
Evaluating TESTAR’s effectiveness through code
coverage

Aaron van der Brugge1, Fernando Pastor Ricós2, Pekka Aho1, Beatriz Maŕın2,
and Tanja E.J. Vos1,2

1 Open Universiteit, The Netherlands
2 Universitat Politècnica de València, Spain

Abstract. Testing is of paramount importance in assuring the quality of
software products. Nevertheless, it is not easy to judge which techniques
or tools are the most effective. A commonly used surrogate metric to
evaluate the effectiveness of testing tools is code coverage, which has
been widely used for unit and integration testing. However, for GUI
testing approaches, this metric has not been sufficiently investigated. To
fill this gap, we run experiments with the TESTAR tool, a scriptless
testing tool that automatically generates test cases at the Graphical
User Interface (GUI) level. In the experiment, we analyze and compare
the obtained code coverage when using four different action selection
mechanisms (ASMs) in TESTAR that are used to test three SUTs.

Keywords: Effectiveness · Code Coverage · Experiment · GUI Testing.

1 Introduction

Nowadays there are a lot of methods with different activities, roles and artifacts
to develop software. In all of them, the testing phase is of paramount importance
for quality assurance. The best way to evaluate the quality of testing would be to
use the percentage of failures that were found executing the tests cases. However,
it is not possible to know in advance how many bugs exist in the software, and
if we don’t find any, this doesn’t mean that they don’t exist. Consequently, in
order to analyse the effectiveness of testing, surrogate measures [8] are used. A
commonly used surrogate measure is code coverage [2]. Code coverage has been
widely used for measuring the quality of unit and integration testing, however
for system testing approaches that test at the GUI level, this metric have been
less investigated.

We want to fill this gap by evaluating the coverage of a GUI testing tool in an
experiment. We select the testar tool [25] since it is an open-source tool that
allows to automatically generate the test cases from the GUI. To do that, testar
implements a scriptless approach, meaning that the test cases do not have to be
defined prior to test execution. Instead, each test step is generated during the
test execution, based on (1) the actions that are available in that specific time
and state of the GUI, and (2) the action selection mechanism (ASM). Selecting
and executing the most suitable actions can both improve the likelihood and



2 Aaron van der Brugge et al.

decrease the time required for finding failures. Thus, depending on the ASM
that the tool uses, different coverage measures can be obtained.

In the experiment, we aim to compare and gain knowledge of the effective-
ness of various ASMs implemented in the open source testar tool. Moreover,
in this experiment we evaluate the effectiveness of two ASMs that have not been
evaluated previously: prioritize new actions and unvisited actions. The contri-
bution of our experiment is interesting for researchers and practitioners who are
concerned in implementing more effective ASMs in the tools they are research-
ing/developing or using in their projects.

The rest of the paper is organized as follows. Section 2 presents some relevant
related work and the main characteristics of testar. Section 3 presents the
experiment set-up and Section 4 presents the results obtained. Finally, Section
5 presents our conclusions and future work.

2 Related work

Most publications that investigate coverage criteria for GUI testing are based
on models like event-flow graphs, event-interaction graphs and state machines.
In those cases, the coverage criteria are defined based on the models.

In [16] a hierarchical relationship is defined between the components of a GUI
that is represented by an integration tree. The inter-component coverage criteria
are used to evaluate the adequacy of test sequences that cross components. The
event-flow graphs and integration tree for a given GUI, are used to evaluate the
coverage of a given test suite with respect to these new coverage criteria.

A genetic algorithm based coverage approach has been published in [20].
A genetic algorithm searches for the optimal test parameter combinations that
satisfy a pre-defined test criterion that covers an event model.

With respect to code coverage testing, there are various surveys presented in
[27], [23], [22], and [21]; but very little is written about measuring code coverage
in GUI testing.

In [24], a comparison of the effectiveness of model-based GUI testing tools
for Android applications is presented. Authors introduced a stochastic model-
based testing tool - called Stoat - and evaluated its effectiveness by comparing
different code coverage measures with regard to A3E [5], and Sapienz [12]. This
work differs from our work since it is specific for Android applications without
focus in the ASMs. In our study we are centered in the evaluation of the different
action selection mechanisms that can be used by an automated GUI testing tool.

Another empirical study of automated GUI testing tools is presented in [19].
This work evaluates two ASMs of testar(Random and Q-learning) with GUI-
TAR[17], AutoBlacktest [13] and Augusto [14]. As far as we know, this is the
only study that has measured code coverage for testar. In this work, we want to
provide more evidence of the coverage of a GUI testing tool (testar) by taking
into account 4 different ASMs for 3 SUTs. In addition to the previously evalu-
ated ASMs, Random and Q-learning, we will introduce 2 new ASMs: prioritize
new actions and unvisited actions.



Evaluating TESTAR’s effectiveness through code coverage 3

Of the industrial studies that have evaluated the effectiveness of TESTAR [6]
[7] [15] [9] [3] [18], only one [7] has included the measurement for code coverage
of PHP code. All the other studies concentrated on fault-finding capabilities and
other functional coverage criteria.

2.1 testar

testar is an open source tool that carries out automated testing without the
need of scripts, falling into the category of smart monkey testing tools. It im-
plements a scriptless approach, meaning that the test cases do not have to be
defined prior to test execution. Instead, each test step is generated during the
test execution, based on the actions that are available in that specific time and
the state of the GUI.

The underlying principle of testar is simple: generate test sequences of
(state, action)- pairs by starting up the SUT in its initial state and continuously
selecting an action to bring the SUT in another state. The action selection
characterizes the most basic problem of intelligent systems: what to do next.

Fig. 1: High level logical flow of testar.

A high level illustration of testars logical flow is shown in Fig. 1. Everything
inside the large square is automated. The three activities on the right side of
the square represent where the users can improve the flow by configuring or
extending testar if desired. After starting up the SUT, the tool goes into the
loop of continuously selecting and executing an action to bring the SUT from
one state to another state, until some stopping criteria has been met, after which
the SUT is closed.

In order to specify which Action Selection Mechanism (ASM) will be used
during the testing process, specific protocols are defined. testar distribution
2.2.14 supports the following ASMs:

– Random is based on random selection of the next action in a particular
state of the system.



4 Aaron van der Brugge et al.

– Q-learning uses a reinforcement learning algorithm described in [11, 10]
using the best values obtained in the results of the experiments Rmax =
9999999 and γ = 0.95. This ASM requires state abstraction, because it
requires some kind of a state model and has to be able to compare the
state-action identifiers to map the Q-learning values of state-action pairs.

– Prioritize new actions prioritizes new actions by comparing the available
actions in the current state to the available actions in the previous state. This
ASM does not require state abstraction because it only uses the available
actions and their description property to compare the actions.

– Unvisited actions infers and uses a state model that is stored in an Ori-
entDB database. This ASM evidently also requires state abstraction to iden-
tify states. It will look at the current state in the abstract state model for
actions that have not yet been visited by testar. From this collection of
unvisited actions, it returns a random one. If there are no unvisited actions
left in the current state, it uses the model to obtain a sequence of actions
that leads to a state with unvisited actions.

3 Research method

We want to investigate the effectiveness of testar using different ASMs. Code
coverage is a metric used to determine how much code of a program has been
exercised during the active period of a program. In our study, we can use in-
struction coverage and branch coverage to determine how much of the code of a
System Under Test (SUT) has been executed by testar using different ASMs.
Thus, we have formulated the following research question:

RQ1. Which of the action selection mechanisms of testar are the most
effective, measured by code coverage?

To answer the research question, we design an experiment following the guide-
lines presented in [26, 4]. The goal of the experiment is to analyse four different
ASMs of testar for the purpose of evaluating their effectiveness measured by
code coverage from the point of view of the researchers.

To make statistical analysis possible, we formulate the following null hypoth-
esis that is based on the research question.

H0 : The evaluated action selection mechanisms of testar do not show a
difference in the reached code coverage.

3.1 Objects: Selection of SUTs

The SUTs that we can select for the experiment should comply with the follow-
ing: 1) The SUTs have a GUI; 2) testar is able to detect the widgets on the
GUI of the SUTs; 3) The SUTs are written in Java and JaCoCo [1] can be used
to measure the code coverage reached during testing of the SUT; 4) The SUTs
must be published under open source license.



Evaluating TESTAR’s effectiveness through code coverage 5

Information on the selected SUTs

Metric Spaghetti SwingSet2 Rachota

Packages 1 1 3
Java Classes 1 31 52
Methods 45 290 934
LLOC 350 7029 2722
Application Example Swing Demo Business
Java Swing Yes Yes Yes
Classes incl. Inner classes 14 138 327

Table 1: Details on the three SUTs used for the experiment

We selected the following SUTs (see Table 1). Spaghetti is a simple SUT
that consists of only one jar especially made for this experiment. The name
was given since the SUT is a jumble of code and graphics, and had no further
practical use. SwingSet2 3 is a Java application for demonstrating the Swing
features, a set of building blocks for creating cross platform GUIs. Rachota4 is
a Java application for time tracking different projects. It displays time data in a
diagram form, creates customized reports and invoices or analyses measured data
and suggests hints to improve user’s time usage. It was also used for evaluation
in [19].

We prepared SUT-specific testar configuration for each SUT (see Table 2),
which could be counted as an independent variable, as the same configuration
was used for all ASMs.

Spaghetti - Top widgets
- (Add) Force Tree, ComboBox, List

Swingset2 - Top widgets
- (Filter) isSourceCodeEditWidget
- (Add) forceWidgetTreeClickAction
- (Add) forceListElemetsClickAction

Rachotta - Top widgets
- (Trigger) addFilenameReportAction
- (Trigger) forcePricePerHourAndFinish
- (Add) isEditToClickWidget
- (Filter) isEditableWidget
- (Add) isCalendarTextWidget

- (Add) isSpinBoxWidget
- (Filter) isDurationTableCell
- (Add) forceWidgetTreeClickAction
- (Add) forceListElemetsClickAction
- (Filter) ”Cancel” inside Report wizard

Table 2: SUT-specific testar configuration

3.2 Variables

We use the following independent variables for the experiment, which are con-
stant values and factors:

– The testar action selection mechanisms (factor): Random, Q-learning, Pri-
oritize new actions and Unvisited actions, with their corresponding TESTAR
protocols to control them.

3 https://github.com/openjdk/jdk/tree/master/src/demo/share/jfc/SwingSet2
4 http://rachota.sourceforge.net/en/index.html



6 Aaron van der Brugge et al.

– The test.settings file:
1. Suspicious widget oracles: none (blocking)
2. State abstraction for Q-learning and Unvisited actions (see Table 3).

State abstraction does not affect Random or Prioritize new actions.
3. Minimum waiting time between executed actions: 0.3 seconds
4. Action duration: 0.3 seconds
5. SUT max startup time: 60 seconds
6. Each test run consists of 10 sequences and 300 actions per sequence.

Spaghetti and Swingset2 Rachotta

Q-learning Path, ControlType, Title Path, ControlType
Unvisited actions Path, ControlType, Title Path, ControlType

Table 3: State abstraction for state dependent ASMs

We use the following dependent variables to validate our hypothesis and
answer our research question:

– Timestamp after each action, corresponding to the time elapsed since the
start of the test sequence. This is measured after each action.

– Instruction coverage after each action, as measured by JaCoCo metric, i.e.
the number of instructions executed, expressed as a percentage of the total
number of instructions contained in the code of the SUT. At this point it is
important to mention that instruction coverage is based on bytecode instead
of the line coverage commonly used by developers.

– Branch coverage after each action, as measured by JaCoCo metric, i.e. the
number of branches executed, expressed as a percentage of the total number
of branches contained in the code of the SUT.

– Accumulated instruction coverage. The coverage values of the 10 test se-
quences are accumulated during the test run to get a final value of the total
code covered during each test run.

– Accumulated branch coverage. The coverage values of the 10 test sequences
are accumulated during the test run to get a final value of the total code
covered during each test run.

3.3 Design of the experiment

Fig. 2 presents the design of the experiment. All three SUTs will be tested with
the four ASMs. Coverage will be measured after every action. The results will
be used to determine the point at which sufficient code coverage is achieved.

In this experiment we will use the general design principle of blocking. This
means we will block the testing capacity on errors and exceptions of testar,
which could otherwise interrupt the test-runs when discovering such faults. So
no oracles (that define errors and exceptions testar is checking on) will be used
during this experiment because finding an error or exception will interrupt the
test sequence, and the goal of this coverage experiment is not to find possible
programmers’ mistakes and such.



Evaluating TESTAR’s effectiveness through code coverage 7

 

Test Settings

Coverage experiment

Action Selection
Mechanisms

Spaghetti

SwingSet2

Rachota

Dependent variables

Instruction Coverage 
 

Branch Coverage 
 

Average Sequence Time 
  

Timestamps 
 

Accumulated Instruction Coverage 
 

Accumulated Branch Coverage

 
Oracles 

State Abstraction 
Number of Test runs 

Number of Sequences 
Number of Actions 

Time Values

Independent variables SUTs

Factor

Fig. 2: Design of the experiment

By keeping the numbers of the most independent variables (except the factor)
equal during the experiment, we create a balanced design that keeps the relation
between cause and effect clear. For this reason, in this coverage experiment, we
keep the number of actions equal. It seems plausible that more actions during a
test run make it possible to achieve at least the same amount of coverage during
the same test run than fewer actions. So, it is clear that a sufficient number
of actions must be chosen in order to properly compare the measures obtained.
Thus, we choose a test set-up of 10 sequences of 300 actions for each test run.

To be able to draw valid conclusions about the possible rejection of the null
hypothesis, and to deal with the randomness of testar ASMs, we will repeat all
test runs of our experiment 30 times using concurrent Virtual Machines (VMs)
running tests (see Fig. 3). Each combination of SUT and ASM will produce
two samples. One consisting of the final instruction coverage values and another
one consisting of final branch coverage, both reached after 10 sequences of 300
actions. Since each combination will have 30 test runs, each sample will have
30 values. We apply Mann-Whitney U-Test to compare two samples with each
other, looking at whether the values of the data of one sample are higher or
lower than that of the other sample.

3 SUTs

4 Action
Selection
Algorithms

PER SUT

PER ASM
VM1

VM2

VM3

VM30

DataStorage

30
 re

pe
tit

io
ns

 to
 d

ea
l w

ith
 ra

nd
om

ne
ss

TR
IA

L 
3x

4 
TI

M
ES

Store 30 Datasets for
each SUT-ASM pair

Fig. 3: Overall design of the experiment



8 Aaron van der Brugge et al.

4 Results

The results of the coverage experiment are presented in this section. The ac-
cumulated instruction and branch coverage percentage are presented in curves
for instruction and branch coverage for each SUT. Mann-Whitney U p-values
for instruction and branch coverage were carried out to discover the differences
between the samples.

4.1 Analysing Spaghetti

Regarding instruction coverage, after already 120 actions the tests for all ASMs
on Spaghetti reach a relatively high percentage of accumulated instruction cov-
erage (see Fig. 4). Note that in Fig. 4, the number of actions is presented on axis
X and the merged instruction/branch coverage per test run is presented on axis
y. We do not present the mean value for each ASM for instruction and branch
coverage due to randomized algorithms can yield a high variance probability
distributions, so using the mean value can be misleading, as it is stated in [4].

Instruction

(a) Random (b) Q-learning (c) Prioritize (d) Unvisited actions
Branch

(e) Random (f) Q-learning (g) Prioritize (h) Unvisited actions

Fig. 4: Spaghetti: curves showing how coverage grows with every executed action

The results show a statistically significant difference between Q-learning
and Unvisited actions (see Fig. 5c). Despite of this difference, there is a sim-
ilarity in the course of the curves for both action selection mechanisms. Both
start with a similarly steep curve. This is because there are still relatively many
unvisited actions in the beginning, on which both protocols work in a similar
way, favoring Unvisited actions.

The box plots for instruction coverage show the variation between the differ-
ent ASMs (Fig. 5a). The Random ASM seems to perform the best on the first
300 actions. That makes sense if you consider the reached coverage. Prioritize
new actions is not the worst ASM in terms of growth, but the worst in getting
the highest instruction coverage value. Unvisited actions seems to only have
the fastest growth at the first 100 actions, after which it is caught up by the
other ASMs.



Evaluating TESTAR’s effectiveness through code coverage 9

(a) Instruction (b) Branch

Instruction
R Q U

P .103 .096 .604
R .959 .069
Q .010

Branch
R Q U

P .001 .001 .001
R .001 .009
Q .190

(c) p values

Fig. 5: Spaghetti values for 300 actions

Regarding the branch coverage, the growth of coverage over the first 300
actions of the four ASMs has similar behavior (Fig. 4). Also almost all ASMs
have a significant difference for merged branch coverage on the first 300 actions,
except for Q-learning compared to Unvisited actions, which have almost the
same mean for both ASMs as it is shown in (Fig. 5b).

4.2 Analysing SwingSet2

For SwingSet2, after already 60 actions the tests for all ASMs reach a relatively
high percentage of accumulated instruction coverage (see Fig. 6). We observe
that there are differences in the steepness of the graphs on the first hundred
actions, which indicates a difference in growth during that range. Unvisited
actions and Q-learning seem to grow faster, while Prioritize new actions
and Random have both a similar less steep curve. The Unvisited actions
clearly performs best on the first 300 actions (see Fig. 7a). It outperforms Pri-
oritize new actions and Random (Fig. 7c) with statistical significance.

The box plots in Fig. 7b show that Unvisited actions, when compared
with the other ASMs, has a better performance during the first 300 actions. The
p values show no improvement in differences between the branch coverage of
ASMs. On the contrary, the tests over Q-learning and Unvisited actions are
no longer significant.

4.3 Analysing Rachota

Regarding the instruction coverage, we observe that there is diverse behavior
between the individual test runs. After the first 300 actions, we see the growth
of the coverage is still rising at action 300 (Fig. 8). From Fig. 9a) we can observe
that Q-learning is the most converged ASM. It also has achieved the highest
coverage over the first 300 actions. Random, on the other hand, has the lowest
coverage and the most dispersed values of coverage. This difference between these
two ASMs is confirmed in Fig. 9c instruction p values. Random also has lower



10 Aaron van der Brugge et al.

Instruction

(a) Random (b) Q-learnig (c) Prioritize (d) Unvisited actions
Branch

(e) Random (f) Q-learnig (g) Prioritize (h) Unvisited actions

Fig. 6: SwingSet2 coverage curves

(a) Instruction (b) Branch

Instruction
R Q U

P .790 .167 .033
R .099 .009
Q .515

Branch
R Q U

P .048 .001 .001
R .126 .211
Q .579

(c) p values

Fig. 7: Swingset values at 300 actions

performance than Unvisited actions over the first 300 actions with statistical
significance.

Regarding the branch coverage, Unvisited actions seems to be one of the
highest scoring ASMs over the first 300 actions, both in terms of reached cover-
age and converged test run values. Similar to instruction coverage, Unvisited
actions and Q-learning are the best performing ASMs on the field of branch
coverage over the first 300 actions, when used with Rachota (see Fig. 9b).

4.4 Answering the research question

Regarding the null hypothesis, H0 : The evaluated action selection mechanisms
of testar do not show a difference in the reached code coverage, we can reject
it and state that there is a difference in the reached code coverage of the ASMs.

Regarding our research question RQ1. Which of the action selection mecha-
nisms of testar are most effective, measured by code coverage?, we observe that



Evaluating TESTAR’s effectiveness through code coverage 11

Instruction

(a) Random (b) Q-learnig (c) Prioritize (d) Unvisited actions
Branch

(e) Random (f) Q-learnig (g) Prioritize (h) Unvisited actions

Fig. 8: Rachota coverage curves

(a) Instruction (b) Branch

Instruction
R Q U

P .196 .044 .181
R .001 .006
Q .297

Branch
R Q U

P .102 .054 .128
R .001 .004
Q .297

(c) p values

Fig. 9: Rachota values at 300 actions

Random is the best scoring ASM with Spaghetti. It’s on the third place when
used on SwingSet2. But it clearly performs worst with Rachota. Q-learning
and Unvisited actions, on the other hand, exhibit the opposite behavior. They
score best on Rachota, but Unvisited actions in particular scores the lowest on
Spaghetti. From this, it could be concluded that Random scores best on small
programs that are not very complex, but especially Q-learning scores best on
programs that are relatively extensive. Unvisited actions seems to score best
in term of speed, quickly increasing the coverage at the first actions.

Looking at the size and the complexity of the code, it seems that differences
in growth and reached coverage better show up with the larger SUTs. Conse-
quently, the most significant results are from Rachota that is the largest and
most complex of the selected SUTs. Considering the statistical significance, the
results from the coverage experiment are quite good with Rachota.

Considering the whole experiment, Q-learning seems to be the best per-
forming ASM for both instruction coverage and branch coverage. However, over



12 Aaron van der Brugge et al.

the first 100 actions, Unvisited actions shows the fastest growth overall. This
is especially the case with the tests on Spaghetti.

Summarizing, we observe that effectiveness of some ASMs appear to be better
on larger applications and others work on smaller applications. We can therefore
conclude that a measurement of effectiveness with code coverage is possible,
provided that the properties of the SUT are taken into account. Moreover, we
plan to run a follow-up experiment with a wider set SUTs to gain more evidence
on the effectiveness of ASMs of TESTAR.

4.5 Threats to validity

We follow the guidelines of [26] to analyze some threats that could affect the
validity of our results. Regarding to construct validity, JaCoCo will be used
to measure code coverage data. We hence rely on the JaCoCo definitions of
instruction and branch coverage and their accurate measurements.

Conclusion validity Code coverage as measured by JaCoCo is used as a sur-
rogate measure to draw conclusions about the effectiveness of the randomized
testing approach TESTAR. Since we cannot assume normal distribution of ran-
domized testing approaches [4] we have applied Mann-Whitney U statistical tests
to the 30 samples of code coverage measures.

External validity is concerned with generalization. The SUTs used in this
study are small and only one application (Rachota) is a real application and
not a demo or toy project. The threats to external validity should be reduced in
future work by adding more complex and bigger SUTs.

5 Conclusions

This paper presents an empirical measurement and comparison of code coverage
of 4 ASMs of TESTAR on 3 different SUTs. 2 ASMs of the experiment, unvisited
actions and prioritize new actions, have not been evaluated with any metrics
before. Even though the results of our experiment are inconclusive in terms of
the best ASM for TESTAR, our results clearly show that the ASM affects the
reached code coverage, so that we provide some helpful insights by showing the
impact that the SUT’s characteristics can have on different ASMs.

We observe that some ASMs perform better on some SUTs but worse on
other SUTs. State abstraction and model inference have a strong impact on the
behavior of unvisited actions and Q-learning algorithms. If the state abstraction
is too concrete, TESTAR keeps finding new states and ASM keeps using the
default values (random). If the state abstraction is too abstract, states with a
lot of difference might be considered the same and some SUT functionality might
not get tested at all. In addition, the state model gets very non-deterministic.
The unvisited actions ASM turns into random after all the unvisited actions
have been visited. This can be seen from the results as the coverage is growing
quickly in the beginning, and slowly after the threshold has been reached.



Evaluating TESTAR’s effectiveness through code coverage 13

Further work is related to the experimentation on a wider variety of SUTs,
such as web applications or bigger SUTs, and without blocking the capacities
of TESTAR to find exceptions. Furthermore, we want to identify correlations
among the characteristics of SUTs and the performance of the ASMs; and also
we want to analyze the magnitude of the improvements though the analysis of
effect size using different ASMs.

In addition, we plan to continue the research by improving the ASMs, for in-
stance adding execution counter to prioritize new actions and taking advantage
of the state model would probably improve its performance in early exploration
of the SUT. Moreover, optimizing the state abstraction for each SUT would prob-
ably improve the performance of unvisited actions ASM and Q-learning ASM.
Another interesting future research topic would be hybrid ASMs and finding suit-
able criteria to change from one action selection algorithm to another. Changing
from unvisited actions ASM to some combinatorial action selection algorithm
after the state model has been visited could be a good solution.

Acknowledgements
This research has been funded by the following projects: H2020 EU project
DECODER (www.decoder-project.eu), H2020 EU project iv4XR (www.iv4xr-
project.eu) and ITEA project IVVES (www.ivves.eu).

References

1. Jacoco. https://www.jacoco.org, last accessed: 12 May 2021
2. Abran, A., et al.: Swebok. Guide to the Software Eng. Body of Knowledge (2004)
3. Aho, P., Vos, T.E.J., Ahonen, S., Piirainen, T., Moilanen, P., Pastor Ricos, F.:

Continuous piloting of an open source test automation tool in an industrial en-
vironment. In: Jornadas de Ingenieŕıa del Software y Bases de Datos (JISBD).
pp. 1–4. Sistedes (2019)

4. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess ran-
domized algorithms in software engineering. ACM, New York, NY, USA (2011)

5. Azim, T., Neamtiu, I.: Targeted and depth-first exploration for systematic testing
of android apps. In: ACM SIGPLAN int. conference on Object oriented program-
ming systems languages & applications. pp. 641–660 (2013)

6. Bauersfeld, S., de Rojas, A., Vos, T.E.J.: Evaluating rogue user testing in indus-
try: An experience report. In: IEEE Eighth International Conference on Research
Challenges in Information Science (RCIS), 2014. pp. 1–10 (May 2014)

7. Bauersfeld, S., Vos, T.E.J., Condori-Fernández, N., Bagnato, A., Brosse, E.: Eval-
uating the TESTAR tool in an industrial case study. In: ACM-IEEE International
Symposium on Empirical Software Eng. and Measurement, ESEM. p. 4 (2014)

8. Briand, L.C.: A critical analysis of empirical research in software testing. In: 1st
Int. Symposium on Empirical Soft. Eng. and Measurement (ESEM). pp. 1–8 (2007)

9. Chahim, H., Duran, M., Vos, T.E.J., Aho, P., Condori Fernandez, N.: Scriptless
testing at the gui level in an industrial setting. In: Research Challenges in Infor-
mation Science. pp. 267–284. Springer (2020)

10. Esparcia-Alcázar, A., Almenar, F., Mart́ınez, M., Rueda, U., Vos, T.: Q-learning
strategies for action selection in the testar automated testing tool. 6th Int. Conf.
on Metaheuristics and nature inspired computing (META) pp. 130–137 (2016)



14 Aaron van der Brugge et al.

11. Esparcia-Alcázar, A., Almenar, F., Vos, T., Rueda, U.: Using genetic programming
to evolve action selection rules in traversal-based automated software testing: re-
sults obtained with the TESTAR tool. Memetic Comput. 10(3), 257–265 (2018)

12. Mao, K., Harman, M., Jia, Y.: Sapienz: Multi-objective automated testing for
android applications. In: 25th Int. Symp. on Software Testing and Analysis. pp.
94–105 (2016)

13. Mariani, L., Pezze, M., Riganelli, O., Santoro, M.: Autoblacktest: Automatic black-
box testing of interactive applications. In: Fifth International Conference on Soft-
ware Testing, Verification and Validation. pp. 81–90. IEEE (2012)

14. Mariani, L., Pezzè, M., Zuddas, D.: Augusto: Exploiting popular functionalities for
the generation of semantic gui tests with oracles. In: 40th International Conference
on Software Engineering. pp. 280–290 (2018)

15. Martinez, M., Esparcia, A.I., Rueda, U., Vos, T.E.J., Ortega, C.: Automated local-
isation testing in industry with testar. In: Wotawa, F., Nica, M., Kushik, N. (eds.)
Testing Software and Systems. pp. 241–248. Springer, Cham (2016)

16. Memon, A.M., Soffa, M.L., Pollack, M.E.: Coverage criteria for gui testing. In: 8th
European software engineering conference held jointly with 9th ACM SIGSOFT in-
ternational symposium on Foundations of software engineering. pp. 256–267 (2001)

17. Nguyen, B.N., Robbins, B., Banerjee, I., Memon, A.: Guitar: an innovative tool for
automated testing of gui-driven software. Automated software engineering 21(1),
65–105 (2014)

18. Pastor Ricós, F., Aho, P., Vos, T., Torres Boigues, I., Calás Blasco, E., Mart́ınez,
H.: Deploying testar to enable remote testing in an industrial ci pipeline: A case-
based evaluation. In: Leveraging Applications of Formal Methods, Verification and
Validation: Verification Principles. pp. 543–557. Springer (2020)

19. Pezzè, M., Rondena, P., Zuddas, D.: Automatic gui testing of desktop applications:
an empirical assessment of the state of the art. In: Companion Proceedings for the
ISSTA/ECOOP 2018 Workshops. pp. 54–62 (2018)

20. Rauf, A., Anwar, S., Jaffer, M.A., Shahid, A.A.: Automated gui test coverage
analysis using ga. In: 7th International Conference on Information Technology:
New Generations. pp. 1057–1062. IEEE (2010)

21. Shahid, M., Ibrahim, S., Mahrin, M.N.: A study on test coverage in software testing.
Advanced Informatics School (AIS), Universiti Teknologi Malaysia, International
Campus, Jalan Semarak, Kuala Lumpur, Malaysia (2011)

22. Sharma, S., Chandra, U., Jain, P.: A literature survey on automation of test data
generation for branch coverage testing using genetic algorithm. International Jour-
nal of Computational Intelligence Research 13(6), 1521–1531 (2017)

23. Smith, B., Williams, L.A.: A survey on code coverage as a stopping criterion for
unit testing. Tech. rep., North Carolina State Univ. Dept. of Comp. Science (2008)

24. Su, T., Meng, G., Chen, Y., Wu, K., Yang, W., Yao, Y., Pu, G., Liu, Y., Su, Z.:
Guided, stochastic model-based gui testing of android apps. In: 11th Joint Meeting
on Foundations of Software Engineering. pp. 245–256 (2017)

25. Vos, T.E.J., Aho, P., Pastor Ricos, F., Rodriguez-Valdes, O., Mulders, A.: testar
– scriptless testing through graphical user interface. Software Testing, Verification
and Reliability 31(3), e1771 (2021)

26. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Ex-
perimentation in software engineering. Springer Science & Business Media (2012)

27. Yang, Q., Li, J.J., Weiss, D.M.: A survey of coverage-based testing tools. The
Computer Journal 52(5), 589–597 (2009)


