
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/177794

Pérez-Pelegrí, M.; Monmeneu, JV.; López-Lereu, MP.; Ruiz-España, S.; Del-Canto, I.; Bodi,
V.; Moratal, D. (2020). PSPU-Net for Automatic Short Axis Cine MRI Segmentation of Left
and Right Ventricles. IEEE Computer Society. 1048-1053.
https://doi.org/10.1109/BIBE50027.2020.00177

https://doi.org/10.1109/BIBE50027.2020.00177

IEEE Computer Society



XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

PSPU-Net for automatic short axis cine MRI 

segmentation of left and right ventricles 

 

Manuel Pérez-Pelegrí 
Center for Biomaterials 

and Tissue Engineering 
Universitat Politècnica de 

València 
Valencia, Spain 

mapepe18@gmail.com 

Irene Del-Canto 

Center for Biomaterials 
and Tissue Engineering 

Universitat Politècnica de 
València 

Valencia, Spain 
irdecan@upv.es

José V. Monmeneu  
Unidad de Imagen 

Cardíaca 
ERESA 

Valencia, Spain 
jmonmeneu@eresa.com  

Vicente Bodí 
Department of Medicine 
Universitat de València 

Valencia, Spain 

vicentbodi@hotmail.com 

María P. López-Lereu 
Unidad de Imagen 

Cardíaca 
ERESA 

Valencia, Spain 
plereu@eresa.com 

David Moratal 
Center for Biomaterials 
and Tissue Engineering 

Universitat Politécnica de 

València 
Valencia, Spain 

dmoratal@eln.upv.es 

Silvia Ruiz-España 
Center for Biomaterials 

and Tissue Engineering 
Universitat Politècnica de 

València 
Valencia, Spain 

silviaruiz.es@gmail.com 

 

Abstract— Characterization of the heart anatomy and 

function is mostly done with magnetic resonance image cine 

series. To achieve a correct characterization, the volume of the 

right and left ventricle need to be segmented, which is a time-

consuming task. We propose a new convolutional neural 

network architecture that combines U-net with PSP modules 

(PSPU-net) for the segmentation of left and right ventricle 

cavities and left ventricle myocardium in the diastolic frame of 

short-axis cine MRI images and compare its results against a 

classic 3D U-net architecture. We used a dataset containing 399 

cases in total. The results showed higher quality results in both 

segmentation and final volume estimation for a test set of 99 

cases in the case of the PSPU-net, with global dice metrics of 

0.910 and median absolute relative errors in volume estimations 

of 0.026 and 0.039 for the left ventricle cavity and myocardium 
and 0.051 for the right ventricles cavity. 

Keywords—MRI, U-net, PSP, segmentation, deep learning, 

left ventricle, right ventricle, volume estimation. 

I. INTRODUCTION  

Cardiovascular diseases are one of the most important 
public health problems in advanced countries and are the main 
cause of death [1]. As such, the correct characterization of the 
heart structure and function is vital for a correct assessment 
and diagnosis. In this setting, magnetic resonance imaging 
(MRI) is one the most used diagnostic tools for cardiac 
structure and function assessment, it being a high-resolution 
and non-invasive technique. 

In the characterization of heart disease for diagnostic 
purposes, some of the main parameters are those related to 
volume estimation of the heart main regions: the left ventricle 
(LV) and the right ventricle (RV). In order to measure these 
parameters, it is necessary to correctly segment said regions 
and its conforming tissues, which is a tedious and time-
consuming task. 

In this context deep learning techniques have been used in 
the past years in order to help characterize the heart in MRI 
images, giving special attention to the LV segmentation 
[2,3,4]. In this work we propose a new architecture based on 
the U-net model [5] and with the addition of Parse scene 

parsing blocks (PSP) [6] and compare it with a basic 3D U-net 
for the segmentation of the left ventricle cavity, left ventricle 
myocardium and right ventricle cavity in the diastolic frame 
of MRI short axis cine-cardiac series. 

II. METHOD 

A. Image dataset 

Our dataset consisted of 399 short-axis stacks of MRI 
covering the left and right ventricles. For the experiments we 
used only the imaging time frames corresponding to the 
systole and diastole. All patients gave written consent and the 
study was approved by the Medical Ethical Committee of our 
hospital (Hospital Clínico Universitario de Valencia, 
Valencia, Spain). Imaging was performed in breath-hold using 
a 1.5T MRI scanner (Sonata Magnetom, Siemens, Erlangen, 
Germany), flip angle: 58°, repetition time: 52.92 ms, echo 
time: 1.25 ms.   

The in-plane resolution was variable among the cases, 
ranging from 0.57 × 0.57 mm2 to 1.09 × 1.09 mm2, with a slice 
thickness of 7 mm and a spacing between slices of 3 mm (in 
all cases). The resulting image sizes varied from 144 × 144 to 
256 x 256 and the number of slices ranged from 8 to 14. All 
the images were resampled to a constant in-plane spatial 
resolution of 1 mm2 with an image size of 176 × 176. Although 
some images had to be cropped and others had to be zero-
padded, still in every case the region of interest remained with 
a great margin as all the images placed the heart in the center 
region. The z-axis was left untouched in the resampling 
process.  

Every case was classified in one of 11 categories described 
in table 1.  This was done to ensure that the training, validation 
and test sets had the same distribution respect to the diagnosis.  

Finally, all the images were randomly split in training (260 
cases, 65% of the cases), validation (40 cases, 10% of the 
cases) and test (99 cases, 25% of the cases) sets. 

B. Tissue Labels 

Each diastolic frame had been previously manually 
segmented by mutual consent of two expert cardiologists with 
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more than 12 years of experience. The segmentations 
originally only included the contours of each tissue, we 
processed the segmentations to generate full volumetric 
segmentations and associated values of 1 to LV cavity, values 
of 2 to LV myocardium and values of 3 to RV cavity. These 
volumetric segmentations were used as gold standard to train 
and test the networks. The neural networks were also tested 
against the systolic frame to see performance with images of 
different nature but similar features. In the case of the systolic 
frame the segmentations only included the LV and RV 
cavities (labels 1 and 2 respectively). In this case the 
segmentation was available in 98 of the test cases. 

C. Convolutional neural network architecture 

Two different U-net based architectures were designed 
and trained. The first one is a basic U-net for 3D segmentation 
(U-net 3D) that had been previously trained with the dataset. 
The U-net 3D is similar to the classical U-net for 3D 
segmentation [7], but in our design we established more 
downsampling and upsampling steps (a total of 4), and these 

steps worked only in the 2D plane, so the z-dimension remains 
the same size along all the network. Every convolution was 
followed by batch normalization [8] with a ReLu activation 
function. The final result of the network is a feature map of 4 
channels, each representing the probability inferred for each 
label (3 tissue labels and the background). The total number 
of trainable parameters was of 87.51 million, and the neural 
network occupied 1.03 GB. Fig. 1 shows the architecture for 
the 3D U-net.  

The PSPU-net includes some notable changes. Even 
though it takes the same inputs as the 3D U-net (176 × 176 × 
3), in this architecture the convolutions are 3 × 3 × 1, which 
makes this architecture a 2D U-net in the sense that it only 
uses 2D information. Additionally, the number of filters is 
halved. The network still outputs the segmentation in 3D (176 
× 176 × 3). The PSPU-net also includes PSP modules in the 
place of the skip connections. 

The PSP-modules are designed as in Fig. 2. It shows the 
PSP-module used in the highest level (4 paths). The modules 
design changes depending on the number of paths employed, 
eliminating the path with the highest sampling rate and 
doubling the number of filters with respect the previous PSP 
module with a higher path number. One can easily view this 
design with the example of the 3-path module: parting from 
the 4-path module, the x16 path is suppressed and the number 
of filters is doubled. 

 The classic U-net can only analyze the image at different 
scales following the contracting path, the skip connections 
allows for it to recover original spatial information, but this 
information is never furthered analyzed at different scales in 
parallel. This module was included so the network can further 
analyze the image in its different scale steps and make it able 
to take spatial information at different fields of view for each 
downsampling step. These modules are based on the original 
Scene parsing module [6] which was designed with the idea 
of analyzing the inputs at different scales in parallel to better 
incorporate more contextual information. The full network 
architecture of the PSPU-net can be seen in Fig. 3. The final 
output of the network is a feature map of 4 channels 
representing the same information as described for the 3D U-
net. The total number of trainable parameters was of 30.83 
million, and the neural network occupied 362 MB. 

TABLE  1. Categories by pathology in the dataset and the number 

of occurences 

Categories 
Number 

of cases 

Normal cases, no pathology 48 

Presence of necrosis 14 

Presence of fibrosis 12 

Presence of ischemia 10 

Functional affection of LV (ejection fraction lower 

than normal and/or  affected segmental 

contractility) 

23 

Functional affection of RV (ejection fraction lower 

than normal and/or  affected segmental 

contractility) 

2 

Functional affection of LV and RV  137 

Functional affection of LV and presence of 

fibrosis/necrosis/ischemia 
45 

Functional affection of RV and presence of 

fibrosis/necrosis/ischemia 
4 

Functional affection of RV and LV and presence 

of fibrosis/necrosis/ischemia 
95 

Other cases that do not fall in any other category 9 

 

 
Fig. 1 3D U-net architecture design 



D. Network training 

Both networks were implemented by tensorflow 2.1 
(www.tensorflow.org, Google Brain, Mountain View, 
California, U.S.) using its Keras API. The hardware used 
comprised a GPU RTX 2080 Ti with 11Gb of RAM (Nvidia 
Corporation, Santa Clara, California, U.S.) CPU i9 9900K 
(3.6 GHz) and 64 GB of RAM, running on Windows 10 
operating system. Both networks were trained for 50 epochs 
using both the training dataset and validation dataset.  After 
some testing the training was set up using ADAM optimizer 
with a learning rate of 0.001 using a batch size of 3. These 
hyperparameters obtained the best performance in both 
networks. These values match those described in similar 
neural networks for the same tasks [9, 10, 11]. 

The weighted generalized Dice loss [12] was used as loss 
function. The weights assigned to each label were predefined 
as 0.1 for background and 0.3 to the different tissues. With this 
we assigned a low weight to the background to account for 
possible unbalanced label presence and at the same time the 
remaining weights assured that the same importance was 
assigned to the three tissue labels. The training dataset 
included 260 cases resulting in a total of 2045 volumes of 3 

slices (inputs) and the validation 40 cases resulting in 319 
volumes of 3 slices. The training dataset was incremented 
through data augmentation in order to help prevent overfitting. 
To do this the inputs were randomly selected and modified 
applying a random rotation (angles between -30° and 30°), a 
random zoom factor (between 0 and 0.1) and a random shear 
(angles between -20° and 20°) to generate a total of 6295 extra 
inputs, resulting in a total training dataset of 8340 inputs for 
the training. All the transformations were only applied in the 
xy plane. 

III.   RESULTS 

To validate the results of the segmentations offered by 
both networks against the manual segmentations we 
calculated the dice scores (global dice and the dice for each 
individual tissue) and the absolute relative volume error 
derived from the segmentations. Our interest was focused on 
the diastolic frames of the cine acquisitions. For this we 
employed the remaining 99 cases of our database. 
Additionally, we also applied the networks on systolic frames 
to determine how well the networks performed against images 
with similar features but of different nature. In the latter case 
we only compared against the RV and LV cavities as these 

 Fig. 3 PSPU-net architecture design 

 
Fig. 2 Four paths PSP block design 
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frames did not include the LV cavity segmentation. For this 
we employed a total of 98 cases. 

All the results and statistics refer to the segmentation 
results of the whole image acquisition. The networks work 
only with volumes of 3 slices. To apply the segmentations, we 
sampled sub-volumes from the whole cine acquisition. 
Afterward we combined the segmentation results to obtain the 
whole volume segmentation. This process is schematized in 
Fig. 4. 

A. Network training performance 

The 3D U-net required a total of 27 hours to complete 

training while the PSPU-net needed 20 hours. The training 

history of the loss function for both networks is presented in 

Fig. 5, it can be seen as how both performed similarly, with 

similar training and validation loss evolutions. It is also 

noticeable how in both cases after epoch 4 the validation loss 

stays fluctuating around 0.09 while the training loss keeps 
decreasing. This means that both networks were capable of 

reaching their optimal status in a small amount of time and 

afterwards they entered in an overfitted status that did not 

decrease its accuracy (validation loss stays approximately the 

same while training loss keeps decreasing). Another 

important fact is that the training in the PSPU-net fluctuated 

less in terms of its loss function. In the case of the 3D U-net 

there seems to appear more little fluctuations. This could 

mean that the PSPU-net is slightly more stable in its training 

process. 

B. Segmentation results 

Tables 2 and 3 show the results for the segmentation 
quality of the tissues with both networks in diastolic and 
systolic frames respectively. The tables present the median 
and standard deviation values. It can be seen that both 

networks perform similarly in the diastolic frame (which was 
the frame on which they were trained on). Overall it seems 
that the PSPU-net offers slightly better dice scores and more 
reduced standard deviations, which could mean that the 
PSPU-net is more robust. In both networks the best results are 
those of the LV cavity (median score of 0.95), followed by the 
RV cavity (median scores of 0.9) and the LV myocardium 
having the worst scores (median scores of 0.875). Fig. 6 
presents slices of a case with an overall dice score close to the 
average. With this example it can be seen that the 
segmentations offer satisfactory results. The results obtained 
for the systolic frames show a similar trend. In this case the 
superiority of the PSPU-net is more clear, with both superior 
dice scores and reduced standard deviations, making the 
PSPU-net a more robust network. Also it should be noted that 
for the LV cavity both networks perform well enough to be 

 

 

 

Fig. 5 Training history of the loss function (1-Dice) for both networks. 

Fig. 4 Inference method for whole volume segmentation 



considered of practical use (median dice scores of 0.88 and 
0.9). In the case of the RV cavity the quality is notably reduced 
in both networks (median dice scores of 0.78 and 0.8).  

With respect to the performance in the inference process 
using our hardware, we obtained a mean processing time of 
0.91 seconds for the PSPU-net and 1.13 seconds with the 3D 
U-net when the cases are segmented individually. Although 
we did not test it, taking into account that the GPU 
parallelizing capabilities allow for the inference to be done in 
bigger batches (we employed batches of 1) we can assume that 
these times can be reduced when applying multiple 
segmentations at the same time. 

C. Volume estimation results 

The volume estimation metrics are presented in tables 4 
and 5. The results show the absolute relative error in volume 
estimation for the different tissues. Similarly, to the dice 
scores, in this case there are not big differences between 
networks in the diastole. However, it is noticeable that the 
PSPU-net performs better in the LV myocardium and RV 
cavity. In the LV cavity the relative error is lower with the 3D 
U-net but in a much lower scale.  

 

TABLE 2. Dice metric of the segmentations obtained in the diastole test set 

(99 cases). Median and standard deviation values. 

Neural 

network 

Whole 

segmentation 

LV 

 cavity 

LV 

myocardium 

RV 

 cavity 

3D U-net 0.907±0.028 0.956±0.021 0.875±0.039 0.904±0.042 

PSPU-net 0.910±0.026 0.955±0.021 0.875±0.037 0.905±0.036 
 

TABLE 3. Dice metric of the segmentations obtained in the full systole set 

(98 cases). Median and standard deviation values. 

Neural 

network 

Whole 

segmentation 

LV 

 cavity 

RV 

 cavity 

3D U-net 0.826±0.067 0.881±0.073 0.781±0.085 

PSPU-net 0.848±0.053 0.896±0.053 0.798±0.073 
 

 

TABLE 4.  Absolute relative error of the volume estimation obtained with 

the segmentations in the diastole test set (99 cases). Median and standard 

deviation values. 

Neural 

network 

LV 

 cavity 

LV 

 myocardium 

RV 

 cavity 

3D U-net 0.025±0.032 0.048±0.049 0.058±0.070 

PSPU-net 0.026±0.033 0.039±0.051 0.051±0.047 

 

 

TABLE 5. Absolute relative error of the volume estimation obtained with 

the segmentations in the full systole set (98 cases). Median and standard 

deviation values. 

Neural  

network 

LV 

 cavity 

RV 

 cavity 

3D U-net 0.115±0.121 0.258±0.221 

PSPU-net 0.084±0.118 0.234±0.196 

 

 

In the case of the systolic frames the results show a similar 
tendency to that seen with the dice scores, the PSPU-net 
performs noticeable better. Still the volume estimation error is 

 
Fig. 2 Slice examples of a representative case of the segmentation offered by both networks and manual segmentation. Blue: Left ventricle cavity; green: left 

ventricle myocardium; yellow: right ventricle cavity. 



big in both networks, which makes them not suitable to be 
used in the systole time frame for volume estimation. 

IV. CONCLUSIONS 

We have presented a novel version of the U-net that 
employs PSP blocks for the segmentation of short-axis 
diastole frames of MRI cine-sequences and compared its 
results with a standard version of a 3D U-net. The results for 
both segmentation and final volume estimation of the tissues 
showed that the PSPU-net offered high quality results, slightly 
superior to those of the 3D U-net with greater stability in the 
results.  

We additionally tested both networks with systolic frames 
to see how well they could perform with images with similar 
features but different nature. Comparing the performance of 
both networks in a different setting helped to determine which 
network was generalizing the calculation of image features 
better. The fact that the PSPU-net has notably better results in 
the systolic frames could mean that the features it is capable 
to extract work globally better and are more robust to outliers 
to those extracted by the 3D U-net. Adding to this the fact the 
PSPU-net is a smaller network (about 3 times smaller) makes 
it also a more efficient one.  

We conclude that the PSPU-net is a convolutional neural 
network for segmentation that can offer high quality results in 
the task analyzed and that adding PSP blocks in U-net 
architectures can help in improving the robustness of these 
architectures. 
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