morphology 

and elevations of the water table are considered to estimate the pioneer zones where the 

recruitment of the riparian woodland species can develop. 

In the second module of the RIPFLOW model, it allows the evaluation of maps of 

shear stress in the river bed, in order to determine whether a given river flow in a given 

habitat could produce the removal and transport of the existing plants; this depends on 

the phase of succession in the habitat to be evaluated. In the module related to flood 

duration, the model contemplates the retrogression of the vegetation phases caused by 

physiological stress under inundation (related with lack of oxygen in the roots). Such 

stress or even the death of the plants relates with factors such as the succession phase, age 

of the plants and the severity of the impact (duration). 

In the module of soil moisture, the availability of water in the soil is analysed by 

functional types of vegetation, in which the plants of the different succession phases 

would be clustered. Finally, the last module considers the results of the previous modules 

to evaluate whether the vegetation has reached sufficient age to evolve towards another 

phase or to another line of succession. 

The succession phases, which represent the riparian habitats in the study area, 

were 6: Bare ground, herbs, giant cane, shrubs (young successional woodland), 

caducifolious trees, and perennial trees. Within herbs, the observations can gather species 

of different character, such as recruitment of woody riparian species (e.g., genus Salix 

and Populus), shrubs or herbs in the first stages of life. The trees usually cover the most 

mature stage of the vegetation; although some phases in the riparian succession only 

include riparian caducifolious trees, the most mature stage in the riparian woodland 

frequently include intolerant species and some terrestrial species combined with the 

strictly riparian ones. These phases reflect the range of vegetation that predominates in 

the Mediterranean riparian ecosystem (Garófano-Gómez et al., 2014; Rivaes et al., 2014).  

The only class that exclusively represents an invasive vegetation type is the class 

of giant cane. This class has been introduced separately due to the interest of classifying 

these habitats that have spread widely throughout the region, and which needs urgent 

management and control measures (Maceda-Veiga et al., 2016; Coffman et al., 2010). 

To obtain a classification of the study area, trying to avoid the complexity that the 

different vegetation phases present, we defined the succession phases of vegetation 

grouping the different types of riparian vegetation as defined in Figure 5.2. This responds 

to the need to use a series of classes that have a sufficient distance between them so that 

the interference that they could generate in the classified model is minimal. 
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Figure 5.2. Simplification of plant categories. P represents Pinus, S refers to Salix. 

The bare ground class was assigned to areas where there is no vegetation or exists 

with a low percentage. These phases correspond on the plant succession that are expected 

to be found in our study area, with the herbs class being the least evolved phase and 

perennial trees the most advanced. 

The most common vegetation species of caducifolius trees in our study area (after 

Garófano et al., 2019) are Populus nigra and Populus alba. For its part, the perennial 

trees class presents types of coniferous vegetation such as Pinus halepensis and Pinus 

pinaster. The class of shrubs refer mainly to several species of Salix, Salix eleagnos 

subsp. angustifolia, Salix atrocinerea, Salix purpurea, and others like Nerium oleander, 

and perennial trees of small size and low height of the genus Pinus. The herbs phase 

comprises very diverse species in the area, where we can highlight some species such as 

Scirpus holoschoenus, Sparganiun erectum, Thypha latifolia and Phragmites australis. 

And finally, the giant cane class is constituted mostly by the invasive species Arundo 

donax (Garófano et al., 2019). 

Considering the initial classification of the vegetation in succession phases, 

different cases were considered by reducing the number of classes. The second and third 

cases of analyses were intended to improve the results and reduce the errors associated 

with adjusting the classified values to reality. The second case consisted of 5 vegetation 

phases, bare ground, herbs, giant cane, deciduous trees, and non-deciduous trees. For this 

attempt the classes of perennial vegetation shrub and perennial trees were joined, justified 

by the fact that their vegetative state is very similar for the date of study. A third case 

considered 4 phases of vegetation, bare ground, herbs, caducifolious trees and perennial 

trees. For this, in addition to the previous fusion, herbs and giant canes classes were 

joined, due to the similarity and correspondence between the patterns that their spectral 

signature marks. 

5.2.3 Data acquisition 
 

A QuickBird© image registered in October 2008 was used in this study due to the 

possibility of coordinating the field data capture mission with this date. This satellite 

image has a multispectral sensor with four bands: blue (450 - 520 nm), green (520 - 600 
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nm), red (630-690 nm) and near infrared (760-900 nm) bands; its spatial resolution is 2.4 

meters as a ground sample distance (GSD). A previous process of radiometric and 

topographic correction of the satellite image was applied. The Envi 5.0 © software were 

used, that provides the Fast Line-of-sight Atmospheric Analysis of Hypercubes 

(FLAASH©) tool to image radiometric calibration. This software has orthorectification 

tools to generate a geometric correction to the multispectral image based on the digital 

elevation model (DEM) and ground control points (GCPs) based on terrain real data. 

The selection of the calibration segment was based on the criteria of sufficient 

presence of the different phases of vegetation succession aforementioned, and the 

possibility of access to the area for the field measurement. The absence of shadows in the 

multispectral satellite image to be classified in the calibration segment was also 

considered for the correct discrimination of the information (Song et al., 2015). The 

validation segment was delimited in an area totally independent from the calibration 

segment, but including the same vegetation succession phases. Its condition and 

characteristics were intended to be similar; therefore, this segment was also within the 

same gorge at a short distance from the calibration segment. Likewise the calibration 

segment, the segments presenting shadows or distortions in the radiometry of the satellite 

image were excluded from selection. 

The field data for calibration were measured and recorded in a previous work 

(Garófano-Gómez et al., 2011). To capture this information, classical topography 

techniques were used in the 257 meters of length of this calibration segment. The 

complete field segmentation of the calibration zone was generated (Figure 5.3); for this 

task, each of the vegetation patches were identified with the dominant (> 80% of cover) 

vegetation succession phase. Other criteria for the patches delineation were an area equal 

or larger than 5 m2, for greater clarity and representativeness of the samples (Garófano-

Gómez et al., 2011). Table 5.1 indicates the distribution of vegetation succession phases 

in the calibration and validation river segment. In the validation segment, the polygons of 

vegetation were identified and delimited with the help of topographic references and 

aerial images. We attended the same classes aforementioned, and the same criteria 

concerning the dominant vegetation succession phase and the minimum polygon area. In 

the extraction process, we eliminated areas where due to the inclination of the sun and the 

orography and morphology, shadows invalidated the radiometric values of the land cover. 
 

Table 5.1. Distribution of vegetation succession phases in the calibration and validation 

river segments. 

Class Value 
Calibration area Validation area 

Number of 

patches 

Total area 

(m2) 

Number of 

patches 

Total area 

(m2) 

caducifolious trees 7 3420 9 2818 

perennial trees 5 2832 14 4580 

shrubs 14 2900 22 8560 

giant cane 4 322 8 965 

herbs 28 2400 19 5672 

Total 58 11874 72 22595 
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Figure 5.3. Map of the succession phases of riparian vegetation identified in the 

calibration segment of the Serpis River (WGS84 / UTM zone 30N). 

 

Figure 5.4. Segment of the Serpis River delimited as a validation zone and vegetation 

patches measured in the field (WGS84 / UTM zone 30N) 
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5.2.4 Calibration of supervised classification models  
 

After delimiting the calibration segment in the field, square polygons of 2.4 meters 

side were defined in a vectorial file to represent the different succession phases. The 

distribution of these patches was performed to cover the entire calibration segment along 

the river stream, and that each polygon was separated from the others to avoid possible 

influence or overlaps (Figure 5.5). The number of regions was 20 for each class, the same 

number for all the succession phases. These patches were taken as calibration data to 

classify each of the vegetation phases. 

 

Figure 5.5. Regions of interest (ROIs) selected as training sample for supervised 

classification (WGS84 / UTM zone 30N), in the calibration zone. 

Before applying the different supervised classification algorithms, a separability 

analysis was performed between the selected classes. For this task, the regions of interest 

defined in figure 5.5 were taken as patterns of the spectral response for each class. To 

analyse these values, we applied the Jeffries-Matusita distance analysis and the 

Transformed Divergence analysis, which indicate the separability between the ROI of the 

different classes, in values between 0.963 and 2.000 (Tables 5.2, 5.5 and 5.8). This 

analysis allowed us to verify the quality and spectral distance between the regions to be 

used as calibration areas in the supervised classification (Büttner et al., 1988; Metternicht 

and Zinck, 1998; Ustin et al., 2009). Furthermore, a study of the spectral signatures of the 

vegetation succession phases was carried out to analyse possible anomalous patterns. 

The supervised classification methods used and compared in this study were 

minimum distance, maximum likelihood, parallelepiped, Mahalanobis distance and 

artificial neural networks (ANN). 
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These classification models were chosen because of their good results and 

applicability in the classification of land cover based on satellite multispectral images 

(Souza et al., 2013; Duarte et al., 2018). Previous studies compared and analysed the use 

of the classification methods maximum likelihood, minimum distance, Mahalanobis 

distance and parallelepiped methods in the vegetation classification and mapping from 

multispectral satellite images (Govender et al., 2008; Shen et al., 2010) providing good 

results with a good fit to the defined vegetation classes and high overall accuracy and 

kappa coefficient values. That is why we consider appropriate the use and analysis of 

these methods for our study area. In addition, other studies compared and evaluated the 

classification of vegetation utilizing maximum likelihood and ANN methods (Paola and 

Schowengerdt, 1995; Sunar et al. 2004) showing a trend in the results that improved those 

raised by simpler models based on distance calculation such as the minimum distance, 

Mahalanobis distance and parallelepiped methods. Diverse studies have used these 

vegetation classification methods on satellite multispectral images obtaining good results 

(Nivedita Priyadarshini et al., 2018; Sisodia et al., 2014), for this reason we decided to 

evaluate their application and behaviour obtained for our study area. 

Maximum likelihood is a parametric method based on the normal statistical 

distribution of the values (Erdas, 1999). The probability density functions used in these 

methods are created for each of the classes based on the spectral values obtained from the 

training data (Hagner and Reese, 2007). In the classification process, all unclassified 

pixels are assigned a class membership, based on the results obtained in the relative 

probability function (Lillesand et al., 2004).  

The ANN are based on a continuous learning of the values that are reached to 

better adjust the model values (Cromp, 1991; Short, 1991). The ANN are defined as a 

variable number of weighted and interconnected processing phases for each of the layers 

in the network. The phases acquire input data, analyse it and operate it, and then transfer 

it through predefined functions. The comparison of the resulting values with respect to 

the reference data is carried out and a readjustment of the weights between the realizations 

is carried out according to a specified learning rule. This process is repeated until the 

network has been trained with the continuous adjustment of the weights; it is possible to 

classify the training data obtaining results below a specified error threshold (Cairns, 

2001).  

Concerning the methods of minimum distance, parallelepiped, and Mahalanobis 

distance, they are based on the calculation of different kind of distances between the 

elements of the model (pixels) to determine the most probable class in each case. The 

calculation of the distance for each of the methods is based on different parameters. 

The minimum distance classifier is based on the minimum distance between the image 

data and each class value in a multi-feature space (Fisher, 1936; Wald, 1944). The 

Parallelepiped method generates decision boundaries attending on the values defined on 

the region of interest for each case and evaluating the distances between these and each 

pixel, its final value will be assigned (Pawlak, 1982; Komorowski, 1999). The dimensions 

of the parallelepiped boundaries are defined as a function of the mean of the standard 

deviation threshold for each class evaluated. If the pixel value is between the low and the 

high threshold for all n bands being classified, then the pixel is assigned to that class (Sun, 

2016). The last method based on distances, Mahalanobis distance, refers the distance 
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calculation according to the statistical variation of each component using the covariance 

matrix of the observed sample (Mahalanobis, 1936). 

In the case of ANN, the statistical values obtained in each iteration were analysed 

with the aim of analysing their trend and preventing the possible overfitting of the model. 

The model was trained with different number of iterations, in order to obtain the optimum 

number (100, 300, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1500, 5000 and 8000 

iterations). The overall accuracy value for each iteration was considered to evaluate the 

performance of the models. 

After the application of each one of the supervised classification algorithms, the 

confusion matrix was generated for each of the obtained models, taking as reference (true 

values) the regions of interest (ROIs) of each class (vegetation succession phase). This 

matrix shows the number of cases correctly classified, the cases of false positives and the 

false negatives in the determination of each class. Based on this matrix, the performance 

of the model was evaluated with the overall accuracy and the kappa coefficient (Cohen, 

1960; Congalton, 1991), and the omission and commission errors were considered for 

comparison. 

Attending on the values of the confusion matrix for each classification method, 

we merged some phases of vegetation succession, thus generating different study cases. 

For each of the three cases, were created new ROIs to be the training areas for the model’s 

calibration. For each of the classes defined, 20 ROIs were distributed throughout the 

calibration river segment. 

5.2.5 Validation of supervised classification models 
 

Once all the supervised classification algorithms had been applied to the 

calibration river segment, a statistical process of models validation was carried out. 

ArcGis© software allow us to generate the analysis and comparison process between the 

models results and the validation data. 

To carry out the validation on the defined area, an extraction mask was applied to 

the entire QuickBird© satellite image already classified, to generate the process in an area 

with real field data independent of those used in the calibration phase. This validation 

segment has 580 metres of longitude along the river main axis (figure 5.4) and was 

divided in 95 patches (polygons) attending to the vegetation succession phases (Table 

5.1).  

The validation process using the ArcGis© software, was based on creating 20 

control points per vegetation phase, randomly distributed throughout the validation 

polygons (vegetation patches). These points were assigned a real class value (data based 

on values taken on the images) and the estimated or modelled value obtained from each 

of the supervised classification models. With these points, a confusion matrix was 

generated, upon which we estimated the indicators of performance (quality of adjustment) 

aforementioned, for each of the supervised classification models, like in the calibration 

phase.  In this validation phase, the performance indicators allow us to compare the 

models and discuss which works and best fit our data and the characteristics of our study 

area. 

https://www.sciencedirect.com/topics/computer-science/covariance-matrix
https://www.sciencedirect.com/topics/computer-science/covariance-matrix
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The use of the overall accuracy performance indicator is very common in 

characterization and classification studies of land cover and vegetation types. Through 

this indicator we can better understand the probability that an individual will be correctly 

classified by a model, this being the sum of the true positives together with the true 

negatives, all divided among the total samples analysed (Domaç and Süzen, 2006).  
 

5.2.6 Stepwise procedure to select the optimal number of classes 
 

After the initial classification in 6 classes of riparian vegetation succession phases, 

three consecutive cases of calibration and validation were performed, reducing the 

number of classes one by one. This process was carried out to find the best possible model 

(best performance) to fit to the vegetation classes present. In the second and third steps, 

the procedure consisted of merging two classes with similar radiometric and spectral 

behaviours, as well as similar plant status due to the time of year in which the study took 

place. The three cases of classification were the following: 

 

• Case 1: 6 classes; Bare ground, herbs, giant cane, shrubs, caducifolious trees and 

perennial trees. 

• Case 2: 5 classes; Bare ground, herbs, giant cane, caducifolious trees and 

perennial trees. For this case, the classes of perennial vegetation shrub and 

perennial trees were joined, justified by the fact that their vegetative state is very 

similar for the date of study. 

• Case 3: 4 classes; Bare ground, herbs, caducifolious trees and perennial trees. 

For this, in addition to the previous fusion, herbs and giant cane classes were 

joined, due to the similarity and correspondence in the patterns of their spectral 

signatures. 

For each of the cases, different ROIs were distributed in the two river segments, 

i.e. for calibration and validation. Such configurations were made to obtain the maximum 

separability between classes and in order to exclude or minimise possible correlations 

between their spectral signatures. Then the application of all the classification algorithms 

proposed was based on the ROIs values defined for each case. The validation was carried 

out based on those ROIs selected in the validation river segment, with the same number 

per class in the ArcGis© software (20 ROIs per class). The calibration and validation 

regions of interest were defined attending the best configuration and distribution of pixels 

at the study section. The main objective was to obtain the necessary values for each phase 

of the workflow obtaining the equal proportion and distribution of each of the vegetation 

succession phases. 
 

5.3.7 Application of the selected model in an additional study area 
 

Once the classification models had been calibrated and validated, the method that 

best suited our area and training classes was selected. We then proceeded to its application 

on another study area of the Serpis River, to produce a classification of the different 

phases of vegetation along 10 kilometres of the riparian zone. This area included the 

Serpis River downstream from the Beniarres dam; specifically from the river channel just 
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below the dam until a point below the town of Lorcha, about 3 km within the Estret de l’ 

Infern. 

On that image, an extraction mask of 25 meters was generated on each side of the 

river channel, without considering the strip of water. The resulting study area comprises 

all or most of the riparian forest, where the riparian management measures could be 

recommended. The selected best-performing model was applied to this new area; 

therefore, the percentage of pixels by class and the area that they occupy in the extension 

of the analysis area were calculated. 

5.3 Results 
 

In the three following sub-sections we present the results of the calibration in the 

three cases for classification of vegetation succession phases, in the five models. Due to 

the diverse cases raised and calculated for each classification, according to the number of 

classes to be modelled, in the fourth sub-section the results of validation are shown for 

the best-fitting model only. 

5.3.1 Calibration  
 

5.3.1.1 Case 1: 6 classes 
 

In this case, 6 succession phases were separated; bare ground, herbs, giant cane, 

shrubs, caducifolious trees and perennial trees. The indicators of the separability, in Table 

5.2, demonstrates the classes that present greater separability are caducifolious tree with 

respect to ground (1.997) and with respect to herbs (1.996). Meanwhile, the worst 

separability values are shown among herbs and giant cane (0.963). 

Table 5.2. Maximum and minimum values of separability between classes for case 1. For 

brevity, the rest of combinations across classes were omitted in this table. 

Classes Jeffries-Matusita Transformed Divergence 

shrubs-giant cane 1.364 – 1.721 1.364 

shrubs-herbs 1.343 – 1.542 1.343 

herbs-giant cane 0.963 – 1.247 0.963 

caducifolious tree - herbs 1.997 – 1.999 1.997 

caducifolious tree - ground 1.996 – 2.000 1.996 

caducifolious tree - shrubs 1.961 – 1.999 1.967 
 

After the models calibration, the confusion matrix was generated for the five 

calibrated models, taking as reference marks the ROIs defined above (20 ROIs per class). 

The best and worst values among the five models corresponded to the maximum 

likelihood with an overall accuracy of 88.33% and a kappa coefficient of 0.86, and the 

parallelepiped method with an overall accuracy of 54.17% and a kappa coefficient of 

0.45, respectively. The following confusion matrices display the percentage of pixels that 

were correctly classified and those meaning model errors, that is, assigned to different 

class by the models (Tables 5.3 and 5.4). The reference class data (reference data, true 

class) is indicated in the heading of columns and the model result (classified data) in each 

of the classes are indicated in rows. 
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Table 5.3. Confusion matrix for calibration of the maximum likelihood method, in terms 

of percentage of pixels to the total. In bold, the cases correctly classified in each of the 

classes. 

  Reference data 

   CT PT S GC H G 

C
la

ss
if

ie
d
 d

at
a 

CT 95 0 0 0 0 0 

PT 0 90 5 0 5 0 

S 5 5 90 5 10 0 

GC 0 0 5 85 15 0 

H 0 5 0 10 70 0 

G 0 0 0 0 0 100 

T 100 100 100 100 100 100 

CT= Caducifolious tree; PT= Perennial trees; S= Shrubs; GC=Giant cane; H=Herbs; 

G=Ground; T=Total 

Table 5.4. Confusion matrix for calibration of the parallelepiped method, in terms of 

percentage of pixels to the total. In bold, the cases correctly classified in each of the 

classes. 

  Reference data 

   CT PT S GC H G 

C
la

ss
if

ie
d
 d

at
a
 

CT 95 10 0 0 0 0 

PT 5 90 95 70 70 0 

S 0 0 5 5 5 0 

GC 0 0 0 25 15 0 

H 0 0 0 0 10 0 

G 0 0 0 0 0 100 

T 100 100 100 100 100 100 

CT= Caducifolious tree; PT= Perennial trees; S= Shrubs; GC=Giant cane; H=Herbs; 

G=Ground; T=Total 

The values of overall accuracy obtained for the series of iterations of the ANN are 

shown in Figure 5.6. A significant increase in the overall accuracy value with respect to 

the initial values was observed in the iteration 900. 
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Figure 5.6. Overall accuracy values obtained for each ANN in the iteration, in the case 

1 (6 classes). 

5.3.1.2 Case 2: 5 classes 
 

This second case was generated with 5 different classes; bare ground, herbs, giant 

cane, caducifolious trees and perennial trees (including shrubs).  

The calculation of separability between classes using the Jeffries-Matusita 

distance analysis and the Transformed Divergence are shown in Table 5.5. Likewise the 

previous case, the classes that present greater separability are caducifolious tree with 

respect to ground (1.996) and with respect to herbs (1.998). And the worst separability 

corresponds to herbs and giant cane (0.916). 

Table 5.5. Maximum and minimum values of separability between classes for case 2. 

 Classes Jeffries-Matusita Transformed Divergence 

caducifolious trees - perennial trees 1.722 – 1.956 1.722 

perennial trees – herbs 1.570 – 1.800 1.570 

herbs - giant cane 0.916 – 1.109 0.916 

caducifolious trees – herbs 1.998 – 1.999 1.998 

caducifolious trees - ground 1.996 – 2.000 1.996 

caducifolious trees - giant cane 1.982 – 1.999 1.982 
 

Once the ROIs were re-classified into these 5 classes, each of the supervised 

classification algorithms were applied to obtain the corresponding models. Likewise, the 

confusion matrices were generated for each of the models, taking reference values from 

the ROIs defined in the classification process. 

For this second case the best and worst values obtained from these matrices were 

for the maximum likelihood with an overall accuracy of 91% and a kappa coefficient of 

0.89 and for the parallelepiped method with an overall accuracy of 65% and a kappa 

coefficient of 0.56, respectively. and for the maximum likelihood with an overall accuracy 

of 91% and a kappa coefficient of 0.89 and with the following confusion matrices 

(percentage values between the number of brands in each case with respect to the total) 

(Table 5.6 and 5.7). The confusion matrices display the percentage of pixels that were 

correctly classified and those meaning model errors. That is, assigned to different class 

by the models (Table 5.6 and 5.7). The reference class data (reference data) is indicated 
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in the heading of columns and the model result (classified data) in each of the classes are 

indicated in rows. 

Table 5.6. Confusion matrix for the calibration of the maximum likelihood method, in 

terms of percentage of pixels to the total. In bold, the cases correctly classified in each of 

the classes. 

  Reference data 

   CT PT GC H G 

C
la

ss
if

ie
d
 d

at
a
 CT 95 0 0 0 0 

PT 5 95 0 5 0 

GC 0 0 90 20 0 

H 0 5 10 75 0 

G 0 0 0 0 100 

T 100 100 100 100 100 

CT= Caducifolious trees; PT= Perennial trees; GC=Giant cane; H=Herbs; G=Ground; 

T=Total 
 

Table 5.7. Confusion matrix for calibration of the parallelepiped method, in terms of 

percentage of pixels to the total. In bold, the cases correctly classified in each of the 

classes. 

  Reference data 

   CT PT GC H G 

C
la

ss
if

ie
d
 d

at
a
 CT 95 10 0 0 0 

PT 5 90 70 70 0 

GC 0 0 30 20 0 

H 0 0 0 10 0 

G 0 0 0 0 100 

T 100 100 100 100 100 

CT= Caducifolious trees; PT= Perennial trees; GC=Giant cane; H=Herbs; G=Ground; 

T=Total. 

Also for this case 2, the overall accuracy values obtained for the different 

iterations of the ANN were calculated and shown in Figure 5.7. For this second case, we 

found an improvement in the overall accuracy with respect to the initial values, and the 

trend shows that around the iteration 900 it presents a better value. 
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Figure 5.7. Overall accuracy values obtained for each ANN iteration at case 2. 
 

5.3.1.3 Case 3: 4 classes 
 

The last case had 4 classes; bare ground, herbs (including giant cane), 

caducifolious trees and perennial trees. This case offered the separability values shown in 

the Table 5.8. For this last case the classes that present greater separability are 

caducifolious tree with respect to the ground (1.998) and with respect to herbs (1.997). 

The worst separability corresponded to perennial trees versus herbs (1.570). 

Table 5.8. Maximum and minimum values of separability between classes for case 3. 

Classes Jeffries-Matusita Transformed Divergence 

caducifolious trees - perennial trees 1.722 – 1.956 1.722 

perennial trees – herbs 1.570 – 1.800 1.570 

herbs - ground 1.802 – 2.000 1.802 

perennial trees - ground 1.912 – 1.999 1.912 

caducifolious trees - herbs 1.997 – 2.000 1.997 

caducifolious trees - ground 1.998 – 2.000 1.998 

 

For this third case the best and worst values of performance were for the maximum 

likelihood, with an overall accuracy of 96.25% and a kappa coefficient of 0.95, and for 

the parallelepiped method with an overall accuracy of 78.75% and a kappa coefficient of 

0.72, respectively. The confusion matrices, in percentage of pixels, corresponded to the 

Tables 5.9 and 5.10. The reference class data (reference data) is indicated in the heading 

of columns and the model result (classified data) in each of the classes are indicated in 

rows.  

Table 5.9. Confusion matrix for maximum likelihood method calibration, in terms of 

percentage of pixels to the total. In bold, the cases correctly classified in each of the 

classes. 
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  Reference data 

   CT PT H G 
C

la
ss

if
ie

d
 d

at
a CT 95 0 0 0 

PT 5 95 5 0 

H 0 5 95 0 

G 0 0 0 100 

T 100 100 100 100 

CT= Caducifolious tree; PT= Perennial trees; H=Herbs; G=Ground; T=Total 
 

Table 5.10. Confusion matrix for calibration of the parallelepiped method, in terms of 

percentage of pixels to the total, in terms of percentage of pixels to the total. In bold, the 

cases correctly classified in each of the classes. 

  Reference data 

   CT PT H G 

C
la

ss
if

ie
d
 d

at
a CT 95 10 0 0 

PT 5 90 70 0 

H 0 0 30 0 

G 0 0 0 100 

T 100 100 100 100 

CT= Caducifolious trees; PT= Perennial trees; H=Herbs; G=Ground; T=Total 

In this case, the overall accuracy for the iterations of the ANN were calculated and 

shown in Figure 5.8. Finally, in the last case, we find also an improvement in the overall 

accuracy value with respect to the previous case, and presents the best values at the 

iteration 900.  

 

 

Figure 5.8. Overall accuracy values obtained for each ANN iteration at case 3. 
 

 

5.3.2 Validation 
 

The following Table 5.11 presents a summary of the overall accuracy obtained in 

the validation process for each of the applied methods, in the three cases. For the artificial 
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neural network (ANN), the overall accuracy corresponds to the same model indicated in 

the calibration phase.  

Table 5.11. Values of overall accuracy for each classification method in the three cases. 

In bold, the best value in each of the cases. 

Supervised classification method  6 classes 5 classes 4 Classes 

Minimum distance 0.167 0.280 0.320 

Maximum likelihood 0.258 0.330 0.350 

Parallelepiped 0.194 0.231 0.338 

Mahalanobis distance 0.233 0.270 0.313 

Artif. neural network (900 iterations) 0.208 0.290 0.340 

 

5.3.2.1 Validation - case 1 
 

In the first case, the maximum likelihood presented the best performance among 

the five models (0.258), followed by the Mahalanobis distance method with a very similar 

value (0.233). For the second case (5 classes), the performance was only slightly higher; 

the best model evaluated with the overall accuracy was maximum likelihood (0.330) 

again, and the second was the ANN with 900 iterations (0.290). For the third case (4 

classes), there was another slight increase of performance; the highest overall accuracy 

corresponded to the model of maximum likelihood (0.350), although the ANN (with 900 

iterations) obtained a practically equal fit (0.340). 

Considering the general view of the validation in the 3 study cases, it is generally 

the model of maximum likelihood the one offering the best performance in the river 

segment of validation. Nevertheless, the overall accuracy for this model tends to reduce 

the differences with the rest of the models, as the number of vegetation classes is reduced. 

Table 5.12 is the confusion matrix for the model of maximum likelihood (case 1), 

where the reference class data (true class) is indicated in the heading of columns and the 

model result (classified data, or modelled data) in each of the classes are indicated in 

rows. For brevity, the confusion matrices of other models are not presented here, for the 

case 1. 

In this first case, with 6 classes, considering the value of the user accuracy, the 

classes that shows lowest number of false positives is giant cane and caducifolious tree 

thus they have fewer commission errors (Table 5.12). On the other hand, the class with 

the best producer accuracy is herbs, thus there are fewer false negatives (omission errors). 

Going for details about this model’s errors, the caducifolious tree presented 4 errors per 

commission and 15 by omission. The perennial trees had 15 errors per commission and 

15 by omission. The shrubs class had 25 errors by commission and 15 by omission. The 

herbs class had 32 commission errors and 9 omission errors; some pixels of all the other 

types were classified as herbs by mistake. The giant cane had 3 commission errors and 

16 by omission, and the ground class has 10 commission errors and 19 by omission. 

Considering the user and producer accuracy values, in this first case we can see 

important differences between the two for most of the classes. The omission errors for 

the caducifolious tree, giant cane and ground are high, thus the model tend to 
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underestimate their extension; herbs and shrubs suffer from more commission errors, i.e., 

the model overestimate their presence. 

Table 5.12. Confusion matrix for the validation of the maximum likelihood method (case 

1). The values in each cell of the matrix represent the number of ROIs related to each case 

(N = 20 per class). In bold, the cases correctly classified by class. 

  Reference data 

   CT PT S GC H G T UA 

C
la

ss
if

ie
d
 d

at
a
 

CT 5 2 2 0 0 0 9 0.556 

PT 5 5 0 3 2 5 20 0.25 

S 6 4 5 4 4 7 30 0.167 

GC 0 0 1 4 2 0 7 0.571 

H 3 5 9 8 11 7 43 0.256 

G 1 4 3 1 1 1 11 0.091 

T 20 20 20 20 20 20 120  
PA 0.25 0.25 0.25 0.2 0.55 0.05     

CT= Caducifolious trees; PT= Perennial trees; S= Shrubs; GC=Giant cane; H=Herbs; 

G=Ground; T=Total; UA=User accuracy; PA=Producer accuracy 

Table 5.13 shows the confusion matrix for the model of Mahalanobis distance, 

where the class with the lowest number of false positives (commission errors) is giant 

cane. On the other hand, the class with the best producer accuracy is shrubs, having fewer 

false negatives (omission).  The user accuracy for herbs, ground and caducifolious trees 

were low, thus they tend to overestimate these classes. Considering the confusion matrix, 

the user and producer accuracy by class, the comparison with maximum likelihood was 

made in more detail (Table 5.12 and 5.13). For this method, the caducifolious trees 

presented 16 errors per commission and 16 by omission (very well balanced). The 

perennial trees had 11 errors per commission and 16 by omission. The shrubs had 33 

errors by commission and 10 by omission. The herbs class had 12 commission errors and 

17 omission errors. The giant cane had 4 commission errors and 17 by omission, and the 

ground class had 16 commission errors and 16 by omission. 

The omission errors for the perennial trees, herbs and giant cane classes are high, 

thus they tend to underestimate the spatial extension of the class, whereas shrubs suffered 

more commission errors and tend to be overestimated. 
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Table 5.13. Confusion matrix for the validation of the model with Mahalanobis distance. 

The values in each cell of the matrix represent the number of ROIs related to each case 

(N = 20 per class). In bold, the cases correctly classified by class. 

  Reference data 

   CT PT S GC H G T UA 

C
la

ss
if

ie
d
 d

at
a 

CT 4 5 4 3 1 3 20 0.20 

PT 1 4 2 2 3 3 15 0.27 

S 8 5 10 6 5 9 43 0.23 

GC 2 0 0 3 1 1 7 0.43 

H 4 4 1 3 3 0 15 0.20 

G 1 2 3 3 7 4 20 0.20 

T 20 20 20 20 20 20 120  
PA 0.20 0.20 0.50 0.15 0.15 0.20     

CT= Caducifolious trees; PT= Perennial trees; S= Shrubs; GC=Giant cane; H=Herbs; 

G=Ground; T=Total; UA=User accuracy; PA=Producer accuracy 

In this first case, we observe how the two best methods tend to underestimate the 

class of giant cane and overestimate the class of shrubs. 

5.3.2.2 Validation - case 2 
 

For the case 2, where 5 classes were considered, the validation indicated 

maximum likelihood as the best classification method. The confusion matrix for this 

model, in Table 5.14, shows the reference class data was defined at each column and the 

classified class data was presented for each row. 

Table 5.14. Confusion matrix for the validation of the maximum likelihood method. The 

values in each cell of the matrix represent the number of ROIs related to each case (N = 

20 per class). In bold, the cases correctly classified by class. 

  Reference data 

   CT PT GC H G T UA 

C
la

ss
if

ie
d
 d

at
a
 

CT 4 1 1 0 2 8 0.5 

PT 5 4 1 1 6 17 0.24 

GC 1 4 7 3 2 17 0.41 

H 8 8 7 14 6 43 0.33 

G 2 3 4 2 4 15 0.27 

T 20 20 20 20 20 100  
PA 0.2 0.2 0.35 0.7 0.2     

CT= Caducifolious trees; PT= Perennial trees; GC=Giant cane; H=Herbs; G=Ground; 

T=Total; UA=User accuracy; PA=Producer accuracy 

In this case, the value of the user accuracy shows that the class with the lowest 

number of false positives is also giant cane and caducifolious trees, so they have fewer 

commission errors (Table 5.14). On the other hand, the class with the best producer 

accuracy is herbs, so there are fewer false negatives, and therefore contains minor errors 

of omission.  
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Concerning the maximum likelihood method, the caducifolious trees presented 4 

errors per commission and 16 by omission. The perennial trees class had 13 errors per 

commission and 16 by omission. The herbs class had 29 commission errors and 6 

omission errors. The giant cane class had 10 commission errors and 13 by omission, and 

the ground class had 11 commission errors and 16 by omission. 

The omission errors for the caducifolious trees, perennial trees, giant cane and 

ground classes are high, thus they tend to present an underestimated area distribution; the 

herbs class generate more commission errors, thus it tends to be overestimated. 

The Table 5.15 shows the confusion matrix for the ANN (900 iterations) where 

the user accuracy indicated the lowest number of false positives corresponds to 

caducifolious trees (therefore, fewer commission errors). On the other hand, the class with 

the best producer accuracy is perennial trees.  

Table 5.15. Confusion matrix for the validation of the ANN method with 900 iterations. 

The values in each cell of the matrix represent the number of ROIs related to each case 

(N = 20 per class). In bold, the cases correctly classified by class.  

  Reference data 

   CT PT GC H G T UA 

C
la

ss
if

ie
d
 d

at
a
 

CT 6 2 2 1 4 15 0.40 

PT 3 9 5 2 8 27 0.33 

GC 5 1 5 9 1 21 0.24 

H 2 3 1 2 0 8 0.25 

G 4 5 7 6 7 29 0.24 

T 20 20 20 20 20 100  
PA 0.30 0.45 0.25 0.10 0.35   

CT= Caducifolious trees; PT= Perennial trees; GC=Giant cane; H=Herbs; G=Ground; 

T=Total; UA=User accuracy; PA=Producer accuracy 

Concerning the balance of errors by class in the ANN, the caducifolious trees 

presented 9 errors per commission and 14 by omission. The perennial trees had 18 errors 

per commission and 11 by omission. The herbs had 6 commission errors and 18 omission 

errors. The giant cane class had 16 commission errors and 15 by omission (good balance), 

and ground had 22 commission errors and 13 by omission. Therefore, the omission errors 

for caducifolious trees and herbs are high, then they tend to be underestimated. On the 

other way, ground and perennial trees suffer more commission errors and tend to be 

overestimated, whereas giant cane had a good balance in the two types of errors. 

Therefore, the second case in general shows the two best methods tend to 

underestimate the spatial extension of caducifolious trees and to overestimate the ground 

class. In this case again, the values of user and producer accuracy shows that maximum 

likelihood offers better results than the ANN with 900 iterations. 

5.3.3.3 Validation - case 3 
 

Finally, in the last case with 4 classes, the confusion matrix is shown in Table 5.16 

for the best method, maximum likelihood. The user accuracy shows the lowest number 
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of false positives for caducifolious trees, whereas the best producer accuracy was for 

herbs once more; that is, fewer errors of omission. 

Finally, the omission and commission errors by class were the following. 

Caducifolious trees presented 2 errors per commission and 17 by omission. The perennial 

trees class had 14 errors per commission and 13 by omission (good balance). Herbs had 

29 commission errors and 6 omission errors, and the ground class had 7 commission 

errors and 16 by omission. The omission errors for the caducifolious trees and ground 

classes are high, i.e., the model tend to underestimate these classes in a great manner. On 

the other hand, perennial trees and herbs had more commission errors. 
 

Table 5.16. Confusion matrix for the validation of the maximum likelihood method. The 

values for each of the classes in each cell of the matrix represent the number of ROIs 

related to each case (N = 20 per class). In bold, the cases correctly classified by class. 
 

  Reference data 

   CT PT H G T UA 

C
la

ss
if

ie
d
 d

at
a CT 3 1 0 1 5 0.6 

PT 6 7 3 5 21 0.33 

H 9 10 14 10 43 0.33 

G 2 2 3 4 11 0.36 

T 20 20 20 20 80  
PA 0.15 0.35 0.7 0.2     

CT= Caducifolious trees; PT= Perennial trees; H=Herbs; G=Ground; T=Total; 

UA=User accuracy; PA=Producer accuracy 
 

The values of the confusion matrix for the ANN (Table 5.17) shows that, amongst 

the vegetation classes, the lowest number of false positives for caducifolious trees, i.e., 

fewer commission error. On the other hand, the best producer accuracy was for herbs and 

perennial trees, i.e., fewer false negatives or omission errors. 

These two classes were clearly under-predicted, the caducifolious trees (5 

commission error, 16 omission error) and ground (7 commission errors, 16 omission 

errors). On the contrary, the other two classes suffered an important over-prediction, 

perennial trees (19 commission errors, 10 omission errors) and herbs class (21 

commission errors, 10 omission errors).  

Once more, the details of results in the confusion matrices demonstrated that the 

accuracy of the maximum likelihood method superseded the ANN with 900 iterations. 

Nevertheless, in this last case with four classes we have verified the differences between 

models in terms of accuracy are smaller than in the previous cases. 

Table 5.17. Confusion matrix for the validation of the ANN method with 900 iterations. 

The values in each cell of the matrix represent the number of ROIs related to each case 

(N = 20 per class). In bold, the cases correctly classified by class. 
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  Reference data 

   CT PT H G T UA 
C

la
ss

if
ie

d
 d

at
a CT 4 2 1 2 9 0.44 

PT 8 10 4 7 29 0.34 

H 7 7 10 7 31 0.32 

G 1 1 5 4 11 0.36 

T 20 20 20 20 80  
PA 0.20 0.50 0.50 0.20     

CT= Caducifolious trees; PT= Perennial trees; H=Herbs; G=Ground; T=Total; 

UA=User accuracy; PA=Producer accuracy 

5.3.3 Application of the selected model in an additional study area 
 

Considering the three cases and the results of the different supervised 

classification methods, the algorithm that best adjusted to our study area and the 

vegetation classes was applied (Figure 5.9). Therefore, the maximum likelihood method 

was applied with 4 classes of vegetation. The Table 5.15 shows the summary of results 

in the riparian zone within the additional study area of the Serpis River. 

 

 

Figure 5.9. Additional study area where the best model, based on maximum likelihood, 

was applied to classify the vegetation succession phases in the riparian zone. The red 

rectangle means the contour of the Quickbird satellite image classified. 

The application of this model to the additional study area of 10 km length, 

estimated that more than 80% of the analysed riparian area on both sides of the river is 

occupied by different phases of succession of the vegetation, while the rest belongs to 

bare ground. Within this dominant vegetation cover, one half (40.19%) is occupied by the 

youngest succession phase, herbs. The rest of the vegetation corresponds to perennial 

trees (27.30 %) and caducifolious trees (13.42%). 
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Table 5.15. Proportion of the number of pixels with respect to the total per class and area 

of vegetation in the riparian forest in the additional study area  

Class Presence (%) Occupation area (m2) 

Caducifolious trees 13.42 32464.8 

Perennial trees 27.30 66045.6 

Herbs 40.19 97214.4 

Ground 19.09 46176 
 

 

5.4 Discussion 
 

The proposed methodology was focused on the supervised classification of 

riparian habitats, for the monitoring of the plant succession in the riparian forest. This 

piece of research provides with an evaluation of the quality of different classification 

models based on remote sensing, in a study area dominated by riparian Mediterranean 

vegetation.  These models, focused on phases of vegetation succession, mean a positive 

step in the generalised automatic characterisation of the starting condition of dynamic 

succession models for the riparian vegetation, such as RIPFLOW, and CASiMiR – 

vegetation. And likewise, for the automatic generation of different maps of succession 

phases that such dynamic models need to be calibrated and validated, in extensive 

segments of Mediterranean rivers, beyond the relatively short stretches used in pilot 

studies in Europe. 

Different studies related to the characterization of the land cover and the 

classification of vegetation have been developed recurrently over time (Xie et al., 2008). 

Most of them present much better performance indicators and statistical validations than 

those presented herein; nevertheless in most of those studies the classes were much more 

generalist in terms of the types of land cover (Yang, 2007; Huylenbroeck et al., 2020). 

Unlike them, our study tries to define the classes associated with the different phases of 

succession of the vegetation (RIPFLOW), with very relevant ecological meaning for the 

dynamics and the evolution of the riparian ecosystem. 

On the other hand, many of those works based on the application of supervised 

classification models were developed on data with a higher spatial resolution and in areas 

where the gradient of class variability is smaller (more gradual in space) than in the 

Mediterranean riparian ecosystem (Congalton et al., 2003; Akasheh et al., 2008). That is, 

the mean size of the vegetation patches, or the length where the habitats changed was 

around 15 to 60 metres, in contrast with this study, where the patches of relatively uniform 

vegetation had between 5 and 10 metres. 

One crucial process in this work was the choice of regions within these calibration 

patches for the training of supervised classification algorithms (ROIs); this process was 

focused on defining the ROIs without distortions in the reference spectral signature for 

each class. However, the main difficulties were; the overlapped and mixed presence of 

diverse types of vegetation in a small (relatively narrow) riparian area; the difficult 

extraction of vegetation patches for a single dominant class; and the pixel size (2.4 meters) 

of the multispectral image to be classified, in comparison with the size of some of the 

groups of shrubs or trees in the field. For each case, a configuration and distribution of 
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ROI was defined that would guarantee sufficient separability between types of vegetation, 

and therefore mitigating the overlap and distortion between classes, intended to improve 

the supervised classification process. 

One of the limiting factors in this piece of research has been the spatial resolution 

of our image to be classified, due to the extension of the study area and its variability of 

classes, as a fundamental characteristic of the Mediterranean riparian forest. In our case, 

considering the extension of the study area, the use of UAVs or aircraft with sensors of 

smaller pixel size could have helped to discriminate and precisely delimit the different 

features (Huylenbroeck et al., 2020; Michez et al., 2016). Other works on vegetation 

showed the high variability and overlap among the types of vegetation in the riparian 

forest, which make their delimitation and classification complex with the use of sensors 

mounted on satellite platforms, justifying the use of airborne sensors at a lower height to 

alleviate this drawback (Congalton et al., 2003; Dunford et al., 2009). 

The calibration of the five models presented favourable results in the three cases. 

The separability analysis allowed us to verify the sufficient difference between the ROIs 

of each class, thus we were able to define our reference data precisely. In addition, the 

calculation of the confusion matrix and the overall accuracy for each of the models 

defined the behaviour and adjustment by vegetation classes. Considering the performance 

estimators such as the overall accuracy and kappa coefficient, the methods analysed in 

this study showed good calibration results in the three cases. Considering these positive 

results, we expected that the values obtained in the validation phase would be also good. 

The fact of losing quality in the validation results with respect to the results obtained in 

calibration is due to the characteristics of both zones. The calibration segment was defined 

by larger patches and with less mix of different classes of vegetation, while on the 

contrary, the validation segment presented a more confused distribution and with a 

smaller surface delimitation of patches. The general trend for the three cases suggested 

the best calibrated classes were ground and caducifolious tree, being the worst herbs and 

giant cane.  

The validation of our classification models based on the confusion matrix, as well 

as the producer and user accuracy, have allowed us to evaluate the correspondence and 

correlation between the real values and those classified in the different regions defined 

for this purpose (Akay et al., 2013; Bhaskaran et al., 2010). In general, the two indicators 

of performance were very low in the three cases presented. The possibility of counting 

errors by omission and commission allowed us to understand the distribution of errors 

concerning the prediction of each of the vegetation succession phases. The low values of 

user and producer precision, in the three cases, showed an erratic trend. The errors 

behaviour is also an indicator of how the similarity between classes makes the 

classification complex and the confusion between classes (evolving errors by omission 

and commission) is general for all the classes, in the three cases. Furthermore these 

commission and omission errors did not follow a consistent trend across the three cases; 

thus the trends of overestimation or underestimation for a class depended on the 

classification method and the case (number of classes). A higher presence of commission 

errors with respect to omission errors will cause that the model behave according to that 

proportion of errors, the final consequence will be the prediction of more area of a class 

than there is in reality. In an analogous way it happened with the presence of the errors 
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by commission. These results show us the non-existence of a clear pattern in the definition 

and classification of the classes. 

Regardless the best general behaviour of the maximum likelihood method, it is 

interesting to evaluate the possibility of having a good balance of errors or a slightly over-

predictive model for the invasive giant cane. The ANN model in case 2 indicated a good 

balance of omission and commission errors for the giant cane. This model could be 

proposed as a good alternative for calculating and estimating the presence of this invasive 

species, that produces serious alterations in the natural cycles of the riparian ecosystem. 

Given a certain number of errors, the possibility of over-estimating this class can have 

positive implications, instead of the under-prediction. Because it would facilitate the 

natural resources managers and the water managers to make plans of conservation and 

control measures for said species in riverbank areas, with potential maps of distribution 

that overestimate the area. This is preferable to the underestimation of the serious problem 

of the biological invasions, and the reduction of budget with a consequent impossibility 

to carry out the planned management actions. 

The general trend of results, in the three cases, does not present a model that allows 

overestimating the presence of caducifolious trees (typical terrestrial plants) whose 

proliferation in Mediterranean riparian ecosystems means the progressive alteration and 

colonization of non-riparian species, as may be the case of the pine, closer and closer to 

the main river channel. The tendency of the models to the underestimation could mean a 

consequent problem of neglecting the problem of anthropogenic disturbances like for 

eutrophication or terrestrialization process. (Papastergiadou et al., 2008; Zhang et al., 

2016). Therefore, it may lead to insufficient management for the control and monitoring 

of this process in the riparian zones, and the consequent reduction of vegetation 

biodiversity. 

Considering the low values presented by the performance indicators in the 

validation, another limitant factor of the study can be the season of the work. Working 

during the autumn period cause the spectral response of the vegetation not to show its 

most intense values. The lower possibility of discriminating the digital levels manifested 

by their spectral signatures causes a distortion factor in the application of the supervised 

classification processes applied, depending on the season of the year (Fernandes et al., 

2013; Bertoldi et al., 2011). 

Despite the different attempts to improve class selection, the results reflected the 

difficulty of differentiating among similar classes in terms of spectral response, especially 

between herbs, giant cane and shrubs. The results obtained with the application of the 

classification methods, and the respective confusion matrix, showed this defect of 

similarity between classes added to the variability of the vegetation cover present in the 

study area, conditioned to the low spatial heterogeneity at our spatial scale of work (2.4 

m). Furthermore, the pixel size of the Quickbird© image causes a generalization and 

smoothing of reality in many areas of the riparian forest. It must be considered that our 

riparian study area covers an average width of about 27 meters on each side, with respect 

to the riverbank. This implies that on each bank of the river and measured on the 

transverse profile we have an average of 10 pixels where all the information on the series 

of riparian vegetation is condensed. 
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For the first case with 6 classes, the methods that best fit our vegetation classes 

and the proposed work scenario are the maximum likelihood method and the ANN 

method.  

It is important to understand the operation of the supervised classification methods 

to be used and their behaviour according to the characteristics of the study area. (Abburu 

and Babu Golla, 2015). The maximum likelihood method is a parametric method, which 

considers the statistical distribution of the pixel values for each vegetation class. The 

probabilistic model used by this algorithm is based on the normal distribution using the 

mean and the covariance matrix of the training areas as the base parameters of the model 

(Jha et al., 2019; Lyons et al., 2018). These characteristics allow the method not to be so 

affected by the characteristics of the study area in terms of class separability and the 

generalization of information due to the spatial resolution of the work. 

The ANN, applied with different iterations to identify the best approximation of 

the result, generates results like the maximum likelihood for the conditions of this work. 

This method based on the continuous learning of the sample values and the environment 

to be modelled allows an iterative adjustment when classifying the image (Pande-Chhetri 

et al., 2017; Pelletier et al., 2019). In our study, several attempts with a different number 

of iterations were proposed to analyse the trends and adjustment of this method and how 

the error was stabilizing as the number of iterations increased. In addition, when selecting 

the number of iterations in the model validation, it was considered the importance of 

reducing or avoiding the model overfitting. 

On the other hand, considering the results, the methods that adjusted the worst and 

whose validation had low statistical values were the method of the minimum distance, the 

parallelepiped and the Mahalanobis distance. 

The method of minimum distance is based on assigning to each pixel of unknown 

identity of the original image that class whose Euclidean distance to the centroid of this 

is smaller. This fact causes the low sensitivity of the algorithm to the variance values in 

the spectral responses of the study classes; therefore, it is not very appropriate in our case 

study where the classes have a reduced spectral separability (Patil et al., 2012). 

Furthermore, this method tends to over-classify the image since it will assign each pixel 

a class value despite having some uncertainty in the process. 

For its part, the parallelepiped classification method is based on defining the 

working space in hyper-rectangles for each of the classes and defining their limits from 

the maximum and minimum values of the training regions (ROIs). This adjustment allows 

us to give this method greater sensitivity with respect to the variances of our work classes, 

but still generates discrepancies when classifying them due to their low separability 

(Perumal and Bhaskaran, 2010). This implies that overlaps between parallelepipeds may 

occur in the classification of each pixel, generating uncertainty or, on the contrary, that it 

does not fall into any one and its value remains unassigned. 

The Mahalanobis distance method gave better values than the previous ones in the 

first case, with similar quality to the maximum likelihood and better than the ANN. Again, 

it must be considered that this method, also based on the distance between pixels in a 

multivariate space, suffers from defects due to the low separability of the classes (García-
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Santillán and Pajares, 2018). Despite this condition, this method considers the weighting 

of the classification distance, considering the covariance matrix of the set of values and 

therefore its results tend to better than the other distance based methods in our study area, 

because it mitigates the problem of separability between classes. 

For the second case, with 5 classes, the shrubs class was merged with the perennial 

trees due to their similar spectral response at the time of the image. After carefully 

analysing each stage of the process, it was resolved that once again the strong variability 

of the riparian forest vegetation together with the spatial resolution of the multispectral 

images caused a distortion in the separability between classes, affecting the application 

of the classification methods. The validation for the different methods continued showing 

low values. This fusion of classes shows a slight improvement in the models (in terms of 

overall accuracy) but without producing significant changes in the results.  

For this reason, this work raised a third case in which the number of classes were 

4, merging the classes of herbs and giant cane, due to its similar spectral signature for the 

multispectral bands. The calibration data improved with respect to case 2 as well as the 

validation values. Due to the simplification of classes, the variability and separability 

between them decreased. In this last case, the new fusion of classes shows again a low 

improvement in terms of overall accuracy in all the models, but the improvements do not 

exceed a 5%.  The union of the herbs and giant cane classes (case 3) caused very over-

predictive results on the herbs class, possibly due to the existence of a lot of data in those 

classes in the calibration phase, which determines the construction of the model. This 

trend did not occur in the previous case when the giant cane and herbs class were 

separated. 

Considering the three cases and analysing the variations of the performance 

indicator, the maximum likelihood model with 4 vegetation classes has been considered 

as the one that best adapts to the riparian area under study. 

The results obtained after the application of this most favourable classification 

model on the additional area of application showed a high percentage of herbs. This result 

may indicate the development of young habitats or perhaps it may be due to the presence 

and colonization of these spaces by giant cane. It would be very useful, in future research, 

to to refine the models proposed in this study, in order to improve the distinction between 

herbs and giant cane, and therefore to correctly evaluate the invasion of the cane in an 

extensive and automatic manner. 

The class with second place in extension was the perennial trees, which implies 

that species such as Pinus, characteristics of the terrestrial ecosystem and not the riparian, 

occupy a relevant proportion of these habitats. A possible reason for this behaviour may 

be that these habitats are becoming drier, and that is why these species can better compete 

in these areas with respect to the riparian ones. Attending to the results obtained, we 

observe the abundance of natural species in drier areas such as Pinus and Mediterranean 

shrubs, increasingly tend to occupy areas closer to the channel, and therefore to colonize 

a greater proportion of the floodplain. The regulation of the flow due to the presence of 

dams together with scarce and spaced rain processes causes a lower frequency of flooding 

in these riparian spaces, which is why the trend of contraction of the development of the 

riparian forest has been more pressing day by day. This phenomenon is related to the 
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terrestrialization, a process by which the dry areas of the riparian habitat are colonized 

by plant species (Caskey et al., 2015). 
 

5.5 Conclusions 
 

The methodology presented in this work develops the results of the application of 

different supervised classification models on different plant succession phases distributed 

in the study area and that have previously been established as learning samples. 

The use of this type of tools based on multispectral images is important to 

understand the state and distribution of the vegetation and how its succession phases 

evolve and colonize the riparian ecosystem. As a general recommendation, depending on 

the conditions of another study area, it will be necessary to use data according to the 

spatial distribution and the degree of heterogeneity of the species in order to optimize 

their degree of characterization and discrimination. 

In this work, it has been possible to model the vegetation occupation area that the 

riparian succession phases have on a segment of the Serpis River. This will make possible 

to define the magnitude of the situation and have one more tool to evaluate and make 

decisions for the conservation and rehabilitation of the riparian zones. The continuous 

expansion of invasive species in these riparian ecosystems means an adverse impact on 

the autochthonous species that must be controlled continuously over time.  

The results showed limitations in the classification using QuickBird© satellite 

images as a reference. For the date of the study, this multispectral cartographic source 

was presented as the best in terms of spatial resolution in the years of this study, but it has 

demonstrated deficient in the characterization of the riparian vegetation phases in the 

Mediterranean riparian forest. Although the calibration offered very good results, the 

validation indicated an opposite trend; this may indicate the need of improving the 

definition of validation areas. In addition, considering the general approach of this study, 

future research lines may cover the specific modelling of each one of vegetation classes 

considered, focusing on more specific objectives (e.g., invasive species). However, it will 

be necessary to incorporate sensors with higher spatial and spectral resolution which 

allows the better characterization of the species and series of vegetation. The ample 

application of UAV technology can allow data collection to house these improvements 

and the results obtained can improve considerably.  

Through this discipline we will be able to generate classified 3D point clouds 

derived from images taken from a photogrammetric flight with a drone. In addition, the 

incorporation of airborne multispectral sensors in this type of vehicle will allow us to 

record precise information with high temporal and spatial resolutions, facilitating the 

validity of these products in work areas of reduced dimensions such as the study area of 

this work.  
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6. Conclusions 
 

Throughout the different chapters, the processes and dynamics in different 

riparian ecosystems have been analysed and discussed, considering different 

perspectives, and applying different methodologies. With all this, the morphological 

behaviour of the riverbed has been characterized and considering the hydraulic 

characteristics of the study area on ephemeral channels. Thus we were able to verify the 

severe changes in the characteristics and disposition of sediments that took place after 

relevant hydrologic events, thanks to the techniques used. In addition, in a permanent 

river we performed the classification of the riparian forest, in a way that the changes in 

the riparian dynamics could be analysed and modelled, including the invasive species. 

Therefore, this thesis is presented as a compilation of interesting and highly 

applicable methodologies in the management and study of the riparian environment, both 

for a field of geomorphological analysis and for the study of the succession phases of 

riparian vegetation. 

Hereafter, the conclusions of this thesis are detailed, divided into blocks, 

according to the organization of the document already explained. 

Combining SfM Photogrammetry and Terrestrial Laser Scanning to Assess Event-Scale 

Sediment Budgets along a Gravel-Bed Ephemeral Stream. 

• The characterization of the channel morphology was presented, applying massive 

high-resolution data capture techniques, and implementing a theoretical and 

practical methodology for its potential application in the monitoring of ephemeral 

and semi temporary channels. 

 

• Considering the magnitude of the events in relation to the geomorphological 

process and the morphological adjustments, we found that large floods tend to 

produce vertical sedimentary accretion, after having mobilized a large amount of 

bed load upstream the study site, due to high power gradients and excess energy. 

On the contrary, other moderate high flows were only capable of exerting a 

superficial washing, selective transport, and local scrubbing, mainly affecting the 

active low bars. 

 

• Event scale implied short-term changes in the bed elevation depending on the peak 

flow. Such changes were satisfactorily evaluated through the combined use of 

SfM-MVS and TLS, according to the spatial scale and geomorphic scenario. 

Changes in stream power and morphological adjustments at the event-scale and high 

spatial resolution along an ephemeral gravel-bed channel 

• The morphological dynamics and adjustments are responding to complex flow 

dynamics at each event scale, the approach proposed, based on the integration and 

combination of UAV-SfM and TLS, has allowed this assessment to be 

satisfactorily and correctly solved. 
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• The largest discharge events showed the highest values of stream power and 

important spatial variability. These peak flows produced a large quantity of 

bedload, inducing to a large transitory erosion and leading to overall vertical 

accretion. By contrast, lower stream power values were associated with the 

removal of bank-failure deposits and moderate changes in active low bars.  

 

• The continuous increase in the frequency of flash floods due to climate change 

was indicated by previous studies. Our results indicate that bed aggradation during 

the major flood is based on a relationship with mean stream power gradient at 

peak flood discharges, with consequent changes in bed elevation. Otherwise, 

during other moderate events bed scour took place at bankfull and sub-bankfull 

stages. In this way, the increase in the contribution of coarse sediments from the 

slopes was promoted, thus causing lateral erosion and widening the channel. 

Spatial validation of submerged fluvial topographic models by mesohabitat units. 

• A refraction correction algorithm for submerged topography has been presented 

to determine the morphology of the submerged river bed, and thus to analyse the 

hydraulic variables associated. 

 

• The spatially continuous and high resolution validation of quantitative submerged 

river morphology models, which was performed on all the pixels of the model 

within distinct mesohabitat types, demonstrates greater robustness and allows it 

to be considered for its application in different scenarios. 

 

• Pool mesohabitat presents less irregularity on the water surface and the flow 

velocity was lower than in the riffle mesohabitat, but the effect caused by the 

greater water depth in the pools produced higher errors than in the riffle. Despite 

the emerging elements and the eddies formed in the riffle, the errors were lower 

in these shallower habitats. 

Classification of riparian vegetation types based on supervised classification algorithms. 

A case study in a Serpis River segment (Valencia). 

• We developed a methodology for the study and classification of the succession 

phases of riparian vegetation in a Mediterranean river, with the future goal of 

automatically defining the distribution and the processes of vegetation succession 

and the colonization by invasive species.  

 

• The use of multispectral satellite images of high spatial resolution (2.4 m pixel) 

presented limitations in the characterization of the riparian vegetation phases in 

the Mediterranean riparian forest. 

 

• The expansion of the invasive species, such as the giant cane or elephant grass, in 

the riparian forest and its spectral similarity with autochthonous species of the 

Mediterranean riparian ecosystem constitutes a difficulty when it comes to its 

unequivocal classification. 
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7. Future lines of research 
 

Based on the results obtained in this doctoral thesis, the following future lines of 

research have been proposed: 

• Analyses of the behaviour of successive rainfall and sediment transport events in 

the study areas of Rambla de la Azohía (Murcia). Obtaining a greater range of 

information and trends in the riverbed forms and the changes in the sedimentary 

budget. This work will allow us to improve the prediction of trajectories of 

morphological change and future scenarios in ephemeral rivers facing the global 

change. 

 

• Integration of remote sensing techniques such as the terrestrial laser scanner 

(TLS) and UAVs, for instance using airborne Laser Imaging Detection and 

Ranging (LiDAR) mounted in UAVs of different types. These techniques allow 

the collection of precise and massive information, in large extensions, using 

shorter times in fieldwork campaigns. We will be able to carry out high resolution 

characterizations, improving the temporary resolution of the works and with total 

autonomy. 

 

• Further development and application of the correction of the refraction in 

submerged topography. This technique can be further developed, to obtain 

detailed morphology of the river bed in a wide variety of river streams with 

different types of mesohabitats and the evaluation of its precision and reliability. 

This fact will allow the adjustment of the proposed method to be calibrated and 

evaluated in different environments, improving its robustness and applicability. 

 

• Evaluation of classification models with remote sensors of higher spatial and 

radiometric resolution, for riparian vegetation. This will allow the improvement 

of the calibration and validation of supervised classification models for the 

succession phases of Mediterranean riparian vegetation. The modelling itself, and 

further detailed study of the trends of the models, for the different classes of 

vegetation, will allow further improvements in the classification and definition of 

actual and past scenarios in riparian environments, with subsequent positive 

results in riparian modelling. 

 

 

 

 

 


