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Abstract— In this paper we present a new method to compute
singular integrals and nearly singular integrals in the context of
boundary integral equations for electromagnetism. In particular
the method is well suited for integral equations of the second
kind. The method consist of splitting the integral in two parts, one
regular, which is computed via adaptive integration, and another
singular and local (with very small support of the integrand)
which is computed using asymptotic expansion. This method can
be applied to any second kind integral equation arising in CEM,
like MFIE, Charge-Current integral equation, Non Resonant
Charge Current Integral Equation (NRCCIE),..

I. INTRODUCTION

Integral equation methods are very popular for solving elec-
tromagnetic scattering problems. The use of surface integral
equations is particularly interesting for analyzing homoge-
neous and perfect electric conducting objects. One of the
key aspects of the boundary integral equation method is the
calculation of the singular integrals. [1–3].

The method that we propose here can be applied to bound-
ary integral equations of the second kind (see [4, 5]). Those
kind of integral equations are particularly interesting because
of the absence of low frequency breakdown and the absence
of high density mesh breakdown.

The discretization method used is the Nyström method ([3]).

II. MATHEMATICAL FORMULATION

Let’s consider the Laplace single layer acting on a closed
smooth surface (on-surface evaluation):

S0[ρ](x) =

∫
∂D

1

4π‖x− y‖
ρ(y)dSy (1)

Consider an Ewald-type decomposition determined by a
small parameter σ:

S0[ρ](x) =

∫
∂D

1

4π‖x− y‖
ρ(y)dSy =

=

∫
∂D

erf
(‖x−y‖√

2σ

)
4π‖x− y‖

ρ(y) +
erfc

(‖x−y‖√
2σ

)
4π‖x− y‖

ρ(y)dSy

(2)

Where σ is a parameter constant. The first integral in the
decomposition is ’smooth’. For small values of the parameter
σ we need adaptive quadrature. No more than 4-5 levels of
refinement for each triangle for a suitable election of the
constant σ.

The second integral in the decomposition is singular and
local (it has exponential decay for r → +∞), and will be
evaluated asymptotically with a high order local asymptotic
expansion of the Jacobian in the change of variables.

Writing the second integral as:

∫
∂D

erfc
(‖x−y‖√

2σ

)
4π‖x− y‖

ρ(y)dSy =

∫
∂D

H(r)ρ(y)dSy
(3)

where r = ‖x− y‖ and:

H(r) =
erfc

(
r√
2σ

)
4πr

(4)

The function H is singular and decays exponentially for
large r. Now we consider a chart r(u, v) centered at a fixed
target point x ∈ ∂D, that is x = r(0, 0), and orthonormal at
this point, that is ‖ru(0, 0)‖ = 1, ‖rv(0, 0)‖ = 1,
< ru(0, 0), rv(0, 0) >= 0

Using this chart we can write r as:

r2 = u2(1 + f(u, v)) + v2(1 + g(u, v)) (5)

where f → 0 and g → 0 when u, v → 0.
We can write 3 as:∫

∂D

H(r(u, v))ρ(u, v)dSu,v (6)

In order to find an asymptotic expansion of 3 we do formally
the following change of variables (x, y)→ (u, v):

x = u
√

1 + f(u, v); y = v
√

1 + g(u, v) (7)

Notice that equations 7 define a map from a neighborhood
of (0, 0) onto a neighborhood of (0, 0) due to Morse Lemma
(see page 237 of [6]). With respect to the new variables (x, y),
the function r2 can be written as:

r2 = u2(1 + f(u, v)) + v2(1 + g(u, v)) = x2 + y2

and therefore:

∫
∂D

H(r(u, v))ρ(u, v)dSu,v =

=

∫
∂D

H(
√
x2 + y2)ρ(x, y)dS(x, y)J(x, y)dxdy

(8)



Where J(x, y) is the Jacobian determinant of the change of
variables (x, y) → (u, v). Notice also that equations 7 are
an explicit expression of the inverse of this map. Now we
can Taylor expand the function ρ(x, y)dS(x, y)J(x, y) around
(0, 0) and obtain a good approximation of the integral for small
values of σ by computing analytically integrals of the form:

αmn =

∫ +∞

−∞

∫ +∞

−∞
H(
√
x2 + y2)xmyndxdy =

=

∫ +∞

0

H(r)rm+n+1dr

∫ 2π

0

cosm(φ) sinn(φ)dφ

(9)

we obtain:∫ +∞

0

H(r)rm+n+1dr =
(
√

2σ)m+n+1

4π

Γ(m+n
2 + 1)

√
π(m+ n+ 1)

(10)
we get α01 = α10 = α11 = α30 = α21 = α12 = α03 =

= α50 = α41 = α32 = α23 = α14 = α05 = α31 = α13 = 0
and:

α00 =
σ√
2π

;α20 = α02 =
σ3

3
√

2π

α40 =α22 = α04 =
3σ5

5
√

2π

(11)

The error term is O(σ7) for the single layer with coefficients
up to order 4 in m+ n

The Taylor expansion of J(x, y) can be obtained by com-
puting the partial derivatives (to any desired order) of the map
(u, v)→ (u, v).

We can easily reduce the non-static case into the static case
doing the following trick:

Sk[ρ](x) =

∫
∂D

eik‖x−y‖

4π‖x− y‖
ρ(y)dSy =

=

∫
∂D

cos(k‖x− y‖)
4π‖x− y‖

ρ(y) +
i sin(k‖x− y‖)

4π‖x− y‖
ρ(y)dSy

(12)
The second integral is a smooth function, and the first integral
can be written as the one in the static case with a target de-
pendent smooth source given by ρ(y) = ρ(y) cos(k‖x−y‖).

Provided the integral equation is of the second kind, the
singular part is integrable (O(1/r)) and similar tricks can be
used. Notice also that with a minor modification, the source
term can be a tangent vector field.

III. NUMERICAL EXAMPLE

Next we apply this method for the Non Resonant Charge
Current Integral Equation [7]. The geometry used is globally
smooth and is obtained using a method described in [8]. The
far field is computed using the FMM [9]. The total number of
degrees of freedom is 166800, The number of triangles in the
geometry is 11120 and the number of polynomials on each
triangle is 15. The estimated accuracy is 4 digits.

Fig. 1. Induced charge on a Cargo Ship produced by an incoming plane wave
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