
Applying Scriptless Test Automation on Web
Applications from the Financial Sector

Pekka Aho1, Govert Buijs4, Abdurrahman Akın2, Serafettin Sentürk5,
Fernando Pastor Ricos3, Stijn de Gouw1, and Tanja E.J. Vos1,3

1 Open Universiteit, The Netherlands
2 Research and Development (R&D) Center, Kuveyt Türk Participation Bank Inc.,

Kocaeli, Turkey
3 Universitat Politècnica de València, Spain

4 Erasmus University, The Netherlands
5 Tübitak Informatics and Information Security Research Center, Kocaeli, Turkey

Abstract. This industry showcase presents experiences on application
of testar, an open source tool for scriptless testing through graphical
user interface (GUI), to the web applications of Kuveyt Türk Participa-
tion Bank in Turkey. Kuveyt Türk Bank uses Selenium and Appium for
regression testing of mobile and internet banking, but the maintenance
cost of the test scripts is increasing day by day. Therefore, scriptless GUI
testing with testar was evaluated. To provide better support for testing
web-based applications, testar was extended with Selenium WebDriver
integration, JavaScript support, and other new features. Results show
that testar detects GUI elements much better after the improvements,
and it was able to find 2 relevant errors that were not identified by ex-
isting scripted test cases.

Keywords: Automated GUI testing · Industrial case study

1 Problem statement

In traditional scripted test automation, the test cases are defined or generated
prior to the test execution. Scripted GUI testing is widely used at industry,
for example using Selenium[1] to automate the execution of test cases. However,
when the system under testing (SUT) changes during development, the test cases
that traverse through the changed part of the SUT must be manually updated,
resulting high maintenance costs.

In scriptless test automation, the test cases are dynamically generated during
the test execution. Usually scriptless testing involves some level of randomness
in the test generation. Whereas in scripted test automation, the test oracles
are defined as specific test steps, in scriptless testing the test oracles have to be
defined in a more generic way, taking into account that the exact test sequence is
not known prior to execution, and all test oracles are checked after each executed
action. In this paper, we explore the application of a scriptless GUI testing tool
testar to a company of the financial sector by performing a case study following
the guidelines defined in [7].



2 Pekka Aho et al.

Kuveyt Türk Participation Bank Inc is a private financial institution in
Turkey since 1989. It has 414 branch locations across Turkey, and delivers a
wide array of financial products and services to customers.

Kuveyt Türk Bank uses Selenium and Appium for regression testing of mo-
bile and internet banking. These tools require manually defined test scripts to
run relevant test scenarios in the development environment. The maintenance
of scripts must be manually performed for each regression set, provoking high
maintenance costs for the bank. The aim of this case study was to evaluate the
use of scriptless testing and testar tool in order to reduce the maintenance
cost, while increasing test coverage and testing the robustness of systems.

This work has been partially funded by ITEA3 TESTOMAT Project6, ITEA3
IVVES project7 and EU H2020 DECODER project8.

2 Methodology and Technology

testar9 [8] is an open source tool for scriptless test automation through the
graphical user interface (GUI). Originally, testar was developed for testing
desktop applications by using the accessibility API of the operating system (OS)
for extracting the GUI information [3, 9]. By considering the web browser as a
desktop application, it could be used for testing Web applications too [4, 2, 6, 5].
During the industrial study described in this paper, testar has been extended
with support for using Selenium WebDriver (WD), instead of accessibility API
of the OS, to obtain the state of the GUI.

Before applying testar to the internet banking application, we evaluated
the tool on the public website of Kuveyt Türk Bank10. The website is more
static than the internet banking applications, and acted as an initial SUT to
evaluate the logic and capabilities of testar tool. The website is available in
multiple languages, but testar was configured to stay on the English part.

When we started with the evaluation, testar was used with the default
Windows accessibility API for extracting GUI information, including widgets,
their locations and other properties. It was quickly noticed that the accessibility
API did not work well with modern Web applications. Without SUT specific
instructions, testar did not recognise all the widgets, recognised available ac-
tions on widgets that were not visible or clickable, and continued testing after
clicking links to external websites. Especially web pages that use DIV-elements
or JavaScript to handle user interactions through event listeners were difficult
for testar with the standard accessibility API: browsers do not disclose the
existence (or absence) of these event listeners. Some of these issues could be
solved with SUT-specific instructions in testar protocol class to carry out spe-

6 www.testomatproject.eu
7 ivves.eu
8 www.decoder-project.eu
9 testar.org

10 https://www.kuveytturk.com.tr/en/



Title Suppressed Due to Excessive Length 3

cific actions, but then these instructions were very specific to the website and
would require maintenance if the site was changed.

To address these challenges, testar was extended with various functionali-
ties towards testing of Web pages. The accessibility API was replaced by support
for Selenium WebDriver to get information about Web GUIs. To handle widgets
that use JavaScript event handlers for user interactions, the Javascript functions
to add and remove event handlers were extended dynamically with bookkeeping
functionality, using a Monkey Patching solution.

To restrict testar from testing external Web pages, a SUT-specific protocol
class was extended with:

1. Allow-listed domain URLs that are to be considered part of the SUT, and
2. Block-listed extensions of resources, such as PDFs, that should not be tested.

Out-of-domain actions and URLs were prohibited, so that testar did not select
external links. If it ended up to a domain outside the SUT, a forced action, e.g.
browser ”go back”, was triggered to return back to the SUT. Figure 1 shows the
resulting operation flow of testar.

Fig. 1: TESTAR test cycle

3 Results

When evaluating testar with WebDriver, significant improvements were achieved
compared to Windows accessibility API. On the public website of Kuveyt Türk
Bank, testar with accessibility API found 35 correct widgets that could be in-
teracted with, 155 false positives (widgets that actually could not be interacted
with), and missed 14 false negatives (widgets that were not found but could be
interacted with). testar with WebDriver and other web extensions found 54
correct widgets, 5 false positives, and 2 false negatives.



4 Pekka Aho et al.

The case study continued with testing the more complex internet banking
application in the internal development environment of Kuveyt Türk Bank. The
initial configuration of testar included passing the login and PIN code process
and closing some pop-up warning windows. One detected challenge, relevant
for scripted test automation as well, was a unique way to detect specific GUI
elements, as element identifiers were dynamically generated and changing, and
some other attributes were changing based on the selected language of the web
page. Regardless of the challenges, testar was able to find 2 relevant errors
that would have been visible for the end users. The errors were fixed by the
development team. Scriptless GUI testing complements the existing scripted
approaches by covering also the less probable paths through the GUI. However,
defining test oracles is more difficult for scriptless approach.

Summarizing, we discovered that Windows accessibility API does not work
well with Web applications. We extended testar to use Selenium WebDriver
and other Web testing functionalities, and successfully applied it to the industrial
case study of the Kuveyt Türk Bank web services, finding 2 relevant errors from
the internal development version.

In future, we plan to extend testar further with potentially harmful input
generation and adding generic test oracles for web applications, in addition to
detecting HTML error codes.

References

1. Selenium homepage. https://www.selenium.dev, last accessed: 21 Apr 2021
2. Almenar, F., Esparcia-Alcázar, A.I., Mart́ınez, M., Rueda, U.: Automated testing

of web applications with testar. In: Sarro, F., Deb, K. (eds.) Search Based Software
Engineering. pp. 218–223. Springer International Publishing, Cham (2016)

3. Bauersfeld, S., de Rojas, A., Vos, T.E.J.: Evaluating rogue user testing in industry:
An experience report. In: Research Challenges in Information Science (RCIS), 2014
IEEE Eighth International Conference on. pp. 1–10 (May 2014)

4. Bauersfeld, S., Vos, T.E.J., Condori-Fernández, N., Bagnato, A., Brosse, E.: Eval-
uating the TESTAR tool in an industrial case study. In: 2014 ACM-IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement, ESEM
’14, Torino, Italy, September 18-19, 2014. p. 4 (2014)

5. Chahim, H., Duran, M., Vos, T.E.J., Aho, P., Condori Fernandez, N.: Scriptless
testing at the gui level in an industrial setting. In: Dalpiaz, F., Zdravkovic, J.,
Loucopoulos, P. (eds.) Proceedings RCIS. pp. 267–284 (2020)

6. Martinez, M., Esparcia, A.I., Rueda, U., Vos, T.E.J., Ortega, C.: Automated local-
isation testing in industry with testar. In: Wotawa, F., Nica, M., Kushik, N. (eds.)
Testing Software and Systems. pp. 241–248. Cham (2016)

7. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical software engineering 14(2), 131–164 (2009)

8. Vos, T.E.J., Aho, P., Pastor Ricos, F., Rodriguez-Valdes, O., Mulders, A.: Testar
– scriptless testing through graphical user interface. Software Testing, Verification
and Reliability 31(3). https://doi.org/10.1002/stvr.1771

9. Vos, T.E., Kruse, P.M., Condori-Fernández, N., Bauersfeld, S., Wegener, J.: Testar:
Tool support for test automation at the user interface level 6(3) (2015)


