
SPECIAL ISSUE PAPER

TESTAR – scriptless testing through graphical user interface

Tanja E. J. Vos1,2,*,† , Pekka Aho1, Fernando Pastor Ricos2, Olivia Rodriguez-Valdes1

and Ad Mulders1

1Beta Faculteit, Open Universiteit, Heerlen, The Netherlands
2Centro de Investigación PROS, Universidad Politécnica de Valencia, Valencia, Spain

SUMMARY

Covering all the possible paths of the graphical user interface (GUI) with test scripts would take too much
effort and result in serious maintenance issues. We propose complementing scripted testing with scriptless
test automation using the open-source TESTAR tool. This paper gives a comprehensive overview of TESTAR
and its latest extensions together with the ongoing and future research. With this paper, we hope we can help
and encourage other researchers to use TESTAR for their GUI testing-related research and pave the way for an
international research agenda in GUI testing built upon stable and open-source infrastructure. © 2021 The
Authors. Software Testing, Verification & Reliability published by John Wiley & Sons Ltd.

Revised 12 November 2020; Accepted 12 January 2021

KEY WORDS: test automation; graphical user interface; model inference; monkey testing; artificial
intelligence

1. INTRODUCTION

The world around us is strongly connected through software, and our daily lives have become de-
pendent on software. Consequently, software failures are having more and more impact. In 2017,
the Software Fail Watch [1] reported that over 1.7 trillion USD losses caused by software failures
and that more than 3.7 billion people were affected by these software failure. This study confirms
the urgent need for correct and reliable software systems. Testing is critical, and one of the most
used, activities for quality assurance whose goal is to address this need. This paper is about testing
software systems through their graphical user interface (GUI).
The widespread use of iterative and incremental processes and continuous integration (CI) prac-

tices in software development has shortened the development cycles, drastically limiting the time
for testing and quality assurance of each release. Instead of months or weeks, the longest period
for testing a release is over a weekend or a night. The results of an automated smoke test set are
expected almost instantly or in a few minutes. In practice, the use of test automation is a require-
ment for a successful CI process.
At the same time, the software systems are getting ever more complex, systems of systems with

multitude of platforms and devices to support. The complexity of the systems being developed
makes also software testing more difficult. A major part of test automation has been concentrating

*Correspondence to: Tanja E. J. Vos, Centro de Investigación PROS, Universidad Politécnica de Valencia, Camino de
vera s/n, 46022 Valencia, Spain.

†E-mail: info@testar.org
This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 2021;31:e1771
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/stvr.1771

https://orcid.org/0000-0002-6003-9113
mailto:info@testar.org
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fstvr.1771&domain=pdf&date_stamp=2021-04-25

on automating the execution of test cases. The combination of shorter time for testing and more
software to test adds pressure to develop testing methods and tools that are more intelligent and
efficient, reducing the manual effort from all phases of the testing.
The execution of unit tests is widely automated, and there are tools for unit test generation, such

as EvoSuite [2,3], but system level testing is more challenging to automate, especially if the system
includes GUI for the end users [4]. Testing software applications through their GUI is important
because it can reveal subtle and annoying bugs. It is also expensive [5] and challenging, not only
because of the combinatorial explosion in the number of event sequences but also because of the
difficulty to cover the large number of data values [6]. GUIs represent the main connection point
between a software’s components and its end users and can be found in most modern applications.
This makes them attractive for testers, because testing at the GUI level means testing from the user’s
perspective and is thus the ultimate way of verifying a program’s correct behaviour [7]. GUIs are
often large, complex and difficult to access programmatically, posing great challenges for testability
of an application [8] and often resulting the testing process being carried out manually, which is an
expensive and laborious task.
Manually recording or writing test scripts for all the possible paths of the GUI takes simply too

much effort to be practical, and even if the test cases are built with keywords and proper architecture,
so many test scripts would result in serious maintenance issues [9-13]. Obviously, there is a need to
complement the script-based approach with another automated way of testing through GUIs.
In this paper, we will give a comprehensive introduction into TESTAR

1, an open-source2 tool that
implements a scriptless approach for completely automated test generation for web and Windows
desktop applications. TESTAR is based on agents that implement various action selection mecha-
nisms and test oracles. The underlying principles are very simple: generate test sequences of (state,
action) pairs by starting up the system under test (SUT) in its initial state and continuously selecting
an action to bring the SUT into another state. The action selection characterizes the fundamental
challenge of intelligent systems: what to do next. The difficult part is optimizing the action selection
[14] to find faults and recognizing a faulty state when it is found [15-17]. Faulty states are not re-
stricted to errors in functionality; also, violations of other quality characteristics, like accessibility or
security, can be detected by inspecting the state. This totally shifts the paradigm of GUI testing:
from developing scripts to developing intelligent artificial intelligence-enabled agents.
The development of TESTAR started during the FITTEST project [18] that run from 2010 to 2013.

After that, the development continued while piloting the tool in various companies in ERASMUS+
projects like SHIP [19] and various nationally funded projects from the Spanish and Valencian gov-
ernments. In 2017, the development was continued in the context of the TESTOMAT ITEA3 pro-
ject. The first overview paper has been published [20] in 2015. Over the past 4 years, TESTAR has
been developed and extended significantly, and many parts of TESTAR have been changed. We have
received many requests to write up a complete overview of how TESTAR works together with the
state of the art, related work and future research directions. This paper is our reply to all of these
requests and compiles and extends 10 years of research on the tool.
On the road towards a tool that can learn by itself how to test a system, TESTAR has been extendedwith

a memory in form of state model inference, and intelligence, for example, by using machine learning.
The novel extensions of TESTAR described in this paper include (i) active learning of state models

(model inference) described in Section 5; (ii) support for using Selenium WebDriver instead of
Windows Accessibility API for testing web applications; and (iii) integration into CI processes,
and generating HTML reports. In addition, we report on new (industrial) empirical studies evaluat-
ing the test efficiency and effectiveness.
Finally, combining the results of all studies that were done over the years, we find that TESTAR

constitutes a valuable complementary testing tool for manual testing and scripted GUI test automa-
tion. With this paper, we hope we can encourage people to use TESTAR, not only for testing their
software at the GUI level in real industrial environments but also for their GUI testing-related re-
search, and pave the way for an international research agenda in GUI testing that can be build upon

1https://testar.org/
2https://github.com/TESTARtool/TESTAR_dev

2 of 46 VOS ET AL.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

https://testar.org/
https://github.com/TESTARtool/TESTAR_dev

stable and open-source infrastructure. This enables researchers to concentrate on intelligent testing
techniques while reusing existing automation facilities.
The rest of this paper is structured as follows. Section 2 describes the state of the art of

script-based GUI testing, while Section 3 describes scriptless test monkeys. In Section 4, we de-
scribe the basic functionality of the TESTAR tool. Section 5 describes how we add memory to the
TESTAR monkey by inferring a state model during the automated GUI exploration. Section 6 de-
scribes different ways to add intelligence to the monkey while selecting actions. We will describe
how actions can be filtered to concentrate on the important ones, or how to make action derivation
smarter. Moreover, the section describes how action selection strategies can be improved using re-
inforcement learning, ant colony optimization (ACO) and meta-heuristics. In Section 7, we describe
for each industrial case study the company, the SUT, the context, the objectives and the results of
the studies. Section 8 summarizes the ongoing and future research directions that have been put for-
ward throughout this paper, and Section 9 gives the final conclusions.

2. SCRIPT-BASED GRAPHICAL USER INTERFACE TEST AUTOMATION

Automated GUI testing has been classified in various ways. In [21], we can find a classification
based on how the test automation tool interacts with the SUT. This results in a classification of three
generations: the first is based on the mouse coordinates, the second is based on technical APIs and
the third is based on image recognition. A more recent classification was described on [22] that ex-
tends the three generations with another axis addressing the level of automation. In this section, we
will follow the classification from [22] to describe the state of the art of script-based GUI testing.

2.1. Manually recorded or written scripts

Testing through GUIs is commonly automated by scripts that are captured or manually created with
a script editor, automating the execution of test cases. A major challenge with script-based GUI test
automation is the manual effort required for maintaining the scripts when the GUI changes [11].
Test script maintenance has been a challenge for a long time [12], but it is still a relevant problem
in the industry. Usually, scripts are created according to a use case with the corresponding input se-
quence and later automatically replayed on the GUI to serve as regression tests.
With capture and replay (CR) tools, for example, commercial tools like Rapise [23], Squish [24]

and Ranorex [25], the scripts are recorded during manual use of the SUT through its GUI. Then the
recorded scripts can be automatically executed on another version of the same GUI to detect
changes in the behaviour. The test oracle is the presumably correct behaviour of the recorded ver-
sion. The advantage of CR is that it does not require special skills to use. Recording of the test cases
is very similar to manual GUI testing. CR techniques differ mainly in the kinds of GUI technology
they can handle [5], but more advanced CR tools provide a graphical editor to make it easier to
change and maintain the recorded scripts.
With other script-based tools, the test steps of the test scripts are manually defined with some

scripting language that can be textual, as with AutoIt [26], or the tool provides a graphical editor
for scripting, as with SeleniumHQ [27], and Visual GUI Testing tools SikuliX [28] and
EyeAutomate [29].
The main challenge in industrial adoption of script-based GUI testing is the maintenance effort

required when the GUI changes [11]. With CR tools, any test sequence going through the changed
parts of the GUI might have to be manually recorded again. With scripting languages, any script
going through the changed parts might have to be manually updated. The more advanced tools
are better resistant to small GUI changes, but a bigger change in the GUI will cause the test scripts
to fail, resulting false positives until the scripts have been repaired. The maintenance effort greatly
diminishes the return of investment of script-based GUI test automation. Another challenge is the
effort required to create the test scripts in the first place. Manually written test scripts are shown
to be easier to maintain but require more effort to create than recorded scripts [13]. Test scripts tend
to be executed and maintained a lot during a project [12]. Therefore, the one-time investment in the
beginning should not be as big a problem as the continuous maintenance.

3 of 46TESTAR – SCRIPTLESS TESTING THROUGH GRAPHICAL USER INTERFACE

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

If the test scripts are manually defined or the recorded scripts are manually elaborated, it is pos-
sible to define test oracles that check the correctness of any value in any specific state of the GUI.
However, each check has to be defined separately, and obviously, this increases the manually de-
fined test artefacts that have to be maintained when the GUI changes. Most script-based GUI testing
approaches check only if the most important data values are correct in a specific state of the GUI.
Manually checking all the values of all the properties of all the widgets of each GUI state is not fea-
sible even without the maintenance effort, but setting too few values may lead to ambiguous test
verdicts [30].
There are academic research approaches on automated GUI script repair to tackle this mainte-

nance problem, for example, WATER [31], VISTA [32] and SITAR [33], but none of them have
been widely adopted in the industry. Some commercial tools, for example, Squish [24], claim to up-
date the test scripts automatically when the GUI changes, but no details or data are given whether
this works in practice and how. There are also approaches aiming to make the scripts more robust
against the SUT changes, for example, ROBULA+, an algorithm for generating more robust
XPath-based locators [34].

2.2. Test case generation based on manually created models

Amore advanced approach, as compared with the CR tools, is model-based GUI testing (MBGT). It
requires that a model of the GUI and its expected behaviour is created, which has a higher level of
abstraction than the GUI itself. The modelling language should be understandable by a tool that will
take this model and use it to automatically generate tests. An advantage of this type of testing is that
one can quite formally and precisely specify the exact specifications that a GUI should conform to.
Consequently, the expected behaviour captured in the model enables generating system-specific au-
tomated test oracles. The intended benefit of MBGT is that when an application’s GUI changes,
manual update of all the test scripts is no longer needed. Instead, the model is updated and the
scripts/tests are automatically generated again. The disadvantages are that one has to have a deep
knowledge of the application domain that the GUI covers, one has to have fairly expert knowledge
of formal modelling methods and languages and, finally, that manually creating such a model is
time consuming.
There are various MBGT approaches, for example, using Spec Explorer in a tool chain [35],

NModel tool [36], pattern-based GUI testing [37], Finite State Machine (FSMs) to test web appli-
cations [38] and TEMA tools for testing Android applications [39], trying to reduce both the initial
effort in creating the test scripts and the maintenance effort required after each change in the GUI.
The difference to the script-based testing is that in model-based approaches the scripts are automat-
ically generated. There are also various kind of models used for MBGT, for example, state-based
models like finite state machines [40] and event-based models like event flow graphs [41].
The challenge in MBGT is the specialized formal expertise and effort required for creating the

models that allow automated test case generation and execution on real-life GUI applications
[42]. Designing a test model on a suitable level of abstraction, and following the exact modelling
syntax supported by the test case generation tool, is not a trivial task. Another challenge is that usu-
ally a test adapter has to be developed for each SUT, and the model has to be mapped into the im-
plemented functions of the adapter, so that the generated test cases can be executed on the SUT.

2.3. Test case generation based on inferred models

Graphical user interface ripping [41] and other GUI model extraction or inference approaches, for
example, GUI Driver [43], Crawljax [44] and GuiTam [40], try to help in creating the GUI models
for testing. There have been some static approaches based on source code analysis, but it is difficult
to capture the dynamic behaviour of the GUI without executing it. Most dynamic approaches, for
example, GUI Driver [43] and Extended Ripper [45], analyse the behaviour of the GUI during
run-time while emulating the end user by automatically interacting with the GUI widgets to traverse
through the GUI. Some approaches, for example, [46], combine dynamic and static analyses for
model extraction. During model extraction, it is possible to use generic checks to detect failures,
such as unhandled exceptions and crashes, which is actually scriptless GUI testing.

4 of 46 VOS ET AL.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

Many approaches, for example, [40,41,43,46], have used the extracted models for generating test
sequences. By executing the generated test sequences on another version of the same GUI, it is pos-
sible to detect changes and regression bugs between the SUT versions, in addition to generic failure
checks. When generating test cases from a model extracted from previous GUI version and execut-
ing them on the new version, the challenge is that the test cases will not test or notice any new parts
of the GUI. The new parts were not in the extracted model, so they cannot be in the generated test
cases either. Test cases fail when something included in the test cases is removed or changed. Usu-
ally, it is easy to extract a new model from the new version, but then we lose the reference behaviour
that is used to discover the changes.

3. SCRIPTLESS GRAPHICAL USER INTERFACE TEST AUTOMATION

Monkey testing (also called random testing or stochastic testing) refers to a scriptless approach of
randomly exercising a SUT by means of an automated test tool [47]. Unlike in script-based testing,
test cases are generated each time during testing. Often, the generated test cases are not even saved,
because in scriptless testing we are usually interested only in sequences that find failures. This is the
reason why scriptless testing does not require test case maintenance. Depending on the action selec-
tion strategy, most test monkeys explore the SUT in a different way each time the test is run, con-
sequently making it possible to find new defects in the same SUT version by just executing more
tests. Usually, test monkeys perform random testing by issuing clicks and keystrokes in order to
crash the GUI or render it unresponsive. The literature distinguishes two main types of test monkeys
[47,48]: (i) dumb monkeys, which do not possess any knowledge about how to use the GUI and
usually click and type entirely at random, and (ii) smart monkeys, which have a basic understanding
of the GUI and often employ a model that guides them and helps to make decisions as to which ac-
tions to execute.

3.1. Dumb test monkeys

The pure dumb or ignorant monkeys have no idea what state the SUT is in. They do not know what
inputs are legal or illegal, nor what a failure is. Still, there are various ways to increase the intelli-
gence of a monkey, and even though it can still be ignorant about your SUT, it can understand its
environment and can find very obvious bugs like crashes and hangs. Such tools have been used
since the early 80s at big companies like Apple [49] and Microsoft [48]. According to Nyman
[48], in some Microsoft applications groups, 10–20% of the faults in their projects are revealed
by test monkeys. In addition, Microsoft actively recommends randomized techniques for safety crit-
ical applications [50]. Also, Google has developed The Monkey [51] for testing Android applica-
tions. Monkeys often find severe faults that may be caused by obscure sequences that are hard to
figure out, even for experienced testers. The fact that these tools operate completely automatic
makes their application cheap and thus attractive.
Not all researchers, however, are convinced of the effectiveness and usefulness of random testing,

and the subject has been controversial throughout the history. Girard and Rault (1973) call it a valu-
able test case generation scheme [52]. This is confirmed by Thayer et al. (1978) in their book on
software reliability [53]; they say it is the necessary final step in the testing activities. However,
Glenford Myers (1979) in his seminal work on the art of software testing [54] denominates random
testing as probably the poorest testing method. Beizer [55] refers to this kind of testing as
‘keyboard-scrabbling’ and advertises other techniques.
In 1984, however, Duran and Ntafos [56] carried out a series of experiments in which they

showed that random testing could be more effective than the commonly used partition testing.
Hamlet and Taylor [57] repeated more experiments and came to the same results. Weyuker together
with Jeng compared the two testing approaches from an analytical point of view [58]. However,
their results pointed in the same direction again: a clear superiority of partition testing could not
be stated; instead, it turned out that, in effectiveness, partition testing can be better, worse or the
same as random testing, depending on the ‘adequacy’ of the chosen partition with respect to the
location of the failure-causing inputs.

5 of 46TESTAR – SCRIPTLESS TESTING THROUGH GRAPHICAL USER INTERFACE

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

These were counter-intuitive results that opened the doors to a large body of literature on the
properties and benefits of random testing. Many authors investigated the conditions under which
partition testing can be more effective than random testing or the other way around (see, e.g.
[59-62]).
Some more recent studies show that we have by no means investigated enough on random test-

ing. Arcuri et al. [63] show that random testing is an instance of the coupons collector problem, a
very well-known probabilistic problem. This way, many theoretical results from the probability
field can be reused, and again, it is shown that random testing is not a bad testing strategy in many
occasions.
Böhme and Paul [64] present a study analysing the efficiency of random testing. Basically, they

conclude that even the most effective testing technique is inefficient compared with random testing if
generating a test case takes relatively too long.
Amalfitano et al. [65] defined a framework for comparing testing techniques. As part of their re-

search, effectiveness and cost of random and smarter techniques were compared. In order to mea-
sure effectiveness and cost, they used code coverage and the number of overall iterations until
the technique reaches its termination point, respectively. While in most cases the smarter techniques
were less expensive in terms of iterations, in all cases, the random exploration strategies showed
greater effectiveness, that is, code coverage.
However, there are also fundamental weaknesses. First of all, random testing requires a lot of ex-

ecution time to get coverage. This can be partly solved by parallel execution, so with enough re-
sources, it is possible to get the results faster. Another challenge is reaching all parts of the GUI.
Often there are login screens or other parts that require specific input to reach. One option would
be combining other tools with test scripts to reach a specific part of the GUI and then start the ran-
dom testing.
An important challenge with random testing is the test oracle. Most random testing tools use only

generic checks to find exceptions and crashes or getting the GUI into unresponsive state, not
supporting manually defined application-specific test oracles or regression testing between SUT
versions. These general test oracles are useful for robustness testing but limit the potential of ran-
dom testing. If a monkey finds an error, then the length of the generated sequences and their repro-
ducibility might become a problem [48]. Monkeys may run several days before they crash the
application, which results in extremely long sequences of randomly distributed clicks. It is very dif-
ficult to reliably replay these sequences for debugging purposes.

3.2. Smart test monkeys

There are various ways to make a test monkey smarter. The first step is making the monkey aware
of the environment. Bertolini et al. [66] found that the time needed to trigger a crash can be signif-
icantly reduced if the monkey is aware of the visible widgets and specifically targets them. This can
be done, for example, using a technical API or a library to get a programmatic structure of the lay-
out and the widgets of the GUI. Another way could be using image recognition to detect widgets
from the screenshots.
The second step is using that information to deduct the state of the GUI. Then a monkey has a

basic understanding of the GUI’s widgets, knows how to use them and is capable of issuing com-
plex actions in order to effectively drive the SUT. The monkey can then, for example, create se-
quences as follows: (i) determine the state of the GUI, that is, the visible widgets, their size,
location and other properties (such as whether they are enabled or blocked by other windows), then
(ii) derive a set of feasible actions from which it then (iii) selects one that it finally executes it. By
repeating these steps, the monkey will be able to generate arbitrary input sequences to drive and
hopefully crash the GUI.
Usually, to make monkeys smart enough to reach all parts of the GUI, they need to have some

knowledge about the SUT. One way to give the monkeys more knowledge is through a state model
of the SUT [48]. The smarter monkeys can then use the state model during traversal, i.e. they can
choose from the legal actions in the current state for moving to another state and then verify that the
next expected state has been reached. Illegal inputs can be added to the monkey’s repertoire if the

6 of 46 VOS ET AL.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

model includes error-handling states. However, with manually crafted models, this goes a long way
towards MBGT.
Another way of giving SUT-specific knowledge to the smart monkey is defining them with kind

of agents that trigger into action when a specific state of the GUI has been detected. This approach
is used, for example, in TESTAR tool [20] and Murphy tools [67], and some examples are given in
Section 6.3.
Defining SUT-specific knowledge creates testwares that have to be maintained if the SUT

changes. In some cases, the tool could deduct or learn how a specific application should be tested,
using artificial intelligence or machine learning. Some examples are given in Section 6.4.

4. TESTAR

TESTAR
3 is an open-source tool that carries out automated testing without the need for scripts, falling

into the category of smart monkey testing tools. It implements a scriptless approach, meaning that
the test cases do not have to be defined prior to test execution. Instead, each test step is generated
during the test execution, based on the actions that are available in that specific time and state of the
GUI.
The underlying principle of TESTAR is very simple: generate test sequences of (state, action) pairs

by starting up the SUT in its initial state and continuously select an action to bring the SUT in an-
other state. The action selection characterizes the most basic problem of intelligent systems: what to
do next. The difficult and challenging parts are optimizing the action selection to find faults and rec-
ognizing a faulty state when it is found with an oracle.
The high-level logical flow of TESTAR is illustrated in Figure 1. Everything inside the greybox is

automated. The three activities on the right side of the box represent activities that testers can im-
prove programmatically if desired (i.e. action definitions, filtering, selection and oracles). After
starting up the SUT, the tool goes into the loop of continuously selecting and executing an action
to bring the SUT from one state to another state, until some stopping criteria have been met, after
which the SUT is closed. In the following sections, we will describe each of the basic steps of the
approach:
• obtaining the GUI state (Section 4.1);
• deriving the set of actions that a potential user can execute in that specific state (Section 4.2);

Figure 1. TESTAR testing cycle. GUI, graphical user interface; SUT, system under test.

7 of 46TESTAR – SCRIPTLESS TESTING THROUGH GRAPHICAL USER INTERFACE

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

• selecting and executing one of these actions (Section 4.3); and
• evaluating the new state to find failures (oracles) (Section 4.5).

Subsequently, in Section 4.6, we will describe the runtime execution of TESTAR and the execution
of the test sequence loop (as shown in Figure 1). In Section 4.7, we will describe the results and
outputs of a test run.

4.1. Obtaining the graphical user interface state

A GUI can consist of a wide range of widgets. Examples of these are in Table 1.
These widgets are structured in a hierarchy that is called the widget tree. Figures 2 and 3 display

examples of such widget trees. Each node corresponds to a visible widget, contains widget proper-
ties like its type, position, size and title and indicates whether it is enabled and so forth. These trees
and properties can be obtained automatically in various ways, for example, by using accessibility
APIs – which allow computer usage for people with disabilities – at the operating system level
(i.e. UIA Automation for Windows, ATK/SPI for Linux and NSAccessibility for MacOS). These
accessibility APIs allow us to gather information about the visible widgets of an application and
give TESTAR the means to query their property values. We can also use, for example, programmatic
APIs, or automation frameworks, like the Selenium WebDriver [27] at the browser level, or
Appium [68] for iOS, Android and Windows [68]. Moreover, we can use language-specific APIs
like the Java Access Bridge for existing Java objects at the Java Virtual Machine level, or even im-
age recognition [67]. Also, SUT-specific APIs are an option, a first experience with that has been
done by testing a smart home through a RESTful API with TESTAR [69]. Image recognition can
be used as a platform-independent way to obtain the state of the GUI from the screenshots, but at
least the current image recognition algorithms are less accurate and give less information than the
technical APIs.
In the current4 implementation of TESTAR, there are plugins for detecting the state using the

UIA Automation for Windows and the Selenium WebDriver. For example, the UIA API gives
access to around 170 attributes or properties [70], which allows us to retrieve detailed
information such as
• the role of a widget, is it a button, checkbox, drop-down and so forth;
• the path that the widget has in the stack of widgets on the screen, that is, the widget tree;
• the size that describes a widget’s rectangle (necessary for clicks and other mouse gestures);
• it tells us whether a widget is enabled (it might not make sense to click disabled widgets);
• whether a widget is focused (has keyboard focus) so that the monkey knows when it can type

into text fields; and
• attributes such as title, help and other descriptive attributes are very important to distinguish

widgets from each other and give them an identity.

All these properties and their values are stored in the widget tree. In this way, these trees capture
the current state s of the GUI like the examples from Figures 2 and 3. Imagine we have a widget tree

Table 1. Examples of widgets of which a graphical user interface can be composed.

Windows Menus Controls

• Main window • Menu bars • Buttons
• Child windows • Drop-down menu • Text boxes
• Pop-up windows • Context-aware menu • Links
• Dialog windows • Radio buttons

• Checkboxes
• Drop-down select boxes
• Sliders
• Tabs
• Scroll bars

8 of 46 VOS ET AL.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

that represents a specific state s. The nodes of the widget tree are the widgets that are visible on the
GUI in that particular state s. We will denote this set of nodes with W ðsÞ ¼ fw1; w2; …; wkg (e.g.
button, slider, text field and menu). The edges of the tree reflect the parent–child relationships: each
child widget is displayed within the screen area occupied by its parent widget. We will denote the
set of edges with E(s). Consequently, there exists a directed edge (wi, wj)∈ E(s) when wi∈W(s) is
the parent widget of wj∈W(s) in state s. The values of the all properties that the widgets have also
define the state. For a widget w∈W(s), we will use P(w, s) to denote the set of all properties {w.p1,
w.p2,… , w.pm} (e.g. role, title, positionand enabled) for that widget w in state s.
All the properties P(w, s) obtained by TESTAR in state s for the widgets in W(s) through an API or

an automation framework are associated to the TESTAR representation of States, Widgets and
Actions. This is done through Tags and is depicted in Figure 4.

Figure 2. The state of a graphical user interface as a widget tree.

Figure 3. The state of a graphical user interface can be described as a widget tree.

9 of 46TESTAR – SCRIPTLESS TESTING THROUGH GRAPHICAL USER INTERFACE

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

Taggable classes implement the Taggable interface, which means that Tags can be added to
their instances. In TESTAR, the classes State, Widget and Action are taggable and the Tags
are pairs of (property name, value). Properties that are common to all widgets are defined in a final
class Tags. The properties specific to an implemented API technology or automation framework
(like Windows UIAutomation, Selenium WebDriver and ATK/SPI) are defined in specific
API-taggable final classes (UIATags, WebTags, AtSpiTags etc.). We can use the get method
to read the properties of taggable objects (i.e. instance of the classes State, Widget and
Action) as follows:
taggableObjectName.get(Tags.PropertyName)
In Example 1, there is an if statement in line 1 whose guard checks whether some action’s role

tag equals LeftClick. Similarly, in line 3, the href tag is checked for some example-text
that we want to act upon in the if statement.
Example 1: Obtaining property values

Obtaining the state, that is, extracting the properties of the widgets and building the widget tree, is
done automatically after each executed action. For Windows desktop applications, TESTAR monitors
the CPU usage of the SUT process to figure out when the SUT has finished executing a GUI action.
However, sometimes the widget tree is extracted before the GUI has finished updating, resulting
with a partial widget tree. If the partial tree contains interactive widgets, actions are derived for
them. If not, a default action (such as executing a NOP action or pressing ESC key) will be executed
and testing continues by deriving the state again. TESTAR can be configured to change the waiting
time between the executed action and the next widget tree construction. For Web applications
and the Selenium WebDriver framework, we offer the possibility to use a JavaScript command
(document.readyState) to wait until the web page has been loaded. However, this has the
disadvantage of having to wait for web pages to load their ads. Moreover, in collaboration with

Figure 4. Taggable classes State, Widget and Action. SUT, system under test.

10 of 46 VOS ET AL.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

some partners, we have found that this functionality is not enough in some cases, because the web
document says it is ready, but the internal server is still processing data.

4.2. Deriving a set of actions

Having obtained the GUI’s current state s, we can go on to derive a set of available actions that a
user can choose from in that specific state that are suitable for most applications. For this, we first
derive a set of actionable widgets (Figure 5). Actionable widgets are widgets on which we can act
because they
• are enabled;
• are unblocked;
• are not blacklisted or filtered by a tester (Section 6.2); and
• expect user interaction, that is,

- widgets that are clickable (left or right mouse button);
- widgets that are typable; and
- widgets that are draggable or slidable.

For example, suppose in state s we have a clickable button widget b ∈ W(s) that is enabled and
unblocked.5 If a tester did not blacklist or filter this widget, then this means there exists a possible
action that can click on that button (click(b)). Likewise for an actionable typeable text field widget
t ∈ W(s), it means there exists a possible action that can click to focus and type into that text field
(type_into(t)).
To derive the actions that can be executed in a certain state s, TESTAR loops through the widget

tree and collects those actionable widgets. To create executable actions from these actionable
widgets, TESTAR converts them into implementations of the Action interface (Figure 4).
An execution scheme for button b ∈ W(s) from above is as follows:
1 determine the position on the screen that falls inside the widget;
2 move the mouse cursor to that point;
3 press the mouse down; and
4 release the mouse.

The movement of the cursor and pressing and releasing the mouse button each have their own
implementation of Action, called MouseMove, MouseDown and MouseUp, respectively.

Figure 5. Deriving actions from actionable widgets.

5More specifically: b.(Tags.Enabled) == true and b.(Tags.Blocked) == false.

11 of 46TESTAR – SCRIPTLESS TESTING THROUGH GRAPHICAL USER INTERFACE

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

A fourth implementation of Action is introduced in the form of the CompoundAction class.
This class aggregates sequences of actions into an Action. Example 2 shows how to create an
action to click a button.
Example 2: Create action for button b ϵ W (s)

In the case we obtain the current state using the Selenium WebDriver implementation, in addition
to interact with the browser through the actions described earlier, we can also derive a set of actions
that represent JavaScript commands that we can execute through the Selenium WebDriver interface
(i.e. calling WebDriver.executeScript(JScommand)).
These JavaScript commands allow us to interact with the web elements that exist in the current

web document. The Document Object Model (DOM) API is used to find the web elements together
with their attributes or interact with the web document through the browser. TESTAR predefines a
couple of JavaScript commands to define actions that are considered useful during testing. These
are defined internally as calls to WebDriver.executeScript:
• WdCloseTabAction to close a tab;
• WdHistoryBackAction to simulate a click on the history back button in a browser;
• WdSubmitAction to simulate a click on a submit button in a detected web form; and
• WdAttributeAction to find a web element by its unique identifier and write a value in the

desired attribute using a pair (key, value).

It is possible to change or add new actions on the tester’s need (Section 6.3). As an example, let
us consider WdAttributeAction. Inside a web document, a web element can be searched and
retrieved using one of its web attribute. Then, with the focus on the desired web element, some
DOM API web methods allow us to read or write a value in one of the multiple attributes of this
web element. This is defined in WdAttributeAction as follows:
Example 3: Create a customWebDriver action using a JavaScript command and the

executeScript interface

Other types of actions that are being derived are those related to force the SUT to be in the fore-
ground or clean some undesired processes. To achieve the first, we use native calls intended to in-
voke the main window to the foreground. If this for some reason is not possible, we use keyboard
commands as Alt + Tab. To kill undesired processes, we constantly check, after each action, the
existing processes in our SUT’s environment.
Moreover, with web applications, in addition to maintain the desktop browser in the foreground,

we need to ensure that we do not lose the focus of the URL domain of the SUT we are testing and
start exploring non-desired web pages.
We will denote the set of actions that are derived in state s by A(s).

12 of 46 VOS ET AL.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

4.3. Select and execute one of these actions

So we are in state s where we have derived a set of actions A(s) that can be executed. Now we can
select one, say a, and execute it. In TESTAR’s default mode, that means random selection. The
action a gets executed, and we go to a new state s′. This way test sequences are generated like
s →a s′ →a′ s′′→… until some stopping condition holds. stopping conditions can be for
example, when a failure was found, or when a configured amount of actions have been selected
and the test sequence hence has reached its predefined length. For this, when starting up TESTAR,
we can define how many sequences we want to generate (number_of_sequences) and how
many actions we want to select for creating each sequence (number_of_actions).

4.4. Representation of states and actions

In order to be able to recognize and compare states and actions, we need to assign a unique and sta-
ble identifier to each of them. For this, we can use the attribute, or property, values that come with
each widget within the widget tree in a specific state s. If we use all the properties, we obtain what
we would call a concrete identifier. However, we do not need all to use all of them. We can select a
subset and use abstract identifiers instead. When selecting properties for the identifier we should
take care that they are relatively stable properties. For example, the title of a window is quite often
not a stable value (opening new documents in a text editor will change the title of the main window)
whereas its help text is less likely to change. The role however is a more stable property.
Thus, to identify a GUI state s, we take all widgets w∈W(s) and simply consider a subset

ABS_PROP of stable properties from all properties of all widgets on the screen. This subset
ABS_PROP defines what we call an abstraction function PABS_PROPðw; sÞ ⊆ Pðw; sÞ, that is, PABS_PROP

ðw; sÞ ¼ fw:pjw ∈ W ðsÞ∧ p ∈ ABS_PROP}. The abstraction function is configurable in the test set-
tings of TESTAR.
Per default, we take ABS_PROP to be {role, title, position, enabled}.
Because this might be a lot of property values to take into account, we will only save a hash value

generated from these values. TESTAR recursively calculates a unique hash for each widget, based on
the concatenation of the mentioned attributes. It then combines the hashes for the widgets and uses
them to calculate the unique hash for the state. Of course this could lead to collisions. However, for
the sake of simplicity, we assume that this is unlikely and does not significantly affect the optimi-
zation process.
The same approach can be applied to represent actions. Each action type, however, may have pa-

rameters. For example, a click action has two parameters: the button (i.e. left or right) and the
clicking position (x and y coordinates). Action identifiers need to also take these parameters into ac-
count. The method of calculation is as follows: for an action identifier, TESTAR takes the identifier
for the state it is currently in and concatenates to that a hash based on details of the action. These
details include mouse cursor position and the key that was typed. A unique hash is then calculated
over this concatenation. For example, to create a unique identifier for a click on a button, we can use
a combination of the button’s property values, such as its role, title, help text or its path in the wid-
get hierarchy (parents/children/siblings). To create a unique identifier for a text field, if the action
identifier takes the entered text into account, then the action that types the text foo will have a dif-
ferent identifier than the action that types boo.

4.5. Evaluate the new states to find failures (oracles)

A test oracle is a mechanism that distinguishes between a passed or failed test case. In scriptless
testing, the test sequence is generated one step at a time during the execution as explained in the
previous section. The test oracles check each state we visit. That means that TESTAR oracles define
verdicts over states, we call these online or on-the-fly state oracles. Without specifying anything,
TESTAR can detect the violation of general purpose system requirements, or implicit oracles, like
those stating that the system should not
• crash, that is, an unexpected close;
• freeze, that is, get in an unresponsive state; and

13 of 46TESTAR – SCRIPTLESS TESTING THROUGH GRAPHICAL USER INTERFACE

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

• contain any suspicious titles in any of the GUI widgets.

Suspicious titles can be easily specified using regular expressions. Below is an example.
Example 4: Regular expression for suspicious titles

When this oracle is active, in each state s that is visited while generating the test sequence, it is
checked whether the patterns defined by the regular expression of the suspicious titles appear in the
widgets that make up W(s). A good example from web testing could be defining the HTML error
codes in suspicious titles to detect dead links that throw 404 Not Found error.

TESTAR also allows the user to define more sophisticated application-specific test oracles pro-
grammatically in the SUT-specific TESTAR protocol in Java code. Let us look at an example that
checks for a security vulnerability. The OWASP6 lists a vulnerability for Information exposure
through query strings in url. When sensitive data are passed to parameters in the URL, attackers
can easily obtain sensitive data such as usernames, passwords, tokens (authX), database details
and any other potentially sensitive data. Simply using HTTPS does not resolve this vulnerability;
it should be prevented from appearing in the URL. The following example oracle can detect these
vulnerabilities.
Example 5: Programmatic Java oracle

In line 1, we define a variable inputTextData in which we will store all text that will be en-
tered into textfields while executing actions (lines 3–6) to create test sequences. The oracle (lines
19–14) will check in each state whether elements from inputTextData are exposed in the cur-
rent URL of the SUT.
Besides the online state oracles explained earlier, TESTAR can also interact with the process of

desktop applications, listening to the buffers of its process in the System output and Error output
of the operating system. This enables the tester to also define buffer oracles enable to find suspi-
cious output coming from the processes, similar in the way that it checks suspicious titles. More-
over, we store the output of the processes in logs for later offline manual inspection to find
anomalies.

6https://www.owasp.org

14 of 46 VOS ET AL.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

https://www.owasp.org

4.6. Runtime execution and modes

The entry point of the TESTAR Java runtime process is the Main class. This class has access to the
test.settings configurations file, defined by the tester. Besides settings like
number_of_sequences, number_of_actions and SuspiciousTitles, the tester can
define his or her own specific TESTAR protocol class that needs to be used for testing. This can
be specific for a SUT, a kind of test or just to the tester. A TESTAR protocol is a Java class that is
responsible for executing the different parts of test sequence loop as depicted in Figure 1. The code
in the protocol class gets compiled at runtime. The SUT-specific, test-specific or tester-specific
TESTAR protocols are at the bottom of an inheritance tree as shown in Figure 6.
The DefaultProtocol class is the class that contains all the code that actually executes the

test sequences. It implements the interface as defined in the AbstractProtocol class that con-
tains methods for executing the different parts of test sequence loop (conform Figure 1 and the pre-
vious four sections):
• getState() (from Section 4.1);
• deriveActions() (from Section 4.2);
• selectAction() and executeAction() (from Section 4.3); and
• getVerdict() (from Section 4.5).

The Desktop and the WebdriverProtocol add a default implementation for specific plat-
forms. Action filtering as it will be explained in Section 6.2 is done by the
ClickFilterLayerProtocolclass. Finally, there is the RuntimeControlsProtocol
class, which offers controls that allow for the manipulation of TESTAR’s runtime modes during ex-
ecution. There are currently four modes of runtime execution:
• The SPY mode can be used to inspect the widgets of the SUT and see all the information that

TESTAR is able to extract. In this mode, actions can be filtered (Section 6.2).
• In the GENERATE mode, the test cycle depicted in Figure 1 is executed.
• The RECORD mode can be used to manually interact with the SUT and store the actions into test

sequences.
• The REPLAY mode permits replaying an existing test sequence.

Figure 6. Layers of the different TESTAR protocols. SUT, system under test.

15 of 46TESTAR – SCRIPTLESS TESTING THROUGH GRAPHICAL USER INTERFACE

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

4.7. Test results

As explained in the previous sections, a TESTAR run results in a specified number of test sequences
with a specified number of actions that have been executed. For each of the resulting sequences, the
following information is saved in a directory with a name composed of a timestamp and the name of
the SUT:
• Logs that include all the executed actions together with the target widget and the different

states of the test sequence, as well as a timestamp that can help synchronize results with
other applications.

• Screenshot images that capture the GUI state after each action in a sequence. For this, the co-
ordinates of the states and widgets obtained through the API are used.

• HTML reports to help users follow the flow of executed actions; they combine the textual in-
formation of the API and the visual screenshots to display the different sequences.

• Sequences replayable by TESTAR in the REPLAY mode (.testar format). These sequences
are classified in directories according to the final verdict obtained from the defined oracles
(i.e. unexpected close, unresponsive and suspicious titles). These sequences consist of a java
object stream that saves the object information of states, actions and widgets.

All the results of a TESTAR run are saved in a directory with a name composed of a timestamp and
the name of the SUT. An index log is created during the first TESTAR run and is updated with each
sequence execution. This index is useful when we need to support the integration and synchroniza-
tion of TESTAR with other applications. We then simply use the timestamps and search for all
TESTAR sequences by following the path of the right timestamped directory (Figure 7).

4.8. Comparing TESTAR to other similar tools

This chapter compares TESTAR with other scriptless GUI testing tools and highlights the main dif-
ferences between them. The tools for the comparison were selected based on following criterion: the
tool has to be a smart monkey testing tool, based on dynamic analysis during automated exploration
of the GUI. Purely mobile testing tools were not included, because TESTAR does not support mobile
testing yet so cannot really be compared with those.
The comparison can be found in Table 2 where we summarize the implementation language, li-

cense, types of SUTs that can be tested with the tools, how the actions are selected while creating
the test sequences, which models are used or inferred during the testing, which oracles are being
used to detect failures and which actions are being considered as components for the sequences.

Figure 7. Output structure for test results.

16 of 46 VOS ET AL.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

Ta
bl
e
2.

T
he

st
at
e
of

a
G
U
I
as

a
w
id
ge
t
tr
ee
.

T
E
S
TA

R
M
ur
ph
y
[6
7]

G
U
I

D
ri
ve
r
[4
3]

C
ra
w
lja
x/

A
T
U
S
A

[4
4,

71
]

W
eb
m
at
e
[7
2]

G
U
IT
A
R
[7
3]

A
U
G
U
S
T
O
[7
4]

A
ut
oB

la
ck
Te
st

[M
P
R
S
11
11
8]

Im
pl
.

Ja
va

P
yt
ho
n

Ja
va

Ja
va

N
A

Ja
va

Ja
va

Ja
va
.N
E
T

L
ic
en
se

O
S

O
S

N
A

O
S

C
om

m
er
ci
al

O
S

O
S
(b
ut

de
pe
nd
s

on
IB
M

F
un
ct
io
na
l
te
st
er
)

O
S
(b
ut

de
pe
nd
s

on
IB
M

F
un
ct
io
na
l

te
st
er
)

S
U
T ty
pe
s

W
in
do
w
s,
W
eb
,

Ja
va

(A
W
T,

S
W
T,

S
w
in
g,

F
X
)

W
in
do
w
s

Ja
va

(A
W
T,

S
W
T,

S
w
in
g)

W
eb

W
eb

Ja
va

JF
C
,
Ja
va

S
W
T,

W
eb
,

U
N
O

(O
pe
n

O
ffi
ce
)

Ja
va

(A
W
T,

S
W
T,

S
w
in
g)

Ja
va

(A
W
T,

S
W
T,

S
w
in
g)
,

.N
E
T,

W
in
do
w
s,

L
in
ux

G
U
I lib
ra
ri
es

U
IA

ut
om

at
io
n,

W
eb
D
ri
ve
r,
Ja
va

A
cc
es
s
B
ri
dg
e

U
IA

ut
om

at
io
n,

im
ag
e

re
co
gn
iti
on

Je
m
m
y
Ja
va

lib
ra
ry

W
eb
D
ri
ve
r

W
eb
D
ri
ve
r

Ja
va

A
cc
es
si
bi
lit
y,

W
eb
D
ri
ve
r,
U
N
O

A
cc
es
si
bi
lit
y

IB
M

F
un
ct
io
na
l

Te
st
er

IB
M

F
un
ct
io
na
l

Te
st
er
,
S
el
en
iu
m
.

A
ct
io
n

se
le
ct
io
n
R
an
do
m
,

pr
og
ra
m
m
ab
le
,

m
od
el

ba
se
d,

R
L
,
ev
ol
ut
io
na
ry

al
go

ri
th
m
s

R
an
do
m
,
st
at
e

m
od
el

ba
se
d,

pr
og
ra
m
m
ab
le

tr
ig
ge
rs

R
an
do
m
,
st
at
e

m
od
el

ba
se
d,

us
er

ac
tio

ns
ca
pt
ur
ed

in
to

m
od
el

fo
r

sp
ec
ifi
c
in
pu
ts

K
sh
or
te
st

pa
th
s
al
go
ri
th
m

in
fe
rr
in
g
st
at
e

m
od
el

an
d
us
in
g

it
fo
r
cr
aw

lin
g,

1D
ijk

st
ra
’s

sh
or
te
st
pa
th

G
ra
ph

m
od
el

ba
se
d,

co
nfi

gu
ra
bl
e

tr
ig
ge
rs
,

D
ep
th

fi
rs
t

an
d
m
od
el

ba
se
d

R
an
do
m
,
R
L
,

S
ta
te

m
od
el

M
od
el

in
fe
re
nc
eS
ta
te

gr
ap
hs
,

co
nfi

gu
ra
bl
e

se
le
ct
io
n

of
w
id
ge
t

pr
op

er
tie
s

de
fi
ne

st
at
e

ab
st
ra
ct
io
n

S
ta
te

gr
ap
hs
,

da
ta

va
lu
es

ab
st
ra
ct
ed

fr
om

st
at
es

S
ta
te

gr
ap
hs
,

av
ai
la
bl
e
ac
tio

ns
de
fi
ne

st
at
e

ab
st
ra
ct
io
n,

da
ta

in
tr
an
si
tio

ns
.S
ta
te
-fl
ow

gr
ap
h
of

th
e

D
O
M

st
at
es

an
d

ev
en
t
ba
se
d

tr
an
si
tio

ns
be
tw
ee
n

th
em

F
in
ite

st
at
e

au
to
m
at
on
,

m
ul
tip

le
op
tio

ns
fo
r
st
at
e
ab
st
ra
ct
io
nG

U
I
ev
en
t

fl
ow

gr
ap
h

(G
U
I
ev
en
t

ex
tr
ac
te
d
fr
om

w
id
ge
t
pr
op
er
tie
s)

G
U
I
ev
en
t

fl
ow

gr
ap
h.

N
od
es

re
pr
es
en
t

G
U
I
st
at
es

ba
se
d

on
w
id
ge
ts

pr
op
er
tie
s.

G
U
I
ev
en
t
fl
ow

gr
ap
h.

N
od
es

re
pr
es
en
t
G
U
I

st
at
es

ba
se
d
on

w
id
ge
ts

pr
op
er
tie
s.

O
ra
cl
es

C
ra
sh
es
,
fr
ee
ze
s,

su
sp
ic
io
us

el
em

en
ts

in
w
id
ge
t
pr
op
er
tie
s

an
d
sy
st
em

ou
tp
ut
s,

pr
og
ra
m
m
ab
le
.

C
ra
sh
es
,

fr
ee
ze
s,

pr
og
ra
m
m
ab
le

C
ra
sh
es
,
fr
ee
ze
s,

ex
ce
pt
io
ns

an
d
er
ro
rs

in
sy
st
em

ou
tp
ut
s

cl
ie
nt
/s
er
ve
r

si
de

ex
ce
pt
io
ns

an
d
er
ro
rs
,

D
ea
d
C
lic
ka
bl
es
,

In
co
ns
is
te
nt

B
ac
k-
B
ut
to
n

C
ro
ss
-b
ro
w
se
r

di
ff
er
en
ce
s,

cr
as
he
s,

fr
ee
ze
s,
ge
ne
ri
c

H
T
T
P
an
d

Ja
va
S
cr
ip
t
er
ro
rs
,

pr
og
ra
m
m
ab
le

C
ra
sh
es
,

S
ta
te

V
er
ifi
er

(m
od
el

w
or
kfl

ow
),

pr
og
ra
m
m
ab
le

F
un
ct
io
na
l
or
ac
le
s

th
at

ca
n
re
ve
al

no
n-
cr
as
hi
ng

fa
ul
ts

C
ra
sh
es
,
H
an
gs
,

U
nc
au
gh
t

E
xc
ep
tio

ns
,

vi
ol
at
io
n
of

A
ss
er
tio

ns

G
U
I ac
tio

ns
L
ef
t/r
ig
ht

m
ou
se

cl
ic
ks
,
do
ub
le

M
ou
se

cl
ic
k

ac
tio

ns
an
d

on
ly

cl
ic
k

ac
tio

ns
M
ou
se

cl
ic
k

ac
tio

ns
,
ho
ve
ri
ng
,

M
ou
se

cl
ic
ks
,

te
xt

in
pu
t,

M
ou
se

cl
ic
ks
,

te
xt

in
pu
t, (C
on
tin

ue
s)

17 of 46TESTAR – SCRIPTLESS TESTING THROUGH GRAPHICAL USER INTERFACE

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

Ta
bl
e
2.

(C
on
tin

ue
d)

T
E
S
TA

R
M
ur
ph
y
[6
7]

G
U
I D
ri
ve
r
[4
3]

C
ra
w
lja
x/

A
T
U
S
A

[4
4,

71
]W

eb
m
at
e
[7
2]

G
U
IT
A
R
[7
3]

A
U
G
U
S
T
O
[7
4]

A
ut
oB

la
ck
Te
st

[M
P
R
S
11
11
8]

cl
ic
ks
,
te
xt

in
pu
t,

dr
ag
-a
nd

dr
op

,
ke
yb
oa
rd

ev
en
ts
.

te
xt

in
pu
t

ac
tio

ns
M
ou
se

cl
ic
k

ac
tio

ns
an
d
te
xt

in
pu
t
ac
tio

ns

he
ur
is
tic
s
fo
r

te
xt
ua
l
in
pu
t

ge
ne
ra
tio

n

In
vo
ke

G
U
I

A
P
Il
ib
ra
ry

ev
en
t

m
et
ho
ds

se
le
ct
io
n,

co
m
pl
ex

ac
tio

ns
(fi
ll-
in

fo
rm

s
in
te
ra
ct

w
ith

co
lo
r

se
le
ct
or
,
et
c.
)

se
le
ct
io
n,

co
m
pl
ex

ac
tio

ns
(fi
ll-
in

fo
rm

s
in
te
ra
ct

w
ith

co
lo
r

se
le
ct
or
,
et
c.
)

18 of 46 VOS ET AL.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

We can see that Java is the most prevalent language used for implementation and that, for now, the
majority of all tools are open source. Most of the tools implement different stochastic action selec-
tion algorithms; only few depend on deterministic approaches. Models used or inferred are basically
state graphs or event flow graphs, and most tools rely on implicit oracles.

5. ADDING MEMORY TO THE MONKEY: STATE MODELS

In the previous sections, we have described how the current state of the GUI can be obtained in a
form of a widget tree. This section describes how all the widget trees can be used for extracting
or inferring a state model during the automated GUI exploration.
When a model is learned or inferred based on observing a system during its execution, the model

includes only the parts that have been visited during the executions. Therefore, an important part of
the process is reaching all parts of the GUI. Moreover, if the system produces wrong outputs or
other unwanted behaviour during the execution, these errors will also be included in the model.
Consequently, the inferred models are not representing the expected behaviour of the SUT, usually
captured in requirements and manually defined test oracles. Depending on how the models are used,
other means for validating the correctness of the models might be needed. However, an inferred
state model can still be used in various interesting ways:
• With a suitable visualization, the behaviour of the system can be analysed through the models

and used by an expert, for example, as a base for conformance testing. The visualization is
described in Section 5.2.

• When models are created for different versions of the same SUT, the difference between the
versions can be detected by comparing the models [67]. This functionality is currently being
implemented into TESTAR and is discussed in Section 5.3.

• The model could be used as data for calculating test adequacy indicators like GUI coverage
metrics. This will be discussed in Section 5.4.

• The model can be used for a new type of oracles, i.e. offline test oracles [76]. This is discussed
in Section 5.5

• The model can be used as input for smart action selection algorithms, for example, based on
artificial intelligence, machine learning or search-based optimization techniques. This will
be discussed in Section 6.4.4.

5.1. Active learning of state models

Model inference during GUI testing with TESTAR is like drawing a map to remember where have
you been and what you have done. The TESTAR model inference approach can be classified as dy-
namic analysis, as the model is based on observing the system during its automated execution.
In earlier versions of TESTAR, the state model was saved into a file and kept in memory during

TESTAR execution. The current TESTAR version, if the state model inference is enabled, will save
the model into a graph database, using OrientDB7 by default. The models are defined in terms of
vertices and edges that allow for using graph theory, for example, to navigate the graph, while also
having each vertex and edge be a document in its own right, allowing for the required storage of the
SUT data in the document’s attributes.

TESTAR uses the information of the inferred widget trees to build the state model in three layers:
1 The top layer is an abstract state model of the SUT. It is built incrementally based on multiple

test runs. If the SUT name and SUT version of the test runs are the same, then they are used
for building the same abstract state model.

2 The middle layer of the model is a concrete state model of the SUT. It is also built incremen-
tally based on multiple test runs, but it will in general contain a lot more state nodes. We will
explain the clustering mechanics of these two layers shortly. Each state of the concrete layer is
connected to one of the states of the abstract layer, and each concrete action connected to one
of the abstract transitions or actions. It is important to note that while the model is identified in

7https://orientdb.com/

19 of 46TESTAR – SCRIPTLESS TESTING THROUGH GRAPHICAL USER INTERFACE

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

https://orientdb.com/

the abstract layer, the other two layers are attached to it. This means that a change in applica-
tion name or version will not only automatically change the abstract layer of the model but also
the other two layers. It is therefore not possible that a single concrete layer can be attached to
the abstract layers of two different models.

3 The bottom layer is the management layer, recording meta information about the executed test
sequences. Where the abstract and concrete layers describe the SUT, the management layer de-
scribes the TESTAR executions.The individual test executions of the management layer are con-
nected to the state nodes of the concrete layer, and a state model of a specific version of a
specific SUT is connected to the corresponding model of the abstract layer.

Because the state model implementation uses OrientDB’s graph database capabilities, each of our
stored entities is either a node or an edge. Nodes in the abstract layer represent an abstract state and
are connected by edges that represent abstract actions. Those in the concrete layer represent con-
crete states and are connected by edges that represent concrete actions. The terms ‘abstract state’
and ‘concrete state’ signify nothing more than the identifier that is calculated by TESTAR for a

Figure 8. Example of a generated three-layer model in OrientDB.

20 of 46 VOS ET AL.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

given visual state in the SUT. In Section 4.4, we explained that TESTAR allows the tester to configure
which properties of the widgets in the widget tree are used for abstraction, from a selection of
around 170 properties. When all the properties are used, we obtain a concrete state identifier. When
a selected subset of the properties is used, we obtain the abstract state identifier.
The only clustering heuristics that are used in the top two layers of the state model are these iden-

tifiers. We use the abstract state identifier to obtain a node in the abstract layer. If two SUT widget
trees produce the same abstract state identifier, they are said to represent the same abstract state
node in the abstract layer. The same applies for the concrete state identifier and the concrete layer,
and for the abstract and concrete action identifiers. It is easy to see that because the concrete state
identifier will almost always use a lot more widget attributes in its calculation, there will be a lot
more unique concrete states than abstract states. Because the concrete states are as unique as we
can make them, we use the concrete layer for storing information about the application in each vi-
sual state, like creating and saving a screenshot. This would not be possible in the abstract layer,
because a state in that layer could represent multiple visual states in the SUT, which can have en-
tirely different screenshots. In the concrete layer, this is much less likely to happen.
The management layer is the odd duck out in the model, because no joint model is being built in

this layer. Every time TESTAR starts a new sequence within a test run, a new test sequence node is
created in the model. The identifier for this node is simply a number that starts with 1 and will in-
crement with each consecutive sequence that is started. It will contain meta information about the
run, such as the date and time on which it was started and whether or not the run terminated suc-
cessfully or was cancelled prematurely due to an encountered error. Every time an action is exe-
cuted, meta information about the execution of the action is stored in a sequence step edge in the
management layer. And when the action has completed and a (new) state is accessed, meta informa-
tion about the accessing of that state is stored in a sequence node. An example is whether or not an
error was occurred while accessing the state. While the graph database does not perfectly lend itself
to the purpose of storing meta information in this fashion, by using the right graph queries, a

Figure 9. Building the state model in the graph database. GUI, graphical user interface.

21 of 46TESTAR – SCRIPTLESS TESTING THROUGH GRAPHICAL USER INTERFACE

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

perfectly usable management overview can be displayed showing the overall progress and success
rates of the tests. It also means only one database store can be used to contain all three layers.
Figure 8 shows an example of a generated three-layer model, indicating how the three layers are

interconnected. It shows how a state in the abstract layer can be the abstraction for one or more
states in the concrete layer and how they in turn have been accessed by a node in the management
layer, representing a visitation of these states during a test run. Every TestSequence node represents
a tree, in which each node only ever has one child node. When the test sequence ends, the tree is
finished and a new tree is started (when a new test sequence begins).
Not shown in Figure 8 is how, during the model inference, when TESTAR finds a new, previously

unencountered state, it connects all the abstract transitions of the actions that have not been exe-
cuted yet to a ‘black hole’ node, meaning that the behaviour of those actions are unknown. The rea-
son for this is purely technical, as the graph database requires all transitions to have a starting node
and ending node.
While all three layers are stored in the OrientDB data store, TESTAR also keeps an in-memory

copy of the abstract layer. Doing so allows for fast lookup of information about the states and ac-
tions in this layer, which is needed when the model is used as a driver for TESTAR’s action selection.
Access to the state model functionality is provided by a StateModelManager class, which functions
as a gatekeeper. TESTAR provides it with states and actions, and it transforms them into entities that
can be kept in memory, stored in the OrientDB data store or both.
Figure 9 shows how TESTAR stores the various properties in the graph database when the execu-

tion flow presented in Figure 1 is executed. TESTAR execution can then be explained through the
following steps:
1 After starting the SUT, its initial state is captured by the tool.
2 Next, the tool analyses the possible actions it can execute in the current state.
3 Both the state and the list of executable actions are provided to the

StateModelManagerclass. If this is the initial state, just the state is stored. Otherwise, a
transition between the state and the previous state is also created and recorded. As we ex-
plained earlier in this section, a state gets saved in both the abstract and concrete layers of
the state model.

4 A copy of the abstract version of the state is also added to the in-memory state model, kept by
the StateModelManager.

5 The tool asks the StateModelManager for an action to execute. It applies one of several
custom state selection algorithms to its in-memory state model and returns an action.

6 The tool has the ability to overrule the action that was provided by the
StateModelManager, so it notifies it of the actual action that was chosen for execution.

7 The chosen action is executed, and the tool waits until another state in the application is
reached.

8 The next state is reached. This can either be a previously visited state or a new state. From
here, steps 2–7 are repeated and the model is automatically created.

An important part of inferring these abstract state models is selecting a suitable level of abstrac-
tion. If the level of abstraction is too low, the resulting abstract layer of the state model might have
too many states to be practically useful. However, if the level of abstraction is too high, the model
might become non-deterministic and therefore unpredictable, for example, when used for driving
the action selection.

5.2. Visualization

Although it is possible to query the OrientDB data store for quite a bit of information about the in-
ferred state models and output it in, for example, tabular format, there are other ways to visualize
the data that are more intuitively understandable for humans. Ideally, the visualization should match
with a user’s idea of what a state model should look like. Because the state model is stored as a
graph and a graph is usually the visualization of choice for state models, a graph visualization
makes for a great choice.
A state model visualization would preferably serve several use cases, such as the following:

22 of 46 VOS ET AL.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

• It can provide an overall view of the entire application state.
• It can provide detail information about a certain state or action.
• It would provide a view of the execution paths that lead to the creation of the state model.
• It would provide metrics of different sorts about the state model and its creation.
• It would provide easy insight into states where errors were generated and the execution path

that can reproduce it.

There are several open-source graph visualization tools available, such as Gephi [77], GraphViz
[78] and Cytoscape [79], which would satisfy some of these requirements. The process of getting
the data out of the OrientDB data store and into one of those tools can be quite tedious and elaborate
however, cutting down on an intuitive user experience. For that reason, and to support all of the
listed use cases, TESTAR comes with a custom state model visualization.
Figure 10 shows a listing of generated models and the test runs that were executed to create them.

The listing shows whether the test run was executed successfully (‘thumbs up’ icon) and whether it
was deterministic (i.e. an executed action always ended up in the same state). It is possible to obtain
a sequential screenshot visualization of a particular test run by clicking the ‘eye’ icon. The visual-
ization is a slide show showing the states accessed in the rest run. The column ‘Quirks’ indicates
whether strange results were encountered in model inference during the test run. These could be
caused by unsuitable configuration of the level of abstraction used for model inference, for exam-
ple, causing non-deterministic behaviour.
Besides looking at individual test sequences, it is also possible to look at a graph visualization of

the entire state model clicking one of the ‘layered’ icons. The three layers of the model are repre-
sented. Figure 11 shows the display area of the interactive graph viewer. It is possible to interact
with the graph and zoom in/out, as well as drag the different graph elements around. Besides these
elementary controls, the visualizer comes with a wide array of options to extract information from
the generated models. Some of these include the following:
• It is possible to open a side panel for each node in the graph that shows all the information that

was stored for that particular state. The information items can be filtered for more easy
access.

• For each concrete state, a screenshot can be inspected in full-screen mode.
• It is possible to inspect the widget tree belonging to a certain concrete state, thereby offering

great detail on all the widgets that make up the state.
• States containing errors are highlighted for quick lookup.
• From the side panel on each state node, it is possible to create a path trace, showing the exact

test sequence(s) that was used to access the state.

Figure 10. Overview of the test sequences executed for each state model.

23 of 46TESTAR – SCRIPTLESS TESTING THROUGH GRAPHICAL USER INTERFACE

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

It is evident that the custom visualization provides quite a few options for understanding the data.
A downside, however, is that the visualized graph can grow too big and therefore becomes hard to
understand. A good candidate for future improvement and research then is to allow the visualization
to be chopped into more manageable pieces.

5.3. Model comparison for automated change detection

Because learning the state models can be fully automated and executed as part of CI process, it is
possible to learn new models automatically from the latest SUT version, for example, once per
day. Having the inferred models of the implemented behaviour, it is possible to compare models
of two subsequent SUT versions to detect changes between the versions. Of course, without further
information, the model comparison will detect both intended and unintended changes.

TESTAR has a proof-of-concept implementation for model comparison but that has not been val-
idated in a case study yet. However, Aho et al. [67] report that Murphy tools8 support model com-
parison to detect changes between SUT versions, and the feature has been evaluated at F-Secure
Ltd.
In the reported evaluation [67], a new model of the latest SUT version was inferred three times

per day, and the detected changes were reported by email to the test engineers in form of a link
to a web page that visualized the changes with screenshots. The test engineers found the approach
useful.

Figure 11. Graph visualization of the state model.

8https://github.com/F-Secure/murphy

24 of 46 VOS ET AL.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

https://github.com/F-Secure/murphy

In the reported case study, the data values and other frequently changing parts of the GUI were
masked from the comparison, and GUI did not change that much during a day, so the test engineers
did not think that analysing the reported changes was taking too much effort. If the change was
intended, a part of the normal SUT evolution, it was ignored. If the change was unintended, it was
analysed and reported as a bug. Although the results of the evaluation seemed to be very positive,
at least the open-source project of the Murphy tools has not been maintained in the recent years.

5.4. Test adequacy indicators

In order to be able to assess the effectiveness of testing with TESTAR and compare different action
selection mechanisms, we need to be able to determine what constitutes good or better testing.
We need to have appropriate test adequacy indicators. Several indicators have been proposed and
researched for GUI testing. Memon et al. proposed criteria based on the event flow graphs
(e.g. coverage of events, event interactions, length n event sequences, invocations and invocation
terminations) [80]. In [81], it is shown that two factors have a significant effect in the effectiveness
of a test suite: the diversity of reached states and the coverage of events. In [82], it is studied what
the failure finding capabilities are of test suites looking at the length of the test cases in the suite, the
size (number of actions), the length 2 event sequences coverage and the length 3 event sequences
coverage. It is concluded that these criteria influence the effectiveness of testing, but more research
is needed to find out how they correlate to each other and the failures. In [83], it is described how
longer tests perform better than shorter ones in terms of coverage, fault finding and cost. But that the
effect eventually diminishes with greater increase in length. McMaster and Memon [84] propose a
call stack coverage criterion for stack-based architectures, for which it is shown that larger call trees
take more account of the SUT context during execution than code coverage criteria. In [85], t-way
interaction coverage criteria are researched for GUI testing. In [86], test adequacy is measured by
covering all the event handlers and the data interactions between them. In [87], coverage of all
the possible GUI interactions and the meaningful combinations of interactions is defined and mea-
sured. In [88], GUI-based mutation operators are defined and empirically evaluated for their useful-
ness of measuring test effectiveness. In [89], widget coverage is used, but it is concluded that this
metric only makes sense when reliable identification of GUI widgets is implemented. Other still use
classic code coverage [DBNZ2019] to evaluate test suite quality.
The idea of scriptless test automation is to let the tool automatically execute the system, without

the tester monitoring the test execution. The test sequences that are generated during this execution
constitute the inferred state models. Consequently, the models can be used for reporting the test cov-
erage only in a way that states where has the tool been and which actions of the modelled area of the
GUI have been executed. Because the model only covers the area that has been visited during
TESTAR execution, these metrics cannot be used for absolute measurement, but the coverage of in-
dividual test sequences can be compared or the combined coverage of all test runs on a specific SUT
version can be compared with the coverage of another version. In the context of TESTAR, the follow-
ing metrics have been used in different studies [90-92]:
• model states, the number of unique states in the state transition model;
• model actions, the number of unique actions that have been executed, shown as transitions in

the model;
• test actions, the total number of non-unique actions that have been executed;
• abstract states, the number of unique abstract states visited, in which an abstract state is a

group of states that are the same when a certain set of properties is disregarded (e.g. the colour
of controls);

• longest path, the length of the longest path in the state transition model; and
• state coverage, the minimum and maximum state coverage, defined as the lowest and highest

rate of executed actions over the total number of available actions of a state.

5.5. Offline oracles

The state model can be leveraged to define reusable and offline oracles as in [76]. As opposed to
the on-the-fly, or online, oracles that perform their evaluation on the current state of the SUT

25 of 46TESTAR – SCRIPTLESS TESTING THROUGH GRAPHICAL USER INTERFACE

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

during testing, offline oracles perform their evaluation on stored test data asynchronously
aftertesting.
Offline oracles are defined as queries to the graph database and can hence check properties about

(combined) test sequences. OrientDB provides multiple ways to query the database: graphs can be
traversed using a Structured Query Language dialect, or a Java API, or the Gremlin language9[93].
Let us look at an example from [76] of a Gremlin queries to define an offline oracle for a state
model stored in the OrientDB database. In [76], reusable offline oracles are being studied to test
for the accessibility using the guidelines from WCAG2ICT [94]. For example, Guideline 2.4
(Navigable) states that a SUT should provide ways to help users navigate, find content and deter-
mine where they are. This guideline can be partially covered by an offline oracle that tests for am-
biguous window titles, that is, a check that not too many windows have the same title. The Gremlin
implementation in Example 6 assumes that we have the graph database G ¼ ðV ; EÞ containing the
state model. The query selects all vertices that are widgets (line 2) and that have the
WCAG2IsWindow property set (line 3). These widgets are windows. The widgets are grouped (line
4) by their Title property.
Example 6: Obtaining property values

The result of executing this query in Example 6 is a map of titles and the number of times they
appear in the graph database. Then, to check the oracle, we need to loop through this list and raise
count above a predefined allowed threshold as a warning because it means that titles are duplicated
and hence ambiguous violating Guideline 2.4.

6. ADDING INTELLIGENCE TO THE MONKEY

As mentioned in Section 3, there are various ways to make a test monkey more intelligent. This sec-
tion describes the various ways to make TESTAR smarter, knowing more about how to test a specific
SUT.

6.1. Advanced derive actions

As explained in Section 4.2, having obtained the GUI’s current state, we can go on to derive a set of
actions from which we will select one. One thing to keep in mind is that the more actions we can
choose from, the bigger the sequence space will be and the more time the search for crashes might
consume.
Ideally, we should only select from a small set of actions that are likely to expose faults. Thus, the

challenge is to keep the search space as small as possible and as large as necessary for finding faults.

6.1.1. Deriving sensible actions. This strategy means that, for each state, we strive to generate a
set of sensible actions that should be appropriate to the widgets that they are executed on: buttons
should be clicked, scroll bars should be dragged and text boxes should be filled with text. Further-
more, we would like to exercise only those widgets that are enabled and not blocked. For example,
in a window that is blocked by a message box, it would not make sense to click on any widget be-
hind the message box. Because the box blocks the input, it is unlikely that any event handling code
(with potential faults) will be invoked. Putting more intelligence into derive actions will reduce the
choices for uninteresting actions during action selection.

9https://tinkerpop.apache.org

26 of 46 VOS ET AL.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

https://tinkerpop.apache.org

6.1.2. Deriving top level actions. Widget that are on top of the layout hierarchy are more likely to
lead to actions that trigger state transitions. Elements like Menus or emerging Windows existing on
the SUTs usually contain and are designed to include a functional flow of the application. In order
to favour top actions, TESTAR implements a prioritization approach based on an internally defined
property called z-index. The z-index of widgets presents the position in the stack of windows.
The window with the highest z-index is on top. This gives the possibility to derive the actions from
top level widgets.

6.1.3. Deriving new actions. Another prioritization approach for a faster GUI exploration is com-
paring the available actions of the current state and the previous state to detect which of the cur-
rently available actions are new. In case some action requires more than one step to execute, like
first opening the file menu and then choosing and menu item, such a prioritization would increase
the chances of triggering the new actions opened after clicking the file menu.

6.2. Filter actions

Besides telling TESTAR the actions that it can do, it is also important to tell what it should not do.
Action filters can be defined for this purpose. Letting TESTAR randomly interact with widgets on
a GUI could trigger ‘hazardous’ operations like delete or overwrite files, possibly damaging the op-
erating system. Away to safeguard this is by simply running test monkeys on safe environment, like
a virtual machine that can be easily recovered or a sandbox that you can break. Still, filtering action-
able widgets is useful to make sure we concentrate on actions that lead to testing the SUT. For ex-
ample, actions that minimize/maximize a window, close the SUT or open a help menu that simply
goes to a web site outside the SUT are not really interesting for testing. Filtering those will reduce
the search space and save time during the test execution.
The action filters can also be used for defining specific areas for scriptless testing, for example,

filtering different menu options or force the tool to test a specific area of the SUT. Action filtering
can be done in three different ways with TESTAR, and we will discuss each of them next.

6.2.1. Filtering with regular expressions. In a way similar to the use of regular expressions defin-
ing oracles for detecting suspicious titles (Example 4), we can also use regular expressions to filter
those widgets whose title matches a regular expression. For example:
Example 7: Regular expression to filter widgets

When this filter is active, in each state s that is visited while generating the test sequence, the title
property w.title of all widgets w∈W(s) is matched against the regular expression. In case of a
match, actions on that widget will not be considered. The WidgetTitleFilter from above
is a general purpose filter pattern that is useful for almost all SUTs, because we do not want to close
or minimize the application we are testing, we do not want to allow files to be saved causing haz-
ardous actions and we do not want to access to the print menu of the system for printing documents.

6.2.2. Using the click filter. TESTAR click filter functionality allows testers to filter widgets just by
clicking on them through the GUI of the SUT during the SPY mode. The filtered widgets are saved
into a blacklist, which means that they are not actionable anymore and actions will not be derived
for them. We can undo filtering widgets in the same way, even if the filtering was achieved by
matching a regular expression.
To make filtering work accurately, we rely on the uniqueness of the abstract identifiers explained

in Section 4.2. It is important to select the right level of abstraction and precision to guarantee

27 of 46TESTAR – SCRIPTLESS TESTING THROUGH GRAPHICAL USER INTERFACE

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

uniqueness. For example, consider an OK button. If we would use the role (i.e. button) and title
(i.e. OK) properties for the abstract identifier, it will filter all OK buttons in all the different states
of the SUT. Adding the path property would make the filtering more effective, because the path
of the button in the widget tree will most likely be different in different states.

6.2.3. Programmatic filtering. The third and most flexible way to filter actions is programming the
desired behaviour in the SUT-specific, test-specific or tester-specific TESTAR Java protocol.
In some SUTs, the configured set of properties may not be sufficient for proper filtering of the

existing widgets, for example, because they use a different set of accessibility properties. Then pro-
grammatic filtering is the best option.
As TESTAR offers the possibility to customize all the methods of its execution flow (see Figure 1),

users can prepare a specific filtering of widget actions using the properties that they consider appro-
priate. If we take a look at Figure 3, we can see that properties such as href, helpText or class can
be useful for filtering widgets. In deriveActions() function of some specific TESTAR protocol, we can
filter the actions with the conditions we need. In Example 8, all widgets that have some undesired
URL in their href tag property are filtered.
Example 8: Filtering widgets programmatically

6.3. Triggering pre-specified actions

Quite often, reaching all parts of the GUI requires using a specific input in a specific state of the
GUI; for example, a login screen requires a valid username and password. It would not make much
sense to try inputting random usernames and passwords into the text fields. Instead, before TESTAR

execution, the user should specify the valid input and how to recognize the fields into which the in-
put has to be written. TESTAR allows triggering pre-specified actions when a specific state has been
reached programmatically in the SUT-specific, test-specific or tester-specific protocol.
The start-up sequence is a special case of pre-specified actions for TESTAR as there is a specific

Java function for defining them in the TESTAR protocol class and this function is executed each time
after the SUT has been started. When triggering the actions during the TESTAR execution, it is done
by looking for one or several widgets with specified properties to recognize the state when the
pre-specified actions should be executed. If a matching state is detected, then the pre-specified ac-
tions are executed instead of letting the action selection algorithm to choose. After executing the
pre-specified actions, TESTAR returns to the normal flow, driven by the action selection algorithm.
If the SUT has been built with test automation and testability in mind, each input field should

have a unique automation ID. Then that ID can be used to recognize both the state and the field
where the pre-specified input has to be provided. Otherwise, another, hopefully unique property
value has to be used.
A CompoundAction (Section 4.2) can be used, if more than one action is required to fulfil the

purpose of the pre-specified actions. For example, a login screen would probably require two ac-
tions for filling username and password and a third action to click on Submit or OK button. The
benefit of the compound actions is that they require recognizing the state of the GUI only once,
when it is triggered, and executing multiple actions at once. An example of this is below. In this
example, Type is a class that represents typing actions, and KeyDown is a class that represents
pressing the argument key.

28 of 46 VOS ET AL.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

Example 9: Compound actions for login

For the same logging purpose, it is also possible to define a pre-specified CompoundAction using
WebDriver actions. Because these actions are internally defined with the specific DOM API web
method, the user only has to indicate the matching attribute value to find the web element and
the desired value of the attribute he wants to overwrite.
Example 10: Pre-specified actions for login using theWebDriver

6.4. Advanced action selection

The action selection strategy is a crucial feature for scriptless testing. The right actions can improve
the likelihood and decrease the time required for finding failures. As indicated before, the action se-
lection characterizes the fundamental challenge of intelligent systems: what to do next.
As we indicated before, in default mode, TESTAR selects the actions randomly. The current state

of the TESTAR at this writing consists of work on adding intelligence to the action selection strategy
using reinforcement learning, ACO and meta-heuristics. We will summarize these in the following
subsections.

6.4.1. Reinforcement learning. In [95], [7] and [90], we have used Q-learning, a reinforcement
learning technique, to improve action selection. The objective of Q-learning is to guide an agent
in the process of learning what action to take under different circumstances. The agent, at a state
s, must choose one among the set of actions A(s) derived at that state. By performing an action
a∈ A(s), the agent can move from state to state, until it reaches the goal. Executing an action in
a specific state provides the agent with a reward (a numerical score that measures the utility of ex-
ecuting a given action in a given state). The goal of the agent is to maximize its total reward by
learning which action is optimal for each state. The action that is optimal for each state is the action
that has the highest long-term reward.
Using machine learning algorithms for action selection requires a state model that maintains the

learned information, like the Q values for the actions in a specific state. The previously mentioned
Q-learning studies used an older implementation of TESTAR state models, based on files and
in-memory model, instead of the novel inferred state models stored in a graph database introduced

29 of 46TESTAR – SCRIPTLESS TESTING THROUGH GRAPHICAL USER INTERFACE

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

in Section 5. Abstraction of the state model has a big impact on the success of using machine learn-
ing for the action selection. If the model is too concrete and therefore suffers from state space ex-
plosion, the learning algorithm will suffer because it won’t get to use the learned values unless it
returns to a state that it has visited before. We are currently researching state model abstraction, de-
scribed in Section 8.2.
TheQ-learning algorithm used in [95], [7] and [90] is governed by two parameters: the maximum

reward, Rmax, and the discount γ. Depending on how these are chosen, the algorithm will promote
exploration or exploitation of the search space. The Rmax parameter determines the initial reward for
unexplored actions; so a high value biases the search towards executing unexplored actions. On the
other hand, discount γ establishes how the reward of an action decreases after being executed. Small
γ values decrease the reward faster and vice versa. The reward function R(s, a, s′) decreases every
time when action a is executed making it less attractive for the agent to select. Note that our reward
function is non-Markovian, because it depends on previous state transitions. The policy π : S→ A
just selects the action with the highest Q-value.
Experiments with different Q-learning parameters were performed, and they were compared with

random action selection. A good selection of the parameters when using Q-learning needed to be
emphasized after this study, because the different parameter settings for Q-learning allowed to ob-
tain better and worse results than random action selection.

6.4.1.1. Related and future work
First of all, different reward functions should be investigated, and their performance should be mea-
sured for the effectiveness of testing. The fact that our reward function is not Markovian might have
caused it to behave similar to random for some configurations, although it was observed that more
exploration was done. This might be due to the fact that during the learning process, paths are
searched systematically in the state space by keeping a memory where it has already been searched
this happens to end up in the Q-values. In [AKKB18 96], a similar reward function is used as in our
work. Others have used different reward functions in the GUI testing setting; it remains to be inves-
tigated how these perform within TESTAR. In [MPRS12 97], higher rewards are given to actions that
cause more changes to the states. Consider a state change s →as′, the reward value R(s, a, s′) is cal-
culated by counting the number of widgets that are present in s and changed in s′. A widget that
disappeared gets reward 1. A widget that is still there in s′ adds to the reward with a fraction of
the properties (used to identify the abstract state) that changed value. In [DBNZ2019 98], rewards
are only given to actions that cause a visual change on the GUI that is determined by comparing the
screenshots before and after performing the action. In addition, probabilistic distributions were used
to guide exploration and exploitation, based on the probability of obtaining a reward when execut-
ing an action on a widget in a given state. In [KS2018 99], matrices of Q-values are learned offline
for all applications. This avoids the need for learning the Q-values for each application during test-
ing. The Q-matrix contains five abstract categories of states defined according to the number of en-
abled actions in the state, and seven abstract types of actions are considered (menu, back, click, long
click, test, swipe and contextual). Rewards are given for increased (different) state coverage and
crash detection. In [GC17 100], different rewards are given to different types of actions based on
the transitions they cause, that is, transition to another activity or a crash get reward 1, and transi-
tions that go to another application get �1; other transitions do not get a reward.
Besides rewards and offline learning, different policies should be investigated. And together with

the reward functions, optimality criteria should be studied [101] and how these are related to learn-
ing the best action to select for testing through the GUI. For all these topics, the adequacy criteria
for GUI testing mentioned before, a research topic by itself, are needed.

6.4.2. Ant colony. In [102], ACO is used to optimize McMaster’s stack coverage criterion
(Section 5.4). Experiments are performed with a tool that can be considered an ancestor of TESTAR.
In order to obtain method call trees while executing a SUT, the Java virtual machine was instru-
mented. Hence, no source code was needed to obtain the metric.
Ant colony optimization seems to be a good candidate for optimizing test sequences because it is

a combinatorial optimization technique [103], meaning that it looks for a solution that consists of a

30 of 46 VOS ET AL.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

combination of unique components selected from a typically finite set. The objective is to find the
optimal combination of components (i.e. actions in a test sequence). ACO does not use a mutation
operator and hence maintains closure of the solutions; this is needed in our context because muta-
tions to a test sequence could easily result in infeasible executions of our SUT.
Ant colony optimization maintains an entire pool of the so-called ant trails that correspond to our

test sequences. Each test generation builds several trails (= test sequences) by selecting components
from a set C (in our case, C is the set of GUI actions A). The likelihood of an action being chosen is
determined by its pheromone value. When a test sequence is finished, we evaluate its fitness in
terms of the reached stack coverage; the pheromones of the actions contained within that trail are
updated according to the fitness value. Thus, the pheromones of an action indicate how often it par-
ticipated in test sequences with high stack coverage. Experiments show that ACO continuously
finds test sequences with better coverage than the random strategy.

6.4.2.1. Related and future work
Future work needs to investigate the fault-finding capabilities of the generated sequences. For this,
we need applications with known faults. Also, other adequacy criteria can be investigated; this is a
must for web applications, where the stack coverage criterion cannot be measured. In [104], ACO is
applied to GUI testing where the optimization criterion is similar to [?MPRS12]; that is, high pher-
omone values are given to actions that cause a lot of change. Finally, different optimization tech-
niques that do not have a mutation operator or one that preserves feasibility of the test sequences
need to be researched.

6.4.3. Evolving action selection mechanism. In [91,92], we have used evolutionary computing for
evolving action selection strategies. In evolutionary computing, individuals are randomly generated
from components and then evolved into hopefully fitter individuals. This is done by evaluating each
of the individuals to determine their fitness, selecting some of them and performing mutations on
the selected individuals to create new individuals. The fitter individuals have a larger chance of be-
ing selected for mutations. The assumption is that the individuals can pass on their fitness to their
children, so the selections and mutations should result in an even fitter next generation.
The individuals are trees that represent action selection strategies, as shown in Figure 12. As the

tree consists of components from a predefined set, trees can be automatically generated and compo-
nents can be interchanged. The root of the tree is always an if statement. The branches and leaves of
the tree are booleans and action selections, with optional operators.
During the evolutionary computing, a population of 20 individuals is used, with a maximum

tree size (the number of nodes in a tree) of 20. The steady-state model is used, which means

Figure 12. A tree-based representation of a strategy as used in [91,92].

31 of 46TESTAR – SCRIPTLESS TESTING THROUGH GRAPHICAL USER INTERFACE

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

that the population is not entirely changed at once, but partly, for example, one individual at a
time. Tournament selection of size five is used. This means that five individuals are selected ran-
domly from the total population, and of these five, the fittest individual is picked for further
processing. This processing is done using the evolutionary operators, in this case mutation
(replacing part of the individual with a randomly generated part) and crossover (exchanging part
of the individual with a part of another individual it is crossed with). The evolution is set to end
as soon as a strategy is found that results in more than 30 visited states within the configured
100 actions.
The SUT used during the evolution is Microsoft PowerPoint. The strategy found using the evo-

lution is then compared with the random strategy and the Q-learning strategy described in [92]. All
three strategies are run on PowerPoint, Odoo (an open-source Enterprise Resource Planning sys-
tem)10 and Testona (a commercial application for test case design).11 The metrics that are used
for comparison are the abstract states, the longest path and the minimum and maximum state cov-
erage. Statistical analysis revealed the superiority of this approach (compared with Q-learning and
random testing) in some of the SUT used in the experiments.

6.4.3.1. Related and future work
A future line of research will be to use novelty search [105]. Evolutionary algorithms tend to guide
the individuals towards peaks of fitness. In novelty search, an individual who is considered new in
one generation is probably considered less novel in the next. Novelty search does not reward prog-
ress, rather it rewards being different. In the context of TESTAR where the definition of oracles is
very complex, algorithms that favour the diversity of solutions could increase the probability of
finding a failure.

6.4.4. Prioritization and model-based search for unvisited actions. A state model can be used for
an action selection algorithm that plans more than one step ahead. Basically, the state model can
be used as a map to check where you are and where you’d like to go, driving the action selection
to a specific target. The inferred state model from Section 5.1 can be used for creating an explor-
atory action selection algorithm that has access to the abstract state model and prioritizes or searches
for unvisited actions.
The algorithm will look at the current state in the abstract state model for actions that have not yet

been visited by TESTAR. From this collection of unvisited actions, it returns a random one. If there
are no unvisited actions left in the current state, it looks at the states that are one action away and
checks them for unvisited actions. This process is repeated until an unvisited action is returned or
until the entire abstract state model has been covered, in which case a random action is returned
from the current abstract state. Such an algorithm is currently being implemented into TESTAR but
has not been evaluated for its effectiveness yet.

6.4.4.1. Related and future work
A similar exploratory action selection algorithm has been used in GUI Driver [43] and Murphy
tools [67], but its effectiveness has not been compared with other action selection algorithms. In
the near future, TESTAR will be used to compare the algorithm with other action selection
algorithms, measuring how quickly the algorithms will cover the GUI, possibly looking into code
coverage as well.

7. INDUSTRIAL CASE STUDIES

The successful transfer of academic results into industry is important. On the one hand, academic
research activities should be guided more towards the challenges of industry and solutions to their
immediate problems. On the other hand, practitioners in the industry should help academics in val-
idating their research results within a real industrial context. Technology transfer has always

10https://www.odoo.com
11https://www.testona.net

32 of 46 VOS ET AL.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

https://www.odoo.com
https://www.testona.net

been on the top priority list of the TESTAR project and remains to be. In this section, we
summarize the collaboration projects that have been successfully executed over the courses of the
years.
All studies are case driven and have been executed following the Methodological Framework for

Evaluating Testing Techniques and Tools (MFEST3) described in [106]. The need for this frame-
work emerged during the execution of the EU funded project EvoTest (IST-33472, 2007–2009,
[107]) and continued emerging during the EU funded project FITTEST (ICT-257574,
2010–2013, [108]). The framework conforms to the well-known and general guidelines and check-
list from case study research [109-112] but has been made specific for the evaluation of software
testing treatments.
MFEST3 distinguishes different scenarios for executing an evaluating study; they increasingly

depend on the information that is available for comparing. Scenario 1 consists of only a qualitative
assessment where we do not have enough information to compare. We do not know how many
faults there are, we cannot inject errors, we cannot compare with other testing techniques used be-
cause they are undocumented, nor do we have a company baseline. However, studying and
reporting on the measurements found for effectiveness, efficiency and subjective satisfaction will
be done during semi-structured interviews. Scenario 2 consists of scenario 1, but we can also do
some quantitative analysis because we have some sort of company baseline to which we can com-
pare. Scenario 3 consists of scenario 1 or 2 and a quantitative analysis of fault detection rate because
we access to a known set of faults (injected or not). Scenario 4 consists of scenario 1 or 2 and a
quantitative comparison of the tests generated by the approach that is being evaluated and an
existing test suite. Scenario 5 consists of scenario 4 plus the fault detection rate of the different test
suites. There are two more scenarios in [106], but we did not do these types of studies with TESTAR

yet.
In [106], many metrics are defined to answer research questions related to test effectiveness, ef-

ficiency and subjective satisfaction. All the metrics that have been used in the TESTAR studies are
numbered in Table 3to make it easier to refer to them in Table 4 that presents a summary of the ex-
ecuted case studies.
In Table 4, the GUI testing column describes how GUI testing was done before the case started

(M meaning manual and CR meaning using capture and replay). The scenario column refers to the
scenarios from MFEST3 described earlier. The context/subject column mentions the project in
which the study was carried out and indicates how many academics (aca) and how many industri-
alists (ind) participated. The numbers in the ‘effectiveness, efficiency and subjective satisfaction’
columns correspond to those in Table 3.
To try to generalize the results of these case-based studies, we can use an architectural analogy

[119]. For this, we need to describe an architecture of the cases, that is, components with
interactions, such as the systems, the people and their roles. Except for B&M, who was already
doing some automated GUI testing using CR tools, all the cases parted from manual GUI testing
practices before the introduction of TESTAR. This can lead to the simple architecture reflected in
Figure 13. Within this setting, the studies have shown that TESTAR is an effective complement to
existing manual practices and can find undiscovered failures in a SUT without too much costs in
setting it up.

Table 3. Metrics from [106] used in the TESTAR studies.

Effectiveness Efficiency Subjective satisfaction

1. Number of failures 1. Time needed to design the test suites 1. Reaction cards
2. Code coverage 2. Time needed to run 2. Informal interview
3. Functional test coverage 3. Lines of code for set-up 3. Face questionnaires
4. Number of false positives 4. Time needed for post analysis
5. Reproducibility
6. Impact or severity of faults

33 of 46TESTAR – SCRIPTLESS TESTING THROUGH GRAPHICAL USER INTERFACE

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

Ta
bl
e
4.

T
E
S
TA

R
ca
se

st
ud
ie
s

S
U
T

E
va
lu
at
io
n
S
tu
dy

M
et
ri
cs

R
es
ul
ts

C
om

pa
ny

P
la
tf
or
m

L
an
gu
ag
e/

L
O
C

G
U
I
te
st
in
g

S
ce
na
ri
o

C
on
te
xt
/

S
ub
je
ct
s

P
ub
lic
at
io
n

E
ff
ec
tiv

en
es
s

E
ffi
ci
en
cy

S
at
is
fa
ct
io
n

S
of
te
am

(L
ar
ge
)

W
eb

P
H
P
2k

M
5

F
IT
T
E
S
T

2
ac
a

2
in
d

[1
08
]

1,
2,

5
1,
2

1,
2,

3
T
he

au
to
m
at
ed

te
st
s
ge
ne
ra
te
d
w
ith

T
E
S
TA

R
w
er
e
co
ns
id
er
ed

to
be

ab
le

to
co
m
pe
te

w
ith

th
os
e
of

th
e
m
an
ua
l

te
st
s
of

S
O
F
T
E
A
M
.
T
he

su
bj
ec
ts
fe
lt

co
nfi

de
nt

th
at

if
th
ey

w
ou
ld

in
ve
st
a

bi
t
m
or
e
tim

e
in

cu
st
om

iz
in
g
th
e

ac
tio

n
se
le
ct
io
n
an
d
th
e
or
ac
le
s,
th
e

T
E
S
TA

R
to
ol

w
ou
ld

do
as

be
st
or

ev
en

be
tte
r
as

th
ei
r
m
an
ua
l
te
st
su
ite

w
.r.
t.

co
ve
ra
ge

an
d
fa
ul
t
fi
nd
in
g
ca
pa
bi
lit
y.

T
hi
s
co
ul
d
sa
ve

th
em

th
e
m
an
ua
l

ex
ec
ut
io
n
of

th
e
te
st
su
ite

in
th
e
fu
tu
re
.

P
ro
de
ve
lo
p

(S
M
E
)

W
eb

Ja
va

M
1

T
E
S
T
O
M
A
T

1
ac
a

3
in
d

[1
09
]

1,
5

1,
2

2
In

or
de
r
to

in
te
gr
at
e
T
E
S
TA

R
in
to

th
e

ex
is
tin

g
C
I
te
st
cy
cl
e,
a
C
I
ar
ch
ite
ct
ur
e

ne
ed
ed

to
be

ad
ju
st
ed

in
w
hi
ch

T
E
S
TA

R

co
ul
d
be

in
vo
ke
d
re
m
ot
el
y
in

a
di
st
ri
bu
te
d
m
an
ne
r.

T
E
S
TA

R
du
ri
ng

4
ni
gh
tly

bu
ild

s
fo
r
12

ho
ur
s
w
ith

ra
nd
om

ac
tio

n
se
le
ct
io
n
pr
ot
oc
ol

an
d
a

co
nfi

gu
ra
tio

n
of

30
se
qu
en
ce
s
of

20
0

ac
tio

ns
ea
ch

ni
gh
t.
W
e
fo
un
d
21

fa
ilu

re
se
qu
en
ce
s
th
at

co
ul
d
be

tr
ac
ed

ba
ck

to
tw
o
fa
ul
ts
.

C
la
ve

(S
M
E
)

W
in
do
w
s

D
es
kt
op

V
B

M
1

S
H
IP

1
ac
a

2
in
d

[1
10
]

1,
5,

4
1,

2,
3

2
S
et
tin

g
up

T
E
S
TA

R
to
ok

an
in
iti
al

ef
fo
rt

of
26

ho
ur
s
an
d
in
sp
ec
tio

n
of

lo
g
fi
le
s,

re
pr
od
uc
tio

n
an
d
co
m
pr
eh
en
si
on

of
er
ro
rs

to
ok

ar
ou
nd

10
0
m
in
ut
es

of
m
an
ua
l
in
te
rv
en
tio

n
du
ri
ng

an
d
af
te
r

te
st
s.

T
E
S
TA

R
de
te
ct
ed

10
pr
ev
io
us
ly

un
kn
ow

n
cr
iti
ca
l
fa
ul
ts
.

C
ap

G
em

in
i

(L
ar
ge
)
an
d

W
eb

Ja
va

12
k

M
5

O
U
,
U
P
V

1
ac
a

3
in
d

[1
11
]

1,
3.

6
1,

2
1,

2
R
un
ni
ng

T
E
S
TA

R
in

de
fa
ul
t
m
od
e
fo
r

71
ho
ur
s
(1
92

se
qu
en
ce
s
an
d
98
.0
81

ac
tio

ns
)
re
su
lte
d
in

fi
nd
in
g
4
fa
ilu

re
s

(C
on
tin

ue
s)

34 of 46 VOS ET AL.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

Ta
bl
e
4.

(C
on
tin

ue
d)

S
U
T

E
va
lu
at
io
n
S
tu
dy

M
et
ri
cs

R
es
ul
ts

C
om

pa
ny

P
la
tf
or
m

L
an
gu
ag
e/

L
O
C

G
U
I
te
st
in
g

S
ce
na
ri
o

C
on
te
xt
/

S
ub
je
ct
s

P
ub
lic
at
io
n

E
ff
ec
tiv

en
es
s

E
ffi
ci
en
cy

S
at
is
fa
ct
io
n

P
ro
ra
il

(L
ar
ge
)

th
at

th
e
m
an
ua
l
te
st
su
ite

di
d
no
t
fi
nd

an
d
80
%

of
fu
nc
tio

na
l
co
ve
ra
ge
.
O
f

th
e
4
fa
ilu

re
s,
1
w
as

no
t
re
pr
od
uc
ib
le
;

th
e
re
m
ai
ni
ng

fa
ilu

re
s
w
er
e
nu
ll

po
in
te
r
ex
ce
pt
io
n
du
e
to

cl
ic
ki
ng

m
or
e
tim

es
on

bu
tto

n;
fu
nc
tio

na
l

fa
ul
t
w
hi
le

ex
po
rt
in
g
to

E
xc
el

to
re
le
as
e
th
e
da
y
pl
an
;
co
nc
ur
re
nt

m
od
ifi
ca
tio

n
ex
ce
pt
io
n
w
he
n
cl
ic
ki
ng

tw
o
tim

es
on

a
bu
tto

n
in

a
ro
w

w
ith

ou
t
w
ai
tin

g.
A
ll
th
e
fa
ilu

re
s
w
er
e

as
si
gn
ed

hi
gh

se
ve
ri
ty

si
nc
e
th
ey

fo
rc
ed

th
e
en
d
us
er

to
re
st
or
e
th
e

ap
pl
ic
at
io
n
fo
r
fu
rt
he
r
us
e.
D
et
ai
le
d

re
su
lts

of
th
is
st
ud
y
w
ill

be
pu
bl
is
he
d

in
th
e
fu
tu
re
.

K
uv
ey
t
T
ür
k

B
an
k
(L
ar
ge
)

W
eb

m
an
y5
62
k

M
1

T
E
S
T
O
M
A
T

2
ac
a

3
in
d

2
To

re
st
ri
ct

T
E
S
TA

R
fr
om

te
st
in
g
ex
te
rn
al

W
eb

pa
ge
s,
a
S
U
T-
sp
ec
ifi
c
pr
ot
oc
ol

cl
as
s
ba
se
d
on

th
e
W
eb
dr
iv
er

w
as

ex
te
nd
ed

w
ith

1)
W
hi
te
lis
te
d

do
m
ai
n
U
R
L
s
th
at

ar
e
to

be
co
ns
id
er
ed

pa
rt
of

th
e
S
U
T,

an
d
2)

B
la
ck
lis
te
d
ex
te
ns
io
ns

of
re
so
ur
ce
s,

su
ch

as
P
D
F
s.
O
ut
-o
f-
do
m
ai
n
ac
tio

ns
an
d
U
R
L
s
w
er
e
pr
oh
ib
ite
d,

so
th
at

T
E
S
TA

R
di
d
no
t
se
le
ct

ex
te
rn
al

lin
ks

an
d
re
tu
rn
ed

ba
ck

to
S
U
T
if
it
en
de
d

up
to

do
m
ai
n
ou
ts
id
e
th
e
S
U
T.

K
uv
ey
t
T
ür
k
B
an
k
us
es

S
el
en
iu
m

an
d
A
pp
iu
m

fo
r
re
gr
es
si
on

te
st
in
g
of

m
ob
ile

an
d
in
te
rn
et

ba
nk
in
g.

T
he

ob
je
ct
iv
es

fo
r
th
e
co
lla
bo
ra
tio

n
is
to

ev
al
ua
te

sc
ri
pt

le
ss

te
st
in
g
an
d (C
on
tin

ue
s)

35 of 46TESTAR – SCRIPTLESS TESTING THROUGH GRAPHICAL USER INTERFACE

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

Ta
bl
e
4.

(C
on
tin

ue
d)

S
U
T

E
va
lu
at
io
n
S
tu
dy

M
et
ri
cs

R
es
ul
ts

C
om

pa
ny

P
la
tf
or
m

L
an
gu
ag
e/

L
O
C

G
U
I
te
st
in
g

S
ce
na
ri
o

C
on
te
xt
/

S
ub
je
ct
s

P
ub
lic
at
io
n

E
ff
ec
tiv

en
es
s

E
ffi
ci
en
cy

S
at
is
fa
ct
io
n

T
E
S
TA

R
to
ol

to
se
e
if
th
e
m
ai
nt
en
an
ce

co
st
ca
n
be

re
du
ce
d
on

th
e
lo
ng

ru
n,

w
hi
le

in
cr
ea
si
ng

te
st

co
ve
ra
ge

an
d
te
st
in
g
th
e
ro
bu
st
ne
ss

of
sy
st
em

s.
P
on
ss
e
(L
ar
ge
)

E
m
be
dd
ed

W
in
do
w
s

V
B
>
1M

M
1

T
E
S
T
O
M
A
T

1
ac
a

3
in
d

[1
12
]

1,
6

-
2

T
he

so
lu
tio

n
im

pl
em

en
te
d
w
or
ks

as
fo
llo

w
s.
W
he
n
th
e
P
on
ss
e
sp
ec
ifi
c

de
ve
lo
pm

en
t
br
an
ch

of
T
E
S
TA

R
ha
d

a
ne
w

co
m
m
it,

it
tr
ig
ge
re
d
P
on
ss
e
C
I

to
do
w
nl
oa
d
an
d
bu
ild

T
E
S
TA

R
an
d

ru
n
th
e
de
fi
ne
d
te
st
s
ag
ai
ns
t
th
e
la
te
st

S
U
T
ve
rs
io
n.

T
E
S
TA

R
fo
un
d
fa
ul
ts
th
at

w
er
e
no
t
di
sc
ov
er
ed

w
ith

m
an
ua
l
G
U
I

te
st
in
g
or

sc
ri
pt
-b
as
ed

te
st
au
to
m
at
io
n.

In
de
no
va

(S
M
E
)

W
eb

M
1

S
H
IP
,

P
E
R
T
E
S
T

1
ac
a

1
in
d

[1
13
]

1
1,

2,
3

2
To

ge
t
T
E
S
TA

R
ru
nn
in
g,

35
lin

es
of

co
de

an
d
10

m
in
ut
es

w
er
e
ne
ed
ed
.
O
ra
cl
es

di
d
no
t
re
qu
ir
e
an
y
lin

es
of

co
de
,
bu
t

ju
st
a
re
gu
la
r
ex
pr
es
si
on

w
ith

th
e

lis
t
of

un
w
an
te
d
lo
ca
lis
ed

w
or
ds
.
Tw

o
is
su
es

w
er
e
de
te
ct
ed

in
va
ri
ou
s

pl
ac
es

in
th
e
S
U
T
du
ri
ng

a
on
e
ho
ur

te
st
se
ss
io
n.

B
&
M

(S
M
E
)

W
in
do
w
s

D
es
kt
op

Ja
va

24
0k

C
R

1
F
IT
T
E
S
T

1
ac
a

2
in
d

[2
0]

1
1,

2
2

T
E
S
TA

R
fo
un
d
N
ul
l
P
oi
nt
er

E
xc
ep
tio

ns
th
at

co
ul
d
be

tr
ac
ed

to
m
in
im

iz
in
g
th
e

m
ai
n
ed
ito

r.
In
ve
st
ig
at
in
g
m
or
e,
it
w
as

fo
un
d
th
at

th
e
to
ol

w
ith

m
in
im

iz
ed

m
ai
n
ed
ito

r
w
as

no
t
fu
nc
tio

na
lly

sp
ec
ifi
ed
.
T
he

co
m
pa
ny

w
as

im
pr
es
se
d

an
d
co
nv
in
ce
d
th
at

to
ol
s
lik

e
T
E
S
TA

R

ca
n
im

pr
ov
e
th
e
fa
ul
tfi
nd
in
g

ef
fe
ct
iv
en
es
s
of

cu
rr
en
t
te
st
su
ite
s

de
si
gn
ed

at
B
&
M
,
bu
t
on
ly

if
us
ed

co
m
pl
em

en
ta
ry

to
th
e
cu
rr
en
t

pr
ac
tic
e.

36 of 46 VOS ET AL.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

8. FUTURE RESEARCH DIRECTIONS

In this section, we will summarize the ongoing and future research directions that have been put for-
ward in this paper.

8.1. Obtaining the state and test execution

Even if the test execution is automated, testing through GUI is significantly slower than, for exam-
ple, unit testing. The main reason is that you have to wait for the GUI to update after each executed
action. With enough resources, some GUI testing approaches could be executed faster if done in
parallel. However, model inference would still require a single entry point for collecting the data
[4]. In case of TESTAR, that point would be the graph database, but updating the abstract state model
to and from multiple simultaneously executed TESTAR instances requires more research.
Another future research directions is supporting scriptless testing in a remote way. This requires

separating the platform-independent logic from the platform-specific adapter that is able to obtain
the state and execute interactions on a specific platform and allowing these two components to com-
municate remotely. One option would be defining an abstract language to describe all the widgets
for the state and all the actions as commands and transformations at the platform-specific adapter.
To allow running the adapters inside company firewalls, the adapters should act as clients that reg-
ister into a server and maintain a connection that allows the server to send commands in a form of
responses, for example, using web sockets.
The cloud is another relevant future execution environment for GUI testing. The challenges in-

clude the need for platform-specific environments, including interactions through mouse and key-
board, and the need to obtain the state of the GUI. For web testing, Selenium WebDriver could
provide means to implement support for cloud environments, for example, using containers. For
Windows desktop applications, however, this might be more challenging because containers aim
to offer micro services, having a minimal set of functionality offered in each container.
Currently, TESTAR starts the WebDriver locally and is therefore able to use the GUI of the browser

to interact with the web application using mouse and keyboard actions. In future, a remote connec-
tion to Selenium WebDriver should be supported and allow running it in headless mode. The sup-
port for headless mode could enable running TESTAR in a container, such as Docker, and make it
easier to run TESTAR in cloud environment.
Another useful extension would be to support the integration of Selenium scripts as part of TESTAR

execution. That way, the user could define the triggered behaviour (explained in Section 6.3) as
Selenium scripts that in many cases might already exist for scripted functional testing.
Evidently, adding support to test mobile applications with TESTAR is a desirable future direction,

for example, using Appium [68] to obtain the state of mobile applications.
Another direction for obtaining the state of the GUI would be using image recognition on the

screenshots of the GUI. The main benefit of this approach would be that it is platform independent,
as long as the screenshots are available. There are open-source tools and libraries, such as
OpenCV12 (Open Source Computer Vision Library), that could be used to recognize the widgets
of the GUI. Machine learning could be used to train image recognition algorithms for better accu-
racy and possibly recognizing also the type of the widget to derive different kinds of actions. There
is a new initiative, Open UI Data,13 that aims to use TESTAR with technical API to automatically
generate screenshot images paired with JSON files containing information about widgets and their
coordinates on the screenshot. The idea is then to use these UI data to train image recognition
algorithms for better accuracy.
In Section 4.2, we described how actions were derived for detected web widgets. However, some

web applications support customized classes that lead to non-native elements or native elements
that by default would not be recognized as being interactive. Consequently, TESTAR is not able to
derive actions automatically, if any. These have to be added manually. For that reason, the current

12https://opencv.org
13https://github.com/openuidata/openuidataset

37 of 46TESTAR – SCRIPTLESS TESTING THROUGH GRAPHICAL USER INTERFACE

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

https://opencv.org
https://github.com/openuidata/openuidataset

WebDriver implementation requires an initial manual overhead; we need to inspect the elements of
the customized classes and add those with which we want TESTAR to interact. A possible future re-
search topic would be to automatically detect or deduce which non-native elements can be
interacted with and how. That would make the initial set-up of TESTAR a lot easier for web
applications.
The development and testing of the WebDriver implementation was done on the Windows oper-

ating systems with Chrome. In the future, the support for more browsers and platforms is needed to
enable research on cross-browser or cross-platform testing, automatically detecting changes in be-
haviour between browsers or platforms.
Changing the level of interaction with SUTs, we can study the possibility of using TESTAR to in-

teract with extended or virtual reality 3D environments through designed frameworks, use autono-
mous agents intended to test environments by achieving goals or use operating system interfaces to
interact at operating system level. This would require research on more advanced actions and more
challenging state information.

8.2. Learning state models

State space explosion is a major challenge in learning GUI state models [4]. GUI state composes of
all the screens visible for the user, all the widgets of each screen and all the properties and values of
each widget. In addition, the previous states of the GUI might affect the behaviour and therefore
might be relevant for deducing the current GUI state. We are currently researching how using dif-
ferent sets of GUI properties and including the previous states for calculating the abstract states will
affect the inferred state model. Future directions for this research could include automatically
selecting a suitable level of abstraction for a specific SUT. Nondeterminism is an issue when using
the inferred state models for action selection. That means that selecting an action in a state does not
always trigger the same result, and that is a problem if the action selection algorithm tries to navi-
gate the state graph towards a specific state.
We are also implementing functionality to compare the models of subsequent SUT versions to

automatically detect changes between SUT versions, already mentioned in Section 5.3. The first
step would be manually analysing the reported changes and deciding if the change was intentional
or a bug. For that purpose, a web-based GUI could provide an easier way for the user to go through
the detected changes and visually inspect if the changes were intentional evolution of the applica-
tion or unintentional regression bugs. The report should include a direct link to the web GUI of
the reported model comparison. In future, machine learning could be used to learn what kind of
changes are actually important and should be reported for manual analysis. The detected changes
could be used for other purposes too, for example, reporting progress of the development or
directing testing activities into changed areas of the SUT.

8.3. Recording models

For now, with TESTAR in the RECORD mode, a tester can record sequences that can be later replayed
in the REPLAY mode. These manually recorded sequences are not stored in the model; they are just

Figure 13. Similar components and interactions of the cases for generalization through architectural anal-
ogy. GUI, graphical user interface; SUT, system under test.

38 of 46 VOS ET AL.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

for the tester to get familiar with the sequences of TESTAR. Functionality for recording manual or
otherwise executed actions into the model would be a valuable extension. This way, we can let a
user operate with the SUT in a way he or she would normally do, and we could record these
SUT-specific actions by adding them to the state model. This could make it easier to teach TESTAR

how to reach all parts of the SUT, instead of configuring the behaviour into SUT-specific TESTAR

protocol Java class. We could also execute any existing script-based tests and reuse all the executed
actions in test generation by recording them into the model.
Because this functionality would allow us to capture user stories into the state model, we could

use this information to create an action selection algorithm that would associate some prioritization
on these recorded actions to increase the possibility of these actions being executed. The idea is not
to replay the exact same test sequence but to navigate semi-randomly through the user-stories func-
tionality trees of the SUT using the state model.
Some SUT functionality flow that users have to execute with a combination of actions to reach

some goal can involve a high number of possible elements to interact or configurations to achieve.
This may be due to the fact that the user experience is not correctly defined or that the large number
of available elements makes an application have a high GUI configuration complexity. If the state
models would include the user interactions from manual or scripted testing, all the information
about existing widgets and non-executed actions during testing would also be saved in the model.
This information could allow us to obtain metrics for measuring the complexity of the GUI interac-
tions, based on the number of widgets required for a specific functionality flow.

8.4. Actions

TESTAR’s action selection can be improved by using artificial intelligence, machine learning or
search-based techniques to learn what is the best action to execute next. As was already described
in Section 6.4, related to the research already done on using reinforcement learning, more research
is needed to invent new reward functions and policies for different goals of testing. In the context of
the search-based techniques, different fitness functions need to be researched that, when optimized,
lead to better testing. But also different search-based algorithms can be explored to see which be-
haves best for GUI testing. Or we can optimize for novelty without fitness.
Another interesting topic would be to investigate whether existing script-based tests or end user

behaviour could guide us during the learning of the best action to execute next. The TESTAR model
recording (listener) mode can help us capture the actions used in test scripts or learn from what real
users would do.
Besides action selection, more research is needed to investigate how to generate better actions.

For example, generating better inputs is an important future research topic. The goal is to automat-
ically generate meaningful input values for text fields, for example, by deducting the type of the ex-
pected input from the neighbouring widgets, or generating potentially harmful input, for example,
by using lists like the Big List of Naughty Strings.14

Finally, future work is to see if actions can be selected in a way that they establish the execution
of application independent functionalities, or GUI patterns, that are defined in [74].

8.5. Test adequacy criteria

One of the general challenges in testing is the availability of appropriate test adequacy indicators to
objectively justify the decision when we have tested enough [120]. These will enable us to assess
the effectiveness of testing with TESTAR, compare different action selection mechanisms and define
stopping criteria.
An effective test suite is the one that is able to detect the most errors. However, when testing, we

never know how many and what errors there are in a system. (If we would, testing would no longer
be necessary.) Moreover, knowing which of these errors would be the most important to find de-
pends on the context in which the SUT is executed. Because there is no way to have the real mea-
sure of quality, surrogate criteria will have to suffice, that is, criteria of which we know, think or

14https://github.com/minimaxir/big-list-of-naughty-strings

39 of 46TESTAR – SCRIPTLESS TESTING THROUGH GRAPHICAL USER INTERFACE

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

https://github.com/minimaxir/big-list-of-naughty-strings

hope that they correlate to the real criteria, like coverage or mutation scores. We have seen in
Section 5.4 that there is some related work, but much more research is needed because useful indi-
cators for GUI testing are unfortunately still scarce and lack empirical evaluation, especially for
more recent and complex GUIs.
In future, we will research and evaluate different kinds of test metrics and stopping criteria. A

possible stopping criterion can be defined using the saturation effect [121], a phenomenon that de-
scribes how the testing process may stop finding new faults in the SUT after a certain point. A so-
lution, described by Tramontana et al. [122], requires the independent execution of several random
testing sessions. The testing process is considered completed once all the testing sessions have run
and the stopping criterion has been reached. In each testing session, a test sequence is generated and
a testing target is measured. Two stopping criteria are provided based on comparison between the
sets of testing targets covered by each of the test sequences generated in a testing session. If a stop-
ping criterion is satisfied, it is assumed that a saturation point has been reached. For instance,
Tramontana et al. use code coverage as a testing target in their GUI testing experiment. Several test
sequences are executed, and depending on the stopping criterion used, if all the test sequences cover
the same lines of code, or if one of the test sequences covers the union of the lines of code covered
by the other test sequences, the testing process can be stopped. There is a challenge in applying this
stopping criterion more generally in GUI testing, because measuring code coverage is not always
easy for systems that consist of multiple backend systems that are, for example, used through a
web GUI. Code coverage might not even be enough as a testing target, and experiments carried
out by Tramontana et al. show a SUT that did not reach the saturation point, as specific code
was not covered because the input necessary for its execution was not introduced.
Another possible stopping criteria could be defined with the model inference. When no more new

states are found, and all the known actions have been executed at least once, it could mean that a
saturation point in exploration has been reached. One option for future research could be, that, after
that saturation point, another action selection algorithm is used, that is, changing from GUI explo-
ration into combinatorial testing, trying to find new state transitions with a different order of execut-
ing actions in a specific state or a different order of executing state transitions.

8.6. Oracle problem

The challenge of automating oracles is known as the ‘test oracle problem’ [15-17]. Automation of
oracles is one of the most important parts needed for success of test automation and tools like
TESTAR. Usually, in scripted test automation, the oracle invocation is interleaved with the test case
execution [123], and test oracle is defined based on the expected behaviour, resulting from the ac-
tions defined before the oracle invocation. In scriptless testing, test steps are generated during the
test execution and therefore cannot be predicted in the same way. Each test oracle has to be defined
as an agent that is triggered if certain conditions are fulfilled. In TESTAR, we distinguish online and
offline oracles.
The work in [76] is the first step towards defining reusable offline oracles for one specific cate-

gory of quality characteristics, that is, accessibility. Future work can look into oracles for categories
of systems (i.e. different enterprise resource planning systems normally share many similarities), or
categories of functionalities that occur in different systems (i.e. logon and shopping cart). Also, we
could think of defining oracles as general properties within these categories, such that the inferred
state model can be model checked to hold them or contradict them.
A new type of online oracles that can be researched are those detecting layout issues by compar-

ing texts of widgets through image recognition and technical APIs. This could, for example, also be
used for internationalization. The translations for using a GUI application in another language are
often done without actually knowing the size of the widget where the text is going to be shown.
Sometimes, the translations result in issues because the text does not fit, either breaking the layout
or not showing all the intended text. We could define generic state oracles that detect these transla-
tion and layout issues by comparing texts of widgets through image recognition and technical APIs.
The hypothesis would be that the technical API should have the whole text, even if it would not fit
into the widget, and image recognition can be used to detect what is actually shown on the GUI.

40 of 46 VOS ET AL.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

Another future research aims at finding new ways for mining potential temporal test oracles from
the inferred state model. These test oracles could be specified in linear temporal logic, and the in-
ferred state model could be transformed into a format that allows model checking with an existing
third-party tool. Then model checking could be used to check whether the potential test oracles are
true in all of the existing sequences. The user should check the practical validity of the potential test
oracles before actually using them for testing. For that reason, visualization is an important part for
getting the user to understand what is proposed.

8.7. Visualization and test reporting

Currently, TESTAR generates a very simple HTML report for each executed test sequence as local
files. The usability of the tool could be improved by generating more elegant and modern
web-based reports. Parallel test execution should be also taken into account, so probably using a
database instead of files would be a better option. There is a lot of information and details that
should be available if needed, but the report should be layered in a way that starts with a dashboard,
an overview of the whole test session, highlighting if failures were found and providing quick links
to the found failures. Another possible direction of research, combining visualization and test
reporting, would be visually showing what was covered with scriptless testing.
Analysing a long sequence that found a failure can be difficult. One possible future research

would be to automatically search for a shortest path to reproduce a failure. With the inferred state
model, finding a shorter sequence should not be that challenging, but it is not trivial to detect if it
is the same failure or another one. Also, just knowing whether the failure can be reproduced is use-
ful knowledge.
In the future, a better visualization of the state model could be used for many purposes, as de-

scribed in Section 5. One interesting direction might be trying to automatically generate a GUI flow
diagram in form that allows visual inspection. Currently, in many companies, such flow diagrams
are manually created. The state model could also be used to improve test reporting in many ways,
for example, visualizing the found failures in the state model.

9. CONCLUSIONS

This paper contains a comprehensive description of the open-source tool TESTAR, an academic pro-
totype that has been used for scriptless GUI testing research the past 8 years. The last few years,
more and more people external to the project become interested in TESTAR. Literature explaining
the positioning of the tool within GUI testing, and a detailed explanation of how it works together
with an agenda for future research direction, has been frequently requested. With this article, we
hope to meet this request and convince people to use TESTAR for their GUI testing-related research
and work together towards an international research agenda. The more people start using the tool,
the higher the chances that we will have an increasingly stable and open-source infrastructure in the
near future.

ACKNOWLEDGEMENTS

In addition to the authors, many people have contributed to TESTAR throughout the years. We will
list them in alphabetical order: Sami Ahonen, Francisco Almenar Pedrós, Alessandra Bagnato,
Salmi Baharom, Sebastian Bauersfeld, Etienne Brosse, Govert Buijs, Ernesto Calas Blasco, Hatim
Chahim, Nelly Condori, Wouter Cox, Martin Deiman, Mehmet Duran, Anna Esparcia-Alcazar,
Joan Fons i Cors, Floren de Gier, Stijn de Gouw, Marion de Groot, Conny Hageluken, Mark
Harman, Davy Kager, Eddy Kivits, Peter Kruse, Melvin van der Kuijl, Yvan Labiche, Jean-Marc
Maas, Hector Martinez Martinez, Tycho Menting, Perttu Moilanen, Mirella Oreto Martínez Murillo,
Carlos Ortega, Mauro Pezze, Dietmar Pfahl, Tomi Piirainen, Wishnu Prasetya, Enrique Reverón,
Antonio de Rojas, Urko Rueda, Carlo Sengers, Guy Thieuws, Ismael Torres Boigues, Ramón de
Vries, Joachim Wegener, Adri Weijling. This work has been funded by the following projects:
FITTEST (FP7 Information and Communication Technologies, 257574), SHIP (EACEA/A2/

41 of 46TESTAR – SCRIPTLESS TESTING THROUGH GRAPHICAL USER INTERFACE

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

UHB/CL 554187), PERTEST (TIN2013-46928-C3-1-R), TESTOMAT (ITEA3, 16032),
DECODER (H2020, 824231), iv4XR (H2020, 856716), TAILOR (H2020, 952215) and IVVES
(ITEA3, 18022).

DATA AVAILABILITY STATEMENT

Data sharing was not applicable to this article as no datasets were generated or analysed during the
current study.

REFERENCES

1. https://www.tricentis.com/resources/software%2Dfail%2Dwatch%2D5th%2Dedition/ (accessed jan 2021).
2. Campos J, Arcuri A, Fraser G, Abreu R. Continuous test generation: enhancing continuous integration with auto-

mated test generation. In IEEE/ACM Int. Conference on Automated Software Engineering (ASE). ACM: New York,
NY, USA, 2014; 55–66.

3. Fraser G, Arcuri A. A large scale evaluation of automated unit test generation using EvoSuite. ACM Transactions
on Software Engineering and Methodology (TOSEM). 2014; 24(2): 8.

4. Aho P, Vos TEJ. Challenges in automated testing through graphical user interface. In 2018 IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW). IEEE Computer Society: Los
Alamitos, CA, USA, 2018; 118–121. https://doi.ieeecomputersociety.org/10.1109/ICSTW.2018.00038

5. Pezzè M, Rondena P, Zuddas D. Automatic GUI testing of desktop applications: an empirical assessment of the
state of the art. In Companion Proceedings for the ISSTA/ECOOP 2018 Workshops. ACM: New York, NY,
USA, 2018; 54–62. http://doi.acm.org/10.1145/3236454.3236489

6. Cheng L, Chang J, Yang Z, Wang C. GUICat: GUI testing as a service. In 2016 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE): Singapore, 2016; 858–863.

7. Bauersfeld S, Vos TEJ. User interface level testing with TESTAR; what about more sophisticated action specifica-
tion and selection? In Seminar on Advanced Techniques and Tools for Software Evolution (SATToSE 2014).
L’Aquila, Italy, 2014; 60–78.

8. Bauersfeld S. GUIdiff – a regression testing tool for graphical user interfaces. In 2013 IEEE Sixth international
Conference on Software Testing, Verification and Validation. Luxembourg, 2013; 499–500.

9. Coppola R, Ardito L, Torchiano M. Fragility of layout-based and visual GUI test scripts: an assessment study on a
hybrid mobile application. In Proceedings of the 10th ACM SIGSOFT International Workshop on Automating Test
Case Design, Selection, and Evaluation. ACM: New York, NY, USA, 2019; 28–34. http://doi.acm.org/10.1145/
3340433.3342824

10. Coppola R, Ardito L, Torchiano M, Morisio M. Mobile testing: new challenges and perceived difficulties from de-
velopers of the Italian industry, 2019. IT PROFESSIONAL.

11. Alégroth E, Feldt R, Kolström P. Maintenance of automated test suites in industry: an empirical study on visual
GUI testing. Information and Software Technology. 2016; 73: 66–80. http://www.sciencedirect.com/science/arti-
cle/pii/S0950584916300118

12. Berner S, Weber R, Keller RK. Observations and lessons learned from automated testing. In Proceedings 27th In-
ternational Conference on Software Engineering, 2005. ICSE 2005: St. Louis, MO, USA, 2005; 571–579.

13. Leotta M, Clerissi D, Ricca F, Tonella P. Capture-replay vs. programmable web testing: an empirical assessment
during test case evolution. In 2013 20th Working Conference on Reverse Engineering (WCRE): Koblenz,
Germany, 2013; 272–281.

14. Vos TEJ, Aho P. Searching for the best test. In 2017 IEEE/ACM 10th International Workshop on Search-Based
Software Testing (SBST). Buenos Aires, Argentina, 2017; 3–4.

15. Barr ET, Harman M, McMinn P, Shahbaz M, Yoo S. The oracle problem in software testing: a survey. IEEE Trans-
actions on Software Engineering. 2015; 41(5): 507–525.

16. Jahangirova G. Oracle problem in software testing. In Proceedings of the 26th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis. ACM: New York, NY, USA, 2017; 444–447. http://doi.acm.org/
10.1145/3092703.3098235

17. Oliveira RAP, Kanewala U, Nardi PA. Automated test oracles: state of the art, taxonomies, and trends. Advances in
Computers. 2014; 95: 113–199. https://www.sciencedirect.com/science/article/pii/B9780128001608000036

18. Vos TEJ, Tonella P, Wegener J, Harman M, Prasetya W, Puoskari E, Nir–Buchbinder Y. Future internet testing with
fittest. In 15th European Conference on Software Maintenance and Reengineering. Oldenburg, Germany, 2011;
355–358.

19. Vos TEJ, Esparcia AI. Software testing innovation alliance – the SHIP project. In Joint proceedings of the doctoral
symposium and projects showcase held as part of STAF 2016 co-located with Software Technologies: Applications
and Foundations (STAF 2016): Vienna, Austria, 2016; 65–71. http://ceur-ws.org/Vol-1675/paper8.pdf

20. Vos TEJ, Kruse PM, Condori-Fernández N, Bauersfeld S, Wegener J. TESTAR: Tool support for test automation at
the user interface level. International Journal of Information System Modeling and Design. 2015; 6(3): 46–83.
https://doi.org/10.4018/IJISMD.2015070103

42 of 46 VOS ET AL.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

https://www.tricentis.com/resources/software%2Dfail%2Dwatch%2D5th%2Dedition/
https://doi.ieeecomputersociety.org/10.1109/ICSTW.2018.00038
http://doi.acm.org/10.1145/3236454.3236489
http://doi.acm.org/10.1145/3340433.3342824
http://doi.acm.org/10.1145/3340433.3342824
http://www.sciencedirect.com/science/article/pii/S0950584916300118
http://www.sciencedirect.com/science/article/pii/S0950584916300118
http://doi.acm.org/10.1145/3092703.3098235
http://doi.acm.org/10.1145/3092703.3098235
https://www.sciencedirect.com/science/article/pii/B9780128001608000036
http://ceur-ws.org/Vol-1675/paper8.pdf
https://doi.org/10.4018/IJISMD.2015070103

21. Alégroth E, Feldt R. 2014. Industrial application of visual GUI testing: lessons learned. In Continuous Software
Engineering, Bosch J (ed.). Springer International Publishing: Cham; 127–140. https://doi.org/10.1007/978-3-
319-11283-1_11

22. Aho P, Alégroth E, Oliveira RAP, Vos TEJ. Evolution of automated regression testing of software systems through
the graphical user interface. In The First International Conference on Advances in Computation, Communications
and Services (ACCSE 2016). Valencia, Spain, 2016; 16–21.

23. Rapise. [Online; accessed 20-12-2019]. https://www.inflectra.com/Rapise/
24. Squish. [Online; accessed 20-12-2019]. https://www.froglogic.com/squish/
25. Ranorex. [Online; accessed 20-12-2019]. https://www.ranorex.com/
26. Autoit. https://www.autoitscript.com/site/autoit/, [Online; accessed 20-12-2019].
27. Selenium. [Online; accessed 20-12-2019]. https://selenium.dev/
28. Sikulix. [Online; accessed 20-12-2019]. http://sikulix.com/
29. Eyeautomate. https://eyeautomate.com/, [Online; accessed 20-12-2019].
30. Aho P, Kanstrén T, Räty T, Röning J. Automated extraction of GUI models for testing. Advances in Computers.

2015; 95: 49–112. https://doi.org/10.1016/B978-0-12-800160-8.00002-4
31. Choudhary SR, Zhao D, Versee H, Orso A. Water: web application test repair. In Proceedings of the First Interna-

tional Workshop on End-to-End Test Script Engineering. Association for Computing Machinery: New York, NY,
USA, 2011; 24–29. https://doi.org/10.1145/2002931.2002935

32. Stocco A, Yandrapally R, Mesbah A. Visual web test repair. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software Engineering.
ACM: New York, NY, USA, 2018; 503–514. http://doi.acm.org/10.1145/3236024.3236063

33. Gao Z, Chen Z, Zou Y, Memon AM. SITAR: GUI test script repair. IEEE Transactions on Software Engineering.
2016; 42(2): 170–186.

34. Leotta M, Stocco A, Ricca F, Tonella P. Robula+: an algorithm for generating robust XPath locators for web test-
ing. Journal of Software: Evolution and Process. 2016; 28(3): 177–204. https://onlinelibrary.wiley.com/doi/abs/
10.1002/smr.1771

35. Silva JL, Campos J, Paiva A. Model-based user interface testing with spec explorer and concurtasktrees. Electronic
Notes in Theoretical Computer Science. 2008; 208: 77–93.

36. Chinnapongse V, Lee I, Sokolsky O, Wang S, Jones P. 2009. Model-based testing of GUI-driven applications. In
Software Technologies for Embedded and Ubiquitous Systems, Lee S, Narasimhan P (eds). Springer Berlin
Heidelberg: Berlin, Heidelberg; 203–214.

37. Moreira RMLM, Paiva A, Nabuco M, Memon AM. Pattern-based GUI testing: bridging the gap between design
and quality assurance. Software Testing, Verification and Reliability. 2017; 27(3): e1629. https://onlinelibrary.wi-
ley.com/doi/abs/10.1002/stvr.1629

38. Andrews AA, Offutt J, Alexander RT. Testing web applications by modeling with FSMs. Software & Systems
Modeling. 2005; 4: 326–345. https://doi.org/10.1007/s10270-004-0077-7

39. Takala T, Katara M, Harty J. Experiences of system-level model-based GUI testing of an android application. In
Proceedings of the 2011 Fourth IEEE International Conference on Software Testing, Verification and Validation.
Berlin, Germany: IEEE Computer Society, 2011; 377–86. https://doi.org/10.1109/ICST.2011.11

40. Miao Y, Yang X. An FSM based GUI test automation model. In 2010 11th International Conference on Control
Automation Robotics Vision: Singapore, 2010; 120–126.

41. Memon AM, Banerjee I, Nagarajan A. GUI ripping: reverse engineering of graphical user interfaces for testing. In
10th Working Conference on Reverse Engineering, 2003. WCRE 2003. Proceedings. Victoria, Canada, 2003;
260–269.

42. Bertolino A, Polini A, Inverardi P, Muccini H. Towards anti-model-based testing. In Fast Abstract in The Int’l.
Conf. on Dependable Systems and Networks, DSN. Florence, Italy, 2004; 124–125.

43. Aho P, Menz N, Räty T, Schieferdecker I. Automated Java GUI modeling for model-based testing purposes. In
2011 Eighth International Conference on Information Technology: New Generations: Las Vegas, NV, USA,
2011; 268–273.

44. Mesbah A, van Deursen A, Lenselink S. Crawling Ajax-based web applications through dynamic analysis of user
interface state changes. ACM Transaction Web. 2012; 6(1): 1–30. https://doi.org/10.1145/2109205.2109208

45. Amalfitano D, Fasolino AR, Tramontana P, Amatucci N. Considering context events in event-based testing of mo-
bile applications. In 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation
Workshops: Luxembourg, Luxembourg, 2013; 126–133.

46. Marchetto A, Tonella P, Ricca F. State-based testing of Ajax web applications. In 2008 1st International Confer-
ence on Software Testing, Verification, and Validation: Lillehammer, Norway, 2008; 121–130.

47. Hofer B, Peischl B, Wotawa F. GUI savvy end-to-end testing with smart monkeys. In ICSE Workshop on Automa-
tion of Software Test, 2009. AST ’09: Vancouver, BC, Canada, 2009; 130–137.

48. Nyman N. Using monkey test tools – how to find bugs cost-effectively through random testing. Software Testing &
Quality Engineering. 2000: 18–21.

49. Hertzfeld A. Revolution in the Valley (hardcover). Sebastopol, CA, USA: O’ Reilly & Associates, Inc., 2004.
50. Lipner S. The trustworthy computing security development lifecycle. In Proceedings of the 20th Annual Computer

Security Applications Conference. IEEE Computer Society: Washington, DC, USA, 2004; 2–13. https://doi.org/
10.1109/CSAC.2004.41

51. The (Google) monkey. [Online; accessed 25-12-2019].

43 of 46TESTAR – SCRIPTLESS TESTING THROUGH GRAPHICAL USER INTERFACE

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

https://doi.org/10.1007/978-3-319-11283-1_11
https://doi.org/10.1007/978-3-319-11283-1_11
https://www.inflectra.com/Rapise/
https://www.froglogic.com/squish/
https://www.ranorex.com/
https://www.autoitscript.com/site/autoit/
https://selenium.dev/
http://sikulix.com/
https://eyeautomate.com/
https://doi.org/10.1016/B978-0-12-800160-8.00002-4
https://doi.org/10.1145/2002931.2002935
http://doi.acm.org/10.1145/3236024.3236063
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1771
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1771
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1629
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1629
https://doi.org/10.1007/s10270-004-0077-7
https://doi.org/10.1109/ICST.2011.11
https://doi.org/10.1145/2109205.2109208
https://doi.org/10.1109/CSAC.2004.41
https://doi.org/10.1109/CSAC.2004.41

52. Girard E, Rault JC. A programming technique for software reliability. In IEEE Symposium on Computer Software
Reliability. New York, USA, 1973. 44–50.

53. Thayer TA, Lipow M, Nelson EC. Software Reliability. North-Holland Pub. Co: Amsterdam, 1978.
54. Myers GJ. The Art of Software Testing. Hoboken, NJ, USA: John Wiley and Sons, 1979.
55. Beizer B. Software Testing Techniques (2nd edn.) Van Nostrand Reinhold Co.: New York, NY, USA, 1990.
56. Duran JW, Ntafos SC. An evaluation of random testing. IEEE TSE. 1984; SE-10(4): 438–444.
57. Hamlet D, Taylor R. Partition testing does not inspire confidence. In Banff, AB, Canada, 1988; 206–215.
58. Weyuker EJ, Jeng B. Analyzing partition testing strategies. IEEE TSE. 1991; 17(7): 703–711.
59. Arcuri A, Briand L. Adaptive random testing: an illusion of effectiveness? In International Symposium on Software

Testing and Analysis: NY, USA, 2011; 265–275. http://doi.acm.org/10.1145/2001420.2001452
60. Chen TY, Yu YT. On the relationship between partition and random testing. IEEE Transactions on Software

Engineering. 1994; 20(12): 977–980. https://doi.org/10.1109/32.368132
61. Gutjahr WJ. Partition testing vs. random testing: the influence of uncertainty. IEEE Transactions on Software

Engineering. 1999; 25(5): 661–674. https://doi.org/10.1109/32.815325
62. Tsoukalas MZ, Duran JW, Ntafos SC. On some reliability estimation problems in random and partition testing.

IEEE Transactions on Software Engineering. 1993; 19(7): 687–697. https://doi.org/10.1109/32.238569
63. Arcuri A, Iqbal MZ, Briand L. Random testing: theoretical results and practical implications. IEEE TSE. 2012;

38(2): 258–277.
64. Böhme M, Paul S. A probabilistic analysis of the efficiency of automated software testing. IEEE TSE. 2016; 42(4):

345–360.
65. Amalfitano D, Amatucci N, Memon AM, Tramontana P, Fasolino AR. A general framework for comparing auto-

matic testing techniques of android mobile apps. Journal of Systems and Software. 2017; 125: 322–343. http://
www.sciencedirect.com/science/article/pii/S016412121630259X

66. Bertolini C, Peres G, d’ Amorim M, Mota A. An empirical evaluation of automated black box testing techniques
for crashing GUIs. In 2009 International Conference on Software Testing Verification and Validation: Denver, CO,
USA, 2009; 21–30.

67. Aho P, Suarez M, Kanstrén T, Memon AM. Murphy tools: utilizing extracted GUI models for industrial software
testing. In 2014 IEEE Seventh International Conference on Software Testing, Verification and Validation Work-
shops: Cleveland, OH, USA, 2014; 343–348.

68. Appium. [Online; accessed 25-12-2019].
69. Martínez M, Esparcia-Alcázar AI, Vos TEJ, Aho P, i Cors JF. 2018. Towards automated testing of the internet of

things: results obtained with the TESTAR tool. In Leveraging Applications of Formal Methods, Verification and
Validation. Distributed Systems, Margaria T, Steffen B (eds). Springer International Publishing: Cham; 375–385.

70. UIA Windows. [Online; accessed 25-12-2019]. https://docs.microsoft.com/en-us/windows/win32/winauto/uiauto-
entry-propids

71. Mesbah A, Van Deursen A. Invariant-based automatic testing of Aajax user interfaces. In 2009 IEEE 31st Interna-
tional Conference on Software Engineering, IEEE: Vancouver, BC, Canada, 2009; 210–220.

72. Dallmeier V, Burger M, Orth T, Zeller A. Webmate: a tool for testing web 2.0 applications. In Proceedings of the
Workshop on Javascript Tools. ACM: New York, NY, USA, 2012; 11–15. http://doi.acm.org/10.1145/
2307720.2307722

73. Nguyen B, Robbins B, Banerjee I, Memon AM. Guitar: an innovative tool for automated testing of GUI-driven
software. Automated Software Engineering. 2013; 21(1): 65–105. https://doi.org/10.1007/s10515-013-0128-9

74. Mariani L, Pezzè M, Zuddas D. Augusto: exploiting popular functionalities for the generation of semantic GUI
tests with oracles. In Proceedings of the 40th International Conference on Software Engineering. Association
for Computing Machinery: New York, NY, USA, 2018; 280–290. https://doi.org/10.1145/3180155.3180162

75. Leonardo M, Mauro P, Oliviero R, Mauro S. AutoBlackTest: ATool for Automatic Black-box Testing. Proceedings
of the 33rd International Conference on Software Engineerin. ICSE ’11, New York, NY, USA: ACM; 2011.
1013–1015. https://doi.acm.org/10.1145/1985793.1985979

76. de Gier F, Kager D, de Gouw S, Vos TEJ. Offline oracles for accessibility evaluation with the TESTAR tool. In
2019 13th International Conference on Research Challenges in Information Science (RCIS). Brussels, Belgium,
2019; 1–12.

77. https://gephi.org/, 2019. Accessed: 2019-05-04.
78. https://www.graphviz.org/, 2019. Accessed: 2019-05-06.
79. https://cytoscape.org/, 2019. Accessed: 2019-05-07.
80. Memon AM, Soffa ML, Pollack M. Coverage criteria for GUI testing. SIGSOFT Softw. Eng. Notes. 2001; 26(5):

256–267. http://doi.acm.org/10.1145/503271.503244
81. Xie Q, Memon AM. Studying the characteristics of a “good” GUI test suite. In 2006 17th IEEE International

Symposium on Software Reliability Engineering. IEEE Computer Society: Los Alamitos, CA, USA, 2006;
159–168. https://doi.ieeecomputersociety.org/10.1109/ISSRE.2006.45

82. Strecker J, Memon AM. Relationships between test suites, faults, and fault detection in GUI testing. In 2008 1st
International Conference on Software Testing, Verification, and Validation. Lillehammer, Norway, 2008; 12–21.

83. Carino S, Andrews JH. Evaluating the effect of test case length on GUI test suite performance. In 2015 IEEE/ACM
10th International Workshop on Automation of Software Test: Florence, Italy, 2015; 13–17.

84. McMaster S, Memon AM. Call-stack coverage for GUI test suite reduction. IEEE Transactions on Software
Engineering. 2008; 34(1): 99–115. https://doi.org/10.1109/TSE.2007.70756

44 of 46 VOS ET AL.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

http://doi.acm.org/10.1145/2001420.2001452
https://doi.org/10.1109/32.368132
https://doi.org/10.1109/32.815325
https://doi.org/10.1109/32.238569
http://www.sciencedirect.com/science/article/pii/S016412121630259X
http://www.sciencedirect.com/science/article/pii/S016412121630259X
https://docs.microsoft.com/en-us/windows/win32/winauto/uiauto-entry-propids
https://docs.microsoft.com/en-us/windows/win32/winauto/uiauto-entry-propids
http://doi.acm.org/10.1145/2307720.2307722
http://doi.acm.org/10.1145/2307720.2307722
https://doi.org/10.1007/s10515-013-0128-9
https://doi.org/10.1145/3180155.3180162
https://doi.acm.org/10.1145/1985793.1985979
https://gephi.org/
https://www.graphviz.org/
https://cytoscape.org/
http://doi.acm.org/10.1145/503271.503244
https://doi.ieeecomputersociety.org/10.1109/ISSRE.2006.45
https://doi.org/10.1109/TSE.2007.70756

85. Bryce RC, Memon AM. Test suite prioritization by interaction coverage. In Workshop on Domain Specific
Approaches to Software Test Automation: In Conjunction with the 6th ESEC/FSE Joint Meeting. Association for
Computing Machinery: New York, NY, USA, 2007; 1–7. https://doi.org/10.1145/1294921.1294922

86. Zhao L, Cai K. Event handler-based coverage for GUI testing. In 2010 10th International Conference on Quality
Software. Zhangjiajie, China, 2010; 326–331.

87. Yuan X, Cohen M, Memon AM. GUI interaction testing: incorporating event context. IEEE Transactions on
Software Engineering. 2011; 37(4): 559–574.

88. Oliveira RAP, Alégroth E, Gao Z, Memon A. Definition and evaluation of mutation operators for GUI-level mu-
tation analysis. In 2015 IEEE Eighth International Conference on Software Testing, Verification and Validation
Workshops (ICSTW). Graz, Austria, 2015; 1–10.

89. Beierle N, Kruse PM, Vos TEJ. GUI-profiling for performance and coverage analysis. In 2017 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW), 2017; 28–31.

90. Esparcia AI, Almenar F, Martínez M, Rueda U, Vos TEJ. Q-learning strategies for action selection in the TESTAR
automated testing too. In 6th International Conference on Metaheuristics and Nature Inspired Computing (META
2016). Marrakech, Morocco, 2016; 130–137.

91. Esparcia AI, Almenar F, Vos TEJ, Rueda U. Using genetic programming to evolve action selection rules in
traversal-based automated software testing: results obtained with the TESTAR tool. Memetic Computing. 2018;
10(3): 257–265. https://doi.org/10.1007/s12293-018-0263-8

92. Esparcia-Alcázar AI, Almenar F, Rueda U, Vos TEJ. Evolving rules for action selection in automated testing via
genetic programming – a first approach. In Applications of Evolutionary Computation, Squillero G, Sim K
(eds). Cham, Switzerland: Springer International Publishing, 2017; 82–95.

93. Rodriguez MA. The Gremlin graph traversal machine and language (invited talk). In Proceedings of the 15th Sym-
posium on Database Programming Languages: Pittsburgh, PA, USA, 2015; 1–10. https://doi.org/10.1145/
2815072.2815073

94. Korn P, Martínez Normand L, Pluke M, Snow-Weaver A, Vanderheiden G. Guidance on applying WCAG 2.0 to
non-web information and communications technologies (WCAG2ICT), 2013. http://www.w3.org/WAI/GL/2013/
WD-wcag2ict-20130905/, Editors’ Draft, work in progress.

95. Bauersfeld S, Vos TEJ. A reinforcement learning approach to automated GUI robustness testing. In In Fast Ab-
stracts of the 4th Symposium on Search-Based Software Engineering (SSBSE 2012). IEEE: Riva del Garda,
Italy, 2012; 7–12.

96. David A, Md Khorrom K, Koppula K, Ren{¥’e}e B. Reinforcement Learning for Android GUI Testing. Proceed-
ings of the 9th ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection, and Evalu-
ation. New York, NY, USA: ACM; 2018. 2–8. https://doi.org/10.1145/3278186.3278187

97. Mariani L, Pezze M, Riganelli O, Santoro M. AutoBlackTest: Automatic Black-Box Testing of Interactive Appli-
cations. 2012 IEEE Fifth International Conference on Software Testing, Verification and Validation. 2012. 81–90.
https://doi.org/10.1109/ICST.2012.8

98. Christian D, Borges J, Nataniel P, Andreas Z. Learning User Interface Element Interactions. Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and Analysis. ISSTA 2019, New York, NY,
USA: ACM; 2019. 296–306. http://doi.acm.org/10.1145/3293882.3330569

99. Koroglu Y, Sen A, Muslu O, Mete Y, Ulker C, Tanriverdi T, Donmez Y. QBE: QLearning-Based Exploration of
Android Applications. 2018 IEEE 11th International Conference on Software Testing, Verification and Validation
(ICST). Los Alamitos, CA, USA: IEEE Computer Society; 2018. 105–115. https://doi.org.10.1109/
ICST.2018.00020

100. Gu T, Cao C, Liu T, Sun C, Deng J, Ma M, Lü J. AimDroid: Activity-Insulated Multi-level Automated Testing for
Android Applications. 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME).
2017. 103–114. https://doi.org/10.1109/ICSME.2017.72

101. van Otterlo M, Wiering M. 2012. Reinforcement learning and Markov decision processes. In Reinforcement Learn-
ing: State-of-the-art,Wiering M, van Otterlo M (eds). Springer Berlin Heidelberg: Berlin, Heidelberg; 3–42.
https://doi.org/10.1007/978-3-642-27645-3_1

102. Bauersfeld S, Wappler S, Wegener J. A metaheuristic approach to test sequence generation for applications with a
GUI. In Proceedings of the Third International Conference on Search Based Software Engineering. Springer-
Verlag: Berlin, Heidelberg, 2011; 173–187. http://dl.acm.org/citation.cfm%3Fid%3D2042243.2042267

103. Luke S. Essentials of Metaheuristics (2nd edn.) Lulu, 2013. Available for free at http://cs.gmu.edu/%5C%7Esean/
book/metaheuristics/

104. Carino S, Andrews JH. Dynamically testing GUIs using ant colony optimization (t). In 2015 30th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE), 2015; 138–148.

105. Lehman J, Stanley KO. Abandoning objectives: evolution through the search for novelty alone. Evolutionary Com-
putation. 2011; 19(2): 189–223. https://doi.org/10.1162/EVCO_a_00025

106. Vos TEJ, Marín B, Escalona MJ, Marchetto A. A methodological framework for evaluating software testing tech-
niques and tools. In 12th International Conference on Quality Software: Xi’an, China, 2012; 230–239.

107. Vos TEJ. Evolutionary testing for complex systems. ERCIM News. 2009; 2009(78):45–46.
108. Vos TEJ. Continuous evolutionary automated testing for the future internet. ERCIM News. 2010; 2010(82): 50–51.
109. Host M, Runeson P. Checklists for software engineering case study research. In Proceedings of the First Interna-

tional Symposium on Empirical Software Engineering and Measurement. IEEE Computer Society: Washington,
DC, USA, 2007; 479–481. https://doi.org/10.1109/ESEM.2007.29

45 of 46TESTAR – SCRIPTLESS TESTING THROUGH GRAPHICAL USER INTERFACE

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

https://doi.org/10.1145/1294921.1294922
https://doi.org/10.1007/s12293-018-0263-8
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1145/2815072.2815073
http://www.w3.org/WAI/GL/2013/WD-wcag2ict-20130905/
http://www.w3.org/WAI/GL/2013/WD-wcag2ict-20130905/
https://doi.org/10.1145/3278186.3278187
https://doi.org/10.1109/ICST.2012.8
http://doi.acm.org/10.1145/3293882.3330569
https://doi.org.10.1109/ICST.2018.00020
https://doi.org.10.1109/ICST.2018.00020
https://doi.org/10.1109/ICSME.2017.72
https://doi.org/10.1007/978-3-642-27645-3_1
http://dl.acm.org/citation.cfm%3Fid%3D2042243.2042267
http://cs.gmu.edu/%5C%7Esean/book/metaheuristics/
http://cs.gmu.edu/%5C%7Esean/book/metaheuristics/
https://doi.org/10.1162/EVCO_a_00025
https://doi.org/10.1109/ESEM.2007.29

110. Kitchenham B, Linkman S, Law D. Desmet: a methodology for evaluating software engineering methods and
tools. Computing Control Engineering Journal. 1997; 8(3): 120–126.

111. Kitchenham B, Pickard LM, Pfleeger SL. Case studies for method and tool evaluation. IEEE Software. 1995; 12(4):
52–62.

112. Runeson P, Höst M. Guidelines for conducting and reporting case study research in software engineering. Empir-
ical Software Engineering. 2009; 14(2): 131–164.

113. Bauersfeld S, Vos TEJ, Condori-Fernández N, Bagnato A, Brosse E. Evaluating the TESTAR tool in an industrial
case study. In Torino, Italy, 2014; 4. http://doi.acm.org/10.1145/2652524.2652588

114. Ricós FP, Aho P, Vos T, Boigues IT, Blasco EC, Martínez HM. Deploying TESTAR to enable remote testing in an
industrial CI pipeline: a case-based evaluation, 2020; 543–557.

115. Bauersfeld S, de Rojas A, Vos TEJ. Evaluating rogue user testing in industry: an experience report. In 2014 IEEE
Eighth International Conference on Research Challenges in Information Science (RCIS). Marrakech, Morocco,
2014; 1–10.

116. Chahim H, Duran M, Vos TEJ, Aho P, Condori Fernandez N. 2020. Scriptless testing at the GUI level in an indus-
trial setting. In Research Challenges in Information Science, Dalpiaz F, Zdravkovic J, Loucopoulos P (eds).
Springer International Publishing: Cham; 267–284.

117. Aho P, Vos TEJ, Ahonen S, Piirainen T, Moilanen P, Pastor Ricos F. 2019. Continuous piloting of an open source
test automation tool in an industrial environment. In Jornadas de Ingeniería del Software y Bases de Datos
(JISBD). Cáceres, Spain: Sistedes; 1–4.

118. Martinez M, Esparcia AI, Rueda U, Vos TEJ, Ortega C. 2016. Automated localisation testing in industry with
TESTAR. In Testing Software and Systems, Wotawa F, Nica M, Kushik N (eds). Springer International Publishing:
Cham; 241–248.

119. Wieringa R, Daneva M. Six strategies for generalizing software engineering theories. Science of Computer Pro-
gramming. 2015; 101: 136–152.

120. Belli F. Finite state testing and analysis of graphical user interfaces. In Proceedings 12th International Symposium
on Software Reliability Engineering: Hong Kong, China, 2001; 34–43.

121. Lyu MR, et al. Handbook of Software Reliability Engineering, vol. 222. IEEE Computer Society Press: CA, 1996.
122. Tramontana P, Amalfitano D, Amatucci N, Memon A, Fasolino AR. Developing and evaluating objective termina-

tion criteria for random testing. ACM Transactions on Software Engineering and Methodology. 2019; 28(3): 1–52.
https://doi.org/10.1145/3339836

123. Memon AM. GUI testing: pitfalls and process. Computer. 2002; 35(8): 87–88.

46 of 46 VOS ET AL.

© 2021 The Authors. Software Testing, Verification & Reliability
published by John Wiley & Sons Ltd.

Softw. Test. Verif. Reliab. 2021;31:e1771
DOI: 10.1002/stvr

http://doi.acm.org/10.1145/2652524.2652588
https://doi.org/10.1145/3339836

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Euroscale Coated v2)
 /PDFXOutputConditionIdentifier (FOGRA1)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENG (Modified PDFX1a settings for Blackwell publications)
 /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

