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Summary
The neutron diffusion equation describes the neutron population in a nuclear re-
actor core. This work deals with this model for nuclear reactors with hexagonal
geometries. First, the stationary neutron diffusion equation is studied. This is
a differential eigenvalue problem, called Lambda modes problem. To solve the
Lambda modes problem, different methods have been compared in one-dimensional
geometries, resulting as the best one the Spectral Element Method. The operators
are then discretized using this scheme in two- and three-dimensional geometries,
and the resulting algebraic eigenvalue problem is solved with the implicit restarted
Arnoldi method.

Once the solution for the steady state neutron distribution is obtained, it is used
as initial condition for the time integration neutron diffusion equation. Initially,
a one step backard Euler method is used to discretize this equation in time. The
transients to test the behaviour of the method are based on moving the control
rods of the reactor, simulating an accident where a control rod is ejected and
a scram is intialized to control the power evolution. An unphysical behaviour
appears when a node is partially rodded, the rod cusping effect, which is corrected
by weighting the cross sections with the flux of the previous time step. Good
results are obtained for the power evolution and the rod cusping effect is corrected
for different transients. To solve the algebraic systems arising in the backward
method, a Krylov method is used, and different preconditioning strategies are
tested. The first one consists of using the block structure obtained by the energy
groups to solve the system by blocks, and different acceleration techniques for the
block iterative scheme and a preconditioner using this block structure are proposed.
Also, a spectral preconditioner, which makes use of the information in a Krylov
subspace to preconditionate the next system is studied. Second and fourth order
exponential methods are also proposed to integrate the time dependent neutron
diffusion equation, where the exponential of the system matrix has to be multiplied
by a vector. These schemes allow us to work without building explicitly the system
matrix, and different methods are compared to calculate the product of the system
matrix by a vector, such as a Krylov method, a Chebyshev approximation method,
and a Leja Points method.

Some situations arise in which a set of modes of a nuclear reactor core have to be
updated, as in perturbative calculations or in the use of modal methods. Updating
this set of modes can be very expensive when using the Arnoldi method, and for
this reason several methods based on a Newton Iteration are proposed, such as the
Modified Block Newton method, a One Sided Block Newton method and a Two
Sided Block Newton method. As an alternative strategy, a reduced order model
to update a set of modes based on the Proper Generalized Decomposition is also
proposed. This method obtains an approximated solution as a sum of separable
functions over the whole domain, reducing the multidimensional problem to a set
of one-dimensional problems.





Resumen
La ecuación de la difusión neutrónica describe la población de neutrones dentro de
un reactor nuclear. Este trabajo está enfocado a reactores nucleares con geometŕıa
hexagonal. En primer lugar se estudia la ecuación de la difusión neutrónica esta-
cionaria. Este es un problema diferencial de valores propios, llamado problema
de los modos Lambda. Para resolver el problema de los modos Lambda se han
comparado diferentes métodos en geometŕıas unidimensionales, resultando como el
mejor, el método de elementos espectrales. Usando este método discretizamos los
operadores en geometŕıas bidimensiones y tridimensionales, resolviendo el prob-
lema algebraico de valores propios resultante con el método de Arnoldi.

La distribución de neutrones en estado estacionario se utiliza como condición
inicial para la integración de la ecuación de la difusión neutrónica dependiente
del tiempo. Se utiliza un método de Euler impĺıcito para integrar en el tiempo.
Cuando una barra de control está parcialmente insertada en un nodo aparece un
comportamiento no f́ısico de la solución, el efecto “rod cusping”, que se corrige
mediante la ponderación de las secciones eficaces con el flujo del paso de tiempo
anterior. Para la resolución de los sistemas algebraicos que surgen en el método
impĺıcito, se utiliza un método de Krylov, y se evalúan diferentes estrategias de
precondicionamiento. La primera consiste en el uso de la estructura a bloques
definida por los grupos de enerǵıa para resolver el sistema. Además se proponen
diferentes técnicas de aceleración para el esquema iterativo de bloques y un pre-
condicionador utilizando esta estructura. Además se estudia un preacondicionador
espectral, que hace uso de la información del subespacio de Krylov obtenida cuando
se resuelve un sistema para precondicionar el siguiente sistema. También se pro-
ponen métodos exponenciales de segundo y cuarto orden para integrar la ecuación
de difusión neutrónica dependiente del tiempo, donde la exponencial de la matriz
del sistema tiene que ser multiplicada por un vector. Estos esquemas nos per-
miten trabajar sin construir expĺıcitamente la matriz del sistema, y se comparan
diferentes métodos para aproximar el producto de la exponencial matricial por un
vector, tal como un método de Krylov, un método de Chebyshev y un método
basado en los puntos de Leja.

Surgen algunas situaciones en las que un conjunto de modos tiene que ser ac-
tualizado, como en los cálculos perturbados o en el uso de métodos modales. La
actualización de estos de modos puede ser muy costosa cuando se utiliza el método
de Arnoldi y, por esta razón, se proponen varios métodos basados en una itera-
cion de Newton, tales como el método de Newton a bloques modificado, y dos
alternativas basadas en iterar con uno o dos subespacios. Como estrategia alter-
nativa se propone un modelo de orden reducido para actualizar un conjunto de
modos basados en la “Proper Generalized Decomposition”. Este método obtiene
una solución aproximada como una suma de funciones separables sobre todo el
dominio, reduciendo el problema multidimensional a un conjunto de problemas
unidimensionales.
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Resum
L’equació de la difusió neutrònica descriu la poblaciò de neutrons d’un reactor nu-
clear. Aquest treball tracta amb aquest model per a reactors amb geometria hexag-
onal. En primer lloc, s’estudia la part estacionària de les equacions. Aquest és
un problema diferencial de valors propis, anomenat problema dels modes Lambda.
Per resoldre el problema dels modes Lambda, els diferents mètodes han estat com-
parats en geometries unidimensionals, resultant el millor el mètode d’elements
espectrals. Els operadors són discretitzats fent servir aquest esquema en geome-
tries bidimensionals i tridimensionals, i el problema de valors propis algebraics
obtingut es resol amb el mètode d’Arnoldi amb reinici impĺıcit.

Una vegada que s’obté la distribució de neutrons estacionària, aquesta s’utilitza
com a condició inicial per l’integració de l’equació de difusió neutrònica en el
temps. Inicialment, s’utilitza un mètode d’Euler impĺıcit d’un pas per integrar
en el temps. Els transitoris per comprovar el comportament del mètode es basen
en moure les barres de control del reactor, simulant un accident on s’expulsa una
barra de control i una parada d’emergència es inicialitzada per controlar l’evolució
de potència. Un comportament no f́ısic apareix quan un node té les barres de con-
trol parcialment insertades, l’efecte del “rod cusping”, que es corregeix mitjançant
la ponderació de les seccions eficaces amb el flux neutrònic del pas de temps ante-
rior. Per a obtindre la solució dels sistemes algebraics que sorgeixen en el mètode
Euler implicit, un mètode de Krylov s’utilitza per resoldre els sistemes resultants,
i s’avaluen diferents estratègies de precondicionament. La primera consisteix en
l’ús de l’estructura de blocs deguda als grups d’energia, i es proposen diferents
tècniques d’acceleració per al esquema iteratiu per blocs i un precondicionador
utilitzant aquesta estructura de blocs. A més, s’estudia un precondicionador es-
pectral, que fa ús de la informació obtinguda del subespai de Krylov quan es resol
un sistema per precondicionar el sistema següent. També es proposen mètodes
exponencials de segon i quart ordre per integrar l’equació de difusió de neutrons
depenent del temps, on l’exponencial de la matriu del sistema ha de ser multi-
plicada per un vector. Aquests esquemes ens permeten treballar sense construir
expĺıcitament la matriu del sistema, i es comparen diferents mètodes per calcular
el producte de la matriu del sistema per un vector.

Sorgeixen algunes situacions en les qual un conjunt de modes ha de ser actualitzat,
com en els càlculs de perturbació o en l’ús de mètodes modals. L’actualització
d’aquesta sèrie de maneres pot ser molt costosa quan s’utilitza el mètode d’Arnoldi,
i per això es proposen diversos mètodes basats en l’iteració de Newton, com ara el
mètode modificat de Newton per blocs, i altres dues variants amb un o amb dos
subespais. Com estratègia alternativa, es proposa un model d’ordre redüıt per ac-
tualitzar un conjunt de modes basats en la “Proper Generalized Decomposition”.
Aquest mètode obté una solució aproximada com una suma de funcions separa-
bles sobre tot el domini, redüint el problema multi-dimensional a un conjunto de
problemes uni-dimensionals.
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In nuclear reactor core physics two main objects to study can be distinguished.
On one hand, the localisation and dynamics (or behaviour) of neutrons and on the
other hand, the criticality of the reactor, i.e., whether it is possible to maintain
the chain reaction in its interior. Among the many different methods that exist to
answer these questions, the most commonly used ones are based on the neutron
diffusion theory, which is an approximation to the neutron transport theory.

The rigorous treatment of this problem is completely analogous to that used in
classic studies of gaseous diffusion [1]. The method of study consists of taking
a control volume at some point of the reactor, and deriving expressions that ac-
count for the different ways of entry and exit from this control volume of neutrons,
having a velocity vector given by introducing effective cross sections avoiding to
consider specific interactions of neutrons within the control volume. The balance
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Chapter 1. Introduction

between proportion of neutrons which enter and the proportion of neutrons which
exit the control volume, gives rise to what is known as the Boltzmann transport
equation. To simplify this equation, we introduce hypothesis such as that all the
neutrons can be grouped into energy ranges (groups) and that the distribution of
the neutron velocity vectors is independent of the direction. Under these condi-
tions, one can obtain the neutron diffusion equation as an approximation of the
transport equation.

There are mainly two types of calculations associated with the neutron diffusion. A
first type of static calculations involving the determination of the Lambda modes
associated with a given configuration of the reactor in a given time. This is a
generalized eigenvalue problem associated with a differential operator with given
boundary conditions. The determination of the fundamental mode allows us to
describe the behaviour of the reactor in steady state. Another type of calculations
are those made for the determination of a transient from a perturbation made on a
stationary configuration of the reactor, using for that the time dependent neutron
diffusion equation.

Several algorithms to integrate the time dependent neutron diffusion equation have
been developed, by means of modal methods [2, 3] or implicit methods for the time
integration scheme. Moreover some paralelization approaches have been proposed
for these algorithms [4], making these methods capables to calculate real reactors
with reasonable timings. The algebraic part for the resolution of the eigenvalue
problems has been also solved in several ways [5, 6].

The present memory is focused on developing methods to deal with these two
problems on hexagonal geometries. The developed methods are mainly aimed to
be used with a spatial discretization or spatial mesh consisting on large elements.
Numerical results are reported about “benchmark” problems found at the litera-
ture.

1.1 Neutron diffusion equation

The behaviour of a nuclear reactor is modelled by means of the neutron distribu-
tion at the reactor as a function depending on the position, the velocity, the energy
and the time. Thus, one of the main problems for the nuclear reactor theory is to
predict this distribution. It can be done solving the neutron transport equation
over the reactor domain. But, due to the complexity of this equation, the neutron
diffusion equation is widely used as an approximation [7]. We will proceed to show
the process followed to deduce the neutron diffusion equation as an approximation
for the transport equation.

Within the transport theory the neutron is considered as a classical particle, in
the sense that it can be fully determined by means of knowing its position and
its velocity. The interaction between neutrons and atomic nuclei is dealt from a

2



1.1 Neutron diffusion equation

macroscopic point of view, avoiding the details of the interaction process inside the
core. Moreover, the cross sections associated to the probability of a determined
type of reaction is defined and it is supposed that this interaction is produced
instantly.

The balance equation in a differential control volume is obtained taking into ac-
count that the rate of change for the density respect to the time inside the volume
dV dEd~Ω of the phase space is given by the difference between the neutron rate
flow into and out of that control volume. To describe the neutron population the
magnitude denoted as neutron angular density , N(~r,E, ~Ω, t), is used, defined as

the probable (or expected) number of neutrons at position ~r with direction ~Ω and
energy E at time t, per unit volume per unit solid angle per unit energy. Moreover,
the neutron angular flux is defined as

Ψ(~r,E, ~Ω, t) ≡ vN(~r,E, ~Ω, t) ,

where v is the neutron speed, and the balance equation inside the control volume
which describes the neutron transport equation is expressed as follows [7]

1

v

∂Ψ

∂t
(~r,E, ~Ω, t) = −~Ω · ~∇Ψ(~r,E, ~Ω, t)

− ΣT (~r,E, t)Ψ(~r,E, ~Ω, t) +Q(~r,E, ~Ω, t)

+ (1− β)
χp(E)

4π

∫ ∞
0

dE′ νΣf (~r,E′, t)

∫
~Ω′
d~Ω′Ψ(~r,E′, ~Ω′, t)

+

∫ ∞
0

dE′
∫
~Ω′
d~Ω′Σs(~r;E

′, ~Ω′ → E, ~Ω; t)Ψ(~r,E′, ~Ω′, t)

+

K∑
k=1

λk
χk(E)

4π
Ck(~r, t) . (1.1)

The first term on the right hand of the equation, ~Ω · ~∇Ψ(~r,E, ~Ω, t) , takes into

account the neutron advection flowing out the control volume, where ~Ω is the unit
vector denoting the direction. The second term, ΣT (~r,E, t)Ψ(~r,E, ~Ω, t), describes
the rate at which neutrons flow out the control volume by means of scattering and
absorption processes. Q(~r,E, ~Ω, t) denotes a possible external source of neutrons.
The fourth term indicates the neutrons introduced into the volume element by
fission processes, assuming isotropic fission distribution. The fifth term describes
the neutrons introduced into the volume element by scattering. The delayed neu-
trons appearing in the volume from the precursor’s decay is taken into account by
means of the last term.

ΣT and Σf denote the total cross section and the fission cross section respec-
tively. χp indicates the spectrum of the neutron produced by fission and χk is
the spectrum of neutrons produced by the precursors decay. The probability for
a neutron to be scattered from a volume dV dE′d~Ω′ to other dV dEd~Ω, is repre-
sented by Σs(~r;E

′, ~Ω′ → E, ~Ω; t). The fission neutron rate scattered due to the
3



Chapter 1. Introduction

transformation of a precursor of type k is βk, where β =
∑K
k=1 βk and K is the

number of neutron precursors considered. The decay rate for which a precursor of
type k decays is λkCk.

The concentration of delayed neutron precursors satisfies the following balance
equation

∂Ck
∂t

(~r, t) = βk

∫ ∞
0

dE

∫
~Ω

d~ΩνΣf (~r,E, t)Ψ(~r,E, ~Ω, t)− λkCk(~r, t) , (1.2)

where ν is the average number of neutrons arising in one fission, and k = 1, . . . ,K.

It is assumed that the angular dependency for the neutron scattering is mainly due
to the angle between the direction of the incident neutron, ~Ω′, and the direction
of the emerging neutron, ~Ω. It is defined

~Ω = (Ω1,Ω2,Ω3) = (sin θ cosϕ, sin θ sinϕ, cos θ) ,

~Ω′ = (Ω′1,Ω
′
2,Ω

′
3) = (sin θ′ cosϕ′, sin θ′ sinϕ′, cos θ′) ,

µ∗ = ~Ω′ · ~Ω = cos θ∗, µ = cos θ, µ′ = cos θ′ ,

where θ and θ′ are the angles of directions ~Ω and ~Ω′, respectively, with the z axis
of the chosen reference system (see Figure A.1 at the Appendix).

The spherical harmonics method to approximate the neutron transport equation
consists of expanding the angular neutron flux, Ψ(~r,E, ~Ω, t), and the external

neutron source, Q(~r,E, ~Ω, t), as follows

Ψ(~r,E, ~Ω, t) =

∞∑
l=0

+l∑
m=−l

Φml (~r,E, t)Y ml (~Ω) , (1.3)

Q(~r,E, ~Ω, t) =

∞∑
l=0

+l∑
m=−l

Qml (~r,E, t)Y ml (~Ω) , (1.4)

where Y ml (~Ω) are the (normalized) spherical harmonics defined at (A.9). It is

assumed that scattering only depends on the relative angle, µ∗ = ~Ω · ~Ω′, and that
the scattering cross section can be expanded as the following Legendre polynomials
series:

Σs(~r;E
′, ~Ω′ → E, ~Ω; t) =

∞∑
l=0

2l + 1

4π
Σsl(~r;E

′ → E; t)Pl(µ
∗) ,

4



1.1 Neutron diffusion equation

where Pl are the Legendre polynomials. Making use of the addition theorem for
the Legendre polynomials (A.8), it can be written

∞∑
l=0

2l + 1

4π
Σsl(~r;E

′ → E; t)Pl(µ
∗) =

∞∑
l=0

2l + 1

4π
Σsl(~r;E

′ → E; t)
(
Pl(µ)Pl(µ

′)

+ 2

l∑
m=1

(l −m)!

(l +m)!
Pml (µ)Pml (µ′) cosm(ϕ− ϕ′)

)
=

∞∑
l=0

2l + 1

4π
Σsl(~r;E

′ → E; t)

×

(
Pl(µ)Pl(µ

′) + 2

l∑
m=1

(l −m)!

(l +m)!
Pml (µ)Pml (µ′)

(
eimϕe−imϕ

′
+ e−imϕe+imϕ′

2

))

=

∞∑
l=0

2l + 1

4π
Σsl(~r;E

′ → E; t)

(
4π

2l + 1
Y 0
l (~Ω)Y 0

l (~Ω′)

+

l∑
m=1

(l −m)!

(l +m)!
Pml (µ)Pml (µ′)eimϕe−imϕ

′

+

l∑
m=1

(l −m)!

(l +m)!

(l +m)!

(l −m)!

(l +m)!

(l −m)!
P−ml (µ)P−ml (µ′)e−imϕe+imϕ′

)

=

∞∑
l=0

+l∑
m=−l

Σsl(~r;E
′ → E; t)Y ml (~Ω)Y m∗l ( ~Ω′) ,

finally obtaining the equality

Σs(~r;E
′, ~Ω′ → E, ~Ω; t) =

∞∑
l=0

+l∑
m=−l

Σsl(~r;E
′ → E; t)Y ml (~Ω)Y m∗l ( ~Ω′) . (1.5)

It will be assumed the external neutron source to be isotropic, i.e., Sml = 0 but
for S0

0 . Due to this assumption equation (1.4) becomes

Q(~r,E, ~Ω, t) = Q0
0(~r,E, t)Y 0

0 (~Ω) . (1.6)

For the PL approximation, previous series are truncated for a given value l = L,
taking into account that when L→∞ we recover the exact solution.

5
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Now the identities (1.3), (1.5) and (1.6) are substituted in equation (1.1), obtaining
the following equation

L∑
l=0

+l∑
m=−l

Y ml (~Ω)

(
1

v

∂Φml
∂t

(~r,E, t) + ~Ω · ~∇Φml (~r,E, t) + ΣT (~r,E, t)Φml (~r,E, t)

−
∫ ∞

0

Σsl(~r;E
′ → E; t)

∞∑
α=0

+α∑
γ=−α

∫
Ω′
Y γα ( ~Ω′)Y m∗l ( ~Ω′) dΩ′ Φγα(~r,E′, t) dE′

)

− (1− β)
χp(E)

4π

∫ ∞
0

νΣf (~r,E′, t)

L∑
l=0

+l∑
m=−l

Φml (~r,E′, t)

∫
Ω′
Y ml (~Ω′) dΩ′ dE′

−Q0
0(~r,E, t)Y 0

0 (~Ω)−
K∑
k=1

λk
χk(E)

4π
Ck(~r, t) = 0 . (1.7)

Then integrals with respect to ~Ω′ are solved using the orthogonality properties of
the spherical harmonics (A.11), obtaining

∞∑
α=0

+α∑
γ=−α

(∫
Ω′
Y γα ( ~Ω′)Y m∗l ( ~Ω′) dΩ′

)
Φγα(~r,E′, t)

=

∞∑
α=0

+α∑
γ=−α

δmγ δ
l
αΦγα(~r,E′, t) = Φml (~r,E′, t) , (1.8)

∞∑
l=0

+l∑
m=−l

∫
Ω′
Y ml (~Ω′) dΩ′Φml (~r,E′, t) =

Φ0
0(~r,E′, t)

H0
0

, (1.9)

where Hm
l is defined at equation (A.10), and substituting equation (1.8) and (1.9)

in the equation (1.7), it is obtained

L∑
l=0

+l∑
m=−l

Y ml (~Ω)

(
1

v

∂Φml
∂t

(~r,E, t) + ~Ω · ~∇Φml (~r,E, t)

+ΣT (~r,E, t)Φml (~r,E, t) −
∫ ∞

0

dE′Σsl(~r;E
′ → E; t)Φml (~r,E′, t)

)
−(1− β)

χp(E)

4π

∫ ∞
0

dE′νΣf (~r,E′, t)
Φ0

0(~r,E′, t)

H0
0

−Q0
0(~r,E, t)Y 0

0 (~Ω)−
K∑
k=1

λk
χk(E)

4π
Ck(~r, t) = 0 . (1.10)

Now the objective is to decouple the equation (1.10) into a system of partial differ-

ential equations, weighted by a set of spherical harmonics. First, the operator ~Ω· ~∇
6



1.1 Neutron diffusion equation

is rewritten by means of the expression for Y ml (~Ω)(~Ω · ~∇) of the identity (A.21)
of the Appendix A.4. Thus, equations will be decoupled substituting at equa-
tion (1.10), multiplying by Y γ∗α (~Ω) and integrating for all direction, making use of
the orthogonality property for the spherical harmonics (A.11), it is obtained

1

v

∂Φγα
∂t

(~r,E, t)

+

(
∂

∂x
− i ∂

∂y

)(
Aα−1,γ−1

1 Φγ−1
α−1(~r,E, t)−Aα+1,γ−1

2 Φγ−1
α+1(~r,E, t)

)
+

(
∂

∂x
+ i

∂

∂y

)(
−Aα−1,γ+1

3 Φγ+1
α−1(~r,E, t) +Aα+1,γ+1

4 Φγ+1
α+1(~r,E, t)

)
+
∂

∂z

(
Aα+1,γ

5 Φγα+1(~r,E, t) +Aα−1,γ
6 Φγα−1(~r,E, t)

)
+ΣT (~r,E, t)Φγα(~r,E, t)−

∫ ∞
0

dE′Σsl(~r;E
′ → E; t)Φγα(~r,E′, t)

−(1− β)
χp(E)√

4π

∫ ∞
0

dE′ νΣf (~r,E′, t)
Φ0

0(~r,E′, t)

H0
0

H0
0δ
α
0 δ

γ
0

−Q
0
0(~r,E, t)

H0
0

H0
0δ
α
0 δ

γ
0 −

K∑
k=1

λk
χk(E)

4π
Ck(~r, t)H0

0δ
α
0 δ

γ
0 = 0 ,

α = 0, 1, . . . , L, γ = −α, . . . , α .

where constants Al,mn , n = 1, . . . , 6 are defined at the Appendix A.4 (equa-
tions (A.22)), and the terms with invalid values for α and γ will be assumed
to be 0 .

To obtain the P1 approximation, L = 1 is taken in the previous system (1.11), and
in the series expansion for the angular flux the remaining terms are Φ0

0, Φ−1
1 , Φ0

1

and Φ1
1, and all the coefficients of higher order are considered equal to zero. The

following notation is introduced

Q0
0(~r,E, t)

H0
0

= Q̃(~r,E, t) ,

Φ0
0(~r,E, t)

H0
0

= Φ(~r,E, t) , (1.11)

where Q̃ is a mean neutron source, and Φ is the scalar neutron flux. Imposing the
following conditions

∂Φ−1
1

∂t
(~r,E, t) =

∂Φ0
1

∂t
(~r,E, t) =

∂Φ1
1

∂t
(~r,E, t) = 0 ,

7
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it is obtained the following system of equations:

− 1

v

∂Φ

∂t
(~r,E, t) = −

√
1

6

(
∂

∂x
− i ∂

∂y

)
Φ−1

1 (~r,E, t)

H0
0

+

√
1

6

(
∂

∂x
+ i

∂

∂y

)
Φ1

1(~r,E, t)

H0
0

+

√
1

3

(
∂

∂z

)
Φ0

1(~r,E, t)

H0
0

+ ΣT (~r,E, t)Φ(~r,E, t)

−
∫ ∞

0

dE′ Σs0(~r;E′ → E; t)Φ(~r,E′, t)

− (1− β)
χp(E)√

4π

∫ ∞
0

dE′ νΣf (~r,E′, t)Φ(~r,E′, t)

− Q̃(~r,E, t)−
K∑
k=1

λk
χk(E)

4π
Ck(~r, t) , (1.12)

√
1

6

(
∂

∂x
+ i

∂

∂y

)
Φ0

0(~r,E, t) = ΣT (~r,E, t)Φ−1
1 (~r,E, t)

−
∫ ∞

0

dE′ Σs1(~r;E′ → E; t)Φ−1
1 (~r,E′, t) , (1.13)

−
√

1

3

(
∂

∂z

)
Φ0

0(~r,E, t) = ΣT (~r,E, t)Φ0
1(~r,E, t)

−
∫ ∞

0

dE′ Σs1(~r;E′ → E; t)Φ0
1(~r,E′, t) , (1.14)

−
√

1

6

(
∂

∂x
− i ∂

∂y

)
Φ0

0(~r,E, t) = ΣT (~r,E, t)Φ1
1(~r,E, t)

−
∫ ∞

0

dE′ Σs1(~r;E′ → E; t)Φ1
1(~r,E′, t) . (1.15)

Moreover, it is supposed that the inelastic neutron scattering is isotropic, which
implies that Σs1 only describes the elastic scattering. It is considered that the
anisotropic elastic scattering is done without change in the neutron’s energy, and
then it can be written

Σs1(~r,E′ → E)J(~r,E′)dE′ = Σs1(~r,E → E′)J(~r,E)dE′

where the right-hand side can also be rewritten as

Σs1(~r,E)J(~r,E)
8



1.1 Neutron diffusion equation

with

Σs1(~r,E) =

∫ ∞
0

Σs1(~r,E → E′)dE′

The transport cross section is defined as

Σtr(~r,E, t) = ΣT (~r,E, t)− Σ̄s1(~r,E, t) ,

and the diffusion coefficient

D(~r,E, t) =
1

3Σtr(~r,E, t)
.

Now it will be used the newly defined terms to write equations (1.13), (1.14)
and (1.15) as follows

Φ−1
1 (~r,E, t) =

√
3

2
D(~r,E, t)

(
∂

∂x
+ i

∂

∂y

)
Φ0

0(~r,E, t) , (1.16)

Φ0
1(~r,E, t) = −

√
3D(~r,E, t)

(
∂

∂z

)
Φ0

0(~r,E, t) , (1.17)

Φ1
1(~r,E, t) = −

√
3

2
D(~r,E, t)

(
∂

∂x
− i ∂

∂y

)
Φ0

0(~r,E, t) . (1.18)

Substituting equations (1.16), (1.17) and (1.18) in the equation (1.12) to obtain a
formulation depending only on Φ0

0, and then using the definition (1.11) of Φ, it is
obtained

− 1

v

∂Φ

∂t
(~r,E, t) = − ∂

∂x
D(~r,E, t)

∂

∂x
Φ(~r,E, t)

− ∂

∂y
D(~r,E, t)

∂

∂y
Φ(~r,E, t)

− ∂

∂z
D(~r,E, t)

∂

∂z
Φ(~r,E, t) + ΣT (~r,E, t)Φ(~r,E, t)

−
∫ ∞

0

dE′ Σs0(~r;E′ → E; t)Φ(~r,E′, t)

− (1− β)
χp(E)√

4π

∫ ∞
0

dE′ νΣf (~r,E′, t)Φ(~r,E′, t)

− Q̃(~r,E, t)−
K∑
k=1

λk
χk(E)

4π
Ck(~r, t), (1.19)

9



Chapter 1. Introduction

i.e.,

− 1

v

∂Φ

∂t
(~r,E, t) = −~∇ ·

(
D(~r,E, t)~∇Φ(~r,E, t)

)
+ ΣT (~r,E, t)Φ(~r,E, t)

−
∫ ∞

0

dE′ Σs0(~r;E′ → E; t)Φ(~r,E′, t)

− (1− β)
χp(E)√

4π

∫ ∞
0

dE′ νΣf (~r,E′, t)Φ(~r,E′, t)

− Q̃(~r,E, t)−
K∑
k=1

λk
χk(E)

4π
Ck(~r, t), (1.20)

Moreover, taking into account that the neutron current, ~J , is defined as

~J(~r,E, t) ≡
∫
~Ω

d~Ω ~Ω Φ(~r,E, ~Ω, t) ,

from where

~J(~r,E, t) =
Φ1

1(~r,E, t)− Φ−1
1 (~r,E, t)

2H1
1

~i

−
i
(
Φ1

1(~r,E, t) + Φ−1
1 (~r,E, t)

)
2H1

1

~j +
Φ0

1(~r,E, t)

H0
1

~k . (1.21)

Substituting equations (1.16), (1.17) and (1.18) in equation (1.21) it is obtained

~J(~r,E, t) = −D(~r,E, t)~∇Φ(~r,E, t) ,

which is known as the Fick’s first law.

The cross sections, generally, are functions depending on the neutrons energy, and
to simplify the neutron diffusion equation it is used a multigroup approximation.
Such an approximation consists of obtaining an equation for the neutrons whose
energy belongs to the interval [Eg, Eg+1], g = 1, . . . , G−1, where G is the number
of groups to be considered.

10



1.1 Neutron diffusion equation

The magnitudes associated with group g are defined as follows,

Φg(~r, t) =

∫ Eg+1

Eg

dE Φ(~r,E, t) ,

1

vg
=

∫ Eg+1

Eg

dE
1

v

Φ(~r,E, t)

Φg(~r, t)
,

ΣTg(~r, t) =

∫ Eg+1

Eg

dE ΣT (~r,E, t)
Φ(~r,E, t)

Φg(~r, t)
,

νΣfg(~r, t) =

∫ Eg+1

Eg

dE νΣf (~r,E, t)
Φ(~r,E, t)

Φg(~r, t)
,

Q̃g(~r, t) =

∫ Eg+1

Eg

dE Q̃(~r,E, t) ,

χpg =

∫ Eg+1

Eg

dE χp(E) ,

χkg =

∫ Eg+1

Eg

dE χk(E) ,

Σsg′g(~r, t) =

∫ Eg′+1

Eg′

dE′
∫ Eg+1

Eg

dE Σs0(~r,E′ → E, t)
Φ(~r,E′, t)

Φg′(~r, t)
, (1.22)

and for each spatial direction, j, the diffusion coefficient for the group g is defined
as the function Dg(~r, t) satisfying the following equation,

Dg(~r, t) =

∫ Eg+1

Eg

dE D(~r,E, t)
∂jΦ(~r,E, t)

∂jΦg(~r, t)
.

The total cross section is written as the sum of an absorption term and scattering
terms of the form

ΣTg(~r, t) = Σag(~r, t) +

G∑
g′=1

Σsg′g(~r, t) ,

and the scattering cross section for the group g is introduced as

Σsg(~r, t) =

G∑
g′ 6=g

Σsg′g(~r, t) .

11



Chapter 1. Introduction

Integrating the equation (1.20) from Eg to Eg+1, and making use of the previous
definitions, the diffusion equation for the group g is obtained as

1

vg

∂Φg(~r, t)

∂t
= ~∇ · (Dg(~r, t)~∇Φg(~r, t))− (Σag(~r, t) + Σsg(~r, t))Φg(~r, t)

+

G∑
g′ 6=g

Σsg′g(~r, t)Φg′(~r, t) + (1− β)χpg

G∑
g′=1

νΣfg′(~r, t)Φg′(~r, t)

+

K∑
k=1

λkχkgCk(~r, t) + Q̃(~r, t) . (1.23)

With these approximations, the equation (1.2) for the concentration of neutron
precursors is written in the form

∂Ck(~r, t)

∂t
= βk

G∑
g=1

νΣfg(~r, t)Φg(~r, t)− λkCk(~r, t) . (1.24)

It is worth to note that when approximating equations (1.1) and (1.2) by means
of equations (1.23) and (1.24), the space where the fields are defined has been

reduced from the space characterized by the variables (~r,E, ~Ω, t) to the coordinate
space (~r, t), with the consequent simplification of the problem.

From now on, the two energy groups neutron diffusion equation is considered, i.e.,
the energy spectrum is divided into a fast group E1, corresponding to the neutrons
whose energy is higher to certain value, and a thermal group E2, corresponding
to the neutrons whose energy is smaller than the previous quantity. Moreover, it
is assumed than there are not scattering processes from the thermal to the fast
group, i.e., Σ21(~r, t) = 0, and there is not neutron production in the thermal group,
i.e., χp2 = 0 and χk2 = 0. Finally, it is supposed that there is no neutron external
source, and χp1 = 1 and χk1 = 1. Making use of these considerations, a system of
partial differential equations for the fast and the thermal group is obtained with
the following form

[v−1]Φ̇ + LΦ = (1− β)MΦ +

K∑
k=1

λkCkχ , (1.25)

where

L =

[
−~∇ · (D1

~∇) + Σa1 + Σ12 0

−Σ12 −~∇ · (D2
~∇) + Σa2

]
, [v−1] =

[ 1
v1

0

0 1
v2

]
,

and

M =

[
νΣf1 νΣf2

0 0

]
, Φ =

[
Φ1

Φ2

]
, χ =

[
1
0

]
.

12



1.2 Lambda Modes equation

Equation (1.24) can be written as the following ordinary differential equation

Ċk = βk[νΣf1 νΣf2]Φ− λkCk . (1.26)

Boundary conditions

Vacuum boundary conditions are considered. Thus, the incoming neutron flux is
considered zero at the external boundary of the considered domain. That is

Ψ(~r,E, ~Ω, t) = 0 ~r ∈ Γ such that ~Ω · ~n ≤ 0 ,

where ~n is the normal outward unit vector at the boundary of the problem, and
Γ is the boundary of the reactor domain. This condition can be approximated by
means of the Marshak boundary conditions [8]∫

~Ω·~n≤0

d~Ω Y m∗l (~Ω)Ψ(~r,E, ~Ω, t) = 0, l = 1, 3, · · · , L (odd) . (1.27)

Imposing these boundary conditions for the neutron diffusion approximation we
have

1

2
Φ(~r,E, t) = ~n · ~J(~r,E, t) , ~r ∈ Γ . (1.28)

A more general form of these boundary conditions are the albedo boundary con-
ditions

1

2

1− β
1 + β

Φ(~r,E, t) = ~n ·D(~r,E, t)~∇Φ(~r,E, t) , ~r ∈ Γ . (1.29)

Other boundary conditions can be considered, such as zero scalar flux

Φ(~r,E, t) = 0 , ~r ∈ Γ . (1.30)

and reflecting boundary conditions, that is

~n · ~J(~r,E, t) = 0 , ~r ∈ Γ , (1.31)

which are particular cases of the albedo boundary conditions.

1.2 Lambda Modes equation

A reactor is said to be critical when the material configuration inside the reactor
is set in a way that the neutron production is equal to the neutron loss. Under
these conditions the reactor is in steady state. To study the steady state of a
given reactor, its criticality can be forced artificially [9], dividing the fission cross

13



Chapter 1. Introduction

sections by a number λ. In such a way, it is expected that there exists a number
λ satisfying the equations

LΦ =
1

λ
(1− β)MΦ +

K∑
k=1

λkCkχ , (1.32)

0 =
1

λ
βk[νΣf1 νΣf2]Φ− λkCk . (1.33)

Substituting the equation (1.33) in equation (1.32), and taking into account that
K∑
k=1

βk = β, it is obtained

LΦ =
1

λ
MΦ , (1.34)

which is known as the Lambda modes equation for the reactor, and is a generalized
differential eigenvalue problem associated with the operators L and M.

The eigenvalues λ associated with the equation (1.34) are interpreted as cross
sections factors. Then, they must be necessarily real numbers, and thus the eigen-
functions Φ will also be real functions.

It is usually supposed that the Lambda Modes form a complete set of functions
for the development of modal methods for the integration of the time dependent
neutron diffusion equation [3]. Thus, the problem of determining the Lambda
modes of a given reactor can be considered as a previous problem for the study of
the characteristics of the time dependent neutron diffusion equation.

1.3 VVER Reactors

The Lambda modes problem for reactor cores with geometries based on quadrilat-
eral prisms, has been widely studied [10, 11, 4, 5, 6]. The developed methods are
used to analyze reactors of type PWR and BWR, which are the most used occiden-
tal reactors. To analyze VVER reactors it is necessary to modify the methodologies
applied when discretizing the equations, due to the geometry composed by hexag-
onal prisms (See Figure 1.1). Due to this fact it is interesting to study different
methods for these reactors. VVER is the acronym of the Russian name Voda Voda
Energo Reactor . VVER reactors are the Russian version of the PWR, and they
have been developed along three different generations [12].

The first generation (VVER-440 Model 230) was developed in the 60’s. Their
principal Strengths are:

• Six primary coolant loops, each with a horizontal steam generator, which
together provide a large volume of coolant.

14



1.3 VVER Reactors

RECTANGULAR MESH TRIANGULAR MESH

PWR , BWR VVER

Figure 1.1: Core mesh for both VVER and PWR reactors.

• Isolation valves that allow plant operators to take one or more of the six
coolant loops out of service for repair while continuing to operate the plant.

• Ability to sustain a simultaneous loss of coolant and off-site power, due to
coolant pumps and two internal power generators that “coast down” after a
shutdown.

• Plant worker radiation levels reportedly lower than many Western plants, due
to selection of materials, high-capacity primary coolant purification system,
and water chemistry control.

• Ability to produce significant amounts of power despite design and instru-
mentation and control deficiencies.

Meanwhile the principal deficiencies are:

• Accident Localization System (which serves as a reactor confinement) de-
signed to handle only one four-inch pipe rupture. If larger coolant pipes
rupture occurs, this system vents directly to the atmosphere through nine
large vent valves. Western nuclear plants have containments designed for
rupture of the largest pipes. In addition, the confinement has very small
volume, very poor leak-tightness and poor hydrogen mitigation.

• No emergency core cooling systems or auxiliary feedwater systems similar to
those required in Western nuclear plants.

• Major concern about embrittlement (gradual weakening) of the reactor pres-
sure vessel surrounding nuclear fuel, due to lack of internal stainless-steel
cladding and use of low-alloy steel with high levels of impurities.

• Plant instrumentation and controls, safety systems, fire protection systems,
and protection for control room operators are below Western standards.

15
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• Quality of materials, construction, operating procedures and personnel train-
ing are below Western standards.

The second generation (VVER-440 Model 213) was designed between 1950 and
1980. Their principal strengths are:

• Upgraded Accident Localization System vastly improved over the earlier
VVER-440 Model V230 design, comparable to several Western plants, and
using a vapour-suppression confinement structure called a “bubbler-condenser”
tower.

• Addition of emergency core cooling and auxiliary feedwater systems.

• Reactor pressure vessel with stainless-steel internal lining to alleviate much
concern about the vessel embrittlement associated with the earlier VVER-
440 Model V230 design.

• Improved coolant pump, and continued use of six coolant loops (providing
multiple paths for cooling the reactor) and horizontal steam generators (for
better heat transfer) with large coolant volume.

• Standardization of plant components, providing extensive operating expe-
rience for many parts and making possible incremental improvements and
backfits of components.

Meanwhile the principal deficiencies are:

• Plant instrumentation and controls—for example, reactor protection sys-
tems and diagnostics—behind Western standards. Significant variations ex-
ist among countries with VVER-440 Model V213 plants.

• Separation of plant safety systems (to help assure that an event in one system
will not interfere with the operation of others), fire protection, and protection
for control room operators improved over Model V230 plants, but generally
below Western standards.

• Poor leak-tightness of confinement.

• Unknown quality of plant equipment and construction, due to lack of doc-
umentation on design, manufacturing and construction, and reported in-
stances of poor-quality materials being re-worked at plant sites.

• Major variations in operating and emergency procedures, operator training,
and operational safety (for example, use of control-room simulators) among
plants. These aspects of plant operations depend primarily on the organi-
zation or country operating Model V213 plants rather than on the plant
supplier. Some countries have added safety features to their Model V213
plants.
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1.3 VVER Reactors

These two kind of reactors has six loops and produce 444 Mw of power.

The third generation (VVER-1000) was developed between 1975 and 1985. These
reactors have four loops and produce 1000 Mw of power. They have a new design,
to incorporate the new safety standards, where the principals strengths of these
reactors are:

• Steel-lined, pre-stressed, large-volume concrete containment structure, simi-
lar in function to Western nuclear plants.

• “Evolutionary” design incorporating safety improvements over VVER-440
Model V213 plants. The Soviet approach to standardization was based on
continued use of components that had performed well in earlier plants.

• Use of four coolant loops and horizontal steam generators-both considered
improvements by Soviet designers.

• Redesigned fuel assemblies that allow better flow of coolant, and improved
control rods.

• Plant worker radiation levels reportedly lower than in many Western plants,
apparently due to selection of materials, high-capacity system for purifying
primary coolant, and water chemistry control.

The most important deficiencies of this type of reactors are:

• Substandard plant instrumentation and controls. Wiring of emergency elec-
trical system and reactor protection system does not meet Western standards
for separation-control and safety functions are interconnected in ways that
may allow failure of a control system to prevent operation of a safety system.

• Fire protection systems that do not appear to differ substantially from earlier
VVER models, which do not meet Western standards.

• Quality control, design and construction significantly deficient by U.S. stan-
dards.

• Protection measures for control-room operators essentially unchanged from
earlier VVER-440 Model V213 design, which does not meet U.S. standards.
Unlike all U.S. nuclear plants, and most in Western countries, VVER-1000s
have no on-site “technical support center” to serve as a command post for
stabilizing the plant in an emergency. Technical support centers were incor-
porated in U.S. and many Western nuclear plants following the accident at
Three Mile Island Unit 2 in 1979.

• Operating and emergency procedures that fall far short of Western standards
and vary greatly among operators of VVER-1000 plants.
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• Higher power densities and the smaller volume of primary and secondary
systems result in a somewhat less forgiving and stable reactor.

Nowadays, new designs are being studied, such as the new VVER-1200 [13] (which
suppose a substantial improvement of the VVER-1000), VVER-1500 and VVER-
1600 [14], which are not operative jet.

The main difference between the VVER and the western PWR is the fuel assem-
blies design and the core geometry. The VVER have fuel assemblies with the shape
of hexagonal prisms, instead of the fuel assemblies with the shape of paralepipedal
prisms for the western PWR (See Figure 1.1).

The VVER-440 reactor core has 312 fuel assemblies and 37 control rods. 30 of
these fuel rods are always outside, (as it is shown in the Figure 1.2). The different
colors indicate different materials composing the fuel.

Figure 1.2: Layout of the VVER 440 Core.

The materials configuration for the VVER-1000 reactor core is different (as it is
shown in Figure 1.3), where this reactor core has 167 fuel assemblies. The different
colors indicate different materials composing the fuel.
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Figure 1.3: Layout of the VVER 1000 Core.

1.4 Spectral Element Methods (SEM)

Spectral Element Methods can be seen as an extremal development for the class
of discretization schemes generally known as the Methods of Weighted Residuals
(MWR) [15]. When a differential problem has to be solved, it can be written as

A[ϕ(x)] = f(x) in Ω ,

Bi[ϕ(x)] = fi(x) on ∂Ωi∀i ,

where A is a differential operator defined over U , and Bi operators defining the
boundary conditions over appropriate boundary functions spaces ∂Ωi, in such a
way that ∪i∂Ωi = ∂Ω.

The key point for the MWR are the trial functions (also known as approximating
functions), {u}i ∈ Uk , and the test functions (also known as the weighted func-
tions), {w}i ∈ Wk. Trial functions are used as a basis functions to expand the
solution in a truncated basis

ϕ(x) ≈ u(x) =

k∑
i=0

ϕiui(x) . (1.35)

Test functions are used to ensure that the differential equation is satisfied as good
as possible for the truncated expansion series. This is achieved by minimizing the
residual, R, defined as the error in the differential equation produced when using
the truncated expansion instead of the exact solution

R[u] = f(x)−A[u(x)]. (1.36)

with respect to a concrete norm. It is equivalent to force the residual to be
orthogonal with respect to the space of test functions W

〈R[ui], wj〉 = 0, ∀ui(x) ∈ Uk, ∀wj ∈ Wk, (1.37)
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where the scalar product 〈·, ·〉 is defined as

〈u, v〉 =

∫
Ω

u(x)v(x)dΩ. (1.38)

At the beginning, these methods were applied to simple domains, where the solu-
tion has general character, i.e., the value of the solution at each point of the domain
was determined by the value of the solution in the rest of the domain. The election
of the trial functions is one of the characteristics making these methods different
from linear finite element methods or finite differences methods. Trial functions
for the Spectral Methods are infinitely smooth (typically they are tensor products
of eigenfunctions of Sturm-Liouville problems). In the case of linear finite element
methods, the domain, Ω, is divided into smaller subdomains Ωi, and different
trial functions are specified over each subdomain. Then trial functions have local
character, and they are necessary when dealing with complex geometries.

Different choices of test functions lead to different spectral methods, as the Galerkin
method, Collocation method, or Tau method. The Galerkin method is obtained
when the trial functions space is the same as the test functions space, i.e., U =W,
when the trial functions as the test functions are infinitely smooth functions fulfill-
ing the boundary conditions. The Collocation method is obtained when translated
Dirac delta functions δx0

(x) are used as test functions, positioned at certain collo-
cation points. This approximations force the residual to be exactly zero at these
collocation points. The Tau methods are similar to the Galerkin methods in the
way they apply, but Tau methods are differents in the sense that test functions do
not need to satisfy the boundary conditions, and a complementary set of equations
are needed to apply the boundary conditions.

The Collocation method is the most simple method to use, and it seems that it
has been used first by Slater [16] and Kantorovic [17] with specific applications,
Frazer, Jones and Skan [18] developed the methods as a general method to solve
ordinary differential equations. They used a large amount of trial functions and an
arbitrary distribution of collocation points. The work of Lanczos [19] established
for the first time that a proper choice of test functions and the placement of the
collocation points is crucial to the accuracy of the solution obtained.

The first applications of the Spectral Collocation methods to the partial differential
equations was made for periodic problems by Kreiss and Oliger [20] (who call
it Fourier method) and Orszag [21] (who call it pseudospectral method). This
approximation is very attractive due to the facility it can be applied to variable
coefficients, and even to nonlinear problems.

Galerkin type approximation is, however, the most esthetic of the Weighted Resid-
ual Methods. Due to the fact that the trial and test functions are the same, the
physical problem can be discretized in terms of a variational principle. Finite
element methods typically use this approximation. Moreover, the first serious ap-
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plications of the Spectral Methods were Galerkin methods. However, Galerkin
methods become practical to calculate big nonlinear problems, after Orszag [22]
and Eliasen, Machenhauer and Rasmussen [23] development of transformation
methods to evaluate the convolution sums coming from quadratics coefficients.

The first unified theory about Spectral Methods is on the monograph [24]. Since
this moment, the theory has been extended to be applied to a wide variety of
problems. Stability and convergence analysis for the Spectral methods are based
on different types of approximations. Thinking on Spectral methods as Weighted
Residual Methods (or a variational methods) has shown to be useful in the theoreti-
cal research, and it allowed functional analysis methods to analyze the convergence
and stability of the Spectral methods.

In the half seventies, Gottilieb and Orszag [24] summarized the state of the art
for the theory and applications of Spectral methods, and posteriori developments
are reviewed at the symposium edited by Voigt, Gottlieb and Hussaini [25]. These
references are focused on applications to fluid dynamics. Then, after the big
development of theory and applications of the Spectral methods in simple domains,
Spectral methods evolve to deal with problems over more general geometries. The
basic idea is to split the whole domain of the problem into several subdomains.
At this point Spectral methods are called Spectral Element methods, and they
are identified as high order finite element methods, improving the accuracy by
means of increasing the number of trial functions in each subdomain. The use of
subdomains makes possible the implementation of Spectral methods on parallel
computers.

Partition techniques have been used for a while in finite differences and finite el-
ement methods. At the end of the seventies they were studied also for Spectral
methods. Orszag [26] describes a technique to connect the boundaries. Mor-
choisne [27] developed a method based on the overlapping of multiple domains.
Patera [28] used a variational formulation, for which he used the term of Spectral
Element Method.

A crucial aspect of any domain decomposition method is the way the solutions
of adjacent domains are connected. Some methods take a classical point of view
(point-wise) for the equations. If the equation is of order d, then on the inner
boundary of adjacent domains the solution and its derivatives up to order d − 1
must be continuous. For second order problems, this is usually forced requiring
continuity for the solution and for the derivatives in the normal direction at the
inner boundaries. This condition for the derivative can be substituted by any
other direction (but the tangent one). This continuity conditions are imposed by
forcing them in a suitable set of points. Then they are exactly satisfied by any
approximation.

Alternatively, the differential equation can be written in the weak form by means of
a variational formulation. Moreover, there is a dual form for the weak formulation,
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obtained by means of an “integration by parts” process, where the continuity
conditions for the derivatives are imposed implicitly.

When imposing the weak formulation over the subdomains, it is necessary to take
into account the type of elements which are the subdomains. In a two-dimensional
domain, for example, these elements used to be quadrilateral or triangles, depend-
ing on the geometry, and the type of polynomials to deal with different elements
is different [29].

The decomposition into quadrilaterals has the advantage that these elements are
built by the cartesian product of unidimensional spaces, and then the solutions over
these spaces can be written as a tensor product of unidimensional functions, usually
polynomials of Lebesgue, Lagrange or Jacobi [30]. And whether a Collocation
method is used to fulfil the differential equation requirements, the collocation
points are a cartesian product of unidimensional collocation points. The most
common choice use the Legendre-Gauss-Lobatto points.

For triangular elements, the approximation of the solution cannot be decomposed
in a tensorial product of unidimensional functions, but different orthogonal poly-
nomials over triangular domains are known, as the orthogonal polynomials of
Dubiner [31]. A different kind of polynomials can also be used, maybe losing
the orthogonality, but obtaining another property, as the way the boundary and
continuity conditions can be imposed, as it is done by the modified Dubiner poly-
nomials [31, 32]. When a Collocation method is used to discretize the differential
equation, a typical set of collocation points are the Fekete points [33], which are
considered to be the equivalent over a triangle to the Legendre-Gauss-Lobatto
points, due to the fact that they coincide over a unidimensional domain.
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At this chapter, the method to discretize the spatial part of the neutron diffu-
sion equation is explained. First, different methods will be introduced in one-
dimensional geometries. These methods are formulated and compared when solv-
ing different test problems, an analytical slab and a heterogeneous problem. The
results are compared with an analytical solution for the slab problem, and the solu-
tions for the heterogeneous two groups problem. Once the best method among the
different options to discretize the problem in one dimension has been determined,
i.e. the Spectral Element Method, it is formulated for two- and three-dimensional
geometries, and results are reported for the first eigenvalue (the k-effective) and
the first eigenfunction, compared with the results reported in [34]. Results for the
dominant Lambda modes are also reported for completeness.
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2.1 One-dimensional geometries

The balance of neutrons inside a nuclear power reactor is described by the Boltz-
mann transport equation [8]. We will consider the eigenvalue problem known as
the Lambda modes problem [9], which for reactors with 1D geometry of length Lr,
in the approximation of one group of energy, takes the form

µ
∂Ψ(x, µ)

∂x
+ Σt(x)Ψ(x, µ)

=

∫ +1

−1

Σs (x, µ0) Ψ (x, µ′) dµ′ +
1

λ

νΣf (x)

2

∫ +1

−1

Ψ(x, µ′) dµ′ , (2.1)

with the boundary conditions

Ψ(0, µ) = 0 , 0 < µ ≤ 1 , Ψ(Lr, µ) = 0 , −1 ≤ µ < 0 , (2.2)

where x ∈ [0, Lr], θ is the angle between the direction of the incident neutron
velocity and the x axis, µ = cos (θ), θ0 is the angle between the incident neutrons
and the scattered neutrons, µ0 = cos (θ0). Σt(x) is the total cross section, Σs(x, µ0)
is the scattering cross section, Σf (x) is the fission cross section and ν is the average
number of neutrons produced in each fission. λ is the eigenvalue of the problem
and Ψ(x, µ) its corresponding eigenfunction.

Realistic transport problems are dealt with several groups of energy, but the gener-
eralization of this formulation to more groups of energy is simple.

The dominant eigenvalue of problem (2.1), λ = keff , is the k-effective of the system
and measures its criticality. The corresponding eigenvector is the directional flux
distribution of a stationary configuration of the system obtained dividing Σf by
keff .

PL approximations to the neutron transport equation (2.1) assume that the an-
gular dependence of both the neutron flux distribution and the scattering cross
section can be expanded in terms of L+ 1 Legendre polynomials,

Ψ(x, µ) =

L∑
n=0

(
2n+ 1

2

)
Φn(x)Pn(µ) ,

Σs (x, µ0) =

L∑
n=0

(
2n+ 1

2

)
Σsn(x)Pn (µ0) . (2.3)

Inserting these expansions into equation (2.1) and with the aid of the orthogonality
relations for the Legendre polynomials and the addition theorem for the associated
Legendre functions we obtain the standard PL approximation in one-dimensional
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2.1 One-dimensional geometries

geometries [8, 35]

dΦ1(x)

dx
+ ΣaΦ0(x) =

1

λ
νΣfΦ0(x) ,

(n+ 1)
dΦn+1(x)

dx
+ n

dΦn−1(x)

dx
+ (2n+ 1) (Σt − Σsn) Φn(x) = 0 , (2.4)

1 ≤ n ≤ L ,

where Σa = Σt − Σs0 is the absorption cross section, and

Φn(x) =

∫ 1

−1

dµPn(µ)Ψ(x, µ) , Σsn(x) =

∫ 1

−1

dµ0 Pn (µ0) Σs (x, µ0) . (2.5)

The PL equations constitute a set of L+ 1 equations with L+ 2 unknowns. This
problem is usually solved ignoring the term dΦL+1

dx in the n = L equation.

Typical approximations for the boundary conditions (2.2) are Marshak’s condi-
tions [8] ∫ 1

0

Pn(µ)Ψ(0, µ)dµ = 0 ,

∫ 0

−1

Pn(µ)Ψ(L, µ)dµ = 0 , (2.6)

with n odd, n = 1, 3, . . . , L (or L− 1).

Considering L = 1 in equations (2.3) and the notation Φ0 = Φ and Φ1 = J , we
obtain the P1 equations

dJ

dx
+ ΣaΦ =

1

λ
νΣfΦ ,

dΦ

dx
+ 3(Σt − Σs1)J = 0 ,

which are equivalent to

J = −DdΦ

dx
, (2.7)

− d

dx

(
D
dΦ

dx

)
+ ΣaΦ =

1

λ
νΣfΦ , (2.8)

where D = 1
3(Σt−Σs1) is the diffusion coefficient. The first equation (2.7), is the

Fick’s law and the second equation, (2.8), is the diffusive form of the P1 equation,
also known as the neutron diffusion equation.

From the vacuum Marshak’s boundary conditions, we obtain the equations

Φ(0) + 2J(0) = 0 ,

Φ (Lr)− 2J (Lr) = 0 ,
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x0 = 0 x1 x2 xN−1 xN = Lr

Ω1 Ω2
. . . ΩN

Figure 2.1: Discretization of a 1D reactor.

which, using the Fick’s law, can be rewritten as

Φ(0)− 2D(0)
dΦ

dx
(0) = 0 ,

Φ (Lr) + 2D (Lr)
dΦ

dx
(Lr) = 0 .

More general albedo boundary conditions take the form

α−Φ(0) + β−D(0)
dΦ

dx
(0) = 0 , (2.9)

α+Φ (Lr) + β+D (Lr)
dΦ

dx
(Lr) = 0 , (2.10)

where α±, β± are arbitrary constants. Using boundary conditions (2.9) and (2.10)
we include zero-flux, zero-current, zero-incoming current and fixed albedo condi-
tions, for different values of α± and β±.

To discretize equation (2.8) for a nuclear power reactor we have to take into account
that a mesh is naturally defined by the different compositions considered in the
cell codes used to obtain the homogenized nuclear cross sections for the reactor.
In this way, it is interesting to develop numerical methods that use this mesh and
that to increase their accuracy it is not necessary to refine the mesh. These kind of
methods are known as p-type methods [36]. As a particular kind of these methods,
we will consider Spectral Element Methods based on the expansion of the neutron
flux in terms of a continuous basis of polynomials for a one dimensional nuclear
reactor. These methods are developed to study their behaviour and to find the best
strategy to be generalized to multidimensional geometries using general triangular
or tetrahedral cells.

2.1.1 Spectral Element Methods

To discretize the neutron diffusion equation (2.8), the first step is to divide the
domain defining the reactor, Ω, into a set of elements Ωe, 1 ≤ e ≤ N , defined by
the different materials considered in the reactor (see Figure 2.1).
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2.1 One-dimensional geometries

To develop a Spectral Element Method, each element Ωe = [xe−1, xe] of the reactor
is transformed into the reference element ΩREF = [0, 1] by means of the change of
variables

u =
x− xe−1

∆xe
, 1 ≤ e ≤ N , (2.11)

where ∆xe = xe − xe−1 and it is assumed that the solution for the neutron flux
over each element Ωe, can be expanded as

Φe(u) =

K∑
i=0

Φe,i pi(u) , 1 ≤ e ≤ N , (2.12)

or

Φe(x) =

K∑
i=0

Φe,i pe,i(x) , 1 ≤ e ≤ N ,

where

pe,i(x) = pi(
x− xe+1

∆xe
) .

being {pi(u)}Ki=0 a basis of polynomials.

Different methods will be obtained if different basis of polynomials are considered.
As the neutron flux is expected to be a continuous function, we will consider a
basis of polynomials with the characteristic that any function expanded in terms
of these polynomials is continuous by construction in the interior of the domain
defining the reactor.

2.1.1.1 Polynomial basis

The particular basis of polynomials that will be used for the reference element,
ΩREF , is the following one,

p0(u) = 1− u ,
p1(u) = u ,

pi(u) = (1− u)u P 1,1
i−2(2u− 1)2

3
2 , 2 ≤ i ≤ K ,

where P 1,1
j (x) is the Jacobi polynomial [30] of degree j defined in [−1, 1]. These

polynomials will be evaluated by means of the following recurrence relation:

P 1,1
0 (x) = 1 ,

P 1,1
1 (x) = 2x ,

...

P 1,1
i+1(x) = 1

a1i

(
a3ixP

1,1
i (x)− a4iP

1,1
i−1(x)

)
, 1 ≤ i ,
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where
a1i = 2(i+ 1)(i+ 3)(2i+ 2) ,
a3i = (2i+ 2)(2i+ 1)(2i) ,
a4i = 4(i+ 1)2(i+ 2) .

We will assume that these polynomials vanish out of the reference element, ΩREF =
[0, 1].

From the definition of the polynomials it is easy to see that the only polynomial
different from 0 at the boundary u = 0 from ΩREF is p0(u) = 1 − u, and at
the other boundary, u = 1, is the polynomial p1(u) = u. We impose continuity
conditions for the neutron flux at the interior boundaries of the different elements
of the reactor discretization

Φe(xe) = Φe+1(xe) , e = 1 . . . , N − 1 ,

that is,
K∑
i=0

Φe,i pi(1) =

K∑
i=0

Φe+1,i pi(0) .

This condition is fulfilled if the coefficients of the flux expansions satisfy

Φe,1 = Φe+1,0 , 1 ≤ e ≤ N − 1 . (2.13)

The unknowns to be determined by the different pseudospectral methods are the
coefficients Φe,i, of expansions (2.12), which will named local unknowns of the
method. As the relations (2.13) hold, the local unknowns are not independent.
Eliminating the dependent unknowns we obtain the global unknowns.

The relation between the local and the global unknowns is illustrated by equa-
tion (2.14)

Local unknowns
Φe−1,0

Φe−1,1

Φe,0
Φe,1

Φe+1,0

Φe+1,1




1
2
2
3
3
4


⇒

Global unknowns
Φi

Φi+1

Φi+2

Φi+3




1
2
3
4

 (2.14)

where three contiguous elements (Ωe−1, Ωe and Ωe+1), and a linear basis of poly-
nomials for these elements pi(u), i = {0, 1}, are considered. The coefficients of
the polynomials of higher order are not affected by the continuity relations (2.13),
since they vanish at the borders of the reference element. The relation between
the local and the global unknowns is established by means of an ordering vector.

Using this basis of polynomials for the expansions (2.12), different methods to
discretize the neutron diffusion equation have been developed for a 1D reactor.
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2.1 One-dimensional geometries

2.1.1.2 Continuous Current Method (CCM)

Any method to discretize the neutron diffusion equation must assure the continuity
of the neutron flux and current. The continuity of the neutron flux is assured by
the relation (2.13) satisfying the coefficients of the continuous basis of polynomials
presented above.

The Continuous Current Method (CCM) presented here is characterized by the
fact that the continuity of the current is strongly forced. To impose the continuity
of the neutron current in the different elements Ωe, of the reactor domain, we
impose the conditions

−De
dΦe
dx

(xe) = −De+1
dΦe+1

dx
(xe) , 1 ≤ e ≤ N − 1 .

In terms of the variable u, these relations can be written as

− De

∆xe

K∑
i=0

Φe,i
dpi
du

(1) = −De+1

∆xe

K∑
i=0

Φe+1,i
dpi
du

(0) , 1 ≤ e ≤ N − 1 . (2.15)

At the reactor boundaries we will impose the boundary conditions (2.9) and (2.10)
that, in terms of the variable u, can be written as

α−Φ1,0 + β−
D1

∆x1

K∑
i=0

Φ1,i
dpi
du

(0) = 0 ,

α+ΦN,1 + β+ DN

∆xN

K∑
i=0

ΦN,i
dpi
du

(1) = 0 . (2.16)

Finally, to approximate equation (2.8) over each element Ωe of the mesh, we
consider moment-like equations of the form∫

Ωe

(
− d

dx

(
De

dΦe
dx

(x)

)
+ Σa,eΦe(x)

)
pe,i(x)dx =

=
1

λ

∫
Ωe

(νΣf,eΦe(x)) pe,i(x)dx , 1 ≤ e ≤ N, 0 ≤ i ≤ K − 2 . (2.17)

In terms of the variable u of the reference domain ΩREF and the local unknowns,
equations (2.17) can be rewritten as

− De

(∆xe)2

K∑
j=0

Φe,j

∫ 1

0

d2pj
du2

(u)pi(u)du+ Σa,e

K∑
j=0

Φe,j

∫ 1

0

pj(u)pi(u)du

=
1

λ
νΣf,e

K∑
j=0

Φe,j

∫ 1

0

pj(u)pi(u)du , 1 ≤ e ≤ N, 0 ≤ i ≤ K − 2 , (2.18)
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where De, Σa,e and νΣf,e are the macroscopic cross sections, considered constant
over each element Ωe. We obtain in this way K−1 constraints for the N elements
of the reactor. These relations are completed with the N−1 continuity constraints
for the neutron flux (2.13), the continuity conditions for the neutron current (2.15),
and the 2 boundary conditions (2.16).

To optimize the method, these equations are considered in terms of the global
unknowns obtaining a reduction of N − 1 in the size of the resulting algebraic
eigenvalue problem. On the other hand, the integrals appearing in equations (2.18)
involve polynomial functions, thus, they can be computed exactly using a Gaussian
quadrature rule. Particularly, the Gauss-Legendre rule [37] has been used.

2.1.1.3 Point-wise Collocation Method (PCM)

In this method, the continuity of neutron flux and current together with the bound-
ary conditions (2.9) and (2.10) are imposed in the same way as it is done in the
Continuous Current Method (CPM).

To complete the set of relations needed to determine the algebraic problem, we
impose that the neutronic flux for each element Ωe (2.12), must satisfy the neutron
diffusion equation (2.8) on a set of collocation points over the reactor domain. The
choice of these collocation points will determine the accuracy of the approximation
and the conditioning of the resulting matrices defining the algebraic eigenvalue
problem, which approximates the initial problem (2.8).

The set {ξe,i}Ki=0 of K + 1 collocation points that we have chosen to use over each
element in which we have discretize the reactor domain, will be the Gauss-Legendre
quadrature points in [−1, 1], {ξi}Ki=0, applied to each element Ωe by means of the
change of variables

ξe,i =
1

2
(xe+1 + xe) +

1

2
∆xeξi .

Using these points, we obtain the relations

−De
d2Φe
dx2

(ξe,i) + Σa,eΦe(ξe,i) =
1

λ
νΣf,eΦe(ξe,i) ,

1 ≤ e ≤ N , 0 ≤ i ≤ K − 2 ,

that, in terms of the variable u of the reference element ΩREF , can be rewritten
as

− De

(∆xe)2

K∑
j=0

Φj,e
d2pj
du2

(ξi) + Σa,e

K∑
j=0

Φj,epj(ξi) =

=
1

λ
νΣf,e

K∑
j=0

Φj,epj(ξi) , 1 ≤ e ≤ N , 0 ≤ i ≤ K − 2 .
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2.1 One-dimensional geometries

These relations together with the continuity conditions for the neutronic cur-
rent (2.15) and the boundary conditions (2.16), all them considered in terms of
the global unknowns, define the algebraic approximation of the Lambda modes
problem obtained with the PCM method.

2.1.1.4 Spectral Element Method (SEM)

Together with the spectral methods exposed above, we will consider a Spectral
Element Method, based on a weak formulation of the neutron diffusion equation
and that assumes that the neutron flux in each node of the discretization of the
reactor can be expanded in terms of the continuous polynomial basis used in the
other two methods. This Spectral Element Method is also identified with the
p-type Finite Element Method.

The neutron diffusion equation (2.8), can be rewritten as

d

dx

(
−DdΦ

dx
(x)

)
+ ΣaΦ(x) = S(x) , (2.19)

where the source term, S(x), is defined as

S(x) =
1

λ
νΣfΦ(x) ,

and the boundary conditions (2.9) and (2.10) can be written formally as

D
dΦ

dx
(x) +

α(x)

β(x)
Φ(x) = 0 ,

where
α(0) = α−, α(Lr) = α+, β(0) = β−, β(Lr) = β+ .

First, we will show that a stationary point of a functional defined in a Sobolev
space is a solution of the neutron diffusion equation [38]. Let us consider the
following functional

F(Φ) =

∫
Ω

D

(
dΦ

dx
(x)

)2

dx+

∫
Ω

ΣaΦ(x)2dx

−
∫

Ω

2S(x)Φ(x)dx+
α (Lr)

β (Lr)
Φ2 (Lr)−

α (0)

β (0)
Φ2 (0) , (2.20)

where Φ(x) ∈ H0(Ω), a Sobolev space defined as

H0(Ω) = {h : h ∈ C0(Ω) and
dh

dx
∈ L2(Ω)} .
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A stationary point of the functional (2.20) is the function Φ satisfying the relation

δδΦF = lim
ε→0

{
d

dε
F(Φ + εδΦ)

}
= 0 , (2.21)

∀δΦ ∈ H0(Ω).

Calculating the limit (2.21), we obtain

δδΦF(Φ) =

∫
Ω

D

(
dΦ

dx
(x)

)(
dδΦ

dx
(x)

)
dx+

∫
Ω

ΣaΦ(x)δΦ(x)dx

−
∫

Ω

S(x)δΦ(x)dx− α (Lr)

β (Lr)
Φ (Lr) δΦ (Lr) +

α (0)

β (0)
Φ (0) δΦ (0) ,

∀δΦ(x) ∈ H0(Ω).

Taking into account that the domain defining the reactor, Ω = [0, Lr] is divided
into elements Ωe, we have

δδΦF(Φ) =

N∑
e=1

∫
Ωe

De
dΦ

dx
(x)

dδΦ

dx
(x)dx+

N∑
e=1

∫
Ωe

Σa,eΦ(x)δΦ(x)dx

−
N∑
e=1

∫
Ωe

Se(x)δΦ(x)dx− α (Lr)

β (Lr)
Φ (Lr) δΦ (Lr) +

α (0)

β (0)
Φ (0) δΦ (0) .

(2.22)

Integrating by parts,∫
Ωe

De
dΦ

dx
(x)

dδΦ

dx
(x)dx =

[
DeδΦ(x)

dΦ

dx
(x)

]xe
xe−1

−
∫

Ωe

δΦ(x)
d

dx

(
De

dΦ

dx
(x)

)
dx . (2.23)

Substituting equation (2.23) into equation (2.22), we have

δδΦF(Φ) =

N∑
e=1

∫
Ωe

(
− d

dx

(
De

dΦ

dx
(x)

)
+ Σa,eΦ(x)− Se(x)

)
δΦ(x)dx

+

N−1∑
e=1

(
De

dΦ

dx
(xe)−De+1

dΦ

dx
(xe)

)
δΦ(xe)

+

(
DN

dΦ

dx
(Lr)−

α (Lr)

β (Lr)
Φ (Lr)

)
δΦ (Lr)

−
(
D1

dΦ

dx
(0) +

α (0)

β (0)
Φ (0)

)
δΦ (0) = 0 .
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As δΦ(x) is an arbitrary variation, Φ(x) is a stationary point of functional (2.20)
if, and only if, the following conditions are satisfied:

1. The function Φ(x) holds the relation

d

dx

(
−DdΦ

dx
(x)

)
+ ΣaΦ(x) = S(x) , (2.24)

which is the neutron diffusion equation (2.19).

2. The derivatives are continuous across any inner connection of elements Ωe,

−De
dΦ

dx
(xe) = −De+1

dΦ

dx
(xe) 1 ≤ e ≤ N , (2.25)

that is, the neutron current is continuous.

3. The function Φ(x) should satisfy the boundary conditions,

D1
dΦ

dx
(0)− α (0)

β (0)
Φ (0) = 0 ,

DN
dΦ

dx
(Lr)−

α (Lr)

β (Lr)
Φ (Lr) = 0 ,

which are the boundary conditions (2.9) and (2.10).

Using this result, the Spectral Element Method proposed is based on obtaining an
approximation for the stationary point of functional (2.20). It is assumed that the
neutron flux in each element can be expressed in terms of the global unknowns,
and the stationary point of the functional is obtained making zero the derivatives
with respect to these, Φi.

We have to distinguish different cases. When we derivate with respect to the
common coefficient of the polynomials of the basis pe,1(x) and pe+1,0(x), that take
the value 1 at x = xe, which is the connection point between both elements Ωe
and Ωe+1, (these functions are called hat functions, see Figure 2.2), we obtain the
equations,∫

Ωe

(
De

dΦ

dx
(x)

dpe,1
dx

(x) +

(
Σa,e −

1

λ
νΣf,e

)
Φ(x)pe,1(x)

)
dx

+

∫
Ωe+1

(
De+1

dΦ

dx
(x)

dpe+1,0

dx
(x) +

(
Σa,e+1(x)− 1

λ
νΣf,e+1

)
Φ(x)pe+1,0(x)

)
dx = 0 ,

(2.26)

for 1 ≤ e ≤ N − 1.
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Figure 2.2: Hat functions.

If we derivate with respect to the coefficient corresponding to the polynomials
pe,j(x), 2 ≤ j ≤ K, which are called bubble functions, and take the value 0 in
xe−1 and xe (see Figure 2.3), we obtain the equations,∫

Ωe

De
dΦ

dx
(x)

dpe,j
dx

(x)dx+

∫
Ωe

Σa,eΦ(x)pe,j(x)dx

− 1

λ

∫
Ωe

νΣf,eΦ(x)pe,j(x) dx = 0 , (2.27)

for 1 ≤ e ≤ N .

xe−1 xe

Ωe

. . . . . .

1

Figure 2.3: Bubble functions.

Finally, to determine the problem, we derivate with respect to the coefficient of the
polynomial pN,1(x) taking the value 1 at the point x = xN and with respect to the
coefficient of the polynomial p1,0(x), that takes the value 1 at the point x = x0.
These functions are called boundary functions and are shown in Figure 2.4. In
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this case we obtain the equations,∫
ΩN

DN
dΦ

dx
(x)

dpN,1
dx

(x)dx+

∫
ΩN

Σa,NΦ(x)pN,1(x)dx

− 1

λ

∫
ΩN

νΣf,NΦ(x)pN,1(x)dx+
α (Lr)

β (Lr)
Φ(Lr) = 0 ,∫

Ω1

D1
dΦ

dx
(x)

dp1,0

dx
(x)dx+

∫
Ω1

Σa,1Φ(x)p1,0(x)dx

− 1

λ

∫
Ω1

νΣf,1Φ(x)p1,0(x)dx+
α (L0)

β (L0)
Φ (L0) = 0 . (2.28)
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Figure 2.4: Boundary functions.

The integrals appearing in equations (2.26), (2.27) and (2.28), are computed ex-
actly using the Gauss-Legendre quadrature rule, as in the case of the CCM method.

2.1.2 Numerical results

The spectral methods for the neutron diffusion equation presented above, have
been implemented into a computer code written in FORTRAN 77, which solves
the resultant algebraic eigenvalue problem for an arbitrary approximation degree,
K, in the polynomial expansion of the neutron flux. The algebraic eigenvalue
problem has been solved to compute the dominant modes of the reactor using the
Implicit Restarted Arnoldi Method [5].

In this section, first, we consider a homogeneous one energy group eigenvalue
problem, which has analytical solution. Second, we study a more realistic 1D
typical BWR reactor problem. For this second problem, we compare the results
obtained using the three spectral methods exposed above, with the results obtained
by the code KTRAC [39], widely used for reactor calculations.
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2.1.2.1 Homogeneous eigenvalue problem

We consider a homogeneous slab of length 2 cm [35], in the approximation of one
group of energy and vacuum boundary conditions, that is, α− = 1, α+ = 1, β− = 2
and β+ = −2. The nuclear cross sections for this problem are: D = 1

3 , Σa = 0.1,
and νΣf = 0.25.

First, we present the analytical solution for this problem [35]. From equation (2.8)
and the boundary conditions (2.10), defining the parameter

τ =
1

D

(
1

λ
νΣf − Σa

)
,

we obtain the following differential eigenvalue problem,

d2Φ

dx2
(x) + τΦ(x) = 0 , x ∈ Ω ,

Φ(x0)− 2D
dΦ

dx
(x0) = 0 ,

Φ(xN ) + 2D
dΦ

dx
(xN ) = 0 . (2.29)

There exist non trivial solutions for the eigenvalue problem if, and only if, τ > 0.
Thus, the eigenvectors of problem (2.29) are

Φ(x) = c

(
sin

(
t
x

xN

)
+

2Dt

xN
cos

(
t
x

xN

))
,

where t = xN
√
τ > 0 is a positive solution of the nonlinear equation

f(t) =

(
1− D24

x2
N

t2
)

sin(t) +
4D

xN
t cos(t) = 0 ,

and the constant c is fixed once a normalization for the eigenvectors is chosen.

Once we obtain t, the zeros of f(t), the eigenvalues of (2.29) are

λ =
xNνΣf

xNΣa + Dt2

xN

. (2.30)

The first 2 dominant eigenvalues for this problem obtained from the analytical
solution (2.30) are λ1 = 0.587489 and λ2 = 0.149135. In Table 2.1, we show the
results obtained for these first 2 dominant eigenvalues using the spectral methods
CCM, PCM and SEM for different values of K in the neutron flux expansion. We
observe that for this problem all methods present a good convergence rate for the
eigenvalues.

36



2.1 One-dimensional geometries

Table 2.1: Results for λ1 and λ2 for the homogeneous eigenvalue problem.

CCM PCM SEM
K λ1(keff) λ2 λ1(keff) λ2 λ1(keff) λ2

4 0.587484 0.141509 0.587725 0.141509 0.587489 0.148478
5 0.587484 0.149100 0.587484 0.149677 0.587489 0.149134
6 0.587489 0.149100 0.587489 0.149100 0.587489 0.149134
7 0.587489 0.149135 0.587489 0.149136 0.587489 0.149135
8 0.587489 0.149135 0.587489 0.149135 0.587489 0.149135

To study the convergence of the computed eigenvectors, we fix the normalization
constant imposing that the eigenvectors satisfy the normalization condition∫

Ω

|Φ(x)| dx = 1 .

We define the mean square error

E(Φ) =

(
1

Lr

∫
Ω

(Φref(x)− Φ(x))
2
dx

) 1
2

,

where Φref(x) is the eigenvector taken as reference and Φ(x) is the computed
eigenvector.

In Figures 2.5 and 2.6 we show, in a logarithmic scale, the mean square error
for different flux approximation degrees, K, for the computed eigenvectors corre-
sponding to the eigenvalues λ1 and λ2, respectively.
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Figure 2.5: Error for the first eigenvector of the homogeneous reactor.
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Figure 2.6: Error for the second eigenvector of the homogeneous reactor.

The behaviour of the mean square error is similar for the two eigenvectors, and
althought the three methods show similar results, the SEM is more accurate than
the other two methods for the calculation of the first 2 eigenvectors.

2.1.2.2 1D typical BWR reactor

Now, we consider a more realistic problem, that consists of computing the dom-
inant Lambda modes of a typical 1D reactor. This problem is formulated in the
approximation of two groups of energy assuming that the neutrons are born in the
fast group, and that there is no upscattering from the thermal to the fast group.
In this way, the problem we deal with is to find the dominant eigenvalues and their
corresponding eigenfunctions of the problem

LΦ =
1

λ
MΦ ,

where

L =

[
− d
dx (D1

d
dx ) + Σa1 + Σ12 0
−Σ12 − d

dx (D2
d
dx ) + Σa2

]
,

and

M =

[
νΣf1 νΣf2

0 0

]
,Φ =

[
Φ1

Φ2

]
.

We use zero-flux boundary conditions, i.e., the values β− = 0 and β+ = 0, that
implies Φ1,2(x0) = Φ1,2(xN ) = 0. Following the same methodology as the one
presented above for the mono-energetic approximation, we have developed the
spectral methods CCM, PCM and SEM for this problem.

The reactor is divided into 25 fuel assemblies and 2 reflector nodes, as it is shown
in Figure 2.7. The nuclear cross sections for this problem have been obtained by
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2.1 One-dimensional geometries

means of a consistent generation process [40] from the 3D cross sections of the
reactor core, obtaining the cross sections shown in Table 2.2.

- �
30.48 cm

- �
15.24 cm

Ω1 Ω2 Ω3 Ω26 Ω27

reflector fuel fuel . . . fuel reflector

Figure 2.7: Spatial distribution of materials for the 1D BWR reactor.

Table 2.2: Nuclear cross sections for the 1D BWR reactor.

Mat. D1(cm) D2(cm) Σa1(cm−1) Σa2(cm−1) Σ12(cm−1) νΣf1(cm−1) νΣf2(cm−1)
Ω1 1.045600 0.315390 0.006759 0.042792 0.026483 0.000000 0.000000
Ω2 1.400000 0.344100 0.006123 0.034803 0.020791 0.002735 0.034955
Ω3 1.424300 0.343700 0.008097 0.055085 0.018634 0.004232 0.073338
Ω4 1.440100 0.349150 0.008074 0.053924 0.018297 0.003974 0.068992
Ω5 1.463400 0.357540 0.008164 0.053309 0.017755 0.003855 0.067221
Ω6 1.498000 0.369890 0.008157 0.053255 0.016920 0.003816 0.067254
Ω7 1.540300 0.385070 0.008126 0.053497 0.015890 0.003814 0.068310
Ω8 1.585000 0.401320 0.008084 0.053781 0.014817 0.003822 0.069648
Ω9 1.620800 0.414780 0.008032 0.054029 0.014014 0.003826 0.070696
Ω10 1.654100 0.427590 0.007985 0.054287 0.013313 0.003832 0.071755
Ω11 1.692600 0.442740 0.007928 0.054566 0.012557 0.003839 0.072991
Ω12 1.728100 0.457050 0.007867 0.054783 0.011887 0.003842 0.074049
Ω13 1.744200 0.464010 0.007843 0.054977 0.011580 0.003846 0.074696
Ω14 1.767600 0.473770 0.007796 0.055161 0.011145 0.003852 0.075503
Ω15 1.816300 0.493390 0.007717 0.055270 0.010296 0.003854 0.076852
Ω16 1.811800 0.492410 0.007721 0.055381 0.010358 0.003855 0.076873
Ω17 1.823900 0.497610 0.007709 0.055496 0.010151 0.003858 0.077387
Ω18 1.867100 0.515640 0.007630 0.055528 0.009468 0.003853 0.078503
Ω19 1.870800 0.518060 0.007624 0.055557 0.009409 0.003850 0.078634
Ω20 1.864900 0.516380 0.007651 0.055622 0.009500 0.003860 0.078783
Ω21 1.890200 0.527490 0.007582 0.055656 0.009126 0.003876 0.079692
Ω22 1.928500 0.544280 0.007458 0.055537 0.008572 0.003897 0.080804
Ω23 1.896500 0.632430 0.007522 0.055653 0.009036 0.003972 0.080954
Ω24 1.900800 0.535970 0.007310 0.055492 0.008983 0.004066 0.081710
Ω25 1.961700 0.564160 0.007563 0.055242 0.008123 0.004142 0.081839
Ω26 1.886100 0.577310 0.004319 0.030169 0.009894 0.002442 0.039040
Ω27 2.214700 0.549020 0.012728 0.008695 0.011400 0.000000 0.000000

Table 2.3 shows the results for the first 2 dominant eigenvalues λ1 and λ2 obtained
with the different spectral methods using different approximation degrees, K, in
the flux expansion. In this case, we use as a reference the value for the dominant
eigenvalue λ1 = keff = 1.005234 and the neutron power distribution computed
with the code KTRAC. We observe that all the spectral methods present a good
convergence rate for the eigenvalues.
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Table 2.3: 1D BWR results for λ1(keff) and λ2.

CCM PCM SEM
K λ1(keff) λ2 λ1(keff) λ2 λ1(keff) λ2

3 1.005257 0.994445 1.005275 0.994515 1.005236 0.994348
4 1.005232 0.994348 1.005233 0.994352 1.005235 0.994351
5 1.005234 0.994346 1.005233 0.994345 1.005235 0.994349
6 1.005234 0.994348 1.005234 0.994348 1.005234 0.994349
7 1.005234 0.994349 1.005234 0.994349 1.005234 0.994349

To compare the obtained eigenvectors corresponding the dominant eigenvalue, λ1,
we compute the neutron power distribution

P =
Lr (νΣf1Φ1 + νΣf2Φ2)∫
Ω

(νΣf1Φ1 + νΣf2Φ2) dx

.

In Figure 2.8, we show the mean square error for the neutron power distribution,
E(P ), in terms of the approximation degree K in the flux expansion.
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Figure 2.8: Mean square error for the power distribution of the 1D BWR reactor.

For this problem the SEM is again the most accurate method for the calculation
of the power distribution of this reactor. Now, the mean square error of the SEM
approximation is one order of magnitude smaller than the errors obtained with
the others two methods for the same approximation degree.

Finally, in Figure 2.9 we show the spatial power distribution associated with the
eigenvectors corresponding with the eigenvalues λ1 and λ2.

Summarizing, we have that the calculations for the dominant Lambda modes of
the core of a nuclear power reactor in multidimensional geometries requires a
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Figure 2.9: Spatial power distribution associated with the first two modes.

large amount of memory and calculation time to obtain reasonable results. This
makes necessary to study different methodologies to discretize the neutron diffusion
equation and to compute the dominant modes of a reactor in order to find the most
efficient strategy to solve this problem. For this reason, we have compared three
discretization methods for the Lambda modes problem for reactors in 1D geometry,
with the aim to generalize the method with better behaviour to study reactors in
a geometry 3D using an arbitrary mesh.

All the methods considered are based on the expansion of the neutron flux in terms
of a continuous polynomial basis. Different methods are obtained considering
different ways to approximate the neutron diffusion equation and the continuity
conditions for the neutronic current. To test the performance of the methods,
we have considered two benchmark problems, a homogeneous slab with vacuum
boundary conditions and a typical 1D BWR reactor. SEM has shown the best
results for the calculations of both the eigenvalues and the eigenvectors, being the
difference higher in the 1D BWR reactor problem. Moreover, with this method we
obtain symmetric diagonal dominant matrices. This is an important fact to solve
large systems using iterative methods.

2.2 Two- and three-dimensional geometries

As it has been explained in Chapter 1, for a given configuration of a nuclear reactor
core it is always possible to force its criticality dividing the neutron production
rate due to fission by a positive number, λ, obtaining a neutron balance equation
of the form

LΦ =
1

λ
MΦ, (2.31)

where L is the neutron loss operator and M is the neutron production operator.
Equation (2.31) is known as the Lambda modes equation.
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The Lambda modes problem has been studied for reactors with rectangular geom-
etry as the PWR and BWR [10, 11, 2, 6]. To discretize the problem for reactors
with a hexagonal geometry, as for example the VVER reactors, a different strat-
egy is necessary because the design of these reactors define a natural mesh with
hexagonal cells instead of rectangular cells, as it is shown in Figure 2.10.

RECTANGULAR MESH TRIANGULAR MESH

PWR , BWR VVER

Figure 2.10: Core mesh for both VVER and PWR reactors.

Different methods have been proposed to solve the neutron diffusion equation on
hexagonal geometry as, for example, the Fourier transform method [41], the con-
formal mapping method [34], the polynomial expansion nodal method [42], etc.
All these methods compute the keff and the stationary neutron flux in the reactor
core by means of a system of non linear equations, which is solved iteratively. To
obtain a set of dominant modes it is necessary to approximate the initial differ-
ential eigenvalue problem (2.31), by a generalized algebraic eigenvalue problem.
This can be done, for example, using a finite element method [43] or finite dif-
ference method [44]. On the other hand, for nuclear reactors the spatial mesh is
naturally defined by the different materials defining the core, and for this reason,
it is interesting to use a method that uses a fixed mesh and increases its accuracy
without changing this mesh.

A Spectral Element Method is formulated for two- and three-dimensional geome-
tries to approximate the solution of the neutron diffusion equation. This method
is based on approximating the solution of the problem as a truncated expansion in
terms of a suitable basis of polynomials. The accuracy obtained in the solution is
controlled by means of the number of polynomials considered on the expansion and
it is not necessary to refine the mesh to increase the accuracy of the method. A
first attempt to develop one of these methods was presented in [45], but the result-
ing method is too expensive from the computational point of view because a large
amount of unknowns are necessary to obtain reasonable accuracy in the solution.
Here we follow a high order primal finite element method based on the division
of each hexagon of the mesh into six equilateral triangles. This method uses as a
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suitable basis of polynomials the modified Dubiner’s polynomials [31, 46, 36], and
increases its accuracy increasing the number of polynomials used in the solution
expansions, leaving the initial mesh unaltered.

The first step to discretize a multidimensional reactor with hexagonal geometry,
for dimensions d = 2, 3, is to divide each hexagonal prism or hexagonal element
into six triangular prisms or triangular elements. The triangular prisms or trian-
gular elements of the discretization will be denoted by Ωe and will be referred as
elements, independently of the dimension for the problem, d = 2, 3. To show the
development of the Spectral Element Method, the monoenergetic approximation
of the Lambda Modes problem has been considered,

−~∇D(~r)~∇Φ(~r) + Σa(~r)Φ(~r) =
1

λ
νΣf (~r)Φ(~r) . (2.32)

The generalization of the method to more energy groups is straightforward.

2.2.1 Variational Formulation

Similarly as we have done in the one-dimensional case, without lose of generality,
the Lambda Modes equation (2.32) can be written as

−~∇
(
D(~r) · ~∇Φ(~r)

)
+ Σa(~r)Φ(~r) = S(~r) , (2.33)

where Φ(~r) is the neutron flux, and the source term, S(~r), is defined as follows,

S(~r) =
1

λ
νΣf (~r)Φ(~r) . (2.34)

The domain defined by the reactor core will be called Ω =
⋃
e Ωe, and to solve the

problem defined by equation (2.33), boundary conditions on the reactor boundary,
∂Ω, are necessary. The surfaces defining ∂Ω are divided into two components, ∂Ω0

and ∂Ωβ . ∂Ω0 is the part of the surface where zero flux boundary condition are
imposed, and ∂Ωβ is the part of the surface where albedo-type boundary condition
are required. Formally, albedo-type boundary condition can be written as [8]

~n(~r) ·D(~r)~∇Φ(~r) +
1

2

1− β
1 + β

Φ(~r) = 0 , ~r ∈ ∂Ωβ , (2.35)

where ~n(~r) is the normal outward vector to the surface defining the boundary.

There exist different variational formulations for which the neutron diffusion equa-
tion is a stationary point of a suitable functional on a Sobolev space. The func-
tional used here is [38]

F(Φ) =
1

2

∫∫
Ω

D(~r)~∇Φ(~r) · ~∇Φ(~r)d~r +
1

2

∫∫
Ω

Σa(~r)Φ2(~r)d~r

−
∫∫

Ω

S(~r)Φ(~r)d~r +

∫
∂Ωβ

1

4

1− β
1 + β

Φ2(~r)dS . (2.36)
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where Φ(x, y) is defined in the Sobolev space

H∂Ω0
(Ω) =

{
h : h ∈ L2(Ω) , h(~r) = 0 ∀(~r) ∈ ∂Ω0 and ~∇h ∈

[
L2(Ω)

]2}
.

That is, the space of square-integrable functions over the domain Ω, which are
equal to zero at ∂Ω0, and whose gradients have square-integrable components
over the domain Ω. A stationary point of this functional can be defined by the
relation [38]

δδΦF = lim
ε→0

{
d

dε
F(Φ + εδΦ)

}
= 0 , (2.37)

for all variations δΦ ∈ H∂Ω0
(Ω). Thus, we obtain

δδΦF(Φ) =

∫∫
Ω

D(~r)~∇Φ(~r) · ~∇δΦ(~r)d~r +

∫∫
Ω

Σa(~r)Φ(~r)δΦ(~r)d~r

−
∫∫

Ω

S(~r)δΦ(~r)d~r +

∫
∂Ωβ

1

2

1− β
1 + β

Φ(~r)δΦ(~r)dS = 0 . (2.38)

The reactor domain Ω is split into subdomains Ωe (e = 1, . . . , Nt), where it is
assumed that the nuclear cross sections remain constant, being denoted by De and
Σa,e. We also define ∂Ωe as the polygonal that surrounds each subdomain and
~ne(~r) is the unitary vector perpendicular to ∂Ωe at ~r over the outward direction
to Ωe.

Now, we apply the vectorial identity ~∇ · (u~∇v) = (~∇u) · (~∇v) + u(~∇ · ~∇v) to the
first term of the right hand side of equation (2.38), over a generic element Ωe of
the discretization, obtaining∫∫

Ωe

De
~∇Φ(~r) · ~∇δΦ(~r)d~r =

∫∫
Ωe

De
~∇ · (δΦ(~r)~∇Φ(~r))d~r

−
∫∫

Ωe

δΦ(~r)~∇ · (De
~∇Φ(~r))d~r .

Finally, we apply the Gauss divergence theorem over the element ∂Ωe, obtaining∫∫
Ωe

De
~∇Φ(~r) · ~∇δΦ(~r)d~r =

∫
∂Ωe

DeδΦ(~r)~∇Φ(~r) · ~ne(~r)dS

−
∫∫

Ωe

δΦ(~r)~∇ · (De
~∇Φ(~r))d~r .

(2.39)

We split each polygonal ∂Ωe into three components,

∂Ωe = ∂Ue + ∂Ve + ∂We ,
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where ∂Ue is the part of ∂Ωe belonging to ∂Ωβ , ∂Ve is the part of ∂Ωe belonging
to ∂Ω0, and ∂We is the other part not belonging to ∂Ωβ nor to ∂Ω0. That is, ∂Ue
is the part of ∂Ωe where albedo boundary conditions are imposed, ∂Ve is the part
of ∂Ωe where there is a zero flux boundary condition, and ∂We is composed of
internal edges of the mesh.

Substituting equation (2.39) in equation (2.38), we obtain

δδΦF(Φ) =

Nt∑
e=1

∫∫
Ωe

(
− ~∇De · ~∇Φ(~r) + Σa,eΦ(~r)− S(~r)

)
δΦ(~r)d~r

+

Nt∑
e=1

∫
∂Ue

(
De

~∇Φ(~r) · ~ne(~r) +
1

2

1− β
1 + β

Φ(~r)

)
δΦ(~r)dS

+

Nt∑
e=1

∫
∂We

(
De

~∇Φ(x, y) · ~ne(~r)
)
δΦ(~r)dS = 0 , (2.40)

∀δΦ(~r) ∈ H∂Ω0
(Ω).

Equation (2.40) is the stationary condition for the functional F(Φ).

This condition is distinguished from the natural conditions, as zero flux boundary
conditions over ∂Ω0, which are imposed on the possible functions of spaceH∂Ω0

(Ω).
Thus, Φ(~r) is a stationary point of functional (2.36) with respect to an arbitrary
variation δΦ(~r) if, and only if, the following Euler conditions are fulfilled [38]:

1. The neutron flux satisfies the condition

−~∇
(
D(~r) · ~∇Φ(~r)

)
+ Σa(~r)Φ(~r) = S(~r) , (2.41)

which is equation (2.33).

2. The neutron flux must satisfy the equation

D(~r)~n(~r) · ~∇Φ(~r) +
1

2

1− β
1 + β

Φ(~r) = 0 , (2.42)

if ~r ∈ ∂Ωβ . These are the albedo-type boundary conditions (2.35).

3. The neutron current normal to the interior surfaces among the sub domains
has to be continuous

De
~∇Φ(~r) · ~ne(~r) = −De′

~∇Φ(~r) · ~ne′(~r). (2.43)
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2.2.2 Reference element

To develop the method, we use a change of variables mapping each one of the
elements of the mesh, Ωe, into a Reference Domain , ΩREF . For two-dimensional
problems, this Reference Domain is also known as the Right Triangle (see Fig-
ure 2.11), defined as

ΩREF = {(x, y)/x ≥ 0, y ≥ 0, 0 ≤ x+ y ≤ 1} , (2.44)

where we have used the conventions:

vertex 1 = (0, 0), edge 1 = {(t, 0) : t ∈ [0, 1]} ,
vertex 2 = (1, 0), edge 2 = {(1− t, t) : t ∈ [0, 1]} ,
vertex 3 = (0, 1), edge 3 = {(0, t) : t ∈ [0, 1]} .

This change of variables, relating physical coordinates, (x, y), with the coordinates

We

y

x´

y´

x

WREF

( )x ,y0 0

( )x ,y2 2

( )x ,y1 1

(0,1)

(0,0) (1,0)

Arbitrary triangle Reference domain

Figure 2.11: Two-dimensional change of variables from a arbitrary triangle to the
Reference Domain.

of the Reference Domain, (x′, y′), is given by

x = x0 + (x1 − x0)x′ + (x2 − x0)y′ ,

y = y0 + (y1 − y0)x′ + (y2 − y0)y′ , (2.45)

and

x′ = a1x+ b1y + c1 ,

y′ = a2x+ b2y + c2 , (2.46)
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2.2 Two- and three-dimensional geometries

where ai, bi, ci are the following constants depending on the coordinates of the
vertices of each triangle,

a1 =
−(y0 − y2)

−x1y0 + x2y0 + x0y1 − x2y1 − x0y2 + x1y2
,

a2 =
y0 − y1

−x1y0 + x2y0 + x0y1 − x2y1 − x0y2 + x1y2
,

b1 =
x0 − x2

−x1y0 + x2y0 + x0y1 − x2y1 − x0y2 + x1y2
,

b2 =
−(x0 − x1)

−x1y0 + x2y0 + x0y1 − x2y1 − x0y2 + x1y2
,

c1 =
x2y0 − x0y2

−x1y0 + x2y0 + x0y1 − x2y1 − x0y2 + x1y2
,

c2 =
−(x1y0 − x0y1)

−x1y0 + x2y0 + x0y1 − x2y1 − x0y2 + x1y2
. (2.47)

And for three-dimensional geometries, the Reference Domain is defined as the
Cartesian product, ΩREF = Ωxy×Ωz, where Ωxy is the Reference Domain for two-
dimensional geometries (Ωxy = {(x, y) / 0 ≤ x, y ≤ 1 ; x+ y ≤ 1}) and Ωz is the
Reference Domain for one-dimensional geometries, Ωz = [0, 1] (see Figure 2.12).

( )x ,y ,z0 0 0

( )x ,y ,z1 1 0( )x ,y ,z2 2 0

( )x ,y ,z1 1 1

( )x ,y ,z2 2 1

( )x ,y ,z0 0 1

�
REF

x’

y’

z’

Figure 2.12: Three-dimensional change of variables from a arbitrary prism to the Ref-
erence domain.

We will denote by Φe the restriction of the neutron flux, Φ, to the element Ωe
of the mesh, and it is assumed that the solution of problem (2.32) for two- or
three-dimensional geometries can be approximated by a finite expansion of the
form [47],

Φe(~r
′) =

i+j≤Kxy∑
i,j=0

φe,ijgij(x
′, y′) , two-dimensions (2.48a)

Φe(~r′) =

i+j≤Kxy∑
i,j=0

Kz∑
k=0

φe,ijk gij(x
′, y′) hk(z′) , three-dimensions (2.48b)

where gij are elements of a polynomial basis over Ωxy up to order Kxy, and hk
are elements of a polynomial basis over Ωz up to order Kz.
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Chapter 2. Spectral Element Method for the Neutron Diffusion Equation

The aim of the discretization method is to obtain a generalized algebraic eigenvalue
problem which approximates the differential eigenvalue problem (2.32), where com-
ponents of the eigenvectors are related with the coefficients φe,ijk (φe,ij for two-
dimensional geometries) for the different elements of the mesh.

2.2.3 Polynomial basis

Any physical solution of the problem satisfies that the neutron flux has to be
a continuous function over the domain defining the reactor core Ω. To obtain
continuous solutions, the modified Dubiner’s polynomial basis [31, 36] will be
used, and some of the coefficients φe,ijk of the expansion (2.48) will be fixed to
get that any function expanded in terms of these polynomials is continuous by
construction [32, 46].

The modified Dubiner polynomials are defined on the Reference Domain (see Fig-
ure 2.11). Let gij be the polynomials on the XY plane, different kind of polyno-
mials are distinguished: vertex polynomials, edge polynomials and interior poly-
nomials (see Figure 2.13). The definition of these polynomials is the following

edge 2
vertex 2

vertex 3

edge 3

edge 1

vertex 1

interior

Figure 2.13: Modified Dubiner’s polynomials for K = 4.

one [36]:

• Vertex polynomials

g11 (x′, y′) = 1− x′ − y′ , (vertex 1),

g21 (x′, y′) = x′ , (vertex 2),

g31(x′, y′) = y′ , (vertex 3),
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2.2 Two- and three-dimensional geometries

• Edge polynomials (2 ≤ j ≤ Kxy)

g1j (x′, y′) = (1− x′ − y′)x′ Q1,1
j−2 (x′, y′) 2

3
2 , (edge 1),

g2j (x′, y′) = x′ y′ P 1,1
j−2(2y′ − 1) 2

3
2 , (edge 2),

g3j (x′, y′) = y′ (1− x′ − y′) P 1,1
j−2(1− 2y′) 2

3
2 , (edge 3),

• Interior polynomials (4 ≤ i, 1 ≤ j, i+ j ≤ Kxy + 2)

gij (x′, y′) = (1− x′ − y′)x′ y′Q1,1
i−4 (x′, y′)P 2i−5,1

j−1 (2y′ − 1) 2j , (interior).

where

Q1,1
i (x′, y′) = P 1,1

i

(
2x′

1− y′
− 1

)
(1− y′)i ,

and Pα,βi (z) are the Jacobi polynomials, orthogonals on [−1, 1] [30]. The eval-
uation of these polynomials at a given point is carried out using the recurrence
relations presented in the Appendix B.1.

Similarly, hk (z′) are the polynomials in the Z axis, defined as follows:

h0 (z′) =1− z′ , (vertex)

h1 (z′) =z′ , (vertex)

hi (z′) = (1− z′) z′ P 1,1
i−2 (2z′ − 1) 2

3
2 , (interior)

where 2 ≤ i ≤ Kz and P 1,1
j (x) is the Jacobi polynomial of order j.

The product of each type of polynomial on the XY plane by the different type
of polynomials on the Z axis defines different kind of global polynomials in the
space (vertex, edge, face and interior polynomials). The coefficients of the vertex,
edge and face polynomials associated with different elements of the mesh, Ωe which
share a common vertex, edge or face, are selected to be the same coefficient, in such
a way that the continuity of the solution is assured over the whole domain [36].

One-dimensional polynomials have been already explained at the first part of this
chapter, when checking the different Spectral Element Methods to use with more
general geometries. Thus, to build the three-dimensional methods it remains to
explain how the two-dimensional Dubiner’s polynomials work. First the notation
is simplified, where polynomials gmn (x′, y′) are denoted with only one subindex i,
gi (x′, y′), with i = 1, . . . ,MK , where

MK = (K + 1)(K + 2)/2 ,

the total number of modified Dubiner’s polynomials until the degree K used in
the expansions. This order is obtained numbering for a given element, e, first
the polynomial of vertex 1, after this, the polynomials of the edge 1 in ascent
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Chapter 2. Spectral Element Method for the Neutron Diffusion Equation

order with the polynomial degree, after the second vertex polynomial followed
of the polynomials of the second edge with the same criterion, the third vertex
polynomial and the polynomials of the third edge with the same order as before,
and then the interior polynomials (see in Figure 2.14).

x´

y´

vertex 3

vertex 1 vertex 2

edge
2

ed
g

e
3

edge1

g8

g9

g2g1

g7

g6

g10 g5

g3 g4

Figure 2.14: Numbering the Modified Dubiner’s Polynomials.

These polynomials are defined over each element of the spatial discretization, Ωe,
by means of the change of variables from the physical element to the Reference
Domain, and we rename the coefficients being coherent with the notation used for
the polynomials. In this way, ge,i (x′, y′), the polynomial i over the element Ωe, is
associated to the coefficient φe,i. These coefficients will be the local unknowns of
the problem.

Following this notation, we write the neutron flux over each element defining the
reactor domain in the physical coordinates (x, y) as

Φe(x, y) =

MK∑
i=1

φe,ige,i(x, y) , (2.49)

and in the coordinates (x′, y′) of the reference element as

Φe(x
′, y′) =

MK∑
i=1

φe,igi(x
′, y′) ,

where the coordinates (x′, y′) are related with the coordinates (x, y) by means of
the change of variables (2.45).

Now, we establish relations among coefficients of some polynomials corresponding
to adjacent triangles, to assure the continuity of the neutron flux. Eliminating the
redundant coefficients of expansions (2.48), we obtain a reduction in the number
of unknowns necessaries to describe the problem. This new set of coefficients will
be called the global unknowns.

To explain this process, we use an example shown in Figure 2.15. In this Figure,
a typical configuration for two adjacent interior triangles, Ωe1 and Ωe2 , using a
degree K = 2 in the polynomial expansions is shown.
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f
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e2,4 f
e2,3
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e1,5
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e1,4
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e1,2 f
e1,3

f
e2,2f

e2,6

f
e2,1
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v

f2

e

f3

v

f6

e

f4

e

f7

e

f5

v

f9

e

f8

v

Local unknowns Global unknowns

Figure 2.15: Continuity conditions for vertex and edge polynomials for K = 2.

Given a vertex of a triangle, only the corresponding vertex polynomial takes a
value different from zero on this vertex. Thus, the continuity of the neutron flux
at this vertex can be assured fixing the coefficient of the corresponding vertex
polynomial on a first triangle, and making the coefficients associated to the same
vertex polynomial of the others triangles, that have this vertex in common, equal
to the coefficient of the first triangle. For this reason, for each internal vertex of
the mesh, we have only one global unknown to be determined.

In the same way, for a given edge of a triangle, the only polynomials that take
a value different from zero on this edge are the corresponding edge polynomials.
The continuity for the neutron flux at the inner edges of the mesh is assured
fixing the coefficients of the edge polynomials of the first triangle and making the
corresponding coefficients of the edge polynomials of the adjacent triangle equal
to the fixed edge coefficients for the first triangle.

At the external vertices and edges belonging to ∂Ω0, the coefficients of the corre-
sponding polynomials are set equal to zero. In this way, we must determine

Nu = Niv +Nie(K − 1) +Nt
(K − 1)(K − 2)

2
,

global unknowns, where Niv is the number of internal vertex of the mesh, Nie
is the number of internal edges and Nt is the number of triangles of the spatial
discretization.

The reduction of unknowns from the local unknowns is carried out with the aid
of an order array relating the local unknowns with the global unknowns after the
reduction process. An example for K = 2 with two adjacent triangles is shown in
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equation (2.50).

Local unknowns

φe1,1
φe1,2
φe1,3
φe1,4
φe1,5
φe1,6
φe2,1
φe2,2
φe2,3
φe2,4
φe2,5
φe2,6





1
2
3
4
5
6
3
7
8
9
5
4



⇒

Global unknowns

φv1
φe2
φv3
φe4
φv5
φe6
φe7
φv8
φe9





1
2
3
4
5
6
7
8
9


(2.50)

where φvj refer to the global vertex coefficient associated with an interior vertex
and φej refer to global edge coefficients corresponding to an interior edge. The
coefficients corresponding to interior polynomials are unaltered after the reduction
process.

In the following, we will denote by φij the global interior coefficients corresponding

to an interior polynomial, and by φbj the global boundary coefficient associated
with a boundary polynomial, i.e., the polynomials which are different to zero at
the boundary Ωβ of the reactor core.

2.2.4 Building the matrices

The equations defining the algebraic eigenvalue problem that approximates the
Lambda Modes Problem are obtained using expansions (2.49) for the neutron flux
in the functional (2.36), and making equal to zero the derivatives with respect to
the global coefficients. To explain how it works, different polynomials correspond-
ing to the different kind of functions defined at the two-dimensional plane are
used. It has to be distinguished among derivatives with respect to the coefficients
associated to an interior vertex, to an interior edge, or to a vertex and an edge
belonging to ∂Ωβ .

When we consider a coefficient associated with an internal vertex, φvj , as we have
already mentioned, the only polynomials that will be different from zero at this
vertex are the vertex polynomials corresponding to this vertex (see Figure 2.16),
for each triangle containing this vertex. Thus, when we derive respect to φvj ,
which is equal to the local coefficients φe1,i1 , φe2,i2 , φe3,i3 , φe4,i4 , φe5,i5 and φe6,i6
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2.2 Two- and three-dimensional geometries

we obtain an equation of the form∑
(e,i)∈Ivj

(
De

∫∫
Ωe

~∇ge,i · ~∇Φe dx dy + Σa,e

∫∫
Ωe

ge,iΦe dx dy

)

=
∑

(e,i)∈Ivj

(
1

λ
νΣf,e

∫∫
Ωe

ge,iΦe dx dy

)
, (2.51)

where Ivj = {(e1, i1), (e2, i2), (e3, i3), (e4, i4), (e5, i5), (e6, i6)}, the set of pairs of
indices that contain the six vertex polynomials showed in Figure 2.16.

φ
e1,i1

φ
j
v

φ
e4,i4

φ
e6,i6

φ
e5,i5

φ
e3,i3

φ
e2,i2

Figure 2.16: Vertex polynomials associated with an internal vertex and their coeffi-
cients. The corresponding global vertex coefficient is shown inside a circle.

When we derive with respect to an internal edge coefficient, φej , shared by the
elements Ωe1 and Ωe2 , there are two edge polynomials that have their coefficients
fixed to this global edge coefficient (see Figure 2.17), and we obtain∑

(e,i)∈Iej

(
De

∫∫
Ωe

~∇ge,i · ~∇Φe dx dy + Σa,e

∫∫
Ωe

ge,iΦe dx dy

)

=
∑

(e,i)∈Iej

(
1

λ
νΣf,e

∫∫
Ωe

ge,iΦe dx dy

)
, (2.52)

where Iej = {(e1, i1), (e2, i2)} is the set of pairs of indices that contain the two
edge polynomials showed in Figure 2.17.

The coefficient associated to an interior polynomial is itself a global interior coef-
ficient (see Figure 2.18) and, thus, when we take the derivatives with respect to a
global interior coefficient we obtain

De

∫∫
Ωe

~∇ge,i · ~∇Φe dx dy + Σa,e

∫∫
Ωe

ge,iΦe dx dy =
1

λ
νΣf,e

∫∫
Ωe

ge,iΦe dx dy ,

(2.53)
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φ
e1,i1

φ
e2,i2

φ
j
e

φ
e1,i1

φ
e2,i2

φ
j
e

Figure 2.17: Edge polynomials of third order (left) and fourth order (right) whose
coefficients are fixed to a global edge coefficient (inside a circle) and their corresponding
coefficients.

φ
j
i

φ
e,i

φ
j
i

φ
e,i

Figure 2.18: Interior polynomials of different order whose coefficients are fixed to a
global interior coefficient (inside a circle) and their corresponding coefficients.

obtaining Nt(K − 1)(K − 2)/2 constrains from interior polynomials.

If we deal with zero flux boundary conditions, the global boundary coefficients
associated with polynomials that do not take the value zero over Ω0 are set to
zero. On the other hand, if we deal with albedo type boundary conditions, we take
the derivatives with respect to the boundary global coefficients, associated with
their respective vertex or edge polynomials (see Figure 2.19), obtaining equations
of the form ∑

(e,i)∈Ibj

(
De

∫∫
Ωe

~∇ge,i · ~∇Φe dx dy + Σa,e

∫∫
Ωe

ge,iΦe dx dy

)

=
∑

(e,i)∈Ibj

(
1

λ
νΣf,e

∫∫
Ωe

ge,iΦe dx dy +

∫
∂Ωβ

1

2

1− β
1 + β

ge,iΦe dl

)
, (2.54)
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where Ibj = {(e1, i1), (e2, i2), (e3, i3), (e4, i4)} in the case of a global boundary

coefficient such as the one shown on the left of Figure 2.19, or Ibj = {(e, i)} in
the case of a global boundary coefficient such as the one showed on the right of
Figure 2.19.

n(x,y)

n(x,y)
∂Ω

φ
e3,i3

φ
e1,i1

φ
e4,i4

φ
e2,i2

φ
j
b

∂Ω

n(x,y)

φ
e,i

φ
j
b

Figure 2.19: Vertex (left) and edge (right) polynomials and their corresponding coeffi-
cients, which are fixed to a global boundary coefficient (inside a circle).

To obtain algebraic expressions involving the global coefficients from the equations
presented above, we must calculate the integrals present in these equations. The
process used to calculate these integrals is presented in the Appendix B.2.

2.2.5 Algebraic problem

With the discretization method exposed above, we approximate the two energy
groups approximation of the neutron diffusion equation (2.31) by a generalized
algebraic eigenvalue problem with the following block structure[

L11 0
−L21 L22

] [
φ1

φ2

]
=

1

λ

[
M11 M12

0 0

] [
φ1

φ2

]
where φ1 is a vector with the global unknowns corresponding to the neutron flux
for the fast group, and φ2 is a vector with the global unknowns of the thermal
flux.

To solve this problem, it is reduced to the ordinary eigenvalue problem

L−1
11

(
M11 +M12L

−1
22 L21

)
φ1 = λφ1 ,

which is solved for the dominant eigenvalues and their corresponding eigenvectors
using the Implicit Restarted Arnoldi method [5]. For this purpose it is necessary
to solve linear systems associated with blocks L11 and L22. We will solve these sys-
tems by means of an iterative scheme as the preconditioned GMRES method [48].
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Particularly, a reordering of matrices L11 and L22 to reduce the fill-in, together
with an incomplete LU factorization of these matrices is used for the precondi-
tioning [48, 49].

2.2.6 Numerical Results

To check the behaviour of the Spectral Element Method, the dominant Lambda
Modes for the different two- and three-dimensional benchmark problems reported
in [34] have been calculated. Particularly, five two-dimensional problems have been
studied, the IAEA with and without reflector, the VVER-1000, the VVER-440
and the HWR. Also, the three-dimensional problems VVER-440 and VVER-1000
have been studied. We study all these problems to because different behaviour of
the numerical methods can be shown at different benchmark problems, and then
an exhaustive test has been done. The references for the keff and for the power
distribution, calculated by means of the finite difference code DIF3D, have been
obtained from [34].

We take into account different kinds of boundary conditions to solve the problems,
as zero flux boundary conditions, i.e.,

Φ(~r) = 0 ∀(~r) ∈ ∂Ω , (2.55)

and albedo boundary conditions of the form

D(~r)~n(~r) · ~∇Φ(~r) +
1

2

1− β
1 + β

Φ(~r) = 0 ∀(~r) ∈ ∂Ω , (2.56)

where β is the parameter that determines the albedo. In particular β = 0.0
simulates vacuum boundary conditions.

We take as a reference the results of the keff and the power distribution computed
using the finite difference code DIF3D, where for the HWR problem a mesh of 384
triangles per hexagon was used, and for the rest of the problems a mesh of 864
triangles per hexagon was used.

The neutron power distribution in a reactor core is computed using the expression

P (~r) =
A(Ω) (νΣf1(~r)Φ1(~r) + νΣf2(~r)Φ2(~r))∫∫

Ω
(νΣf1(~r)Φ1(~r) + νΣf2(~r)Φ2(~r)) d~r

,

where A(Ω) is defined as the area (or volume) of the region defining the core, Ω,
Φ1(~r) is the neutron flux for the fast group and Φ2(~r) is neutron flux for the thermal
group. From the neutron power distribution, we define the average neutron power
for each element of the spatial discretization as

Pe =
1

A(Ωe)

∫∫
Ωe

P (~r)d~r ,
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2.2 Two- and three-dimensional geometries

where A(Ωe) is the area (or volume) for the element Ωe, i.e., A(Ωe) =
∫∫

Ωe
d~r.

All these integrals reference double and triple integrals, respectively, for two-
dimensional and three-dimensional geometries.

The errors showed for the power distribution over the hexagonal nodes, Pi, with
respect to the reference solution, P ref

i , have been calculated in the following form,

εmax(%) = max
i

∣∣∣∣Pi − P ref
i

P ref
i

∣∣∣∣× 100 ,

ε̄(%) =
1

Ne

Ne∑
i=1

∣∣∣∣Pi − P ref
i

P ref
i

∣∣∣∣× 100 , Ne = Number of elements .(2.57)

For all the problems we will show tables with the different values of the keff ob-
tained with different values of the degree KXY and KZ used in the neutron flux
expansions. Also the difference between the obtained result and the reference
value are presented. This difference is denoted as ∆keff in pcm (percent-milli, i.e.,
10−5).

We also present results of the subcritical eigenvalues and the symmetry patterns
of the power distribution associated with the subcritical modes computed with the
spectral element method, for each one of the reactor problems.

2.2.6.1 Two-dimensional IAEA problem without reflector

This problem is a modification of the PWR benchmark problem IAEA for rectan-
gular elements. The core has 13 fuel elements across its diameter, as it is shown
in Figure 2.20.

1 1 1 1 1 1 1

1 2 2 2 2 2 2 1

1 2 2 2 3 2 2 2 1

1 2 2 2 2 2 2 2 2 1

1 2 3 2 3 2 3 2 3 2 1

1 2 2 2 2 2 2 2 2 2 2 1

1 2 2 2 3 2 3 2 3 2 2 2 1

1 2 2 2 2 2 2 2 2 2 2 1

1 2 3 2 3 2 3 2 3 2 1

1 2 2 2 2 2 2 2 2 1

1 2 2 2 3 2 2 2 1

1 2 2 2 2 2 2 1

1 1 1 1 1 1 1

Figure 2.20: Geometry of the IAEA without reflector problem.

This problem has 13 control rods inserted, and has a 1/12 reflective symmetry
but, as the subcritical modes do not maintain this symmetry, the computations
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are performed for all the problems considering the whole reactor. The assembly
pitch is 20.0 cm. The reflector is not included in the core, and we will consider
vacuum boundary conditions, that is, albedo boundary conditions with β = 0.
The nuclear cross sections for this problem are shown in Table 2.4.

Table 2.4: Cross sections of the IAEA problem.

Material Group Dg(cm) Σag(cm
−1) Σg→g+1(cm−1) νΣfg(cm

−1)
1 1 1.5 0.01 0.02 0.0

2 0.4 0.08 0.135
2 1 1.5 0.01 0.02 0.0

2 0.4 0.085 0.135
3 1 1.5 0.01 0.02 0.0

2 0.4 0.13 0.135
4 1 1.5 0.0 0.04 0.0

2 0.4 0.01 0.0

Table 2.5 shows the different results obtained for the keff of this reactor core,
together with the dimension of the blocks L11 and L22, N, and the nonzero elements
of these matrices, NNZ.

Table 2.5: keff results for the IAEA reactor without reflector.

Kxy λ1(keff) ∆keff(pcm) εmax(%) ε̄(%) N NNZ
1 0.9733475 472.9429 9.05 2.44 343 2251
2 0.9775987 47.8308 0.87 0.37 1447 15691
3 0.9780083 6.8649 0.30 0.08 3313 50091
4 0.9780645 1.2446 0.29 0.04 5941 110739
5 0.9780735 0.3492 0.29 0.03 9331 194489
6 0.9780754 0.1604 0.29 0.03 13483 297581

Ref. 0.9780770

Figure 2.21 shows the neutronic power distribution for each hexagon computed
with the spectral element method (SEM) using a degree Kxy = 6 in the expansions,
together with the reference result and the percentage of the relative error on each
hexagon.

In Table 2.6, the results obtained for the first three subcritical eigenvalues com-
puted with the SEM method using different values of the degree Kxy are presented.

A symmetry pattern for the power distribution associated with the four dominant
modes of this reactor is shown in Figure 2.22.

58



2.2 Two- and three-dimensional geometries

3

2

1

2

2

2

3

2

1

2

2

2

1

2 1

3

X      Material

x.xxxx   SEM degree 6                        0.5562

x.xxxx   Ref.                                0.5562

x.xx    Rel. Error (%)                       0.00

|  20 cm  |                      0.7826    1.0731    0.5766

0.7826    1.0731    0.5766

0.00      0.00      0.00

1.2067    1.2833    1.        1.        0.

1.2067    1.2834    1.        1.        0.

-0.00     -0.01      0.29      0.00     -0.02

0.7382    1.1665    0.7999    1.4625    1.5174    1.0569    0.3242

0.7382    1.1666    0.7998    1.4625    1.5173    1.0568    0.3243

0.00     -0.01      0.01      0.00      0.01      0.01     -0.03

3960      2132      5431

3920      2132      5432

Figure 2.21: Power distribution for the IAEA problem without reflector.

Table 2.6: First 3 subcritical eigenvalues for the IAEA problem without reflector.

Kxy λ2 λ3 λ4

1 0.9587564 0.9587564 0.9338572
2 0.9627567 0.9627567 0.9380710
3 0.9631196 0.9631196 0.9383851
4 0.9631683 0.9384269 0.9196477
5 0.9631771 0.9631771 0.9384355
6 0.9631791 0.9631791 0.9384376

2.2.6.2 Two-dimensional IAEA problem with reflector

This problem is the same as the previous one, except that in this problem an addi-
tional layer of reflector surrounding the core is included, as shown in Figure 2.23.
Also, vacuum boundary conditions are considered and the nuclear cross sections
presented in Table 2.4.

Table 2.7 shows the different results obtained for the keff of this reactor core.

Table 2.7: keff results for the IAEA reactor with reflector.

Kxy λ1(keff) ∆keff(pcm) εmax(%) ε̄(%) N NNZ
1 1.0104126 −490.5520 20.95 7.70 463 3067
2 1.0062264 −71.9450 2.76 1.09 1939 21199
3 1.0055754 −6.8360 0.31 0.12 4429 67423
4 1.0055166 −0.9680 0.04 0.02 7933 148755
5 1.0055102 −0.3270 0.02 0.01 12451 260721
6 1.0055096 −0.2590 0.01 0.00 17983 398409
Ref. 1.0055070
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 2.22: Symmetry pattern for the four dominant modes of the IAEA problem
without reflector.

Figure 2.24 shows the neutronic power distribution for each hexagon computed
with the SEM method using a degree Kxy = 6 in the flux expansions, together
with the reference result and the percentage of the relative error on each hexagon.

In Table 2.8, the results obtained for the first three subcritical eigenvalues com-
puted with the SEM method using different values of the degreeKxy, are presented.

A symmetry pattern for the four dominant modes of this problem is shown in
Figure 2.25.
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Figure 2.23: IAEA problem with reflector geometry.
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Figure 2.24: Power distribution for the IAEA problem with reflector.

Table 2.8: First 3 subcritical eigenvalues for the IAEA problem with reflector.

Kxy λ2 λ3 λ4

1 1.0024229 1.0024229 0.9836710
2 0.9973698 0.9973698 0.9778537
3 0.9965746 0.9965746 0.9768964
4 0.9964991 0.9964991 0.9768022
5 0.9964908 0.9964908 0.9767917
6 0.9964899 0.9964899 0.9767904

2.2.6.3 Two-dimensional VVER-1000 problem

This core is a VVER-1000 type with 15 fuel elements across the diameter with 25
control rods inserted. The geometry of this problem is shown in Figure 2.26.

61



Chapter 2. Spectral Element Method for the Neutron Diffusion Equation

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 2.25: Symmetry pattern for the four dominant modes of the IAEA problem
with reflector.

The core has an assembly pitch of 23.60 cm. The reflector is not explicitly modeled,
and vacuum boundary conditions are assumed. The nuclear cross sections of this
problem are shown in Table 2.9.

Table 2.10 shows the different results obtained for the keff of this reactor core.

Figure 2.27 shows the neutronic power distribution for each hexagon computed
with the SEM method using a degree Kxy = 6 in the flux expansions, together
with the reference result and the percentage of the relative error on each hexagon.

In Table 2.11, the results obtained for the first three subcritical eigenvalues com-
puted with the SEM method using different values of the degree Kxy are presented.
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Figure 2.26: Geometry of the VVER-1000 reactor.

Table 2.9: Cross sections of the VVER-1000 problem

Fuel Group Dg(cm) Σag(cm
−1) Σg→g+1(cm−1) νΣfg(cm

−1)
1 1 1.38320 0.0083859 0.0164977 0.00481619

2 0.386277 0.0673049 0.0846154
2 1 1.38299 0.0115490 0.0147315 0.00466953

2 0.389403 0.0810328 0.0852264
3 1 1.39522 0.0089441 0.0156219 0.00604889

2 0.386225 0.0844801 0.1194280
4 1 1.39446 0.0119932 0.0140185 0.00591507

2 0.387723 0.0989670 0.1204970
5 1 1.39506 0.0091160 0.0154981 0.00640256

2 0.384492 0.0893878 0.1292810

Table 2.10: keff results for the VVER-1000 problem.

Kxy λ1(keff) ∆keff(pcm) εmax(%) ε̄(%) N NNZ
1 1.0048301 165.4840 10.97 4.42 445 2941
2 1.0063968 8.8270 1.27 0.51 1867 20371
3 1.0064499 3.5050 0.28 0.11 4267 66353
4 1.0064518 3.3210 0.13 0.07 7645 150987
5 1.0064534 3.1620 0.10 0.06 12001 262207
6 1.0064540 3.1040 0.09 0.06 17335 398449
Ref. 1.0064850

A symmetry pattern for the four dominant modes of this reactor core is shown in
Figure 2.28.
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Figure 2.27: Power distribution for the VVER-1000 reactor.

Table 2.11: First 3 subcritical eigenvalues for the VVER-1000 reactor.

Kxy λ2 λ3 λ4

1 0.9927145 0.9927145 0.9705486
2 0.9947271 0.9947271 0.9736192
3 0.9948069 0.9948069 0.9737548
4 0.9948118 0.9948118 0.9737671
5 0.9948145 0.9948145 0.9737718
6 0.9948153 0.9948153 0.9737733

2.2.6.4 Two-dimensional VVER-440 problem

For this problem, the core is a VVER-440 core type, with 25 fuel elements across
the diameter, as is shown in Figure 2.29.

The core has 7 control rods inserted and a layer of reflector at the boundary of the
core. The assembly pitch is 14.7 cm. Vacuum boundary conditions are considered
at the external boundary of the reflector. Nuclear cross sections for this geometry
are shown in Table 2.12.

Table 2.13 shows the different results obtained for the keff of this reactor core.

Figure 2.30 shows the neutronic power distribution for each hexagon computed
with the spectral element method (SEM) using a degree Kxy = 6 in the expansions,
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 2.28: Symmetries of the four dominant modes for the VVER-1000 problem.

together with the reference result and the percentage of the relative error on each
hexagon.

In Table 2.14 the results obtained for the first three subcritical eigenvalues, com-
puted with the SEM method using different values of the degree Kxy are presented,
where we have just consider the decimal precision obtained from the reference re-
sult [34]. This table shows that for Kxy = 5 we have a very accurate solution.

A symmetry pattern for the power distribution associated with the four dominant
modes is shown in Figure 2.31.
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Figure 2.29: Geometry of the reactor VVER-440.

Table 2.12: Cross sections of the VVER-440 problem.

Fuel Group Dg(cm) Σag(cm
−1) Σg→g+1(cm−1) νΣfg(cm

−1)
1 1 1.3466 0.008362 0.016893 0.0044488

2 0.37169 0.064277 0.073753
2 1 1.3377 0.008797 0.015912 0.0055337

2 0.36918 0.079361 0.10581
3 1 1.3322 0.009462 0.014888 0.0070391

2 0.36502 0.1001 0.14964
4 1 1.1953 0.013372 0.022264 0.0

2 0.19313 0.13498 0.0
5 1 1.4485 0.000922 0.032262 0.0

2 0.25176 0.032839 0.0

2.2.6.5 Two-dimensional HWR problem

This core is a very large HWR core of 35 assemblies across the core diameter, as
it is shown in Figure 2.32.

The fuel assemblies are surrounded by a tritium-generating target zone outside of
which is the reflector zone. There are many rodded assemblies an some vacancy
assemblies. The assembly pitch is 17.78 cm. The boundary conditions considered
for this core are zero flux at the outside boundary of the reflector. Table 2.15
shows the nuclear cross sections data for the HWR core.
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Table 2.13: keff results for the VVER-440 problem.

Kxy λ1(keff) ∆keff(pcm) εmax(%) ε̄(%) N NNZ
1 1.01131 −161 11.02 3.86 1189 8029
2 1.01011 −41 1.43 0.60 4903 54535
3 1.00974 −4 0.21 0.06 11143 174069
4 1.00971 −1 0.22 0.08 19909 388475
5 1.00970 ≈ 0 0.22 0.08 31201 673611
6 1.00970 ≈ 0 0.22 0.08 45019 1022241
Ref. 1.00970
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Figure 2.30: Power distribution for the VVER-440 problem.

Table 2.14: First 3 subcritical eigenvalues for the VVER-440 reactor.

Kxy λ2 λ3 λ4

1 1.0047100 1.0047100 0.9911925
2 1.0031413 1.0031413 0.9894401
3 1.0027047 1.0027047 0.9889541
4 1.0026585 1.0026585 0.9889027
5 1.0026534 1.0026534 0.9888969
6 1.0026526 1.0026526 0.9888960

Table 2.16 shows the different results obtained for the keff of this reactor core, and
we can see that the results obtained for Kxy = 3 or Kxy = 4 are very accurate.

Figure 2.33 shows the neutronic power distribution for each hexagon computed
with the Spectral Element Method (SEM) using a degree Kxy = 5 in the expan-
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 2.31: Symmetry patterns of the four dominant modes for the VVER-440 prob-
lem.

sions, together with the reference result and the percentage of relative error on
each hexagon.

In Table 2.17 the results obtained for the first three subcritical eigenvalues, com-
puted with the SEM method using different values of the degreeKxy, are presented.

A symmetry pattern for the power distribution associated with the four dominant
modes is shown in Figure 2.34.
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Figure 2.32: Geometry of the HWR reactor

2.2.6.6 Three-dimensional VVER 440 problem

The 3D VVER-440 problem with reflector is a 3D reactor of 250.0 cm height, with
two reflector layers of 25.0 cm each added, one to the top and the other one to the
bottom of the core. The core is a VVER-440 type with 25 fuel elements along the
diameter, with 7 control rods half-way inserted from the top, and another reflector
layer added to the radial boundary of the core, as it is shown in Figure 2.35.
This core has a radial symmetry by reflection of 1/12 and the pitch is 14.7 cm.
Nevertheless, the calculations have been performed taking into account the whole
core since the subcritical modes do not maintain the radial symmetry. Vacuum
boundary conditions have been considered (β = 0 in equation (2.56)). The nuclear
cross sections for the geometry are reported in Table 2.18, where the cross sections
of the rodded nodes in the unrodded part is composed of fuel type 2.

Table 2.19 shows the different results obtained for the keff of the 3D VVER 440
problem with reflector with different values of Kxy and Kz used in the expansions
of the Spectral Element Method (SEM). The reference result reported in [34] and
the dimension of the eigenvalue problem which has to be solved, N, as well as the
non-zero entries of the matrices, NNZ have been also included.
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Table 2.15: Cross sections of the HWR reactor.

Fuel Group Dg(cm) Σag(cm
−1) Σg→g+1(cm−1) νΣfg(cm

−1)
1 1 1.38250058 0.0029412350 0.00816457 0.00226216

2 0.89752185 0.022306487 0.0230623
2 1 1.38255219 0.0029508050 0.00822378 0.00222750

2 0.89749043 0.022387609 0.0226849
3 1 1.37441741 0.0025322079 0.00808816 0.00214281

2 0.88836771 0.016946527 0.0204887
4 1 1.31197955 0.00037645300 0.0123115 0.0

2 0.87991376 0.00052900925 0.0
6 1 1.38138909 0.0027974400 0.00776568 0.00239469

2 0.90367052 0.021902980 0.0266211
7 1 1.30599110 0.00063382099 0.0110975 0.0

2 0.83725587 0.0043330365 0.0
8 1 1.29192957 0.00035711600 0.0115582 0.0

2 0.81934103 0.00030056488 0.0
9 1 1.06509884 0.0021482210 0.0261980 0.0

2 0.32282849 0.033348874 0.0

Table 2.16: keff results for the HWR reactor.

Kxy λ1(keff) ∆keff(pcm) εmax(%) ε̄(%) N NNZ
1 0.9919827 −1.7688 2.85 0.26 2653 18157
2 0.9919870 −2.2040 0.13 0.02 10819 121819
3 0.9919620 0.2996 0.02 0.01 24499 382313
4 0.9919610 0.4020 0.02 0.01 43693 848783
5 0.9919610 0.3994 0.02 0.01 68401 1475979
Ref. 0.991965

Table 2.17: First 3 subcritical eigenvalues for the HWR reactor.

Kxy λ2 λ3 λ4

1 0.9835954 0.9835954 0.9641395
2 0.9836219 0.9836219 0.9642709
3 0.9835938 0.9835938 0.9642393
4 0.9835926 0.9835926 0.9642380
5 0.9835926 0.9835926 0.9642380

Table 2.20 shows the results obtained for the first three subcritical eigenvalues
calculated with the SEM with different values of the polynomial expansion orders
Kxy and Kz.
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0.8841    1.1060    1.3349    1.3952    1.3685    1.0080    0.0000    0.0000    0.0000    0.0000

0.01      0.00      0.01      0.00      0.00     -0.01      0.00      0.00      0.00      0.00

0.6936    0.7791    0.9345    1.2069    1.4185    1.3765    1.3053    0.0000    0.0000    0.0000    0.0000    0.0000

0.6936    0.7790    0.9345    1.2069    1.4185    1.3765    1.3054    0.0000    0.0000    0.0000    0.0000    0.0000

0.00      0.01      0.00      0.00      0.00      0.00     -0.01      0.00      0.00      0.00      0.00      0.00

0.5733    0.6293    0.7094    0.8157    1.0185    1.2822    1.4588    1.2943    1.1721    0.0000    0.0000    0.0000    0.0000    0.0000

0.5732    0.6293    0.7093    0.8157    1.0185    1.2821    1.4588    1.2942    1.1723    0.0000    0.0000    0.0000    0.0000    0.0000

0.02      0.00      0.01      0.00      0.00      0.01      0.00      0.01     -0.02      0.00      0.00      0.00      0.00      0.00

0.5067    0.5359    0.5817    0.6472    0.7392    0.8636    1.1020    1.3467    1.4057    1.3688    0.9813    0.0000    0.0000    0.0000    0.0000    0.0000

0.5066    0.5358    0.5816    0.6472    0.7391    0.8635    1.1019    1.3466    1.4057    1.3689    0.9815    0.0000    0.0000    0.0000    0.0000    0.0000

0.02      0.02      0.02      0.00      0.01      0.01      0.01      0.01      0.00     -0.01     -0.02      0.00      0.00      0.00      0.00      0.00

0.4854    0.4925    0.5139    0.5506    0.6044    0.6777    0.7655    0.9188    1.2590    1.4558    1.3776    1.2679    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000

0.4854    0.4924    0.5138    0.5506    0.6043    0.6776    0.7655    0.9188    1.2590    1.4559    1.3777    1.2681    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000

0.00      0.02      0.02      0.00      0.02      0.01      0.00      0.00      0.00     -0.01     -0.01     -0.02      0.00      0.00      0.00      0.00      0.00      0.00

0.5067    0.5357    0.5803    0.6417    0.7217    0.8174    1.0732    0.0000    1.5038    0.0000    1.0385    0.0000    0.0000    0.0000    0.0000    0.0000

0.5066    0.5356    0.5802    0.6416    0.7217    0.8173    1.0733    0.0000    1.5040    0.0000    1.0388    0.0000    0.0000    0.0000    0.0000    0.0000

0.02      0.02      0.02      0.02      0.00      0.01     -0.01      0.00     -0.01      0.00     -0.03      0.00      0.00      0.00      0.00      0.00

0.5733    0.6266    0.6965    0.7839    0.8890    1.1553    1.3159    1.2645    1.1863    0.0000    0.0000    0.0000    0.0000    0.0000

0.5732    0.6266    0.6964    0.7839    0.8889    1.1554    1.3160    1.2646    1.1865    0.0000    0.0000    0.0000    0.0000    0.0000

0.02      0.00      0.01      0.00      0.01     -0.01     -0.01     -0.01     -0.02      0.00      0.00      0.00      0.00      0.00

0.6936    0.7752    0.8610    0.9818    1.1481    1.1782    1.0021    0.0000    0.0000    0.0000    0.0000    0.0000

0.6936    0.7752    0.8609    0.9818    1.1480    1.1782    1.0021    0.0000    0.0000    0.0000    0.0000    0.0000

0.00      0.00      0.01      0.00      0.01      0.00      0.00      0.00      0.00      0.00      0.00      0.00

0.8842    1.0210    1.1564    1.1833    1.0543    0.7862    0.0000    0.0000    0.0000    0.0000

0.8841    1.0209    1.1564    1.1832    1.0543    0.7863    0.0000    0.0000    0.0000    0.0000

0.01      0.01      0.00      0.01      0.00     -0.01      0.00      0.00      0.00      0.00

1.2316    1.2669    1.1126    0.8430    0.0000    0.0000    0.0000    0.0000

1.2316    1.2669    1.1126    0.8430    0.0000    0.0000    0.0000    0.0000

0.00      0.00      0.00      0.00      0.00      0.00      0.00      0.00

1.1660    1.0626    0.0000    0.0000    0.0000    0.0000

1.1660    1.0628    0.0000    0.0000    0.0000    0.0000

0.00     -0.02      0.00      0.00      0.00      0.00

0.0000    0.0000    0.0000    0.0000

0.0000    0.0000    0.0000    0.0000
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Figure 2.33: Power distribution for the HWR problem.

Figure 2.36 shows a schematic view of the 3D fundamental mode and the first
three subcritical power modes calculated with SEM, showing suitable slices of the
power along the axial axis Z, and along the radial plane XY , to show the different
behaviour of each mode.

Local results for the normalized power distribution for the best approximation,
i.e., the one obtained with KXY = 3 and KZ = 4 is summarized in Table 2.21
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 2.34: Symmetry patterns of the four dominant modes for the HWR problem.

2.2.6.7 Three-dimensional VVER 1000 problem

This 3D-dimensional problem is 200.0 cm height. The reactor core is VVER-1000
type, with 15 fuel elements along its diameter, with 25 control rods inserted, of
which 19 are fully inserted and the 6 closer to the center are half-way inserted from
the top, as it is shown in Figure 2.38. This reactor core has 1/6 cyclic geometry,
the pitch assembly is 23.60 cm. Both radial and axial albedo boundary conditions
have been considered with values β = 0.6 and β = 0.5384615, respectively, in the
equation (2.56)). The nuclear cross sections for the chosen geometry are reported
in Table 2.22, where in the mixed assemblies noted as 4/3 the assemblies are
rodded with material 4 from the top until the half of the reactor, and the unrodded
assembly is composed of material 3.

72



2.2 Two- and three-dimensional geometries
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Figure 2.35: Geometry of the 3D VVER-440 problem with reflector

Table 2.18: Cross sections of the three-dimensional VVER-440 problem.

Fuel Group Dg(cm) Σag(cm
−1) Σg→g+1(cm−1) νΣfg(cm

−1)
1 1 1.3466 0.008362 0.016893 0.0044488

2 0.37169 0.064277 0.073753
2 1 1.3377 0.008797 0.015912 0.0055337

2 0.36918 0.079361 0.10581
3 1 1.3322 0.009462 0.014888 0.0070391

2 0.36502 0.1001 0.14964
4 1 1.1953 0.013372 0.022264 0.0

2 0.19313 0.13498 0.0
5 1 1.4485 0.000922 0.032262 0.0

2 0.25176 0.032839 0.0
6 1 1.3413 0.002153 0.027148 0.0

2 0.24871 0.064655 0.0

Table 2.23 shows the different results obtained for the keff for this problem calcu-
lated with the SEM method for different values of the expansion order Kxy and
Kz. The reference result reported in [34] and the eigenvalue problem dimension,
N, as well as the number of non-zero entries for these matrices, NNZ are also
included.

Table 2.24 shows the results obtained for the first three subcritical eigenvalues
calculated with the SEM method for different values of the expansion order Kxy

and Kz.

As it has been done for the previous problem, in Figure 2.39 schematic views of
the 3D fundamental mode and the first three subcritical modes calculated with
SEM are shown.
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Table 2.19: Results for the keff for the 3D VVER 440 problem

Kxy Kz λ1(keff) ∆keff(pcm) εmax (%) ε̄ (%) N NNZ
1 1 1.01271 138.79 12.92 2.96 17407 335479
2 1 1.01117 −14.90 9.73 1.22 67639 2171863
3 1 1.01085 −47.45 8.83 1.06 150709 6722345
4 1 1.01081 −50.98 8.73 1.05 266617 14540297
1 2 1.01322 190.03 13.49 2.81 33475 879499
2 2 1.01168 36.34 3.80 0.63 130075 5693803
3 2 1.01136 3.98 2.69 0.36 289825 17623445
4 2 1.01132 0.49 2.65 0.36 512725 38119157
1 3 1.01323 191.20 12.61 2.75 49543 1423519
2 3 1.01170 37.71 3.00 0.53 192511 9215743
3 3 1.01137 5.40 1.70 0.23 428941 28524545
4 3 1.01134 1.91 1.66 0.24 758833 61698017
1 4 1.01322 189.65 12.56 2.72 65611 1749931
2 4 1.01168 36.23 2.19 0.47 254947 11328907
3 4 1.01136 3.94 0.69 0.11 568057 35065205

Ref. 1.01132 − − − − −

Table 2.20: 3 first subcritical eigenvalues for the 3D VVER 440 problem

Kxy Kz λ2 λ3 λ4

1 1 1.00461 1.00461 0.98950
2 1 1.00277 1.00277 0.98756
3 1 1.00237 1.00237 0.98710
4 1 1.00232 1.00232 0.98705
1 2 1.00507 1.00507 0.98991
2 2 1.00323 1.00323 0.98796
3 2 1.00283 1.00283 0.98750
4 2 1.00278 1.00278 0.98746
1 3 1.00508 1.00508 0.98991
2 3 1.00324 1.00324 0.98797
3 3 1.00284 1.00284 0.98751
4 3 1.00279 1.00279 0.98746
1 4 1.00506 1.00506 0.98989
2 4 1.00322 1.00322 0.98795
3 4 1.00282 1.00282 0.98749

Local results for the normalized power distribution for the best approximation,
i.e., the one obtained with KXY = 3 and KZ = 3 is summarized in Table 2.25

Summarizing, a high order Spectral Element Method (SEM) has been implemented
to approximate the solution of Lambda Modes problem of a nuclear reactor with
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(a) Mode 1 (b) Mode 1 (c) Mode 2 (d) Mode 2

(e) Mode 3 (f) Mode 3 (g) Mode 4 (h) Mode 4

Figure 2.36: Modes for the VVER-440 problem
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Figure 2.37: Numbers identifying the position of the cells of the VVER 440 reactor for
the local power distribution

hexagonal geometry. This method is based on splitting each one of the hexagonal
prisms defied by the geometry into six equilateral triangular prisms, obtaining a
mesh which is kept fixed. The SEM method is based on the expansion of the neu-
tron flux in terms of a polynomials basis constructed using the modified Dubiner’s
Polynomials. The accuracy of the method is improved increasing the order in the
polynomial expansions and it is not necessary to refine the mesh.

To test the performance of the method, an extensive analysis of 2D benchmark
reactor cores has been carried out. In all the studied reactors the SEM method
has provided good results for the keff and the neutron power distribution and

75



Chapter 2. Spectral Element Method for the Neutron Diffusion Equation

Table 2.21: Local power for the 3D VVER 440 problem

Axial zones
Pos. 2 3 4 5 6 7 8 9 10 11

1 0.5210 1.0748 1.4548 1.5840 1.3407 0 0 0 0 0
2 0.4204 0.8685 1.1761 1.2837 1.1413 0.7926 0.5662 0.3978 0.2485 0.1101
3 0.5508 1.1366 1.5402 1.6884 1.5610 1.2494 0.9336 0.6589 0.4120 0.1825
4 0.5639 1.1641 1.5785 1.7337 1.6187 1.3249 1.0012 0.7085 0.4436 0.1966
5 0.4502 0.9312 1.2633 1.3857 1.2775 1.0149 0.7562 0.5348 0.3354 0.1487
6 0.4629 0.9580 1.3005 1.4227 1.2586 0.8561 0.6076 0.4292 0.2698 0.1200
7 0.6151 1.2722 1.7293 1.8928 1.6072 0 0 0 0 0
8 0.6493 1.3443 1.8309 2.0164 1.8154 1.2882 0.9440 0.6784 0.4305 0.1925
9 0.7844 1.6226 2.2135 2.4542 2.3092 1.8946 1.4573 1.0544 0.6704 0.2999

10 0.4763 0.9873 1.3482 1.5007 1.4357 1.2181 0.9539 0.6931 0.4411 0.1970
11 0 0 0 0 0 0 0 0 0 0
12 0.5458 1.1263 1.5259 1.6710 1.5343 1.2058 0.8940 0.6302 0.3940 0.1745
13 0.4403 0.9101 1.2339 1.3551 1.2653 1.0355 0.7826 0.5537 0.3465 0.1533
14 0.5613 1.1590 1.5722 1.7274 1.6115 1.3159 0.9938 0.7041 0.4413 0.1958
15 0.5686 1.1748 1.5948 1.7492 1.6013 1.2464 0.9221 0.6531 0.4103 0.1824
16 0.5910 1.2218 1.6604 1.8197 1.6160 1.1075 0.7924 0.5628 0.3550 0.1584
17 0.4934 1.0226 1.3920 1.5313 1.3734 0.9649 0.7027 0.5038 0.3193 0.1425
18 0.5118 1.0617 1.4480 1.6032 1.4971 1.2055 0.9199 0.6647 0.4224 0.1885
19 0.6918 1.4311 1.9540 2.1738 2.0738 1.7498 1.3664 0.9923 0.6316 0.2826
20 0.4109 0.8511 1.1628 1.2967 1.2476 1.0686 0.8422 0.6132 0.3905 0.1746
21 0 0 0 0 0 0 0 0 0 0
22 0.5553 1.1466 1.5555 1.7105 1.6031 1.3215 1.0035 0.7117 0.4461 0.1978
23 0.4345 0.8989 1.2205 1.3426 1.2543 1.0259 0.7769 0.5521 0.3469 0.1539
24 0.4413 0.9136 1.2419 1.3668 1.2665 1.0133 0.7619 0.5433 0.3426 0.1524
25 0.5860 1.2125 1.6510 1.8219 1.6876 1.3392 1.0102 0.7253 0.4594 0.2050
26 0.6176 1.2793 1.7452 1.9354 1.8224 1.4968 1.1524 0.8340 0.5301 0.2368
27 0.7273 1.5048 2.0555 2.2897 2.1914 1.8581 1.4568 1.0600 0.6750 0.3021
28 0.5184 1.0735 1.4674 1.6386 1.5808 1.3594 1.0751 0.7844 0.4999 0.2237
29 0 0 0 0 0 0 0 0 0 0
30 0.5421 1.1204 1.5234 1.6804 1.5776 1.3003 0.9922 0.7092 0.4473 0.1991
31 0.4392 0.9100 1.2397 1.3728 1.2979 1.0805 0.8333 0.6003 0.3803 0.1694
32 0.4625 0.9594 1.3096 1.4570 1.3912 1.1758 0.9189 0.6671 0.4242 0.1892
33 0.4641 0.9634 1.3171 1.4711 1.4190 1.2190 0.9642 0.7039 0.4487 0.2003
34 0.5825 1.2064 1.6506 1.8479 1.7935 1.5558 1.2392 0.9073 0.5790 0.2593
35 0 0 0 0 0 0 0 0 0 0
36 0.5728 1.1864 1.6201 1.8053 1.7345 1.4823 1.1661 0.8480 0.5394 0.2409
37 0.5804 1.2035 1.6465 1.8431 1.7891 1.5526 1.2367 0.9051 0.5775 0.2581
38 0.6155 1.2745 1.7454 1.9590 1.9124 1.6731 1.3415 0.9853 0.6296 0.2821
39 0.3786 0.7847 1.0751 1.2081 1.1823 1.0381 0.8348 0.6141 0.3926 0.1758
40 0 0 0 0 0 0 0 0 0 0
41 0.5128 1.0638 1.4574 1.6373 1.6020 1.4061 1.1303 0.8312 0.5313 0.2377
42 0.4251 0.8813 1.2081 1.3596 1.3348 1.1772 0.9500 0.7002 0.4480 0.2007
43 0 0 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0 0 0

also has succeeded computing the subcritical modes of each reactor. Also, two 3D
benchmarks have been studied, the VVER-1000 and the VVER-440. The obtained
results for the keff and the neutronic power distribution have been compared with
the reference solution obtained with the DIF3D code. The SEM method have
provided good results for the keff and the power distributions, calculating also
successfully a set of subcritical modes for these reactors.
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Figure 2.38: Geometry of the 3D VVER-1000 problem

Table 2.22: Cross sections of the 3D VVER-1000 problem

Fuel Group Dg(cm) Σag(cm
−1) Σg→g+1(cm−1) νΣfg(cm

−1)
1 1 1.38320 0.0083859 0.0164977 0.00481619

2 0.386277 0.0673049 0.0846154
2 1 1.38299 0.0115490 0.0147315 0.00466953

2 0.389403 0.0810328 0.0852264
3 1 1.39522 0.0089441 0.0156219 0.00604889

2 0.386225 0.0844801 0.1194280
4 1 1.39446 0.0119932 0.0140185 0.00591507

2 0.387723 0.0989670 0.1204970
5 1 1.39506 0.0091160 0.0154981 0.00640256

2 0.384492 0.0893878 0.1292810

Table 2.23: Results for the keff for the 3D VVER-1000 problem

Kxy Kz λ1(keff) ∆keff(pcm) εmax (%) ε̄ (%) N NNZ
1 1 1.009884 −147 12.70 3.69 4815 88975
2 1 1.010812 −54 4.30 1.15 18423 571375
3 1 1.010806 −54 3.39 1.19 40833 1764325
1 2 1.010310 −104 11.28 4.07 9095 231335
2 2 1.011229 −12 1.78 0.40 34799 1485575
3 2 1.011222 −13 0.87 0.10 77129 4587245
1 3 1.010341 −101 11.36 4.09 13375 373695
2 3 1.011261 −9 1.57 0.43 51175 2399775
3 3 1.011254 −10 0.66 0.10 113425 7410165

Ref. 1.011350 − − − − −
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Table 2.24: 3 first subcritical eigenvalues for the 3D VVER-1000 problem

Kxy Kz λ2 λ3 λ4

1 1 0.995022 0.995022 0.976204
2 1 0.996765 0.996765 0.978993
3 1 0.996822 0.996822 0.979109
1 2 0.995250 0.995250 0.977463
2 2 0.996989 0.996989 0.979293
3 2 0.997045 0.997045 0.979338
1 3 0.995271 0.995271 0.977514
2 3 0.997009 0.997009 0.979342
3 3 0.997065 0.997065 0.979387

(a) Mode 1 (b) Mode 1 (c) Mode 2 (d) Mode 2

(e) Mode 3 (f) Mode 3 (g) Mode 4 (h) Mode 4

Figure 2.39: Modes for the VVER-1000 problem
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2.2 Two- and three-dimensional geometries

Table 2.25: Local power for the 3D VVER 1000 problem

Axial zones
Pos. 1 2 3 4 5 6 7 8 Bott. Top

1 0.1780 0.4119 0.6941 1.0827 1.5074 1.6393 1.3331 0.6715 0.5917 1.2878
2 0.2576 0.5928 0.9888 1.5585 2.3015 2.5239 2.0467 1.0277 0.8494 1.9749
3 0.3406 0.7714 1.2395 1.8333 2.5438 2.7091 2.1717 1.0856 1.0462 2.1275
4 0.5155 1.1483 1.7752 2.3888 2.8504 2.8476 2.2368 1.1118 1.4569 2.2617
5 0.3656 0.8038 1.2048 1.5347 1.7138 1.6383 1.2601 0.6202 0.9772 1.3081
6 0.3003 0.6512 0.9525 1.1705 1.2564 1.1640 0.8785 0.4290 0.7686 0.9320
7 0.2753 0.5913 0.8548 1.0340 1.0909 0.9959 0.7444 0.3628 0.6888 0.7985
8 0.2969 0.6739 1.0959 1.7203 3.0768 3.3861 2.7268 1.3675 0.9467 2.6393
9 0.3713 0.8329 1.3057 1.8245 2.3311 2.3978 1.9004 0.9459 1.0836 1.8938

10 0.3641 0.8055 1.2222 1.5897 1.8197 1.7702 1.3738 0.6785 0.9954 1.4105
11 0.3809 0.8292 1.2245 1.5252 1.6615 1.5579 1.1848 0.5814 0.9899 1.2464
12 0.2237 0.4815 0.6996 0.8520 0.9054 0.8318 0.6244 0.3053 0.5642 0.6667
13 0.1392 0.2983 0.4304 0.5193 0.5463 0.4975 0.3713 0.1810 0.3468 0.3990
14 0.3720 0.8346 1.3082 1.8276 2.3345 2.4010 1.9029 0.9471 1.0856 1.8964
15 0.3393 0.7529 1.1487 1.5113 1.7567 1.7255 1.3444 0.6646 0.9381 1.3728
16 0.2193 0.4783 0.7091 0.8893 0.9766 0.9215 0.7032 0.3456 0.5740 0.7367
17 0.2518 0.5444 0.7923 0.9670 1.0303 0.9485 0.7129 0.3475 0.6389 0.7598
18 0.1894 0.4066 0.5876 0.7103 0.7488 0.6831 0.5103 0.2488 0.4735 0.5478
19 0.3629 0.8028 1.2183 1.5847 1.8144 1.7653 1.3700 0.6765 0.9922 1.4065
20 0.3005 0.6564 0.9722 1.2174 1.3347 1.2578 0.9591 0.4701 0.7866 1.0054
21 0.3549 0.7661 1.1141 1.3588 1.4466 1.3308 0.9997 0.4877 0.8985 1.0662
22 0.2405 0.5168 0.7469 0.9031 0.9524 0.8691 0.6493 0.3163 0.6018 0.6968
23 0.2985 0.6482 0.9551 1.1865 1.2892 1.2061 0.9159 0.4498 0.7721 0.9652
24 0.2971 0.6419 0.9321 1.1344 1.2051 1.1066 0.8302 0.4041 0.7514 0.8865
25 0.2635 0.5659 0.8174 0.9874 1.0402 0.9484 0.7081 0.3448 0.6585 0.7604
26 0.3584 0.7712 1.1168 1.3540 1.4321 1.3103 0.9806 0.4779 0.9001 1.0502
27 0.2576 0.5528 0.7972 0.9610 1.0103 0.9195 0.6856 0.3337 0.6421 0.7373
28 0.1962 0.4205 0.6058 0.7294 0.7658 0.6961 0.5187 0.2525 0.4880 0.5583
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Figure 2.40: Numbers identifying the position of the cells of the VVER 1000 reactor
for the local power distribution
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Chapter 3

Time Dependent Neutron
Diffusion Equation
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An implicit difference method for the time discretization of the time dependent
neutron diffusion equation is presented and the performance of the code is tested
solving the first exercise of the AER transient benchmark. The obtained results
are compared with the reference results of the benchmark and with the results
provided by PARCS code.

In nodal methods the nuclear cross sections are defined constant on each node.
This causes a problem in transients consisting of moving control rods. The easiest
way to interpolate the cross sections of a partially rodded node is by means of the
portion of the rod inserted on the node. This method is called volume weighted
method. With the cross sections calculated by means of the volume weighted
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Chapter 3. Time Dependent Neutron Diffusion Equation

method, an unphysical behaviour of the keff appears on the calculation, and this
is called rod cusping effect [50]. This effect is unphysical because it does not
correspond to the physical behavior of the k-effective for a transiend defined by
moving the control rods with constant velocity. The correction of this effect by
means of a flux weighted method is studied here. The methods are tested in a
small reactor where the rod cusping is a dominant effect.

3.1 Backward Method

Computational codes for transient analysis of nuclear reactors are very important
to understand the consequences of different events on nuclear safety. In this way,
it is interesting to develop efficient methods to simulate nuclear reactors. In par-
ticular, we will consider here VVER-type reactors which use the neutron diffusion
equation discretized on hexagonal meshes.

We consider the time dependent neutron diffusion equation in the approximation
of two energy groups. This model is of the form [8]

[
v−1

] ∂Φ

∂t
+ LΦ = (1− β)MΦ +

K∑
k=1

λkχCk ,

∂Ck
∂t

= βk[νΣf1 νΣf2]Φ− λkCk , k = 1, . . . ,K , (3.1)

where, K is the number of delayed neutron precursors groups considered,

L =

[
−~∇ · (D1

~∇) + Σa1 + Σ12 0

−Σ12 −~∇ · (D2
~∇) + Σa2

]
, [v−1] =

[ 1
v1

0

0 1
v2

]
,

and

M =

[
νΣf1 νΣf2

0 0

]
, Φ =

[
Φ1

Φ2

]
, χ =

[
1
0

]
.

The diffusion constants and cross-sections, Dg, Σ12, Σag, νΣfg, g = 1, 2, appearing
in the equations depend on the reactor materials, that is, they are position and
time dependent functions. Associated with this problem, there is the Lambda
modes problem

LΦi =
1

ki
MΦi . (3.2)

To solve both problems (3.1) and (3.2), a spatial discretization of the equations
has to be selected. Different neutronic codes have been developed during the las
few years that can deal with reactors with hexagonal geometry such as [51] BIPR8,
DYN3D, KIKO-3D, PARCS, etc. Most of these codes make use of balance equa-
tions for the neutron population in a node of the discretization and the inter-node
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3.1 Backward Method

coupling equations are typically obtained by integration of the neutron diffusion
equation over directions transverse to each coordinate axis, ending with a system
of nonlinear equations, which is solved iteratively. In this work, a Spectral Ele-
ment Method based on a triangular mesh, as explained at Chapter 2, has been
used [52]. With this method the initial problem is reduced to a system of ordinary
differential equations.

Once the spatial discretization has been selected, the semidiscrete version of the
time dependent neutron diffusion equation is solved. Since the ordinary differential
equations resulting of the discretization of diffusion equations are, in general, stiff,
implicit methods are necessary. Particularly, a first order backward method has
been used, needing this method to solve a large system of linear equations for each
time step.

After the spatial discretization by means of the Spectral Element Method, the
semidiscrete two energy groups time dependent neutron diffusion equation is of
the form

[
v−1

]
ψ̇ + Lψ = (1− β)Mψ +

K∑
k=1

λkXCk ,

XĊk = βkMψ − λkXCk , (3.3)

where matrices L, M and X have the following block structure

[
v−1

]
=

[
v−1

1 P 0
0 v−1

2 P

]
, L =

[
L11 0
−L21 L22

]
,

and

M =

[
M11 M12

0 0

]
, X =

[
P
0

]
,

and the matrix P is the mass matrix of the spatial discretization, that appers
due to the fact that the polynomial basis used in the spatial discretization is not
orthogonal [36].

3.1.1 Time discretization

For the time discretization of the semidiscrete time dependent neutron diffusion
equation (3.3) a one-step implicit finite differences method is considered. This
method consists of integrating the above ordinary differential equations (3.3) over
a series of time intervals [tn, tn+1]. To integrate these equations from tn to tn+1,
it is supposed that the term Mψ varies linearly between these instants. Hence,
approximating

XĊk = −λkXCk + βkM
nψn +

βk
∆t

(t− tn)
(
Mn+1ψn+1 −Mnψn

)
, (3.4)
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Chapter 3. Time Dependent Neutron Diffusion Equation

where ∆t = tn+1 − tn, and Mnψn is Mψ evaluated in the time tn.

Integrating (3.4), the solution XCk in tn+1 can be expressed as

XCn+1
k = XCnk e

−λk∆t + βk(akM
nψn + bkM

n+1ψn+1) , (3.5)

where the coefficients ak and bk are given by [53]

ak =
(1 + λk∆t)(1− e−λk∆t)

λ2
k∆t

− 1

λk
, bk =

λk∆t− 1 + e−λk∆t

λ2
k∆t

.

Discretizing equation (3.1) by means of a one-step implicit method [53], it is ob-
tained

[v−1]
1

∆t
(ψn+1 − ψn) + Ln+1ψn+1 = (1− β)Mn+1ψn+1 +

K∑
k=1

λkXC
n+1
k . (3.6)

Taking into account equation (3.5), equation (3.6) is rewritten as the system of
linear equations

[
Tn+1

]
ψn+1 = [Rn]ψn +

K∑
k=1

λke
−λk∆tX [Cnk ] , (3.7)

where the matrices are defined as[
Tn+1

]
=

1

∆t

[
v−1

]
+ Ln+1 − b̂Mn+1 ,

[Rn] =
1

∆t

[
v−1

]
+ âMn ,

and the coefficients â and b̂ are

â =

K∑
k=1

λkβkak , b̂ = 1− β +

K∑
k=1

λkβkbk .

This system of equations is sparse and of large dimension and it has to be solved for
each time step. Initially, the preconditioned BICGSTAB method has been chosen
to solve these systems [48]. The preconditioner used has been the incomplete
LU preconditioner ilu(t), where the tolerance t is set to a value that provides a
reasonable fill-in of the matrix [48]. Also, a particular reordering of the rows of
the matrix is used to minimize this fill-in.
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3.1 Backward Method

3.1.2 Rod cusping

In nodal methods the nuclear cross sections are defined constants on each node.
This causes a problem in transients consisting on moving control rods. When a
control rod is partially inserted in a node, this node is divided in two: the upper
part of the node, where the cross sections are modified due to the effect of the
control rod, and the lower part of the node, which has the cross sections without
modifications. Then the cross sections of the whole node is calculated by means
of an interpolation procedure taking into account the position of the control rod
tip.

The easiest way to interpolate the cross sections of a partially rodded node is
by means of the portion of the rod inserted in the node [50]. This method is
called volume weighted method. With the cross sections calculated by means of
the volume weighted method, a unphysical behaviour of the keff appears on the
calculation, and this is called rod cusping effect (see Figure 3.1). This unphysical
behaviour is also translated to the neutronic flux distribution.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
1

1.0005

1.001

1.0015

1.002

1.0025

1.003

time

k−
e
ff

Figure 3.1: Rod cusping effect.

To avoid the rod cusping effect on nodal methods, different strategies have been
developed [50]. As, for example, a flux weighting method [54], moving meshes
method [55], an equivalence method [54], and a three nodes homogeneization
method [56]. These methods have to solve a small one-dimensional eigenvalue
problem for each one of the partially rodded nodes. Then, different schemes are
applied to obtain the new cross sections of the partially rodded node from the
old cross sections of the two parts of the node (the rodded and the unrodded)
and the heterogeneous flux for the small isolated problem with suitable boundary
conditions. These solutions can be improved by means of the use of assembly dis-
continuity factors for the interface of the node with the ones on a neighbourhood.
Here, a weighted method for the cross sections interpolation of the partially rod-
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Chapter 3. Time Dependent Neutron Diffusion Equation

ded node is proposed. This method is well adapted for a high order finite element
method based on a primal variational formulation.

When a node is partially rodded (See Figure 3.2), a homogenized cross section is
necessary to apply nodal methods. In this case, the heterogeneous cross section

Figure 3.2: Partially Rodded Node.

Σn+1
X,G for the partially rodded node for group G at time tn+1 is defined by

Σn+1
X,G(z) =

{
Σn+1
R,X,G if 0 ≤ z ≤ fins

Σn+1
U,X,G if fins < z ≤ 1

, (3.8)

where Σn+1
R,X,G and Σn+1

U,X,G are, respectively, the cross sections for the rodded and
unrodded part of the node at time tn+1., and fins is the fraction of the rod inserted
in the node.

The flux for a group G in a node Ωe at time tn is given by

ΦnG(~r) =
∑
i,j

∑
k

φnijk,G gij(x, y) hk(z) . (3.9)

Due to the fact that the control rod is inserted in the axial direction, the flux we
need can be collapsed on the others directions, obtaining the collapsed flux

Φ̂nG(z) =

∫∫
Ωe

ΦnG(~r) dx dy =
∑
k

φ̂nk,G hk(z) (3.10)

where

φ̂nk,G =

∫∫
Ωe

∑
i,j

φnijk,Ggij(x, y) dx dy . (3.11)
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3.1 Backward Method

Thus, our new interpolated cross sections at time tn+1 are defined by

Σn+1
X,G =

∫ 1

0

Φ̂nG(z)Σn+1
X,G(z)dz∫ 1

0

Φ̂nG(z)dz

=

∫ fins

0

Φ̂nG(z)Σn+1
R,X,Gdz +

∫ 1

fins

Φ̂nG(z)Σn+1
U,X,Gdz∫ 1

0

Φ̂nG(z)dz

.

(3.12)

When calculating the steady state, the spatial mesh can be forced to coincide with
the control rods peaks, thus the only problem to deal with for this calculation is
when these rods are moved.

3.1.3 Numerical results

To test the performance of the method to integrate the time dependent neutron
diffusion equation exposed above the 3-D transient benchmark AER-DYN-001
proposed in [57] has been studied. The problem corresponds to an asymmetric
control rod ejection accident in a VVER-440 core.

A plane of this reactor showing the disposition of materials together with the
initial position of control rods is shown in Figure 3.3. The hexagonal lattice pitch
is 14.7 cm.
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Figure 3.3: Geometry of VVER 440 reactor core.

Type numbers 1,2,3 represent fuel assemblies of different enrichment (1.6 %, 2.4
%, 3.6 %). Type numbers “21, 23, 25, 26” represent the positions where either
absorber assemblies (type “4”) or their fuel followers (“1,2,3”) has to be placed
into, due to the axial position of the given absorber assembly. Type “26” is used for
the ejected rod. Type number “5” represents reflector cells. The albedo boundary
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Chapter 3. Time Dependent Neutron Diffusion Equation

condition is applied on the outer edge of the reflector nodes, the extrapolation
length is 2.13 ∗Dg in both groups, where Dg is the diffusion coefficient given for
type “5”.

Figure 3.3 also shows the axial arrangement of the problem. For the sake of
comparable output, the minimum number of axial nodes has to be 12. The 1st
node for the bottom reflector, 2nd-11th nodes for the active length of the core
(250 cm), the 12th node for the top reflector. In this case, the height of the nodes
is 25 cm. The initial position of control rod groups 21 and 26 is at 50 cm above
the bottom reflector. (Follower in 2nd-3rd axial nodes, absorber rod in 4th-11th.
axial nodes). Control assembly groups type ”23 and 25” are out of the core at
the beginning of the process. The cross sections for this reactor are summarized
in Table 3.1, and the kinetic parameters for the six groups of neutron precursors
and for the velocities are shown in table 3.2.

Table 3.1: Cross sections of the three-dimensional VVER-440 transient.

Fuel Group Dg(cm) Σag(cm
−1) Σg→g+1(cm−1) νΣfg(cm

−1)
1 1 1.3466 0.008362 0.016893 0.0044339

2 0.37169 0.064277 0.073503
2 1 1.3377 0.008797 0.015912 0.0055150

2 0.36918 0.079361 0.105450
3 1 1.3322 0.009462 0.014888 0.0070120

2 0.36502 0.1001 0.149080
4 1 1.1953 0.013372 0.022264 0.0

2 0.19313 0.13498 0.0
5 1 1.4485 0.000922 0.032262 0.0

2 0.25176 0.032839 0.0
6 1 1.3413 0.002153 0.027148 0.0

2 0.24871 0.064655 0.0

Table 3.2: Neutron precursors parameters for the VVER 440 transient.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
βi 0.000247 0.0013845 0.001222 0.0026455 0.000832 0.000169

λi (s−1) 0.0127 0.0317 0.115 0.311 1.4 3.87

v1 = 1.25× 107 v2 = 2.5× 105 β = 0.0065

The transient is analyzed at zero power and the feedback effects can be neglected.
The control rod denoted by number 26 is ejected at 0.08 s. The worth of the
ejected rod is marginally below the prompt critical value. The delayed neutron
precursors are moving together with the fuel of the absorber followers. Scram is
initiated at 1 sec by dropping safety rods 23 and 25 at a constant velocity. These
rods take 11 seconds to reach the bottom of the core. The drop of the control rod
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3.1 Backward Method

group 21 is also started at 1 sec with the same velocity. The transient is followed
up to 6 s.

To check the necessary accuracy for the spatial discretization the fundamental
mode together with the keff for the initial state of the reactor core is computed.
48 axial planes are considered and the order of the expansions in the z-axis have
been fixed to Kz = 2. In Table 3.3 the values of the keff obtained for different
values of the order expansions in x and y directions are shown. Also the value
obtained with the codes PARCS and DYN3D are included.

Table 3.3: Steady state keff for different degrees on xy polynomials.

Kx = Ky = 1 Kx = Ky = 2 Kx = Ky = 3 PARCS DYN3D
1.000894 0.999663 0.999347 0.999376 1.000000

In Figure 3.4(a) the normalized radial power profile for the initial state of the
reactor computed with the code based on the Spectral Element Method (called
HEXMODKIN) is presented setting Kx = Ky = 3 and Kz = 2 and 48 axial
planes. Also, the results obtained with PARCS and DYN3D are presented. In
Figure 3.4(b) the relative error in each node of the radial profile of the HEXMOD-
KIN and PARCS codes is presented, using the solution obtained with DYN3D
code as the reference. It is observed that the maximum error obtained is less than
a 4%.
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Figure 3.4: Results at t = 0s.

The obtained average power evolution along the transient is compared with the
reference result provided by DYN3D code and the result provided by PARCS in
Figure 3.5.

It is noticed that there are divergences in the peak power prediction. This can be
due because [58] the transient analysed is a reactivity initiated transient involv-
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Figure 3.5: Average power evolution.

ing a rod worth that is near the prompt critical value and a small deviation in
the dynamic rod worth may cause significant deviations on the power prediction.
Nevertheless, the agreement in the normalized power radial profile at second 6 is
good with both the DYN3D and the PARCS code, as it is shown in Figure 3.6.
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Figure 3.6: Results at t = 6s.
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3.1.3.1 Numerical results for the rod cusping correction

To test the performance of the rod cusping correction method in 3-D geometries,
a transient for a small reactor where the rod cusping is a dominant effect has been
studied. Fig 3.7 shows horizontal layout map of the core, for which the hexagonal
lattice pitch is 23.6 cm.

(a) Axial plane
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(b) Axial nodes at initial configuration

Figure 3.7: Small Reactor

The material distribution is described by “type” numbers and 2-group data be-
longing to the different material types are given in Table 3.4. Time dependent
data are given in Table 3.5.

Table 3.4: Cross sections (in cm−1) for the 3-D small reactor.

Fuel Group Dg(cm) Σag(cm
−1) Σg→g+1(cm−1) νΣfg(cm

−1)
1 1 1.346557 0.008312 0.016976 0.004413

2 0.370075 0.064282 0.072784
2 1 1.337728 0.008745 0.016000 0.005491

2 0.367411 0.079145 0.104256
3 1 1.332264 0.009411 0.014974 0.006990

2 0.363171 0.099536 0.147261

Type number 1 represents the fuel assemblies, type number 2 represents the ab-
sorber assemblies, and type number 3 represents the reflector. Type numbers 22
and 24 represent the positions where, either absorber assemblies (type 2) or their
fuel followers (type 1), has to be placed into, due to the axial position of the given
absorber assembly. Type 23 is used for the ejected rod. One layer of axial reflector
at the top, another one at the bottom of the reactor, and a radial layer of reflec-
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Table 3.5: Neutron precursors parameters for the reactor.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
βi 0.000247 0.0013845 0.001222 0.0026455 0.000832 0.000169

λi (s−1) 0.0127 0.0317 0.115 0.311 1.4 3.87

v1 = 1.25× 107 v2 = 2.5× 105 β = 0.0065

tor are used. The albedo boundary condition is applied on the outer edge of the
reflector nodes, with the albedo boundary condition imposed by the extrapolation
length 2 ∗Dg.

The height of the core is 300 cm, and 12 axial planes are considered, each one of 25
cm. The first one and the last one are reflector layers defined by material of type
3. The initial position of control rod group 22 (see Fig 3.7) is at 200 cm above the
bottom reflector (Follower in 2nd-9th axial nodes, absorber rod in 10th-11th axial
nodes), the initial position of control rod group 23 is at 100 cm above the bottom
reflector, and the initial position of control rod group 24 is at 75 cm above the
bottom reflector.

In contrast to reality, the top and bottom reflectors do not contain control rod
absorbers or followers in this benchmark.

The transient is defined as follows:

• At time t = 0.0s, starting form the initial configuration, the height of the
absorber (material 2) at position 23 becomes smaller at constant velocity
until it is completely removed at time t = 0.15s, remaining only the fuel
(material 1) in the unrodded cells, simulating a rod ejection accident.

• From time t = 0.15s until time t = 1.0s nothing happens.

• When the security system acts, a scram is produced inserting absorbers at
positions 22 from time t = 1.0s until the bottom of the reactor is reached at
time t = 9.0s.

Evolution of the normalized mean power, starting from a critical situation of the
reactor, is monitored until time t = 7.0s.

The flux weighted method for the rod cusping effect proposed here will be com-
pared with the classical volume weighted method. As a reference value, a calcu-
lation of the keff where the heterogeneous cross sections of the partially rodded
node is used, and it will be called real method.

The evolution of the keff along the transient by three methods is shown at Fig-
ure 3.8. The first of these methods, named “Vol” at the legend of the Figure is
the volume weighted method, the one named “Flux” is the flux weighted method,

92
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and the curve for the keff named “Real” is obtained solving a stationary problem
where the mesh fits exactly with the peaks of the control rod to obtain a refer-
ence solution without the rod cusping effect. Good results for the flux weighted
methods compared with the classical volume weighted method are observed.
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Figure 3.8: Evolution of the keff (LEFT); Detailed view of the first 0.75 s (RIGHT).

The absolute error in the keff calculation for the volume weighted method and for
the flux weighted method is shown in Figure 3.9.
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Figure 3.9: Absolute error respect to the method (LEFT); Detailed view (RIGHT).

The effect of the rod cusping has been evaluated in the keff calculations, but it
can also be observed in the evolution of the normalized power (see Figure 3.10).
The reference solution is obtained by homogenizing the nuclear cross sections of
the partial rodded nodes along the transient with the stationary solution for each
time, and then the reference power evolution is obtained using these homogeneized
cross sections for each time step.

Summarizing, for the time discretization a one-step implicit method has been
used. This method needs to solve a a system of linear equations for each time
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Figure 3.10: Evolution of the power along the transient (LEFT); Detailed view
(RIGHT).

step, and the size of this system depends on the spatial accuracy needed in the
calculations. The performance of the method has been tested solving the 3-D
transient benchmark AER-DYN-001, showing that the proposed method provides
good results when it is compared with other codes such as PARCS and DYN3D.

When nodal methods are used, the cross sections have to be homogenized over
each node. In a transient based on moving control rods, when the homogenization
method used is the volume weighting method, the rod cusping effect arise in the
keff calculations, leading to large errors in the approximated flux near to the tip
of the control rod along the transient. To solve this problem, a homogenization
method based on weighting the cross sections with the flux is presented here. This
method has been tested for a 3-D transient of a small reactor, where the rod
cusping effect is a dominant fact. Good results are obtained, either at the moment
of a ejection control rod, or where a scram is occurring.

3.2 Block Preconditioning

The solution of the time dependent neutron diffusion equation using a backward
method needs to solve a large system of linear equations for each time step and
this process is the most expensive one from the computational point of view. To
speed-up the solution of the linear system a preconditioning technique is needed.

Different variational techniques are proposed to accelerate two classical block it-
erative methods for the solution of the linear systems arising from the time dis-
cretization of the multigroup time dependent neutron diffusion equation (3.1) when
a backward method is used to integrate in time. Also, a block preconditioner is
proposed. The performance of these methods is tested solving linear systems of
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3.2 Block Preconditioning

two transient problems associated with a 2D VVER 440 reactor and with a 3D
VVER 440 reactor.

Since the energy groups structure defines a natural partition of the matrix of the
system into different blocks that have good properties, in particular they are sym-
metric and positive definite matrices, two different methods to solve the linear
systems are studied that use this block structure, and different variational accel-
eration techniques are used to improve the convergence behaviour of the methods.

As shown in section 3.1 of this chapter, the discretization of the neutron diffusion
equation (3.1) by means of a one-step implicit method is written as

[
Tn+1

]
ψn+1 = [Rn]ψn +

K∑
k=1

λke
−λk∆tX [Cnk ] . (3.13)

Taking into account the structure of matrices L and M , we reexpress (3.13) as the
system of linear equations[

T11 T12

T21 T22

]
ψn+1 =

[
R11 R12

0 R22

]
ψn +

K∑
k=1

λke
−λk∆t

[
Cnk
0

]
, (3.14)

where

T11 =
1

∆t
v−1

1 + Ln+1
11 − b̂Mn+1

11 , T12 = −b̂Mn+1
12 ,

T21 = −Ln+1
21 , T22 =

1

∆t
v−1

2 + Ln+1
22 ,

R11 =
1

∆t
v−1

1 + âMn
11, R12 = âMn

12,

R22 =
1

∆t
v−1

2 ,

where â and b̂ have been previously defined by

â =

K∑
k=1

λkβkak, b̂ = 1− β +

K∑
k=1

λkβkbk. (3.15)

This is a large system of linear equations that has to be solved for each time step,
thus an efficient method has to be used in order to perform the computations in a
reasonable time.
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3.2.1 Solvers for the linear systems

To use the Euler backward discretization method exposed above, it is necessary to
solve systems of linear equations large and sparse with the following block structure[

T11 T12

T21 T22

] [
ψ1

ψ2

]
=

[
E1

E2

]
. (3.16)

Due to the large size of system (3.16), an iterative method is recommended for
its resolution. The finite element method used for the spatial discretization of the
neutron diffusion equation leads to blocks T11, T12, T21, and T22, with special prop-
erties, in particular, the blocks T11, T12, T21, and T22 are symmetric and diagonal
dominant matrices. The whole matrix of the system of linear equations, T , has
none of these properties. In this way, we propose the use of block iterative methods
that make use of the properties of the blocks to solve the whole system [53].

3.2.1.1 Block iterative algorithms

Two classical block iterative methods are considered, the block Jacobi method and
the block Gauss-Seidel method.

Each iteration of the block Jacobi method has to solve the problem[
T11 0
0 T22

] [
ψi+1

1

ψi+1
2

]
=

[
E1

E2

]
−
[

0 T12

T21 0

] [
ψi1
ψi2

]
, (3.17)

which is reduced to solve the systems

T11ψ
i+1
1 = E1 − T12ψ

i
2 ,

T22ψ
i+1
2 = E2 − T21ψ

i
1 ,

where ψ0
1 and ψ0

2 are a suitable initial guess. The iteration is stopped when the
following stopping criterion is satisfied∥∥∥∥[ E1

E2

]
−
[
T11 T12

T21 T22

] [
ψi+1

1

ψi+1
2

]∥∥∥∥ < tol

∥∥∥∥[ E1

E2

]∥∥∥∥ , (3.18)

where tol is a constant, which is set equal to 10−5.

Each iteration of the block Gauss-Seidel method has to solve the problem[
T11 0
T21 T22

] [
ψi+1

1

ψi+1
2

]
=

[
E1

E2

]
−
[

0 T12

0 0

] [
ψi1
ψi2

]
, (3.19)

which is reduced to solve the systems

T11ψ
i+1
1 = E1 − T12ψ

i
2 ,

T22ψ
i+1
2 = E2 − T21ψ

i+1
1 ,
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where ψ0
1 and ψ0

2 are also a suitable initial guess. The stopping criterion is the
same as the one used for the previous method.

Using these processes, only linear systems associated with matrices T11 and T22

have to be solved. These matrices are sparse, symmetric and diagonal dominant,
therefore, these linear systems can effectively be solved by means of a standard
iterative method as the preconditioned Conjugate Gradient method [59].

Usually, to solve the system (3.16) using either the method (3.17) or (3.19), it
is necessary to perform many external iterations of the process, then it will be
convenient to accelerate its convergence. To accomplish with it, we have alternated
these external iterations with iterations of a variational acceleration technique.

3.2.1.2 Variational acceleration techniques

For a generic system of linear equations

Tψ = E ,

a possible variational technique relies on iterations of the form

ψi+1 = ψi +

k∑
l=1

αld
i−l+1 , (3.20)

where the vectors dj are
dj = ψj − ψj−1 ,

and the acceleration factors, αl, are computed imposing that the residual of the
new solution has to be minimum. Equation (3.20) is equivalent to equation for
the residual

ri+1 = ri −
k∑
l=1

αlTd
i−l+1 . (3.21)

Thus, the quantity to be minimised is

ε2 = (ri+1)T (ri+1) =

(
ri −

k∑
l=1

αlTd
i−l+1

)T (
ri −

k∑
l=1

αlTd
i−l+1

)
.

Computing
∂ε2

∂αl
= 0 , l = 1, . . . , k ,

leads to the reduced system of normal equations

Mα = b , (3.22)
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where matrices elements are

Mlm =
(
Tdi−l+1

)T (
Tdi−m+1

)
; bl =

(
Tdi−l+1

)T
ri .

This variational technique will be called technique var1.

Different variational techniques will be used. The variational technique called var2
is based on iterations of the form

ψi+1 = ψi +

k∑
l=1

αld
i−l+1 +

k∑
l=1

βlr
i−l+1 , (3.23)

where vectors dli are direction vectors corresponding to the different energy groups.

Taking into account the variational acceleration techniques var1 and var2, other
two techniques are proposed. These techniques take into account the group struc-
ture of the problem, and then use one parameter for the fast group and other
parameter for the thermal group, due to the fact that they scale in a different way.

The variational technique called var3, is based on iterations of the form[
ψi+1

1

ψi+1
2

]
=

[
ψi1
ψi2

]
+

k∑
l=1

α1,l

[
di−l+1

1

0

]
+

k∑
l=1

α2,l

[
0

di−l+1
2

]
. (3.24)

The variational technique var4, is based on iterations of the form[
ψi+1

1

ψi+1
2

]
=

[
ψi1
ψi2

]
+

k∑
l=1

α1,l

[
di−l+1

1

0

]
+

k∑
l=1

α2,l

[
0

di−l+1
2

]

+

k∑
l=1

β1,l

[
ri−l+1
1

0

]
+

k∑
l=1

β2,l

[
0

ri−l+1
2

]
. (3.25)

For all these variational techniques the parameters αl and βl are derived from a
normal equations similar to equations (3.22).

3.2.1.3 Preconditioning the whole system

It is well known that the inverse of a matrix M with the following block structure

M =

[
A B
C D

]
,

with regular blocks A and D, is the matrix

M−1 =

[ (
A−BD−1C

)−1 −
(
A−BD−1C

)−1
BD−1

−
(
D − CA−1B

)−1
CA−1

(
D − CA−1B

)−1

]
. (3.26)
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Thus, to find a cheap preconditioner to our global system (3.16), we consider the
matrix

T̃ =

[
T̃11 T̃12

T̃21 T̃22

]
, (3.27)

where the new blocks, T̃ij are defined as the diagonal blocks defined by the diagonal
entries of block matrix Tij .

Using the inversion formula (3.26), it is easy to find the inverse of T̃ , and this
inverse will be used as a right preconditioner for our global system (3.16) as follows

[
T̃11 T̃12

T̃21 T̃22

]−1 [
T11 T12

T21 T22

] [
ψ1

ψ2

]
=

[
T̃11 T̃12

T̃21 T̃22

]−1 [
E1

E2

]
. (3.28)

Note that the block matrices arising from this preconditioned system are non
symmetric and, due to this fact, the systems associated with the new blocks must
be solved with, for example, the preconditioned BICGSTAB method [60].

3.2.2 Numerical Results

The performance of the methods presented above is tested in a transient for a two-
dimensional VVER 440 reactor core proposed in [61], and for the 3-D transient
benchmark AER-DYN-001 proposed in [57, 62].

3.2.2.1 Two-dimensional VVER 440 problem

For the two-dimensional problem, the nuclear cross section given in the 3D bench-
mark have been collapsed into a single plane. The description of the geometry for
this problem, together with the data for the cross sections and the neutron pre-
cursors parameters are presented in [61]. Materials of the two-dimensional reactor
have been defined as it is shown in Figure 3.11.

The cross sections of the materials and the neutron precursors parameters for the
transient are presented in Tables 3.6 and 3.7.

A transient that simulates the movement of two control rods has been defined by
means of the time evolution of the absorption cross section Σa2 for the material 8
as follows,

Σa2(t) =

 0.118870 · (1− t) + 0.016917 · t if 0 ≤ t ≤ 1 ,
0.118870 · (t− 1) + 0.016917 · (2− t) if 1 ≤ t ≤ 2 ,
0.118870 if 2 ≤ t ≤ 3 .

This function simulates that two control rods are extracted during the first second
then, the same rods are inserted during the next second and the transient is
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Figure 3.11: VVER 440 2D.

Fuel Group Dg(cm) Σag(cm
−1) Σg→g+1(cm−1) νΣfg(cm

−1)
1 1 1.346557 0.008312 0.016976 0.004413

2 0.370075 0.064282 0.072784
2 1 1.337728 0.008745 0.016000 0.005491

2 0.367411 0.079145 0.104256
3 1 1.332264 0.009411 0.014974 0.006990

2 0.363171 0.099536 0.147261
4 1 1.447520 0.000933 0.032215 0.000000

2 0.251741 0.033037 0.000000
5 1 1.231711 0.012120 0.020782 0.001345

2 0.240027 0.118846 0.027352
6 1 1.337727 0.008747 0.015996 0.005492

2 0.367479 0.079153 0.104316
7 1 1.346561 0.008317 0.016968 0.004416

2 0.370177 0.064282 0.072846
8 1 1.231640 0.012123 0.020785 0.001342

2 0.239942 0.118870 0.027299

Table 3.6: Cross sections for the 2-D VVER 440 reactor.

followed one more second, and the mean power evolution is shown at Figure 3.12.
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Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
βi 0.000247 0.0013845 0.001222 0.0026455 0.000832 0.000169

λi (s−1) 0.0127 0.0317 0.115 0.311 1.4 3.87
v1 = 1.25× 107 v2 = 2.5× 105 β = 0.0065

Table 3.7: Neutron precursors parameters for the reactor VVER 440.
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Figure 3.12: Power evolution for the VVER 440 2D transient.

Calculations have been carried out for a system of equations corresponding to a
given time step of the transient. The spatial discretization of the equations has
been done using polynomials of degree Kxy = 5. The block matrices corresponding
to this polynomial expansion have size N = 31951, and the nonzero elements of
the blocks T11 and T22 are 659799 for each one.

To test the numerical methods proposed above, a theoretical solution, ψ∗ has been
set equal to a vectors of ones, computing the right hand vector, E, as the product
of the matrix T by this theoretical solution.

A combination of five iterations of the block iterative algorithm combined with one
iteration of a variational acceleration technique, setting Kxy = 5 in the variational
definitions (3.20)-(3.25), has shown to be the optimal. Thus, numerical experi-
ments use this combination. The different block iterative methods combined with
the different variational acceleration techniques proposed for both preconditioned
and non-preconditioned problems have been tested.

Table 3.8, shows results for the solution of the linear systems corresponding to
matrices obtained with the spatial discretization of degree Kxy = 5. In this Table,
the number of global iterations needed to solve the system together with the CPU
time needed to solve the system are shown. The different methods have been
programing in FORTRAN 90 and have been run in a personal computer with two
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processors Intel Core 2, of 1.86 GHz and with 1 GB of RAM. The best variational

Without preconditioning With preconditioning
Jacobi Gauss-Seidel Jacobi Gauss-Seidel

var1 198 (119.75 s) 48 (33.71 s) 82 (80.56 s) 18 (21.65 s)
var2 176 (107.35 s) 54 (33.79 s) 84 (80.09 s) 18 (22.51 s)
var3 84 ( 52.01 s) 54 (39.00 s) 52 (48.86 s) 18 (22.40 s)
var4 168 (108.45 s) 60 (42.40 s) 30 (32.82 s) 18 (22.42 s)

Table 3.8: Number of iterations and CPU time for matrices obtained with Kxy = 5.

acceleration technique results in terms of the CPU-time for each block method,
with or without preconditioned is presented in boldface.

At this Table we can see that the preconditioned methods work better than the
non-preconditioned ones, and block Gauss-Seidel method is faster than the Jacobi
method. Also, it can be seen that the number of iterations in the block Gauss-
Seidel with preconditioning is not dependent on the variational technique used.

3.2.2.2 Three-dimensional VVER 440 problem

The three-dimensional benchmark VVER 440 (See Figure 3.13) used in Section 3.1.3
is used to check the convergence behaviour of the methods on three-dimensional
matrices, which are larger than the ones arising in two-dimensional problems.
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Figure 3.13: Geometry of VVER 440 reactor core.

The matrices for steady state configuration of the reactor are used. Also a theo-
retical solution vector of all entries equal to one is used, and the right hand term
is determined by multiplying the matrix by the solution vector, as it was done in
the previous example.
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3.2 Block Preconditioning

The spatial discretization of the equations has been done using polynomials of
degree Kxy = 1 and Kz = 1. The block matrices corresponding to this polynomial
expansion have size N = 17407, and the nonzero elements of the blocks T11 and
T22 are NNZ = 335479 for each one. Table 3.9 shows results for the solution of
this linear systems. In this Table, the number of global iterations needed to solve
the system, and the CPU time needed to solve the system are reported.

Without preconditioning With preconditioning
Jacobi Gauss-Seidel Jacobi Gauss-Seidel

var1 155 (12.80 s) 60 ( 5.24 s) 134 (13.03 s) 24 (3.05 s)
var2 168 (16.04 s) 66 ( 6.78 s) 110 (12.28 s) 24 (3.29 s)
var3 114 ( 8.92 s) 66 ( 6.04 s) 45 ( 4.59 s) 24 (3.10 s)
var4 78 (10.88 s) 72 ( 9.83 s) 30 ( 5.34 s) 24 (4.58 s)

Table 3.9: Number of iterations and CPU time for matrices obtained with Kxy = 1 and
Kz = 1.

At Table 3.9, the results are similar to the ones in Table 3.8, i.e., the preconditioned
methods work better than the non-preconditioned ones, and block Gauss-Seidel
method is faster than the Jacobi method. Also, it can be seen that the number of
iterations in the block Gauss-Seidel with preconditioning is not dependent on the
variational technique used.

Another configuration for the spatial discretization of the equations has been done
using polynomials of degree Kxy = 2 and Kz = 2. The block matrices corre-
sponding to this polynomial expansion have size N = 130075, and the nonzero
elements of the blocks T11 and T22 are NNZ = 5693803 for each one. Table 3.10
shows results for the solution of this linear system. The number of global itera-
tions needed to solve the system and the CPU time needed to solve the system
are reported. The best variational acceleration technique results in terms of the

Without preconditioning With preconditioning
Jacobi Gauss-Seidel Jacobi Gauss-Seidel

var1 207 (299.97 s) 60 ( 91.27 s) 113 (238.56 s) 32 (83.81 s)
var2 299 (487.80 s) 60 (108.46 s) 72 (173.99 s) 30 (79.85 s)
var3 131 (177.06 s) 66 (106.07 s) 51 (108.77 s) 41 (90.46 s)
var4 126 (269.80 s) 66 (151.72 s) 42 (134.50 s) 24 (85.13 s)

Table 3.10: Number of iterations and CPU time for matrices obtained with Kxy = 2
and Kz = 2.

CPU-time for each block method, with or without preconditioned is also presented
in boldface in the tables for the three-dimensional problem. At Table 3.10, where
the matrices are quite larger than in the other problems, the fastest method is the
Gauss-Seidel method, with and without preconditioning, over the Jacobi method.
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Chapter 3. Time Dependent Neutron Diffusion Equation

Also, the preconditioned Gauss-Seidel method is the fastest one, but in this case,
the number of iteration is dependent on the variational technique used, being the
best acceleration technique for this method the technique var1.

Since the ordinary differential equations arising from the spatial discretization of
the neutron diffusion equation in hexagonal geometry are stiff, implicit methods
are used for the time discretization of these equations. This implies that for each
time step, a large and sparse system of linear equations has to be solved. The
groups of energy considered in these equations define a block structure in the
matrix associated to these systems. In this way, we have studied the performance
of different variational acceleration techniques applied to classical block iterative
methods for the solutions of these systems of equations such as the block Jacobi and
the block Gauss-Seidel methods. Also we have proposed a cheap preconditioner
for the whole system, and the behaviour of the variational acceleration techniques
is tested for the preconditioned systems. Two problems, a 2D transient and a 3D
transient benchmark, are used to test the behaviour of the variational techniques.
For these cases, we have observed that the most efficient acceleration technique
depends on the method, and these results are also sensitive to the effect of the
preconditioner.

As a future work, this research can be extended analysing the behaviour of the
methods during a whole transient, where for each time step the system is a per-
turbed configuration of the previous one, and the solution at the previous time
step is a good initial guess for the new system. Also, parallel codes can take advan-
tage of the block structure of the matrices, and the behaviour of the acceleration
techniques on these situations might be studied.

3.3 Spectral Preconditioning

The algebraic system (3.29),

[
Tn+1

]
ψn+1 = [Rn]ψn +

K∑
k=1

λke
−λk∆tX [Cnk ] , (3.29)

obtained from the discretization by a backward method of the time dependent
neutron diffusion equation (3.1), can also be solved with a standard Krylov solver
without using the block structure of the matrices given by the multigroup ap-
proximation of the energy. To solve this problem in an efficient way, a good
preconditioner for the different sparse matrices associated with the systems of lin-
ear equations obtained after the discretization of the problem has to be developed.
A spectral preconditioner is studied for a sequence of systems of linear equations
based on modifying the eigenvalues distribution of the coefficient matrices, and
different strategies to update the preconditioner are compared for the matrices
appearing in a typical transient associated with a VVER-type nuclear reactor.
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3.3 Spectral Preconditioning

Krylov methods suffer from slow convergence unless a preconditioner is used. The
most popular preconditioners for linear systems are based on incomplete factoriza-
tions of the coefficient matrix. Incomplete LU preconditioners are robust, but for
very large matrices they are very expensive from the point of view of the memory
needed for their storage. In this way, an alternative methodology is proposed here
that can be implemented using only matrix-vector products and has not storage
problems.

It is known that the rate of convergence of Krylov methods depends on the distri-
bution of the eigenvalues of the system matrix together with its eigenvectors. In
this way, the Krylov methods present slow convergence if the eigenvalues of the
matrix are close to zero. Spectral preconditioners use this idea to improve the con-
vergence implementing transformations on the linear system, in such a way that
the matrix obtained after the spectral transformation has its eigenvalues shifted
away from zero. The spectral transformations can be implemented using matrix-
vector products and can be applied without the necessity of building explicitly the
system matrix [63].

3.3.1 Spectral Preconditioner

Let us consider a linear system as

Ax = b,

and an initial preconditioner M . It is proposed the use of a preconditioner based
on a low rank correction that shifts the smallest eigenvalues of the matrix.

Let V be the rank-k matrix associated to a right invariant subspace for the pre-
conditioned matrix AM , such as

AMV = V Jk

where the eigenvalues of Jk are {λ1, . . . , λk}, the following proposition holds [63]:

Proposition 1 Let W be such that Ac = WAMV is non singular. Defining

M (2) = M +MVA−1
c W ,

the eigenvalues of AM (2) are{
η

(2)
i = λi + 1 if i ≤ k
η

(2)
i = λi if i > k .

This preconditioner can be applied in a recursive way to a sequence of linear
systems,

A(n)x(n) = b(n) , n = 1, 2, . . . . (3.30)
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Chapter 3. Time Dependent Neutron Diffusion Equation

where the sequence of matrices and right hand terms correspond to the ones in
equation (3.29)

A(n+1) =
[
Tn+1

]
,

b(n+1) = [Rn]ψn +

K∑
k=1

λke
−λk∆tX [Cnk ] ,

x(n+1) = ψn+1 .

Then for the (l + 1)-th linear system the preconditioner used is of the form

M (l+1) = M +

l∑
j=1

M (j)V (j)
(
W (j)AM (j)V (j)

)−1

W (j) (3.31)

For the preconditioner implementation we have used W (j) = V (j)H .

In some transients, the spectral properties of the system matrix change slowly
with time, then it is assumed than the invariant subspace associated to the lower
part of the spectrum for the matrix of system n can be used to precondition the
matrix system at step n+ 1.

The problem of approximating the invariant subspace of each matrix A(n) is solved
by means of the use of a Krylov solver such as the GMRES-DR(m, k) [64] for the
linear systems, which itself is based on approximating an invariant subspace for
the matrix system as a strategy to restart the GMRES method.

To control the memory required by the preconditioner (3.31), a limited number of
low rank matrices V (j) defining the invariant subspace can be stored, and because
the matrix A(n) is changing in time, the strategy is to define the preconditioner
as

M (l+1) = M +
∑
j∈I

M (j)V (j)
(
W (j)AM (j)V (j)

)−1

W (j) (3.32)

where I is a set of Lmax indices j such that the invariant subspaces at these
indices are approximately associated with the lowest part of the spectrum of matrix
A(n+1). Matrix W (j)AM (j)V (j) is k× k size, so the inverse can be calculated in a
very fast way for low values of k (k = 1, 2, 3, . . .).

3.3.2 Numerical Results

To test the preconditioner (3.32) for the neutron diffusion equation, we consider
the transient in the small reactor of type VVER (see Figure 3.14 described at
Section 3.1.3.1).

Evolution of the normalized mean power, starting from a critical situation of the
reactor, is monitored until time t = 7.0s. Figure 3.15 shows the evolution of the
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Figure 3.14: Small reactor.

power during the transient computed with the Spectral Element Method of order 2
(HEXFEM when referenced here) and the solution obtained with PARCS code [65].
The preconditioner is tested with a sequence of 100 linear systems corresponding
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Figure 3.15: Power along the transient.

to the fast part of the transient (from t = 0.0s to t = 0.125s), where the time step
used is ∆t = 0.00125s.

Two different strategies are considered to test the preconditioner. The first one
varies the number of terms considered at sum (3.32). We will use Lmax = 5, 10,
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15, 20 and 25. The second strategy consists of changing the rank of the subspace
considered in each term of this sum. In this way we will use k = 1, 2, and 3.
Initial preconditioner M is chosen in all cases as the identity matrix, to simulate
the situations where the system matrix A is not explicitly known, only its product
by a vector.

First an algebraic problem obtained with linear finite elements for the spatial
discretization, is considered. The system matrices are N × N , where N = 1898,
and the number of non zero elements of the matrices is NNZ = 65860. The
number of iterations needed by the Krylov method GMRES to solve the 100 first
time steps of the transient, when the different spectral preconditioner strategies
are used are shown in Figures 3.16–3.17.
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Figure 3.16: Influence of the rank of the subspace, k, for a fixed Lmax = 25. (spatial
discretization with polynomial degree 1, N = 1898, NNZ = 65860).

We observe that the Krylov solver needs about 110 iterations for the first sys-
tem and the preconditioner success on the reduction of the iteration number very
quickly. When the number of iterations is reduced about 35 the preconditioner
stops improving the number of iterations required to solve the linear systems.

At Figures 3.18 - 3.19, the results corresponding to an algebraic problem obtained
from a spatial discretization of the reactor using second order finite elements are
shown. The system matrices are of dimension N = 12950, and the number of non
zero elements of the matrices is NNZ = 1064284.

We observe that starting with 380 iterations for the first system, the preconditioner
success on the reduction of the iteration number very quickly, and when the number
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Figure 3.17: Influence of the number of terms, Lmax, for a fixed k = 3. (spatial
discretization with polynomial degree 1, N = 1898, NNZ = 65860).
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Figure 3.18: Influence of the rank of the subspace, k, for a fixed Lmax = 25. (spatial
discretization with polynomial degree 2, N = 12950, NNZ = 1064284).

of iterations is reduced around 220 − 240 the preconditioner stops improving the
number of iterations required to solve the linear systems.
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Figure 3.19: Influence of the number of terms, Lmax, for a fixed k = 3. (spatial
discretization with polynomial degree 2, N = 12950, NNZ = 1064284).

Summarizing we have that spatial discretization of time dependent neutron diffu-
sion equation combined with an implicit finite difference method implies that very
large systems of equations have to be solved at each time step.

Spectral preconditioners, which are based on a low rank update of a previous
preconditioner, improve spectral properties of the system matrix when a linear
system is solved with a Krylov method.

To study the feasibility of using this kind of preconditioners for the sequence of
linear systems arising in a given transient, a transient associated to a control rod
movement in a small reactor has been considered. In a first approach, different
strategies for the implementation of the preconditioner have been considered and
it has been observed that the preconditioner is very efficient for the reduction of
iterations needed to solve the linear systems for the first 10-15 systems and the
reduction is stagnated for the rest of systems. It remains for further studies the
use of this kind of preconditioners for larger problems such as the ones associated
with commercial reactors, and the combination of the preconditioner with different
minimal residual Krylov methods.
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3.4 Exponential Method

3.4 Exponential Method

We take into account that since the ordinary differential equations resulting of
the discretization of diffusion equations are, in general, stiff, implicit methods are
used. The use of time integrators based on the exponential matrix to integrate the
semidiscrete system of ODE’s arising after the spatial discretization of the time
dependent neutron diffusion equation is studied. This is done because some studies
suggest than Krylov methods for the approximation of the matrix exponential
converge faster than the methods for the solution of the linear systems arising
on implicit methods [66, 67]. These methods seems to work better when a good
preconditioner for the system matrix is not available for the implicit methods,
which is the case when it is desirable not to load the system matrix due to memory
requirements, and only the matrix vector product by this matrix is available.
Moreover, other studies suggest that polynomial interpolation for the exponential
matrix, such as the Real Leja points Method [68], converge as fast as Krylov
methods without the memory requirements to save all the vectors defining the
Krylov subspace. A Chebyshev approximation for the exponential of a matrix [69,
70] is included for completeness, and also higher order exponential integrators
based on the Magnus expansion with a commutator free formulation [71, 72, 73]
are tested against a classical second order exponential integrator.

The time dependent neutron diffusion equation (3.1) can also be written with the
compact form y′ = Ay as follows

Φ′1
Φ′2
C′1
...
C′k

 =


T11 T12 λ1v1 . . . λkv1

T21 T22 0 . . . 0
β1M11 β1M12 λ1 . . . 0

...
...

. . .
...

βkM11 βkM12 0 . . . λk

 ·


Φ1

Φ2

C1
...
Ck

 . (3.33)

where Tij are the blocks associated with the energy groups of the operator T
defined as

T = [v] ((1− β)M−L) . (3.34)

After the spatial discretization by means of the Spectral Element Method, exposed
in chapter 2, the semidiscrete two energy groups time dependent neutron diffusion
equation is written, as a homogeneous system of linear equations y′ = Ay, as
follows,

Pψ′1
Pψ′2
PC ′1

...
PC ′k

 =


T11 T12 λ1v1P . . . λkv1P
T21 T22 0 . . . 0

β1M11 β1M12 λ1P . . . 0
...

...
. . .

...
βkM11 βkM12 0 . . . λkP

 ·

ψ1

ψ2

C1

...
Ck

 . (3.35)
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where Tij are the discrete matrix blocks corresponding to Tij , and P is the mass
matrix.

Then, moving the mass matrix, P , from the matrix to neutron precursors it is
obtained PCk at both vectors. Since it is not necessary to know the value of Ck,
we avoid to solve exactly some systems with P . System (3.35) can be rewritten as

Pψ′1
Pψ′2
PC ′1

...
PC ′k

 =


T11 T12 λ1v1 . . . λkv1

T21 T22 0 . . . 0
β1M11 β1M12 λ1 . . . 0

...
...

. . .
...

βkM11 βkM12 0 . . . λk

 ·


ψ1

ψ2

PC1

...
PCk

 . (3.36)

The vector ψi has to be known and, for this reason, it is necessary to invert matrix
P . This process can be a very expensive task and, for this reason an approximation
P̂ for the mass matrix P is considered by means of a mass lumping technique
(adding all the elements of each row to the diagonal one and considering only the
principal diagonal of the matrix), which is equivalent to calculate the integrals
involving polynomials up to order s approximately with a quadrature rule up to
order s− 1 (see [36]). The new mass lumped matrix P̂ is a diagonal matrix very
easy to invert, obtaining the modified system

ψ′1
ψ′2
PC ′1

...
PC ′k

 =


P̂−1T11 P̂−1T11 λ1v1P̂

−1 . . . λkv1P̂
−1

P̂−1T12 P̂−1T11 0 . . . 0
β1M11 β1M12 λ1 . . . 0

...
...

. . .
...

βkM11 βkM12 0 . . . λk

 ·


ψ1

ψ2

PC1

...
PCk

 .

(3.37)

3.4.1 Exponential operator and its Magnus Expansion

Let us consider the initial value problem associated with a homogeneous linear
ordinary differential equation

Y ′(t) = A(t)Y (t), Y (t0) = Y0. (3.38)

If A(t) is a scalar, the solution of this problem is

Y (t) = exp

(∫ t

t0

A(s)ds

)
Y0. (3.39)

When A(t) is a matrix the solution (3.39) is not true any more, except if the ma-
trix operator evaluated at different times, t1, t2 ∈ [t0, t], commutes, A(t1)A(t2) =
A(t2)A(t1), that is [A(t1), A(t2)] = 0, (which is the case for a constant matrix A).
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3.4 Exponential Method

Now, looking for the solution of equation (3.38) for the general case, let us use
U(t, t0), defined through

Y (t) = U(t, t0)Y0, (3.40)

some times referred as the time evolution operator. U(t, t0) satisfies the following
differential equation and initial condition

U ′(t, t0) = A(t)U(t, 0), U(t0, t0) = I, (3.41)

where I stands for the identity matrix. The proposal by Magnus [74] as a solution
to (3.41) is a matrix exponential

U(t, t0) = exp(Ω(t, t0)), Ω(t0, t0) = 0, (3.42)

and a series expansion for the matrix in the exponent

Ω(t, t0) =

∞∑
k=1

Ωk(t, t0), (3.43)

which is known as the Magnus expansion.

3.4.1.1 Differential equation for Ω(t, t0)

If U(t, t0) obeys equation (3.41), a differential equation for Ω(t, t0) will be obtained.
As we are not allowed to use the familiar differentiation rules, we have to follow a
different route to proceed. Here two important results are fulfilled. The first one
is the intuitively clear “group property” of the time-evolution operator:

U(t2, t0) = U(t2, t1)U(t1, t0). (3.44)

The second one is the related to a famous classical result in matrix algebra known
as the Baker-Campbell-Hausdorff (BCH) formula [75] for the product of two ex-
ponentials. It states that for any two, in general noncommuting, operators X and
Y , one has

exp(X) exp(Y ) = exp

(
X + Y +

1

2
[X,Y ] +

1

12
([X, [X,Y ]] + [Y, [Y,X]]) + . . .

)
(3.45)

The exponent in this equation is an infinite series whose terms are nested commu-
tators of increasing order.

The simplicity in (3.45) is lost because higher order terms become quickly very
much involved. The explicit form of the series is not known, although there exist
algorithms to compute it to a finite order.
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Furthermore, a compact formula exists that gives the piece of the BCH series to
all orders in one operator, say Y , and to first order in X, namely [73]

exp(X) exp(Y ) = exp

X + Y +

∞∑
k=1

(−1)k
Bk
k!

[

k-times︷ ︸︸ ︷
Y, [. . . [Y ,X]] . . .] +O(X2)

 ,

(3.46)
where multiple nested commutators are explicitly indicated. Here Bk are Bernoulli
numbers [30].

Now, to derive the equation satisfied by Ω(t, t0), we consider a short time interval
δt after time t; at the end, we will get δt → 0. We use the group property (3.44)
with t2 = t+ δt, t1 = t to write U(t+ δt, t0) = U(t+ δt, t)U(t, t0). In exponential
form it reads

exp(Ω(t+ δt, t0)) = exp(Ω(t+ δt, t)) exp(Ω(t, t0)). (3.47)

The matrix A is assumed to take the constant value A(t) during the interval
(t, t+δt). The equation (3.38) can then be solved in the exponential form exp(Ω(t+
δt, t)) ' exp(A(t)δt) and so

exp(Ω(t+ δt, t0)) ' exp(A(t)δt) exp(Ω(t, t0)) . (3.48)

Applying (3.46) to (3.48) and keeping just the first order in δt, we get

Ω(t+ δt, t0) = Ω(t, t0)

+ δt

A(t) +

∞∑
k=1

(−1)k
Bk
k!

[

k-times︷ ︸︸ ︷
Ω(t, t0), [. . . [Ω(t, t0), A(t)]] . . .]

+O(δt2) . (3.49)

In the limit δt→ 0, this yields the exact result

∂

∂t
Ω(t, t0) = A(t)+

∞∑
k=1

(−1)k
Bk
k!

[

k-times︷ ︸︸ ︷
Ω(t, t0), [. . . [Ω(t, t0), A(t)]] . . .], Ω(t0, t0) = 0 ,

(3.50)

which is a highly nonlinear differential equation for Ω, where the firsts terms of
this equations are

Ω′(t, t0) = A(t)− 1

2
[Ω(t, t0), A(t)] +

1

12
[Ω(t, t0), [Ω(t, t0), A(t)]] + . . . , (3.51)

By defining

Ω[0](t, t0) = 0, Ω[1](t, t0) =

∫ t

0

A(t1)dt1, (3.52)
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and applying Picard fixed point iteration, one gets

Ω[n](t, t0) =

∫ t

0

(
A(t1)− 1

2
[Ω[n−1](t1, t0), A(t1)]

+
1

12
[Ω[n−1](t1, t0), [Ω[n−1](t1, t0), A(t1)]] + . . .

)
dt1, (3.53)

and limn→∞Ω[n](t, t0) = Ω(t, t0) in a suitably small neighbourhood of the origin.

3.4.1.2 First terms in Magnus expansion

Suppose now that A(t) is of first order in some parameter ε and try a solution in
the form of a series

Ω(t, t0) =

∞∑
n=1

Ωn(t, t0), (3.54)

where Ωn(t, t0) is supposed to be of order εn. Equivalently, it can be replaced A(t)
by εA(t) in (3.38) and determine the successive terms of

Ω(t, t0) =

∞∑
n=1

εnΩn(t, t0). (3.55)

This can be done explicitly, at least for the first terms, by substituting the se-
ries (3.55) at equation (3.51) and equating powers of ε. Obviously, the Magnus
series (3.54) is recovered by taking ε = 1. Thus, using the notation A(ti) ≡ Ai,
the first two orders read

1. Ω′1(t, t0) = A(t), so that

Ω1(t, t0) =

∫ t

0

dt1A1. (3.56)

2. Ω′2(t, t0) = − 1
2 [Ω1(t, t0), A(t)]. Thus

Ω1(t, t0) =
1

2

∫ t

0

dt1

∫ t1

0

dt2[A1, A2]. (3.57)

3.4.1.3 Magnus integrators for linear systems

If time is discretized with an equally spaced mesh, tn+1 = tn + h, then A(t) can
be expanded around the midpoint, tn+1/2 = tn +h/2, of the subinterval [tn, tn+1],

A(t) =

∞∑
j=0

aj
(
t− tn+1/2

)j
, where aj =

1

j!

djA

dtj
(tn+1/2) (3.58)
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and insert the series (3.58) into the different terms (3.56) and (3.57) defining the
Magnus expansion. In this way, one gets explicitly, the expression of Ωk(tn+1, tn),
for example, up to order h4 as

Ω1(tn+1, tn) = ha0 + h3 1

12
a2 +O(h5),

Ω2(tn+1, tn) = h3−1

12
[a0, a1] +O(h5), (3.59)

where Ω3(tn+1, tn) = O(h5), Ω4(tn+1, tn) = O(h5), Ω5(tn+1, tn) = O(h7).

Let us denote αi ≡ hiai−1. Then [αi1 , αi2 ] is an element of order hi1+i2 . It is
possible to build methods of order p ≡ 2s by considering only terms involving
α1, . . . , αs in Ω [72]. These terms can be approximated by linear combinations of
the matrix A(t) evaluated at different points. In particular, up to order two or up
to order four, we have to approximate

Ω(tn+1, tn) = α1 +O(h3)

= α1 +
1

12
(α3 − [α1, α2]) +O(h5). (3.60)

We introduce the averaged generalised momentum matrices

A(i)(h) ≡ 1

hi

∫ tn+h

tn

(
t− tn+1/2

)i
A(t)dt =

1

hi

∫ h/2

−h/2
tiA(t+ tn+1/2)dt (3.61)

for i = 0, . . . , s− 1. If their exact evaluation is not possible, or is computationally
expensive, a numerical quadrature rule is used as, for example, the Gauss-Legendre
quadratures of order p,

A(0)(h) =

∫ tn+h

tn

A(t)dt = h

k∑
j=1

bjAj +O(hp+1), (3.62)

with Ai ≡ A(tn + cih), where bj are the Gauss-Legendre weights and cj the corre-
sponding collocation points at the interval [0, 1]. Then it is possible to approximate
all the integrals A(i) (up to the required order) by using only the evaluations Ai
at the nodes ci of the quadrature rule required to compute A(0). Specifically,

A(i) = h

k∑
j=1

bj

(
cj −

1

2

)i
Aj , i = 0, . . . , s− 1, (3.63)

or equivalently, A(i) = h
∑k
j=1

(
Q

(x,k)
G

)
ij
Aj with

(
Q

(x,k)
G

)
ij

= bj
(
cj − 1

2

)i
. In

particular, if second and fourth order Gauss-Legendre quadrature rules are con-
sidered, then for s = k = 1 we have

b1 = 1, c1 =
1

2
, (3.64)
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and
Q

(1,1)
G = 1. (3.65)

For fourth order, where s = k = 2,

b1 = b2 =
1

2
, c1 =

1

2
−
√

3

6
, c2 =

1

2
+

√
3

6
, (3.66)

so that

Q
(2,2)
G =

( 1
2

1
2

−
√

3
12

√
3

12

)
. (3.67)

Furthermore, using expression (3.58) in terms of αi up to order s− 1

A(t) =

s−1∑
j=0

aj
(
t− tn+1/2

)j
=

s−1∑
j=0

1

hj+1
αj+1

(
t− tn+1/2

)j
=

s∑
j=1

1

hj
αj
(
t− tn+1/2

)j−1
,

(3.68)

at equation (3.61) it is obtained

A(i)(h) ≡ 1

hi

∫ h/2

−h/2
tiA(t+ tn+1/2)dt

=
1

hi

∫ h/2

−h/2
ti

p+1∑
j=1

1

hj
αjt

j−1

dt

=

s∑
j=1

(
1

hi+j

∫ h/2

−h/2
αjt

i+j−1dt

)

=

s∑
j=1

αj

(∫ h/2

−h/2

ti+j−1

hi+j
dt

)

=

s∑
j=1

αj
1− (−1)i+j

(i+ j)2i+j
, (3.69)

or in a equivalent conpact form defining a matrix T (s) as follows

A(i) =

s∑
j=1

(
T (s)

)
ij
αj ≡

s∑
j=1

1− (−1)i+j

(i+ j)2i+j
αj , 0 ≤ i ≤ s− 1. (3.70)

If this relation is inverted (to order two s = 1) one has

R(1) =
(
T (1)

)−1

= (1) , (3.71)
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and to order four s = 2 it is obtained

R(2) =
(
T (2)

)−1

=

(
1 0
0 12

)
, (3.72)

so that the corresponding expression of αi in terms of A(i) or Aj is given by

αi =

s∑
j=1

(
R(s)

)
ij
A(j−1) =

s∑
j=1

(
R(s)Q

(s,k)
G

)
ij
Aj (3.73)

3.4.1.4 Commutator free Magnus expansion

We have seen that the second order method eΩ[2]

yn+1 = exp(Ω[2](h))yn +O(h3) = exp(α1)yn +O(h3), (3.74)

does not contain commutators, so the expression for the method using the Gauss-
Legendre quadrature rule and equation (3.73) to express αi in terms of matrix
evaluations is obtained as

yn+1 = exp(hA(tn+1/2))yn +O(h3). (3.75)

The fourth order method eΩ[4]

containing commutators corresponds to

yn+1 = exp(Ω[4](h))yn +O(h5) = exp(α1 −
1

12
[α1, α2])yn +O(h5).(3.76)

Alternatively, approximations up to the same order can be obtained by a prod-
uct of exponentials of linear combinations of the αi which avoid the presence of
commutators [71]. For example, we can consider

Ψ4 ≡
2∏
k=1

exp (xk,1α1 + xk,2α2) = exp(Ω[4](h)) +O(h5), (3.77)

where the coefficients xk,1, xk,2 have to be determined. To work with the Lie
algebra generated by the A(i)s (or the Ais) is equivalent to work with the Lie
algebra generated by the αi. However, in the last case the problem simplifies
considerably since the number of therms of the Lie algebra is reduced. To get
fourth-order integrators it suffices to consider α1 and α2 [71]. Then, the problem
reduces to solve the equation

Ψ4 ≡
2∏
k=1

exp (xk,1α1 + xk,2α2) = exp(α1 −
1

12
[α1, α2]) +O(h5). (3.78)
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We can use the Baker-Campbell-Hausdorff (BCH) formula (3.45)

exp(X) exp(Y ) = exp

(
X + Y +

1

2
[X,Y ] +

1

12
([X, [X,Y ]] + [Y, [Y,X]]) + . . .

)
(3.79)

Notice that the solution is time symmetric and only odd terms appear in the
equation. Then those terms at even orders up to the order of the method have
to be cancelled with a proper choice of the parameters xk,j . An integrator, ψh, is
time symmetric if ψ−1

−h = ψh. Then the following symmetry for the coefficients

xm+1−k,j = (−1)j+1xk,j , j = 1, 2 (3.80)

makes the schemes time symmetric and all even order terms are cancelled.

At this point we have to look for the coefficients x1 and x2 fulfilling the equation

Ψ[4] ≡ exp (x1α1 + x2α2) exp (x1α1 − x2α2) = exp(α1 −
1

12
[α1, α2]) +O(h5),

(3.81)
and, after some calculations

Ψ[4] ≡ exp (x1α1 + x2α2) exp (x1α1 − x2α2)

= exp ((x1α1 + x2α2) + (x1α1 − α2α2) + [(x1α1 + x2α2), (x1α1 − x2α2)])+O(h5)

= exp (2x1α1 − x1x2[α1, α2]) +O(h5)

= exp(α1 −
1

12
[α1, α2]) +O(h5) (3.82)

the following restrictions for the coefficients are obtained

2x1 = 1
−x1x2 = − 1

12

}
⇒ x1 = 1

2
x2 = 1

6

}
. (3.83)

With these coefficients, the solution at time tn+1 can be achieved from the solution
at time tn by means of

y(tn+1) = exp

(
1

2
α1 +

1

6
α2

)
exp

(
1

2
α1 −

1

6
α2

)
y(tn) , (3.84)

or, in terms of A1 = A(tn + (1/2 −
√

3/6)h) and A2 = A(tn + (1/2 +
√

3/6)h),
using (3.73)

y(tn+1) = exp (a1hA1 + a2hA2) exp (a2hA1 + a1hA2) y(tn) , (3.85)

with a1 = 3−2
√

3
12 , a2 = 3+2

√
3

12 .
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3.4.2 Implementation of the product matrix exponential -
vector

Different ways to approximate the calculation for the matrix exponential for large
and sparse matrix systems are compared. One of them consists on the use of a
Krylov subspace to project our operator and to exponentiate the projected matrix
obtained.

The other two ways to approximate the exponential matrix are based on a poly-
nomial approximation of the exponential function in a interval containing the
eigenvalues of the corresponding matrix, and then use the matrix polynomial to
approximate the matrix exponential. It can be done either using a Newton inter-
polation of the exponential functions at a sequence of Leja points on the real focal
interval of a family of confocal ellipses in the complex plane, or using Chebyshev
polynomials approximating the exponential on the interval containing the relevant
eigenvalues of the matrix. We briefly describe these methods.

3.4.2.1 Krylov methods

For A ∈ Rn×n and v ∈ Rn, the Arnoldi process [48] yields, after k steps, vectors
v1, . . . , vk+1 ∈ Rn that are orthonormal and span the Krylov subspace

Kk(v,Av, . . . , Ak−1v). (3.86)

With the basis vectors vi, the Arnoldi process delivers an upper-Hessemberg matrix
Hk ∈ R(k+1)×k such that the following relation holds

AVk = VkHk + hk+1,kvk+1e
T
k , (3.87)

where Vk ∈ Rn×k has columns v1, . . . , vk, Hk ∈ Rk×k is the matrix Hk without
the last row (0, . . . , 0, hk+1,k), and ek = (0, . . . , 0, 1)T ∈ Rk. The first basis vector
v1 is the normalized vector v: v1 = v/||v||.

Based on V Tk AVk = Hk, the matrix exponential can be approximated by [76, 67]

eAv ≈ βVkeHke1, (3.88)

or by its corrected scheme

eAv ≈ βVk+1e
Hke1 (3.89)

where

Hk =

(
Hk 0

hk+1,ke
T
k 0

)
(3.90)
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3.4.2.2 Chebyshev polynomials

A well known method to approximate ehAv is based on the Chebyshev polynomial
expansion (see for instance [69, 68]).

Here, to interpolate a function f(x) over the interval [−1, 1] the truncated formula

f(x) ≈
k∑
i=1

ciTi(x) +
c0
2
I, (3.91)

is used, where Ti(x) are the Chebyshev polynomials of the first kind defined at
[−1, 1], which can be computed by the Chebyshev recursion

T0(x) = 1, T1(x) = x, Ti+1(x) = 2xTi(x)− Ti−1(x), i = 1, 2, . . . , (3.92)

and the coefficients ci can be computed, for a large M , as

ci =
2

M

M∑
j=1

f(cos(θj)) cos(iθj), k = 0, 1, . . . ,m, θj =
π(j − 1

2 )

M
, (3.93)

which means interpolating f(x) at the Chebyshev polynomial roots, where this
Chebyshev approximation have been previously used at [77, 70].

Assuming matrix hA has the eigenvalues in [ha, hb], to interpolate the function
exp(x) over this interval is equivalent to interpolate over the interval [−1, 1] the
function f(x) defined as follows

f(x) := exp (xγ + c) , (3.94)

where γ = h(b− a)/2 and c = h(a+ b)/2.

Finally, defining B = (hA− c)/γ (with the eigenvalues of B in [−1, 1]) we approx-
imate the action of the exponential matrix, ehA = eBγ+c (etBγ−c with t = 1), over
a vector as

etBγ+cv ≈

[
k∑
i=1

ciTi(tB) +
c0
2
I

]
v, (3.95)

where the coefficients ci are approximated by means of

ci =
2

M

M∑
j=1

exp(cos(θj)γ + c) cos(iθj), k = 0, 1, . . . ,m, θj =
π(j − 1

2 )

M
. (3.96)

As a stopping critterion for the truncated series we approximate the residual as
in [70]. Thus, there will be used the well known relations for the Chebyshev
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polynomials of first kind, Tk(x), and second kind, Uk(x),

T ′i (x) = iUi−1(x),

xTi(x) =
1

2
(Ti+1(x) + Ti−1(x)),

xUi(x) =
1

2
(Ui+1(x) + Ui−1(x)),

Ti(x) =
1

2
(Ui(x)− Ui−2(x)), (3.97)

where the Chebyshev polynomials of second kind are defined by means of the
recurrence formula

U0(x) = 1, U1(x) = 2x, Ui+1(x) = 2xUi(x)− Ui−1(x), i = 1, 2, . . . , (3.98)

where it is defined U−1(x) = 0 and U−2(x) = −1. In terms of the Chebyshev
polynomials of second kind, Ui(x), the formula (3.95) for the solution is rewritten
as

yk(t) =

[
k∑
i=1

ciTi(tB) +
c0
2
I

]
v

= yk−1(t) +
ck
2

(Uk(tB)v − Uk−2(tB)v) , k = 1, 2, . . . . (3.99)

The recurrence to calculate Uk(tB)v is written as

U−2(tB)v = −v, U−1(tB)v = 0, U0(tB)v = v, (3.100)

U1(tB)v = 2tBv =
2th

γ
Av − 2tc

γ
v, (3.101)

Ui+1(tB)v = 2tBUi(tB)v − Ui−1(tB)v (3.102)

=
2th

γ
AUi(tB)v − 2tc

γ
Ui(tB)v − Ui−1(tB)v, i = 1, 2, . . . ,(3.103)

Because exp(hA)v = exp(Bγ + c)v is the exact solution y(t) = exp(tBγ + c)v at
t = 1 of the initial value problem

y′(t) = γBy(t), y(0) = v, (3.104)

the residual rk(t) := γByk(t)−y′k(t) can be approximated substituting the expan-
sion (3.95) at equation (3.104) and using the relations (3.97), obtaining

y′k(t) =

[
k∑
i=1

ci
t

(tB)T ′i (tB)

]
v

=

[
k∑
i=1

ici
2t

(Ui(tB) + Ui−2(tB))

]
v,

= y′k−1(t) +
kck
2t

(Uk(tB)v + Uk−2(tB)v) , k = 1, 2, . . . , (3.105)
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and

γByk(t) = γ

[
k∑
i=1

ci
t

(tB)Ti(tB) +
c0
2
B

]
v

= γ

[
k∑
i=1

ci
2t

(Ti+1(tB) + Ti−1(tB)) +
c0
2
B

]
v

= γ

[
k∑
i=1

ci
4t

(Ui+1(tB)− Ui−3(tB)) +
c0
2
B

]
v

= γByk−1(t) +
γck
4t

(Uk+1(tB)v − Uk−3(tB)v), k = 1, 2, . . . ,

(3.106)

thus, the formula for the residual is

rk(t) = γByk(t)− y′k(t)

= rk−1(t) +
γck
4t

(Uk+1(tB)v − Uk−3(tB)v)

−kck
2t

(Uk(tB)v + Uk−2(tB)v), k = 1, 2, . . . . (3.107)

In terms of the Chebyshev polynomials of second kind, Ui(x), and using the same
polynomials, the formula for the solution is

yk(t) =

[
k∑
i=1

ciTi(tB) +
c0
2
I

]
v

= yk−1(t) +
ck
2

(Uk(tB)v − Uk−2(tB)v) , k = 1, 2, . . . . (3.108)

The algorithm to calculate the exponential matrix by means of a Chebyshev ex-
pansion polynomials of second kind with the residual estimation for the error
described before is scheduled at Algorithm 1.

3.4.2.3 Real Leja points method

The ReLPM (Real Leja Points Method) introduced in [78] has shown very attrac-
tive computational features. It rests on Newton interpolation of the exponential
functions at a sequence of Leja points on the real focal interval of a family of
confocal ellipses in the complex plane. The use of Leja points is suggested by
the fact that they guarantee superlinear convergence of the corresponding matrix
polynomials to the matrix exponential functions. A key step in the approxima-
tion procedure, as in Chebyshev polynomial approximation, is given by estimating
cheaply a real focal interval, say [a, b], such that the minimal ellipse which con-
tains the spectrum of the matrix is not too “large” (numerical experience has
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Algorithm 1 Chebyshev expansion algorithm for the matrix exponential

Require: A, v, h, ε, t
Ensure: y = exp(thA);

1: u−2 := −v, u−1 := 0, u0 := v

2: u1 := (2 ∗ t ∗ h/γ) ∗ A ∗ v− (2 ∗ t ∗ c/γ) ∗ v
3: compute c0.
4: y := (c0/2) ∗ u0, r := (γ ∗ c0/4/t) ∗ u1
5: for k = 1, . . . , Nmax do
6: u2 := (2 ∗ t ∗ h/γ) ∗ A ∗ u1 − (2 ∗ t ∗ c/γ) ∗ u1 − u0
7: compute ck.
8: y := y + (ck/2) ∗ (u1 − u−1)
9: r := r + (γ ∗ ck/4/t) ∗ (u2 − u−2)− (k ∗ ck/2/t) ∗ (u1 + u−1)

10: u−2 := u−1
11: u−1 := u0
12: u0 := u1
13: u1 := u2
14: if ||r|| < ε then
15: break
16: end if
17: end for

shown that good results can be obtained at a very low cost, simply by intersecting
the Gershgorin’s circles).

Thus, the method is based on interpolating ϕ(x) := exp(x−1)/x at Leja points of
the interval [a, b] = [c− 2γ, c+ 2γ]. Observe that once ϕ(τA)v is computed, then
exp(τA)v = τAϕ(τA)v+v. In practice, it is numerically convenient to interpolate
the function ϕ(τ(c+ γξ)) at Leja points {ξs} of a reference interval [−2, 2]. Then,
given the corresponding divided differences {di} for such a function which can be
calculated as in [79], the matrix Newton polynomial of degree k is

pk(A) =

k∑
i=0

diΩi ≈ ϕ(hA), Ωi =

i∏
s=0

−1((A− cI)/γ − ξsI). (3.109)

In general, it is not feasible to interpolate with the original time step ∆t, which has
to be split. This happens, for example, when the expected degree for convergence
is too large. The ReLPM code subdivides dynamically ∆t into smaller substeps
h = hk, and recovers the required vector ϕ(δtA)v according to the time marching
scheme

yk+1 = yk + hkϕ(hkA)(Ayk + v), k = 1, . . . , k∗; y0 = 0; (3.110)

where
∑k∗

k=1 hk = ∆t.
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3.4.3 Numerical Results

To test the exponential integrators we consider the transient for the small reactor
of type VVER (see Figure 3.20 described at Section 3.1.3.1). The method is tested

(a) Axial plane
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Figure 3.20: Small reactor.

with the first part of the transient (from t = 0.0s to t = 0.15s), where two different
time steps are used.

Tables 3.11 and 3.12 show the iterations count needed to integrate the system
until a stopping criterion is satisfied. The Krylov method uses different sizes of
the Krylov subspace m = 10, 20, 30, 40, 50, 60. Depending on the method, the
value for the stopping criterion is chosen in a different way to ensure fair compar-
isons, imposing this value as the largest one that ensures convergence respect to a
reference solution.

Table 3.11: Iterations count for the second order scheme with different exponential
approximations

Method ∆t = 6.25E-3 ∆t = 1.5625E-3
Krylov m = 10 12274 12366
Krylov m = 20 6144 6516
Krylov m = 30 4374 6366
Krylov m = 40 4184 7776
Krylov m = 50 3974 9696
Krylov m = 60 3974 9696

Chebyshev 10372 19148
Real Leja Points 6168 6611
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We observe that the Real Leja Points approximation offers good number of itera-
tions when compared with Krylov methods, and that both them are much faster
than Chebyshev method for the chosen problem. The Real Leja Points method has
the advantage that it is not necessary to save more than six vectors for the recur-
rence, having less memory requirements. Also, no extra operations are needed as,
for example, the computation of the exponential of the small Hessemberg matrix
used by the Krylov approximation.

Table 3.12: Iterations count for the fourth order scheme with different exponential
approximations

Method ∆t = 1.25E-2 ∆t = 3.125E-3
Krylov m = 10 11944 12826
Krylov m = 20 6064 7256
Krylov m = 30 4524 6966
Krylov m = 40 4304 7776
Krylov m = 50 4224 9696
Krylov m = 60 4284 11376

Chebyshev 10372 19148
Real Leja Points 6797 7151

It can also be observed that the fourth order method does not improve the results
from the second order method, obtaining similar iteration counts with the double
of the time step. Nevertheless, it is expected that for slower transients the results
of fourth order methods can take advantage to second order methods using smaller
time steps.

126



Chapter 4

Updating Eigenvalue
Methods

Contents

4.1 Modified Block Newton Method . . . . . . . . . . . . . . . . . 128
4.1.1 Spatial discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.1.2 Modified Block Newton Method . . . . . . . . . . . . . . . . . . . 133
4.1.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.2 Alternative Newton Methods . . . . . . . . . . . . . . . . . . . 146
4.2.1 Modified Block Newton Method . . . . . . . . . . . . . . . . . . . 147
4.2.2 One Sided Block Newton Method . . . . . . . . . . . . . . . . . . 148
4.2.3 Two Sided Block Newton Method . . . . . . . . . . . . . . . . . . 148
4.2.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.3 Proper Generalized Decomposition for eigenvalue com-
putations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.3.1 Eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.3.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Starting from a steady state configuration of a nuclear power reactor some situa-
tions arise in which the reactor configuration is perturbed. The Lambda modes are
eigenfunctions associated with a given configuration of the reactor, which have suc-
cessfully been used to describe unstable events in BWRs with a modal method [3],
which uses a set of dominant modes to expand the neutron flux. For the transient
calculations using the modal method with a moderate number of modes, these
modes must be updated each time step to maintain the accuracy of the solution.
The updating modes process is also interesting to study perturbed configurations
of a reactor.

To compute several eigenvalues and its corresponding eigenfunctions for a nuclear
reactor is quite expensive from the computational point of view. The Arnoldi
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method, based on approximating the invariant subspaces of the original problem
projected onto a Krylov subspace is an efficient method to compute the dominant
Lambda modes associated with a given configuration of the reactor, but if the
Lambda modes have to be computed for different perturbed configurations of the
reactor more efficient methods can be used.

In this chapter, different methods for updating the Lambda modes for a nuclear
reactor core are proposed. The first one is based on a Newton strategy, which
increases the convergence order respect to Arnoldi method, but it depends on
the initial guess to obtain a good performance. Finally, a method based on a
Proper Generalized Decomposition is proposed, where a reduced order model of
the initial problem is solved and improved iteratively. This method can also be
used to update a given invariant subspace by means of low rank modifications of
an initial guess.

4.1 Modified Block Newton Method

In the BWR and PWR reactors the fuel elements are square prisms and in the
VVER reactors the fuel elements are hexagonal prisms. For this reason, it is inter-
esting to develop efficient methods for both rectangular and hexagonal meshes. As
it has been aready mentioned, under general assumptions, the neutronic popula-
tion inside a nuclear power reactor can be modeled by the time dependent neutron
diffusion equation in the approximation of two energy groups. This model is of
the form [8],

[
v−1

] ∂Φ

∂t
+ LΦ = (1− β)MΦ +

K∑
k=1

λkχCk ,

∂Ck
∂t

= βk[νΣf1 νΣf2]Φ− λkCk , k = 1, . . . ,K , (4.1)

where, K is the number of delayed neutron precursor groups considered,

L =

[
−~∇ · (D1

~∇) + Σa1 + Σ12 0

−Σ12 −~∇ · (D2
~∇) + Σa2

]
, [v−1] =

[
v−1

1 0
0 v−1

2

]
,

and

M =

[
νΣf1 νΣf2

0 0

]
, Φ =

[
Φ1

Φ2

]
, χ =

[
1
0

]
.

The diffusion constants and cross-sections, Dg, Σ12, Σag, νΣfg, g = 1, 2, appearing
in these equations depending on the reactor materials, that is, they are position
and time dependent functions, as explained at the introduction. Associated with
this problem, there is the Lambda Modes problem,

LΦi =
1

ki
MΦi . (4.2)
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To solve both problems (4.1) and (4.2), a spatial discretization of the equations has
to be selected. Once this discretization has been selected, the semidiscrete version
of the time dependent neutron diffusion equation is solved. Since the ordinary
differential equations resulting from the discretization of diffusion equations are,
in general, stiff, implicit methods are necessary. With the aim of reducing the
computational cost of implicit methods, Modal Methods have been used [3], based
on expanding the neutron flux in terms of the dominant Lambda modes of the
reactor core.

Starting from a steady state configuration of a nuclear power reactor some situ-
ations arise in which the reactor configuration is perturbed. To compute several
eigenvalues and their corresponding eigenfunctions for the new configuration of the
reactor is quite expensive from the computational point of view. Krylov subspace
methods are efficient methods to compute the dominant Lambda modes associated
with a given configuration of the reactor, but when the Lambda modes have to
be computed from previous perturbed configurations of the reactor other kind of
methods that use the information provided by the computed modes in previous
steps can be more convenient. In this line, we have studied a Modified Block
Newton Method (MBNM) to speed-up the calculations in the updating modes
process.

4.1.1 Spatial discretization

The spatial mesh used to discretize a reactor core is naturally defined by the
different compositions of the materials present in the core. Thus, we use a coarse
mesh adapted to the fuel bundles composing the core and different strategies are
used for the spatial discretization of the equations depending on the core geometry.

4.1.1.1 PWR and BWR reactors

In PWR and BWR reactors the fuel assemblies are rectangular prisms. Thus, a
rectangular mesh is suitable to describe these prisms. Each one of these prisms is
divided into different nodes and, each node, e, is mapped onto a reference domain
by means of a change of variables from the real space (x, y, z) to the variables of the
reference domain (x′, y′, z′). Then the neutron flux into each node e is expanded
in terms of the orthonormal Legendre polynomials as follows [11],

Φe(x
′, y′, z′) =

K∑
i=0

K∑
j=0

K∑
k=0

ψe,ijkPi(x
′)Pj(y

′)Pk(z′) . (4.3)

Continuity over the inner interfaces of the elements for the neutron flux, continuity
for the neutron current over the normal directions of these interfaces and, bound-
ary conditions over the external boundary of the reactor are ensured by means
of imposing them explicitly, and then, some algebraic manipulations are used to
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introduce these conditions into weighted equations for each face of the nodes ob-
taining a set of algebraic equations that constitute the approximation known as
the Nodal Collocation Method for the Lambda modes problem [11].

4.1.1.2 VVER Reactors

The fuel assemblies in VVER reactors are hexagonal prisms. Thus, different strate-
gies from the ones used for rectangular reactors have to be considered. The strategy
used at the previous chapter is used to discretize the spatial part of the equations,
which is based on expand the neutronic flux in terms of the modified Dubiner’s
polynomials [36].

4.1.1.3 Algebraic Problem

After performing the spatial discretization, the problem (4.1), it can be approxi-
mated by the following semidiscrete system of equations

[
v−1

]
ψ̇ + Lψ = (1− β)Mψ +

K∑
k=1

λkXCk ,

XĊk = βkMψ − λkXCk , (4.4)

where matrices L, M and X have the following block structure

L =

[
L11 0
−L21 L22

]
, M =

[
M11 M12

0 0

]
,

and

X =

[
P
0

]
, [v−1] =

[
Pv−1

1 0
0 Pv−1

2

]
,

where P is the mass matrix for the spatial discretization [36], as explained at
Chapter 3. For the Lambda modes problem (4.2) we have

Lψl =
1

kl
Mψl . (4.5)

As the matrix L is nonsymmetric, we also consider the adjoint problem

L†ψ†l =
1

kl
M†ψ†l , (4.6)

since the eigenvectors solutions of problems (4.5) and (4.6) satisfy the following
biorthogonality relationship

< ψ†m,Mψn >=< ψ†m,Mψm > δn,m = Nmδn,m . (4.7)
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4.1.1.4 Modal method

Different methods have been proposed to solve equations (4.4). One possibility
that makes use of the dominant Lambda modes associated with a given configura-
tion of the reactor core is to use a modal method [3]. This method assumes that
ψ(t) can be expressed approximately as

ψ(t) =

Md∑
l=1

nl(t)ψl , (4.8)

where ψl, l = 1, . . . ,Md are the dominant Lambda modes of a given configu-
ration of the core. A small amount of the dominant Lambda modes and their
corresponding adjoint modes can be efficiently computed using, for example, the
Implicit Restarted Arnoldi method [5]. Multiplying equations (4.4) by ψ†m, writing

L = L0 + δL , M = M0 + δM ,

and making use of expansion (4.8), we obtain the equations

Md∑
l=1

〈ψ†m, [v−1]ψl〉
d

dt
nl +

Md∑
l=1

1

kl
〈ψ†m,M0ψl〉nl

+

Md∑
l=1

〈ψ†m, δLψl〉nl = (1− β)

Md∑
l=1

〈ψ†m,M0ψl〉nl

+ (1− β)

Md∑
l=1

〈ψ†m, δMψl〉nl +

K∑
k=1

λk〈ψ†m, XCk〉 ,

d

dt
〈ψ†m, XCk〉 = βk

Md∑
l=1

〈ψ†m,M0ψl〉nl

+ βk

Md∑
l=1

〈ψ†m, δMψl〉nl − λk〈ψ†m, XCk〉 . (4.9)

Using the biorthogonality relationship (4.7), introducing the notation,

Λml =
〈
ψ†m, [v

−1]ψl
〉
, ALml =

〈
ψ†m, δLψl

〉
,

AMml =
〈
ψ†m, δMψl

〉
, Cmk =

〈
ψ†m, XCk

〉
,

131



Chapter 4. Updating Eigenvalue Methods

and the mode m reactivity, defined as ρm = (km − 1)/km, equations (4.9) can be
expressed as the following matrix equations (see reference [3] for full details)

d[n]

dt
= [Λ]−1

(
[ρ− βI][N ][n] + (1− β)[AM ][n]

− [Λ]−1[AL][n] +

K∑
k=1

λk[Ck]
)
,

d[Ck]

dt
= βk[N ][n] + βk[AM ][n]− λk[Ck] , k = 1, . . . ,K . (4.10)

Because of the stiffness of the differential equations (4.10), to solve this system we
have used a high order implicit method [80].

As initial conditions for the time integration of a transient, we start from a crit-
ical configuration of the core. To obtain this critical configuration we solve the
Lambda modes problem (4.5) for a given initial configuration, searching for the
fundamental mode. Dividing the fission cross-sections of the initial configuration
by the fundamental eigenvalue, k1, we obtain

L0ψ1 = MCritψ1 , (4.11)

where MCrit is a matrix whose components are the components of M divided by
k1. Equation (4.11) together with equation

0 = βkM
Critψ1 − λkXCk , (4.12)

constitute the set of equations defining the steady state associated with the critical
configuration.

For realistic transients, the nuclear cross-sections are time dependent functions
and to obtain good accuracy using the modal method a large amount of modes
are necessary. This is prohibitive from the computational point of view. Thus,
instead of this, we use a small number of modes together with an updating modes
strategy that is performed at each certain updating time step [3]. In this way,
to update the modes it is necessary to develop an efficient strategy that uses the
modes computed in the previous steps as starting initial guess to speed-up the
computation. A method of this kind is the Block Newton Method, presented in
next section. Also, a modes updating methodology is of interest when perturbed
configurations of the reactor core are studied.
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4.1.2 Modified Block Newton Method

With the spatial discretization methods exposed above, the Lambda modes equa-
tion with two groups of energy (4.2) can be approximated by an algebraic gener-
alised eigenvalue problem with the following block structure[

L11 0
−L21 L22

] [
ψ1

ψ2

]
=

1

λ

[
M11 M12

0 0

] [
ψ1

ψ2

]
, (4.13)

where ψ1 is a vector with the unknowns corresponding to the neutron flux for the
fast group, and ψ2 is a vector with the unknowns corresponding to the thermal
flux. To solve this problem, it is reduced to the ordinary eigenvalue problem

Aψ1 = λψ1 , (4.14)

where the matrix A in equation (4.14) is defined as

A = L−1
11

(
M11 +M12L

−1
22 L21

)
. (4.15)

As it has already mentioned, to update the modes along a transient or for a
perturbed configuration of the core it is interesting to take into account that the
space spanned by the new modes should be close to the space spanned by the
previous ones. For this reason, a Modified Block Newton Method [81], which has
a high order of local convergence, is applied to update the modes using as initial
guess the modes obtained in a previous step. In the following, we expose the main
ideas of this method.

Given a partial eigenvalue problem of the form

AV = V Λ , (4.16)

where V ∈ Rn×q is the matrix of eigenvectors and Λ ∈ Rq×q is a diagonal matrix
whose elements are the dominant eigenvalues. It is assumed that the eigenvectors
can be factorized as

V = ZS , (4.17)

where ZTZ = Iq. Problem (4.16) can be rewritten as

AV = V Λ⇒ AZS = ZSΛ⇒ AZ = ZSΛS−1 ⇒ AZ = ZK , (4.18)

where matrix K is not necessarily a diagonal matrix. This system is undeter-
mined [81]. To determine the problem we introduce the biorthogonality condition
WTZ = Iq, where W is a fixed matrix of rank q. Then the Newton method is
used to solve the problem

FW (Z,K) :=

[
AZ − ZK
WTZ − Iq

]
=

[
0
0

]
. (4.19)
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From Newton’s method the new iterated solution arises

Z(k+1) = Z(k) −∆Z(k) , K(k+1) = K(k) −∆K(k) , (4.20)

where ∆Z(k) and ∆K(k) are solutions of the system

A∆Z(k) −∆Z(k)K(k) − Z(k)∆K(k) = AZ(k) − Z(k)K(k) ,

WT∆Z(k) = WTZ(k) − Iq . (4.21)

The system (4.21) is coupled because of the off-diagonal elements of K(k).

To avoid this difficulty the Modified Block Newton Method (see Algorithm (4))
applies two previous steps to decouple system (4.21). The first step consists of an
orthogonalisation to the Z(k) matrix (see Algorithm (2)).

Algorithm 2 Modified Gram-Schmidt Orthogonalisation (Orth)

Require: A set of p independent vectors v1, . . . , vp
1: for i = 1 to k do
2: for j = 1 to i− 1 do
3: vi := vi − 〈vj , vi〉
4: end for
5: vi := vi/ ‖vi‖2
6: end for

Once Z(k) is an orthonormal matrix, i.e., Z(k)TZ(k) = Iq, as a second step, a
Rayleigh-Ritz procedure is applied, which consists of obtaining the eigenvectors

U (k) and their corresponding eigenvalues R(k), of B(k) = Z(k)TAZ(k), in such a
way that

B(k)U (k) = U (k)R(k) . (4.22)

Then, taking into account the definition of B(k) and making use of the orthogo-
nality of matrix Z(k) on equation (4.22), the following equation is obtained

Z(k)TAZ(k)U (k) = Z(k)TZ(k)U (k)R(k) . (4.23)

Defining Z̃(k) := Z(k)U (k) and Λ(k) := R(k), from equation (4.23) we have that

Λ(k) is a diagonal matrix whose elements, λ
(k)
i are called the Ritz values and Z̃(k)

are the approximated Ritz eigenvectors, that satisfy the equation

Z(k)T
(
AZ̃(k) − Z̃(k)Λ(k)

)
= 0 . (4.24)

This Rayleigh-Ritz procedure is implemented in Algorithm (3). At each iteration,
the matrix W is chosen as the previous approximation for the invariant subspace,
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that is W = Z(k), and system (4.21) is decoupled into the q linear systems[
A− Iλ(k)

i Z(k)

Z(k)T 0

][
∆z

(k)
i

−∆λ
(k)
i

]
=

[
AZ(k) − Z(k)Λ(k)

0

]
ei , i = 1, . . . , q .

(4.25)

where ei denotes the i-th coordinate vector, and ∆z
(k)
i is the i-th column of ∆Z(k).

Algorithm 3 Rayleigh-Ritz procedure (rr)

Require: Initial approximation Z for the desired invariant subspace of A
1: B := ZTAZ
2: Calculate [U,R] such that BU = UR for the small matrix B
3: V := ZU {Approximated Ritz eigenvectors}
4: Λ := R {Ritz Values}

The Modified Block Newton Method can be summarised as in Algorithm (4).

Algorithm 4 Modified Block Newton Method (MBNM)

Require: Initial approximation Ṽ (0) of the eigenmodes
1: [Z(0)] := orth(Ṽ (0))
2: [V (0),Λ(0)] := rr(Z(0), A)
3: while V (k) does not satisfy a termination criterion do

4: ∆V (k) = [∆v
(k)
1 , · · · ,∆v(k)

p ] {Correction determined with the Newton itera-
tion of equation (4.25)}

5: Ṽ (k) := V (k) −∆V (k)

6: Zk := orth(Ṽ (k))
7: [V (k),Λ(k)] := rr(Z(k), A)
8: k := k + 1
9: end while

4.1.3 Numerical Results

The behaviour of the Block Newton method presented above for updating the
dominant Lambda modes of a nuclear reactor core is tested with four different
problems, two of them with hexagonal geometry for the fuel assemblies, and the
other two with rectangular geometry. The computational effort of these methods
are not compared with the classical methods to calculate the Lambda modes with-
out update, due to the different implementations. Thus, the number of iterations
is shown because it gives some insight of the behavior.

Starting from a steady state configuration of a nuclear power reactor some situa-
tions arise in which the reactor configuration is perturbed. Different events justify
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the study of these perturbations: poisoning by Xenon, insertion of control rods,
subcooling of the entry, study of Doppler effect of a nuclear core by means of
a uniform perturbation of the core, etc. To test the behaviour of the Modified
Block Newton method different perturbations have been defined for different reac-
tors. First, a bidimensional VVER 1000 reactor [34] will be perturbed increasing
the second group absorption cross section Σa2 of seven control rods equally dis-
tributed over the reactor. This is a symmetric perturbation, where the shapes of
the modes after the perturbation is close to the one of the initial state, although
the corresponding eigenvalues are quite different.

Similarly, the second problem is a perturbation for a VVER 440 reactor core
which is based on a collapsed three dimensional benchmark for a transient in
the reactor [57]. In this transient the peak of the power distribution performs a
large increase in a non-symmetric form and the dominant eigenmodes change their
shapes along the transient.

The first problem with rectangular geometry considered is a perturbed configu-
ration of the well known three dimensional IAEA reactor [82], which is a PWR
reactor. The perturbation is performed by means of the extraction of a set of
control rods and the insertion of another set symmetrically.

The last example considered corresponds to the computation of the dominant
eigenmodes of two configurations of a three dimensional BWR reactor in a boron
injection transient. This problem shows a strong perturbation for the shape of
the dominant modes to be updated, and it is proposed to check the behaviour of
Newton method for updating the modes in strong perturbations.

4.1.3.1 VVER-1000 problem

The VVER-1000 problem [34] with the geometry shown in Figure 4.1 is considered.
The core has a 1/6 cyclic symmetry, and the assembly pitch is of 23.60 cm. The
reflector is not explicitly modeled, but it is assumed to be represented by means
of albedos at the boundary of the core.

This original configuration will be perturbed increasing the second group absorp-
tion macroscopic cross section Σa2 (see Table 4.1) of material 2 from 0.0810328 to
0.2010328, simulating a perturbation due to the insertion of control rod banks at
these positions.

The results for the first seven dominant eigenvalues of the initial configuration,
together with the eigenvalues corresponding to the perturbed configuration are
shown in Table 4.2.

The shapes for the normalised power distributions associated with the fundamental
mode and the first subcritical harmonic mode are shown in Figure 4.2.
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Figure 4.1: Geometry of the VVER-1000 reactor.

Table 4.1: Cross sections of the VVER-1000 problem.

Mat. g Dg(cm) Σa,g(cm
−1) Σg,g+1(cm−1) νΣf,g(cm

−1)
1 1 1.38320 0.0083859 0.0164977 0.00481619

2 0.386277 0.0673049 0.0846154
2 1 1.38299 0.0115490 0.0147315 0.00466953

2 0.389403 0.0810328 0.0852264
3 1 1.39522 0.0089441 0.0156219 0.00604889

2 0.386225 0.0844801 0.1194280
4 1 1.39446 0.0119932 0.0140185 0.00591507

2 0.387723 0.0989670 0.1204970
5 1 1.39506 0.0091160 0.0154981 0.00640256

2 0.384492 0.0893878 0.1292810

Table 4.2: Eigenvalues of the initial and perturbed configurations of VVER-1000 reac-
tor.

λl
l Initial conf. Perturbed conf.
1 1.006451 0.995906
2 0.994809 0.984379
3 0.994809 0.984379
4 0.973759 0.964955
5 0.973759 0.964955
6 0.955171 0.953445
7 0.948344 0.941234
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(a) Neutron distribution

(b) First harmonic

Figure 4.2: Shapes of the power distributions associated with the first two dominant
modes of the VVER-1000 problem for the initial configuration (left) and the perturbed
one (right).

The stopping criterion used in the Modified Block Newton method is based on the
residual of the calculated eigenvalues and eigenvectors at step k,

Resk :=
∥∥AV k − V kΛk

∥∥
2
≤ eps . (4.26)

The tolerance has been set to eps = 10−6. To show the performance of the
Newton method along the different steps, in Table 4.3, we present the value of
the residual Resk for different steps of the Newton Method using eigenvector
spaces with different size q (q is the number of modes). We observe that for
this problem three steps of the Modified Block Newton method are enough to
achieve the convergence of 7 modes of the perturbed configuration.

4.1.3.2 VVER-440 problem

This problem is based on the 3-dimensional transient benchmark AER-DYN-001
proposed in [57]. The nuclear cross-section given in the 3D benchmark have been
collapsed in a single plane. Materials of the bidimensional reactor have been
defined as is shown in Figure 4.3 and the cross sections of the materials are shown
in Table 4.4.
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Table 4.3: Evolution of the residual in the problem VVER-1000 for different steps of
the Newton method and different number of modes.

Resk
q k = 0 k = 1 k = 2 k = 3
1 0.043835 0.000628 0.000006 0.000000
2 0.044356 0.000797 0.000005 0.000000
3 0.044396 0.000851 0.000006 0.000000
4 0.044505 0.001341 0.000008 0.000000
5 0.044489 0.001376 0.000008 0.000000
6 0.044494 0.001379 0.000007 0.000000
7 0.047095 0.001305 0.000008 0.000000
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Figure 4.3: VVER 440 2D.

A perturbed configuration that simulates the movement of two control rods has
been defined by means of changing the absorption cross section Σa2 for the material
8 from 0.11887 to 0.016917.

The first 7 dominant Lambda modes of the initial configuration of the reactor have
been updated to obtain a set of dominant modes of the perturbed configuration.
The eigenvalues of these modes are shown in Table 4.5.

The shapes for the normalised power distributions associated with the fundamental
mode and the first two subcritical modes are shown in Figure 4.4.

The residual of the calculated eigenvalues and eigenvectors at step k of the Mod-
ified Block Newton Method using different numbers of modes, q, is presented at
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Table 4.4: Cross sections for the 2-D VVER 440 reactor.

Mat. g Dg(cm) Σa,g(cm
−1) Σg,g+1(cm−1) νΣf,g(cm

−1)
1 1 1.346557 0.008312 0.016976 0.004413

2 0.370075 0.064282 0.072784
2 1 1.337728 0.008745 0.016000 0.005491

2 0.367411 0.079145 0.104256
3 1 1.332264 0.009411 0.014974 0.006990

2 0.363171 0.099536 0.147261
4 1 1.447520 0.000933 0.032215 0.000000

2 0.251741 0.033037 0.000000
5 1 1.231711 0.012120 0.020782 0.001345

2 0.240027 0.118846 0.027352
6 1 1.337727 0.008747 0.015996 0.005492

2 0.367479 0.079153 0.104316
7 1 1.346561 0.008317 0.016968 0.004416

2 0.370177 0.064282 0.072846
8 1 1.231640 0.012123 0.020785 0.001342

2 0.239942 0.118870 0.027299

Table 4.5: Eigenvalues for the initial and perturbed configurations of reactor VVER
440.

λl
l Initial conf. Perturbed conf.
1 1.005186 1.011159
2 0.998421 1.001079
3 0.998420 1.000791
4 0.984674 0.988257
5 0.984675 0.985502
6 0.967776 0.967903
7 0.964815 0.965150

Table 4.6. We observe that also in this case the modes can be updated with three
steps of the Newton method.
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4.1 Modified Block Newton Method

(a) Neutron distribution

(b) First harmonic

(c) Second harmonic

Figure 4.4: Shapes of the normalised power distributions associated with the first three
dominant modes of the initial configuration (left) and perturbed configuration (right) of
reactor VVER-440.

Table 4.6: Residual evolution for different steps of the Newton method for different
number of modes of reactor VVER-440.

Resk
q k = 0 k = 1 k = 2 k = 3
1 0.015864 0.002868 0.000292 0.000000
2 0.015866 0.002868 0.000292 0.000000
3 0.023867 0.000599 0.000000 0.000000
4 0.025380 0.000398 0.000000 0.000000
5 0.025380 0.000546 0.000000 0.000000
6 0.025380 0.000546 0.000000 0.000000
7 0.025630 0.000546 0.000000 0.000000
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Chapter 4. Updating Eigenvalue Methods

4.1.3.3 IAEA 3D problem

The IAEA 3-D PWR problem [82] is a standard benchmark problem to measure
the performance of neutronic calculation methods. The core is composed by 177
fuel assemblies including 9 fully rodded fuel assemblies and 4 partially rodded fuel
assemblies, as it is shown in Figure 4.5. Radial reflector is modelled by means
of 64 assemblies surrounding the core. The fuel assembly pitch is 20cm and the
active height of a fuel assembly is 340cm. The thickness of axial reflector is 20cm.
Nuclear cross sections for this problem are shown in Table 4.7.
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Figure 4.5: Geometry of the 3D IAEA without reflector problem.

Table 4.7: Cross sections of 3D IAEA problem.

Mat. g Dg(cm) Σa,g(cm
−1) Σg,g+1(cm−1) νΣf,g(cm

−1)
1 1 1.500 0.010 0.020 0.000

2 0.400 0.085 0.135
2 1 1.500 0.010 0.020 0.000

2 0.400 0.130 0.135
3 1 1.500 0.010 0.020 0.000

2 0.400 0.080 0.135
4 1 2.000 0.000 0.040 0.000

2 0.300 0.010 0.000
5 1 2.000 0.000 0.040 0.000

2 0.300 0.055 0.000

This reactor, and the following ones with rectangular geometry for the fuel assem-
blies, are spatially discretized using the Nodal Collocation Method [11]. As it is
shown in Figure 4.5, two configurations are considered for this problem, CONF.1 is
the initial configuration and CONF.2 is the perturbed one. In the perturbed con-
figuration the control rods of fully inserted assemblies have been extracted 40cm,
and the control rods of partially rodded assemblies are inserted 40cm. Table 4.8,
shows the three dominant eigenvalues obtained for both configurations.
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4.1 Modified Block Newton Method

Table 4.8: First three dominant eigenvalues of 3D IAEA reactor.

λl
l Initial conf. Perturbed conf.
1 1.028857 1.027907
2 1.016490 1.015933
3 1.016490 1.015933

The axial and radial profiles of the normalised power distributions associated with
the fundamental mode and the first harmonic mode are shown in Figure 4.6.

The evolution of the residual of the calculated eigenvalues and eigenvectors at
step k of the Modified Block Newton Method using different number of modes q,
is presented at Table 4.9. We can see that only 3 steps of the Newton’s method
are enough to reach the convergence, as in the previous problems.

Table 4.9: Residual for different steps of Newton’s method to update the modes of 3D
IAEA reactor.

Resk
q k = 0 k = 1 k = 2 k = 3
1 0.012160 0.000090 0.000001 0.000000
2 0.012160 0.000119 0.000001 0.000000
3 0.019517 0.000246 0.000002 0.000000

4.1.3.4 Boron Injection in a BWR

An interesting transient is found in the BWR reactors when the SLCS (standby
liquid control system) injects water with a high proportion of boron dissolved [83].
This system is expected to work when the temperature of suppression pool is high
enough after the closure of the MSIV (Main Steam Isolation Valve) and with a
ATWS (Anticipated Transient Without Scram). In this situation, the reactor can
increase its power and an instability event can occur. The Lambda Modes are
eigenfunctions, which have been successfully used to describe the instable events
in BWRs [3].

An initial configuration of a typical BWR reactor is considered and a perturbed
configuration is proposed due to the injection of water with a proportion of boron
dissolved of 1500 ppm. This consists of a strong perturbation of the reactor core.
The first three dominant eigenvalues associated with the reactor before the poi-
soning are shown in Table 4.10, together with the three dominant eigenvalues
associated with the reactor perturbed by boron.
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(b) Radial profile of the fundamental mode for the initial configuration (left) and the
perturbed configuration (right) of the 3D IAEA reactor.
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(c) Radial profile for the first subcritical mode of the initial configuration (left) and the
perturbed configuration (right) of the 3D IAEA reactor.

Figure 4.6: Shapes of the normalised power distributions of the first two dominant
Lambda modes of the initial and the perturbed configuration of 3D IAEA reactor.

The profiles of the normalised power distributions associated with the fundamental
mode and the first subcritical mode are shown in Figure 4.7.
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Table 4.10: Eigenvalues associated with the two configurations of the BWR reactor.

λl
l Without Boron With Boron
1 1.000487 0.937197
2 0.989536 0.919430
3 0.989396 0.919146

The evolution of the residual of the calculated eigenvalues and eigenvectors at
different steps of the Block Newton method for different number of modes q, is
presented in Table 4.11. We can see that even with a strong perturbation, as the
one induced by Boron in the BWR reactor, a small number of steps of the Newton
method are enough to update the modes.

Table 4.11: Residual evolution for different steps of the Newton method to update the
modes of the BWR reactor.

Resk
q k = 0 k = 1 k = 2 k = 3 k = 4 k = 5
1 0.037841 0.017591 0.004369 0.000045 0.000000 0.000000
2 0.046302 0.008186 0.000207 0.000006 0.000003 0.000000
3 0.045572 0.005513 0.000300 0.000014 0.000000 0.000000

Summarizing, the Lambda Modes of a reactor for a given configuration of the
core are used to integrate the time dependent neutron diffusion equation, using
modal methods. To compute a large amount of Lambda modes is a prohibitive
task from the computational point of view and to obtain accurate results with a
small amount of modes a modes updating strategy is needed. Also to update the
modes of a reactor core can be useful in perturbative calculations. Because the
calculation of the Lambda modes is an expensive task, efficient methods to update
the Lambda modes using the information provided by previous calculations are
necessary to improve the improve the utility of modal and perturbative methods.

Once an initial set of Lambda modes has been obtained, to update these modes
we have used a Modified Block Newton Method, which has a local cubic conver-
gence [81]. By studying different benchmark problems, we have shown that this
method is robust to deal with problems that have degenerate or clustered eigen-
values, and it has fast convergence in such a way that the number of steps needed
to update the modes is not very dependent on the kind of perturbation considered
and the number of modes to be updated. For these reasons it seems to be inter-
esting to take advantage of the convergence properties of this kind of updating
methods when perturbed configurations of a reactor core have to be studied.
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(b) Radial profile of the fundamental mode for the initial configuration (left) and the
perturbed configuration (right).
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(c) Radial profile of the first subcritical mode for the initial configuration (left) and the
perturbed configuration (right).

Figure 4.7: Shapes of the normalised power distributions of the first two dominant
Lambda modes of the initial and the perturbed configuration of BWR reactor.

4.2 Alternative Newton Methods

The updating modes problem can be viewed as a subspace tracking problem [84].
Thus, we have to compute a set of dominant eigenvalues and their corresponding146
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(right) for the initial configuration (without Boron) and the perturbed configuration
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eigenvectors of the problem

Av1
i = k1

i v
1
i , i = 1, . . . , p (4.27)

using as initial guess the eigenvectors {v0
1 , . . . , v

0
p} of a matrix which is ‘close’ to

matrix A.

The Lambda modes problem is usually solved for the dominant eigenvalues and
their corresponding eigenvectors using, for example, the Implicit Restarted Arnoldi
method [85, 5]. To update the modes along a transient it is interesting to take
into account that the space spanning the new modes should be close to the space
spanning the previous ones. We will consider different ‘Block Newton-like’ meth-
ods, [81], for the subspace tracking problem and we will compare their performance
for updating the Lambda modes problem. These methods are a Modified Block
Newton Method (MBNM), a One Sided Block Newton Method (OSBNM), and a
Two Sided Block Newton Method (TSBNM).

4.2.1 Modified Block Newton Method

The Modified Block Newton Method has been exposed in the section 4.1 and can
be summarized as in Algorithm 5, where the function orth uses the modified
Gram-Schmidt algorithm to orthogonalize the columns of the initial eigenvectors
(see algorithm 2), and the rr is the Rayleigh−Ritz procedure (see algorithm 3).
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Algorithm 5 Modified Block Newton Method (MBNM)

Require: Initial approximation V (0) of the eigenmodes
1: [Z(0)] := orth(V (0))
2: [Z̃(0),Λ(0)] := rr(Z(0), A)
3: while Z̃(k) does not satisfy a termination criterion do

4: ∆Z̃(k) = [∆z̃
(k)
1 , · · · ,∆z̃(k)

p ] {Correction determined with the Newton itera-
tion of equation (4.25)}

5: V (k) := Z̃(k) −∆Z̃(k)

6: Zk := orth(V (k))
7: [Z̃(k),Λ(k)] := rr(Z(k), A)
8: k := k + 1
9: end while

4.2.2 One Sided Block Newton Method

Once the initial approximated eigenvectors, Z, of problem (4.18) are an orthonor-
mal set, we are interested in getting a correction, ∆Z, to these eigenvectors satis-
fying

A(Z + ∆Z) = (Z + ∆Z)(K + ∆K) . (4.28)

Developing the previous expression and removing the second order terms, we get
an expression of the form

AZ +A∆Z = ZK + ∆ZK + Z∆K . (4.29)

Reordering the terms, and naming R = AZ − ZK, we get

A∆Z −∆ZK − Z∆K = −R . (4.30)

If we use an extra condition to the correction term ∆Z, which is ZT∆Z = 0, it is
easy to show that (I−ZZT )R = R, (I−ZZT )∆Z = ∆Z, and (I−ZZT )Z∆K = 0.
Using the projector (I − ZZT ), the following projected equation is obtained

(I − ZZT )A(I − ZZT )∆Z −∆ZK = −R, (4.31)

which is a Sylvester equation [86]. This equation can be solved by using the Schur
method. The One Sided Block Newton method can be structured as shown in
Algorithm 6.

4.2.3 Two Sided Block Newton Method

Given a partial eigenvalue problem, and its transpose problem,

AU = UΛ , ATV = V Λ , (4.32)
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Algorithm 6 One Sided Block Newton Method (OSBNM)

Require: Initial approximation V (0) of the eigenmodes
1: [Z(0)] := orth(V (0))

2: [K] := Z(0)TAZ(0)

3: while Z(k) does not satisfy a termination criterion do
4: ∆Z(k) {Correction determined with the Sylvester equation (4.31)}
5: V (k) := Z(k) −∆Z(k)

6: Z(k) := orth(V (k))

7: K := Z(k)TAZ(k)

8: k := k + 1
9: end while

10: [V (k),Λ(k)] := rr(Z(k), A)

it is assumed that we can biorthogonalize the sets of vectors U and V in such a
way that V TU = Ip.

Looking for the corrections ∆U and ∆V , by using the same procedure as the one
used in the previous method, we arrive at a set of equations for the direct and for
the transposed problem as follows

A∆U −∆UK − U∆K = −Ru ,
AT∆V −∆V KT − V∆KT = −Rv , (4.33)

where Ru = AU − UK, and Ru = ATV − V KT .

Multiplying the first equation by the oblique projector (I −UV T ) and the second
equation by (I − V UT ), and using the properties V T∆U = 0 and ∆V TU = 0, the
following Sylvester equations are obtained

(I − UV T )A(I − UV T )∆U −∆UK = −Ru ,
(I − V UT )A′(I − V UT )∆V −∆V KT = −Rv . (4.34)

Algorithm 7 summarizes the Two sided block Newton Method (TSBNM), where
the function BMGS uses the Biorthogonalized Modified Gram-Schmidt algorithm,
and rr is the Rayleigh−Ritz procedure.

4.2.4 Numerical Results

Starting from a steady state configuration of a nuclear power reactor some situa-
tions arise in which the reactor configuration is perturbed. Different events justify
the study of these perturbations: poisoning by Xenon, insertion of control rods,
subcooling of the entry, study of the Doppler effect of a nuclear core by means of
a uniform perturbation of the core, etc. An interesting transient of this kind is
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Algorithm 7 Two Sided Block Newton Method (TSBNM)

Require: Initial approximation Ũ0 of the direct eigenvectors, and initial approx-
imation for the adjoints Ṽ 0

1: [U0, V 0] := BMGS(Ũ0, Ṽ 0)

2: [K] := V (0)TAU (0)

3: while U (k), and V (k) does not satisfy a termination criterion do
4: ∆U (k); ∆U (k) {Corrections determined with the Sylvester equation (4.34)}

5: Ũ (k) := U (k) + ∆U (k) and Ṽ (k) := V (k) + ∆V (k)

6: [U (k), V (k)] := BMGS(Ũ (k), Ṽ (k))

7: K := V (k)TAU (k)

8: k := k + 1
9: end while

10: [Ũk,Λk] := rr(Uk, A), and [Ṽ k,Λk] := rr(V k, AT )

found in the BWR reactors when the SLCS (standby liquid control system) injects
water with a high proportion of boron dissolved [83].

We consider a transient associated with a boron injection from the SLCS system.
During the transient the boron injected is mixed with the coolant increasing the
concentration with time. To study the configuration of the reactor core along the
transient we consider three different configurations associated with three different
concentrations of boron in the coolant, that is: a configuration with 0 ppm of
boron, a configuration with 750 ppm of boron, and a last configuration with 1500
ppm of boron. The modes of the first configuration are computed by means of the
Arnoldi method, and the updating methods are used to compute the perturbed
configuration.

The first 3 eigenvalues for the three configurations considered are shown in Ta-
ble 4.12.

Table 4.12: Eigenvalues for three boron concentrations.

0 ppm 750 ppm 1500 ppm

k1 1.000487 0.964937 0.937197
k2 0.989396 0.948851 0.919146
k3 0.989536 0.948736 0.919430

Figure 4.9 shows the convergence behaviour with the iterations used by the three
methods.

Figure 4.10 shows the convergence behaviour with the iterations used by the three
methods.
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(a) Convergence for the first eigenvalue.
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(b) Convergence for the second eigenvalue.
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(c) Convergence for the third eigenvalue.

Figure 4.9: Convergence for the first 3 eigenvalues from 0 to 1500 ppm of boron.

Results of updating these eigenvalues using the different Block Newton type meth-
ods are summarized in Tables 4.13 and 4.14, where we can see the good convergence
properties of the three methods. Also, the dependence of the convergence on the
initial guess can be observed, because of the local behaviour of the methods.

Table 4.13: Iterations to converge and final relative residual from 0 to 1500 ppm.

k1 k2 k3

MBNM 5 (2.4903 E-7) 6 (9.8444 E-8) 5 (6.8177 E-7)
OSBNM 5 (3.0750 E-7) 5 (6.4349 E-7) 6 (1.8426 E-7)
TSBNM 5 (3.0136 E-7) 5 (7.5582 E-7) 5 (8.6700 E-7)

The updating of the Lambda modes process is interesting for several applications
as the development of modal methods and perturbative computations. Different
methods for this process based on the block Newton method have been proposed
and their performance has been tested using a Boron injection transient.
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(a) Convergence for the first eigenvalue.
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(b) Convergence for the second eigenvalue.
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(c) Convergence for the third eigenvalue.

Figure 4.10: Convergence for the first 3 eigenvalues from 750 to 1500 ppm of boron.

Table 4.14: Iterations to converge and final relative residual from 750 to 1500 ppm.

k1 k2 k3

MBNM 3 (7.1018 E-7) 4 (1.0315 E-7) 4 (5.4099 E-8)
OSBNM 3 (9.2920 E-7) 4 (5.2896 E-8) 3 (6.9954 E-7)
TSBNM 3 (7.0191 E-7) 4 (9.1274 E-9) 3 (9.3166 E-7)

The One Sided and Two Sided Block Newton methods have shown the best perfor-
mance regarding the number of iterations. Since the cost per iteration is cheaper in
the One Sided Block Newton method, this is the best method for this application.
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4.3 Proper Generalized Decomposition for eigenvalue computations

4.3 Proper Generalized Decomposition for eigenvalue
computations

The Proper Generalized Decomposition (PGD) method is a recently developed
strategy [87, 88] that uses the fact that some models encountered in science and
engineering are defined in multidimensional spaces. When mesh-based discretiza-
tion techniques are applied, these models exhibit what is called the curse of di-
mensionality, i.e., the number of unknowns increases exponentially with the spatial
dimension of the geometry, leading to a very large amount of unknowns for high
dimensional problems.

The PGD method is based on the use of a separated representation for the solution
of a d-dimensional problem over a separable domain Ω = Ω1 × · · · × Ωd, of the
form

Φ(x1, . . . , xd) =

∞∑
i=1

αi

d∏
j=1

F ij (xj) , (4.35)

where functions F ij (x) are normalized as follows

‖F ij‖2j = 〈F ij , F ij 〉j = 1 , where 〈u, v〉j =

∫
Ωj

u(xj)v(xj) dxj . (4.36)

The value of Φ(x1, . . . , xd) is approximated by using a finite number of terms in
the sum (4.35).

The PGD technique computes the different functions involved in Equation (4.35)
by means of an alternating directions linearization strategy. This technique is
summarized here to establish the notation and methodology necessaries to develop
our strategy to solve differential eigenvalue problems. For the sake of clarity and
without loss of generality, the discussion is restricted to a 2-dimensional Poisson’s
equation of the form

−∇ ·D∇Φ(x, y) = f(x, y) , (4.37)

over a domain Ω which is separable into a Cartesian product of 1-dimensional
spaces Ω = Ωx × Ωy. The weak formulation of equation (4.37) is∫∫

Ω

−∇ ·D∇Φ(x, y) ϕ(x, y) dx dy =

∫∫
Ω

f(x, y)ϕ(x, y) dx dy , (4.38)

where Φ(x, y) belongs to a given trial space and ϕ(x, y) to a test space of functions.

Applying Green’s identity to equation (4.38) and assuming homogeneous boundary
conditions, we obtain the formulation∫∫

Ω

D∇Φ(x, y) · ∇ϕ(x, y) dxdy =

∫∫
Ω

f(x, y)ϕ(x, y) dxdy . (4.39)
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Let us assume now that the solution is separable, i.e.,

Φ(x, y) = G1(x)G2(y) , (4.40)

where G1(x) ∈ W1(Ωx), being W1(Ωx) a finite element space for a suitable dis-
cretization of domain Ωx, and G2(y) ∈ W2(Ωy) defined in the same way; and the
trial functions are of the form [87]

ϕ(x, y) = G∗1(x)G2(y) +G1(x)G∗2(y) , (4.41)

being Gi the unknown functions defining Φ(x, y), and G∗i are arbitrary functions.
Substituting (4.40) and (4.41) into equation (4.39) we obtain∫∫

Ω

(
D
∂G1

∂x
(x)

∂G∗1
∂x

(x) (G2(y))
2

+DG1(x)G∗1(x)

(
∂G2

∂y
(y)

)2
)
dxdy +

∫∫
Ω

(
D

(
∂G1

∂x
(x)

)2

G2(y)G∗2(y) +D (G1(x))
2 ∂G2

∂y
(y)

∂G∗2
∂y

(y)

)
dxdy =∫∫

Ω

f(x, y)G∗1(x)G2(y) dxdy +

∫∫
Ω

f(x, y)G1(x)G∗2(y) dxdy . (4.42)

Due to the arbitrariness of G∗1 and G∗2 we can solve equation (4.42) by solving
recursively the following two equations [88]∫∫

Ω

D
∂G1

∂x
(x)

∂G∗1
∂x

(x) (G2(y))
2

+DG1(x)G∗1(x)

(
∂G2

∂y
(y)

)2

dx dy =∫∫
Ω

f(x, y)G∗1(x)G2(y) dx dy , (4.43)

and∫∫
Ω

D

(
∂G1

∂x
(x)

)2

G2(y)G∗2(y) +D (G1(x))
2 ∂G2

∂y
(y)

∂G∗2
∂y

(y) dx dy =∫∫
Ω

f(x, y)G1(x)G∗2(y) dx dy , (4.44)

i.e., solving equation (4.43) for an arbitrarily fixed G2(y), and using the solution
G1(x) to solve equation (4.44), and then proceeds recursively until the conver-
gence for G1(x)G2(y) is achieved. This is equivalent to solve the following two
1-dimensional problems∫

Ωx

∂G1

∂x
(x)

∂G∗1
∂x

(x)Dxdx+

∫
Ωx

G1(x)G∗1(x)D̂xdx =

∫
Ωx

G∗1(x)fx(x) dx , (4.45)

and∫
Ωy

G2(y)G∗2(y)D̂ydy +

∫
Ωy

∂G2

∂y
(y)

∂G∗2
∂y

(y)Dydy =

∫
Ωy

G∗2(y)fy(y) dx , (4.46)
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defining the new coefficients

Dx =

∫
Ωy

D (G2(y))
2
dy , Dy =

∫
Ωx

D (G1(x))
2
dx ,

D̂x =

∫
Ωy

D

(
∂G2

∂y
(y)

)2

dy , D̂y =

∫
Ωx

D

(
∂G1

∂x
(x)

)2

dx ,

fx(x) =

∫
Ωy

f(x, y)G2(y) dy , fy(y) =

∫
Ωx

f(x, y)G1(x) dx .

From here, the PGD method consists of an iterative procedure that can be outlined
in the following three steps:

Step 1: Projecting the solution. Assuming we are at the k-th step of the iterative
procedure, we have

Φ(x, y) =

k∑
i=1

αiF
i
1(x)F i2(y) . (4.47)

where F i1(x) and F i2(y) are normalized as in (4.36).

For the first step, k = 1, functions F 1
j , (j = 1, 2) are obtained normalizing functions

Gj calculated using Equations (4.45) and (4.46).

Assuming that functions F ij are known, we obtain

Φk(x, y) ∈ V k :=

{
k∑
i=1

αiF
i
1(x)F i2(y) : αi ∈ R, i = 1, · · · , k

}
, (4.48)

where the coefficients αi are those that minimize the residual of Galerkin formu-
lation∫∫

Ω

D∇Φk(x, y) · ∇Φk∗(x, y) dxdy =

∫∫
Ω

f(x, y)Φk∗(x, y) dxdy , (4.49)

where the test functions are

Φk∗(x, y) =

k∑
i=1

α∗iF
i
1(x)F i2(y) ∈ V k . (4.50)

Introducing (4.47) and (4.50) into equation (4.49) we obtain

∫∫
Ω

D∇

(
k∑
i=1

αiF
i
1(x)F i2(y)

)
· ∇

(
k∑
i=1

α∗iF
i
1(x)F i2(y)

)
dxdy

=

∫∫
Ω

f(x, y)

(
k∑
i=1

α∗iF
i
1(x)F i2(y)

)
dxdy . (4.51)
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All the integrals in (4.51) can be evaluated, and making use of the arbitrariness
of α∗i , we obtain the system of linear equations

Lα = f , (4.52)

where the elements of matrix L are defined as

Li,j =

∫∫
Ω

D∇
(
F i1(x)F i2(y)

)
· ∇
(
F j1 (x)F j2 (y)

)
dxdy , (4.53)

and the elements of f are

fi =

∫∫
Ω

f(x, y)F i1(x)F i2(y) dxdy . (4.54)

Step 2: Checking convergence. Let R1 be defined as

R1(u, v) =

∫∫
Ω

D∇u · ∇v dxdy −
∫∫

Ω

f(x, y)v dxdy (4.55)

From the solution Φk at iteration k, given by Equation (4.47), we compute the
relative residual Re1 associated with Equation (4.39):

Re1 =
R1(Φ,Φ)

‖Φ‖
, ‖Φ‖2 =

∫∫
Ω

Φ2 dxdy , (4.56)

and stop if Re1 < ε, where ε is the desired tolerance for the residual.

Step 3: Enriching the approximation basis. Third step consists of enriching the
approximation basis by obtaining a new term δΦ(x, y) = G1(x)G2(y) to correct
the solution Φk. The correction equation we have to solve is

−∇ ·D∇
(
Φk(x, y) + δΦ(x, y)

)
= f(x, y) , (4.57)

that can be rewritten as

−∇ ·D∇δΦ(x, y) = fk+1(x, y) , (4.58)

where fk+1 is a known function defined as

fk+1(x, y) = f(x, y) +∇ ·D∇Φk(x, y) . (4.59)

Now it will be assumed that the test functions are of the form

δϕ(x, y) = G∗1(x)G2(y) +G1(x)G∗2(y) , (4.60)

and then, the weak form of equation (4.58) is written as∫∫
Ω

D∇δΦ(x, y) · ∇ϕ(x, y) dx dy =

∫∫
Ω

fk+1(x, y)ϕ(x, y) dx dy . (4.61)

This equation is solved iteratively, in the same way as it is done in (4.39), by
solving 1-dimensional problems similar to (4.45) and (4.46).

Functions F k+1
j for the sum (4.47) are obtained normalizing Gj . The algorithm

follows going again to step 1 until the convergence criterion in step 2 is fulfilled.
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4.3.1 Eigenvalue problem

One example of a differential eigenvalue problem useful in nuclear reactor physics
is the problem known as the Lambda modes problem [89, 8]. The one energy
group approximation of the Lambda modes problem will be used to develop the
method. The one energy group neutron diffusion equation is of the form

LΦ =
1

λ
MΦ , (4.62)

where the neutron loss operator and the neutron production operator are defined,
respectively, as

L = −~∇ · (D1
~∇) + Σa1 , and M = νΣf1 .

This problem is assumed to be defined in a 2-dimensional separable domain Ω =
Ωx × Ωy.

The algorithm proposed can be divided into an initialization step, a Rayleigh-
Ritz procedure, another step for checking the convergence and a fourth step for
enriching the approximation.

4.3.1.1 Initialization

The PGD method to compute the dominant eigenvalue of a differential eigenvalue
problem and its corresponding eigenvector, is based on expressing the eigenvector
Φ associated with the dominant eigenvalue λ in the k-th step as

Φk(x, y) =

k∑
i=1

αiF
i
1(x)F i2(y) . (4.63)

For a first step, k = 1, the solution is completely separable, i.e., Φ1(x, y) =
Φ1(x)Φ2(y), and integrating in the y direction we obtain the 1-dimensional eigen-
value problem

L̂Φ1 =
1

λ
M̂Φ2 , (4.64)

where
L̂ = −~∇ · (Dx

~∇) + D̂x + Σxa and M̂ = νΣxf .

and

Dx =

∫
Ωy

D (Φ2(y))
2
dy , D̂x =

∫
Ωy

D

(
∂Φ2

∂y
(y)

)2

dy ,

Σxa =

∫
Ωy

Σa (Φ2(y))
2
dy , Σxf =

∫
Ωy

Σf (Φ2(y))
2
dy ,
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that can be accurately solved in a fast way using 1-dimensional solver as in [90].

Once Φ1(x) has been obtained for a certain initial approximation Φ2(y), Φ(x, y)
is updated with the new function and it starts an iterative process, this time to
update Φ2(x) using an equation similar to (4.64) but integrating in the x-direction.
This iteration follows until a convergence criterion is satisfied.

4.3.1.2 Rayleigh-Ritz Procedure

Let us assume we have a solution as (4.63), where the approximation functions F ij
are known. A Rayleigh-Ritz procedure is used to project the eigenproblem onto a
small subspace. To do this, first we have the actual solution in the form

Φk+1(x, y) = γ1Φk(x, y) + γ2δΦ(x, y) , (4.65)

with the normalizations∫
Ωx

(
Φi1(x)

)2
dx = 1 ,

∫
Ωy

(
Φi2(y)

)2
dy = 1 , i = 1, . . . , k∫∫

Ω

ΦkLΦk dxdy = 1 ,

∫∫
Ω

δΦLδΦ dxdy = 1 ,

and the orthogonality condition∫∫
Ω

ΦkLδΦ dxdy = 0 , (4.66)

where γj are unknown coefficients.We need to approximate the value of γj to obtain
an approximation for the eigenvector associated with the dominant eigenvalue. In
this way, we project our problem by means of

λ

∫∫
Ω

Φ∗k+1(x, y)LΦk+1(x, y) dx dy =

∫∫
Ω

Φ∗k+1(x, y)MΦk+1(x, y) dx dy .

(4.67)
where

Φ∗k+1(x, y) = γ∗1Φk(x, y) + γ∗2δΦ(x, y) , (4.68)

with γ∗j arbitrary constants. Since the previous equality should be fulfilled for
every γ∗j , Equation (4.67) can be rewritten as the reduced generalized algebraic
eigenvalue problem

λL~γ = M~γ , (4.69)

where

L =

( ∫∫
Ω

ΦkLΦk dxdy
∫∫

Ω
ΦkLδΦ dxdy∫∫

Ω
δΦLΦk dxdy

∫∫
Ω
δΦLδΦ dxdy

)
,

M =

( ∫∫
Ω

ΦkMΦk dxdy
∫∫

Ω
ΦkMδΦ dxdy∫∫

Ω
δΦMΦk dxdy

∫∫
Ω
δΦMδΦ dxdy

)
,

~γ = (γj) , j = 1, 2 .
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The dominant eigenvalue λ of problem (4.69) is our approximated dominant eigen-
value, and the eigenvector is given by (4.65).

4.3.1.3 Checking convergence

Let us define a residual operator, R2, in a similar way as in step 2 of PGD method

R2(u, v) =

∫∫
Ω

λuLv dxdy −
∫∫

Ω

uMv dxdy . (4.70)

From the solution Φk at iteration k, given by Equation (4.63), we compute the
residual Re2 related to Equation (4.62):

Re2 =
R2(Φk,Φk)

‖Φk‖
, (4.71)

and stop if Re2 < ε, where ε is the desired tolerance for the residual of our
approximated eigenpair.

4.3.1.4 Enriching the approximation

Now we want to improve our approximation by means of adding a correction
term [91]. It is assumed that the new iteration is written as

Φk+1(x, y) = Φk(x, y) + δΦ(x, y) . (4.72)

where the correction term will have the form

δΦ(x, y) =

nk+1∑
i=1

αk+1,iΦ
k+1,i
x (x)Φk+1,i

y (y) . (4.73)

We are interested in solving approximately the following equation,

L (Φ + δΦ) (λ+ δλ) =M (Φ + δΦ) , (4.74)

that can be approximated as

λLΦ + λLδΦ + δλLΦ =MΦ +MδΦ , (4.75)

where second order term δλLδΦ has been eliminated. This is, essentially, an iter-
ation of the Newton method to compute eigenpairs for an eigenvalue problem [91].
Reordering the elements of equation (4.75) we obtain the correction equation,

(λL −M)δΦ + δλLΦ = −(λL −M)Φ . (4.76)
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To solve this correction equation, a PGD based technique will be used, obtaining
a correction δΦ composed of a sum of separable functions, as noted by equa-
tion (4.73). As in the PGD method, to solve this source problem, the initial
approximation for the δΦ with nk+1 will be of the form

δΦ(x, y) = G1(x)G2(y) . (4.77)

Then the system will be weighted against a test function ϕ of the form

ϕ(x, y) = G1(x)G∗2(y) +G∗1(x)G2(y) , (4.78)

obtaining

R2(δΦ, ϕ) + δλ

∫∫
ϕ(x, y)LΦ(x, y) dxdy = −R2(Φ, ϕ) . (4.79)

To solve this equation, and due to the arbitrariness of functions G∗1 and G∗2, we
obtain both equations to solve as in (4.43) and (4.44). Dealing with the first of
these equations,

R (G1(x)G2(y), G∗1(x)G2(y)) + δλ

∫∫
Ω

(LΦ(x, y))G∗1(x)G2(y) dx dy

= −R (Φ(x, y), G∗1(x)G2(y)) , (4.80)

we start an iterative procedure similar to the one performed in Step 3 of PGD
method, assuming G2(y) is known. Integrating with respect to the y direction,
we obtain a 1-dimensional system for the variable x, which can be discretized to
obtain an algebraic linear system

R2xδΨx + δλLxΨx = −R2xΨx , (4.81)

where Ψx is a vector containing the coefficients of the finite element expansion
for function Φx, and δΨx is a vector containing the coefficients of a finite element
expansion for the correction G1. This system requires an extra condition to be
solved because it has one more unknown than equations. We use the orthogonality
condition δΨT

xLΨx = 0 to obtain the system[
R2x LxΨx

(LxΨx)
T

0

] [
δΨx

δλ

]
=

[
−R2xΨx

0

]
. (4.82)

Once we have the update for the correction δΨx, we go back to the equation (4.76)
and the system will be weighted with a similar correction term, but this time the
part which depends on y will be free.

After the first term for the sum (4.73) is obtained, as in the PGD method explained
at the introduction, another term is added to the sum until a convergence criterion
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is satisfied for the residual of the correction term δΦ. Then, for the correction k+1,
it is repeated nk+1 times until we get a correction of the form

δΦ(x, y) =

nk+1∑
i=1

αk+1,iΦ
k+1,i
x (x)Φk+1,i

y (y) . (4.83)

where Φk+1,i
x and Φk+1,i

y are the normalized G1 and G2 at each step, and αi are
obtained solving a reduced system similar to (4.52).

With this correction, the new function Φ(x, y) is as follows

Φ(x, y) = γ1Φk(x, y) + γ2δΦ(x, y) =

γ1

k∑
j=1

(
nj∑
i=1

αj,iΦ
j,i
x (x)Φj,iy (y)

)
+ γ2

nk+1∑
i=1

αk+1,iΦ
k+1,i
x (x)Φk+1,i

y (y) , (4.84)

where γi should be calculated as in step 1. Also note that coefficients γi are used to
update the value of all the αj,i calculated before, i.e., after calculate the correction
k + 1 we get that αj,i = γ1αj,i, j = 1, . . . , k and αk+1,i = γ2αk+1,i For this reason
the previous γi calculated are not in this formula.

4.3.2 Numerical Results

The PGD method to compute the dominant eigenvalue and its corresponding
eigenfunction for a differential eigenvalue problem, presented above, has been
tested with a 2-dimensional reactor core, called Biblis 2D reactor [92], in one
group of energy.

The geometry of the core has been extended to be a Cartesian product of 1-
dimensional spaces. This geometry together with the fuel assembly distribution
is shown in Figure 4.11(a). The nuclear cross sections of the different materials
composing the core are shown at Table 4.15.

Table 4.15: Cross sections of 2-dimensional Biblis problem.

Mat. D(cm) Σa(cm−1) νΣf (cm−1)
1 1.4360 0.0095042 0.0058708
2 1.4366 0.0096785 0.0061908
3 1.3200 0.0026562 0.0000000
4 1.4389 0.0103630 0.0074527
5 1.4381 0.0100030 0.0061908
6 1.4385 0.0101320 0.0064285
7 1.4389 0.0101650 0.0061908
8 1.4393 0.0102940 0.0064285
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The reference solution for this problem has been computed with a nodal collocation
method [11] using K = 5 polynomials in the expansions. The reference value for
the dominant eigenvalue is λ1 = 0.618502.

The 1-dimensional systems arising as in equation (4.82) to get the correction func-
tion for x, and the analogous systems to obtain the corrections for y, are solved by
means of an iterative method as the Preconditioned Conjugate Gradient method,
due to the symmetry of the systems.

The convergence of the eigenvalue as a function of the steps k of the PGD method
is shown in Figure 4.11(b). We observe that for this problem a small number of
steps of the proposed method are enough to converge the eigenvalue.

The spatial power distribution associated with the corresponding eigenfunction is
shown in Figure 4.12(a). The initial approximation obtained for the first step (as
a product of two one-dimensional functions), k = 1, is shown in Figure 4.12(b).

In Figures 4.13(a)–4.13(d) we show the error associated and the corrections intro-
duced by PGD method for steps k = 2 and k = 3, respectively. The convergence
of this problem is also good for the eigenfunction using a small number of steps of
the PGD method.
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Figure 4.11: Geometry of reactor Biblis 2D (a) and Relative error evolution for the
eigenvalue λ (b)

We have proposed a PGD method based technique to approximate the dominant
eigenvalue and its corresponding eigenfunction of a differential eigenvalue problem
defined on a separable domain has been proposed. This method is based on the
representation of the eigenfunction as a sum of separable functions and the use of
the Newton method to compute the eigenvalues of an eigenvalue problem. This
allows to compute the multidimensional eigenvalue problem solving linear systems
associated with 1-dimensional problems, which can be solved in a fast way.
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4.3 Proper Generalized Decomposition for eigenvalue computations

(a) Reference power distribution. (b) Initial approximation.

Figure 4.12: Reference solution and the initial approximation (k = 1) for the power
distribution.

(a) Error k = 1. (b) Correction for k = 2.

(c) Error k = 2. (d) Correction k = 3.

Figure 4.13: Error and corrections for the power distribution for k = 1 and k = 2
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Chapter 4. Updating Eigenvalue Methods

The proposed method is applied to obtain the dominant eigenvalue and its cor-
responding eigenfunction of a nuclear reactor core. Particularly, the Biblis 2D
benchmark problem in the approximation of one group of energy has been stud-
ied, obtaining a fast convergence both for the eigenvalue and the eigenfunction.
It remains for a future work to extend the formalism to be able to compute the
problem in the energy multi-group approximation and to be able to study reactors
in 3D geometries.
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Conclusions

Different numerical methods to deal with the neutron diffusion equation have been
studied for reactors with hexagonal geometries. Calculations for the dominant
Lambda modes of the core of a nuclear power reactor in multidimensional geome-
tries require a large amount of memory and computing time to obtain reasonable
results. This makes necessary to study different methodologies to discretize the
neutron diffusion equation and to compute the dominant modes of a reactor in
order to find the most efficient strategy to solve this problem.

First of all, a comparison of methods to solve the Lambda modes problem in one-
dimensional geometries have been studied. All the methods considered are based
on the expansion of the neutron flux in terms of a continuous polynomial basis.
Different methods are obtained considering different ways to approximate the neu-
tron diffusion equation and the continuity conditions for the neutronic current. To
test the performance of the methods, we have considered two benchmark problems,
a homogeneous slab with vacuum boundary conditions and a typical 1D Boiling
Water Reactor (BWR). These methods are a Continuous Current Method (CCM),
a Pointwise Collocation Method (PCM), and a Spectral Element Method (SEM).
These methods are compared, for the first eigenvalue (the k-effective) and for the
first eigenfunction, when solving different test problems, an analytical slab and a
heterogeneous problem. The results are compared with an analytical solution for
the slab problem, and the solutions for the heterogeneous two groups problem. All
the methods show a exponential convergence rate with respect to the polynomial
expansion degree.

The Spectral Element Method has shown the best results for the calculations of
both the eigenvalues and the eigenvectors, being the difference higher in the 1D
BWR reactor problem. Moreover, with this method we obtain symmetric diagonal
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dominant matrices. This is an important fact to solve large systems using iterative
methods.

Once the best method among the different options to discretize the problem in
one dimension has been determined, i.e. the Spectral Element Method (SEM), it
is formulated for two- and three-dimensional geometries. It has been implemented
to approximate the solution of Lambda Modes problem of a nuclear reactor with
hexagonal geometry. This method is based on splitting each one of the hexagonal
prisms defied by the geometry into six equilateral triangular prisms, obtaining a
mesh which is kept fixed. The SEM method is based on the expansion of the neu-
tron flux in terms of a polynomials basis constructed using the modified Dubiner’s
Polynomials. The accuracy of the method is improved increasing the order in the
polynomial expansions and it is not necessary to refine the mesh.

To test the performance of the method, an extensive analysis of 2D benchmark
reactor cores has been carried out. In all the studied reactors the SEM method
has provided good results for the keff and the neutron power distribution and
also has succeeded computing the subcritical modes of each reactor. Also, two
3D benchmarks have been studied, the VVER-1000 and the VVER-440. The ob-
tained results for the keff and the neutronic power distribution have been compared
with the reference solution obtained with the DIF3D code. The SEM method has
provided good results for the keff and the power distributions, calculating also suc-
cessfully a set of subcritical modes for these reactors. The results are reported for
the keff and for the power distribution, compared with the results reported in [34].
Results for a set of dominant Lambda modes are also reported for completeness.

Once the Lambda modes problem is solved, the dominant eigenvalue and its as-
sociated eigenfunction defines the neutron distribution in the steady state. This
solution is used as an initial condition for any transient calculation. Then to inte-
grate the time dependent neutron diffusion equation, an implicit difference method
for the time discretization of the time dependent neutron diffusion equation is pre-
sented. This method needs to solve a a system of linear equations for each time
step, and the size of this system depends on the spatial accuracy needed in the
calculations. The performance of the method has been tested solving the 3-D
transient benchmark AER-DYN-001, showing that the proposed method provides
good results when it is compared with other codes such as PARCS and DYN3D.

When nodal methods are used, the nuclear cross sections have to be homogenized
over each node. This causes a problem in transients consisting on moving control
rods. The easiest way to interpolate the cross sections of a partially rodded node
is by means of the portion of the rod inserted on the node. This method is
called volume weighted method. With the cross sections calculated by means of
the volume weighted method, a unphysical behaviour of the keff appears on the
calculation, leading to large errors in the approximated flux near to the tip of the
control rod along the transient. This is called rod cusping effect. The correction
of this effect by means of a flux weighted method is studied here. This method
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has been tested for a three-dimensional transient of a small reactor, where the
rod cusping effect is a dominant effect. Good results are obtained, either at the
moment of a ejection control rod, or where a scram is occurring.

The use of implicit methods for the time discretization of the time dependent
neutron diffusion equation implies that a large and sparse system of linear equa-
tions has to be solved for each time step. The groups of energy considered in
these equations define a block structure in the matrix associated to these systems.
In this way, we have studied the performance of different variational acceleration
techniques applied to classical block iterative methods for the solutions of these
systems of equations such as the block Jacobi and the block Gauss-Seidel methods.
Also we have proposed a cheap preconditioner for the system, and the behaviour
of the variational acceleration techniques is tested for the preconditioned systems.
Two problems, a 2D transient and a 3D transient benchmark, are used to test
the behaviour of the variational techniques. For these cases, we have observed
that the most efficient acceleration technique depends on the method, and these
results are also sensible to the effect of the preconditioner. As a future work, this
research can be extended analysing the behaviour of the methods during a whole
transient, where for each time the system is a perturbed configuration of the pre-
vious one, and the solution at the previous time step is a good initial guess for
the new system. Also, parallel codes can take advantage of the block structure of
the matrices, and the behaviour of the acceleration techniques on these situations
might be studied.

Spatial discretization of time dependent neutron diffusion equation combined with
an implicit finite difference method implies that very large systems of equations
have to be solved at each time step, but there are some situations where the
matrix can not be explicitly built, due to the memory requirements. Moreover,
to preconditionate these systems either with clasical incomplete factorizations (as
the incomplete LU, or the incomplete Cholesky), or with the block preconditioning
explained before are more restrictive for the memory requirements than to load
the full system matrix.

Spectral preconditioners, which are based on a low rank update of a previous pre-
conditioner improving spectral properties of the matrix have been studied here,
for the use combined with a Krylov solver. These preconditioners can be applied
using only a matrix-vector product procedure, with the advantage that the matrix
does not need to be built explicitly, and the storage memory requirement are very
low when compared with incomplete factorizations preconditioners. To study the
feasibility of using this kind of preconditioner for the sequence of linear systems
arising in a given transient, a transient associated to a control rod movement in
a small reactor has been considered. To use the spectral update for the sequence
of preconditioners it is assumed that the spectral properties of the matrix change
slowly along the transient. In a first approach, different strategies for the imple-
mentation of the preconditioner have been considered and it has been observed
that the preconditioner is very efficient for the reduction of iterations needed to
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solve the linear systems for the first 10-15 systems and the reduction is stagnated
for the rest of systems. It remains for further studies the use of this kind of precon-
ditioners for larger problems such as the ones associated with commercial reactors,
and the combination of the preconditioner with different minimal residual Krylov
methods.

Also, an exponential method has been used to integrate the time dependent neu-
tron diffusion equation. Some studies indicate that approximating the exponential
matrix to integrate in time with a Krylov method, if a good preconditioner is not
avaliable, can converge faster than approximating with a Krylov method the sys-
tem arising with an implicit method [67, 66], while keeping its stability conditions.
Moreover, polynomials approximation as the Leja Points Method have shown good
convergence properties when compared with Krylov approximation for the expo-
nential matrix. Here a second and a fourth order exponential integrators are used
to integrate the time dependent neutron diffusion equation, and different methods
to approximate the matrix exponential are compared.

Starting from a steady state configuration of a nuclear power reactor some situa-
tions arise in which the reactor configuration is perturbed. The Lambda modes are
eigenfunctions associated with a given configuration of the reactor, which have suc-
cessfully been used to describe unstable events in BWRs with a modal method [3],
which uses a set of dominant modes to expand the neutron flux. For the transient
calculations using the modal method with a moderate number of modes, these
modes must be updated each time step to maintain the accuracy of the solution.
The updating modes process is also interesting to study perturbed configurations
of a reactor. To compute several eigenvalues and its corresponding eigenfunctions
for a nuclear reactor is quite expensive from the computational point of view. The
Arnoldi method, based on approximating the invariant subspaces of the original
problem projected onto a Krylov subspace is an efficient method to compute the
dominant Lambda modes associated with a given configuration of the reactor, but
if the Lambda modes have to be computed for different perturbed configurations
of the reactor more efficient methods can be used.

Once an initial set of Lambda modes has been obtained, to update these modes
we have used a Modified Block Newton Method, which has a local cubic conver-
gence [81]. By studying different benchmark problems, we have shown that this
method is robust to deal with problems that have degenerate or clustered eigen-
values, and it has fast convergence in such a way that the number of steps needed
to update the modes is not very dependent on the kind of perturbation considered
and the number of modes to be updated. For these reasons it seems to be inter-
esting to take advantage of the convergence properties of this kind of updating
methods when perturbed configurations of a reactor core have to be studied.

Once it has been shown that block Newton methods are a good alternative to
update the Lambda modes of a nuclear reactor, different methods based on this
strategy are studied, and their performance has been tested using a Boron injection
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transient. The One Sided and Two Sided Block Newton methods have shown the
best performance regarding the number of iterations. Since the cost per iteration
is cheaper in the One Sided Block Newton method, this is the best method for
this application.

Finally, a method based on a Proper Generalized Decomposition has been proposed
to approximate the dominant eigenvalue and its corresponding eigenfunction of a
differential eigenvalue problem defined on a separable domain. This method is
based on the representation of the eigenfunction as a sum of separable functions
and the use of the Newton method to compute the eigenvalues of an eigenvalue
problem. This allows to compute the multidimensional eigenvalue problem solving
linear systems associated with one-dimensional problems, which can be solved in
a fast way. The proposed method is applied to obtain the dominant eigenvalue
and the corresponding eigenfunction of a nuclear reactor core. Particularly, the
Biblis 2D benchmark problem in the approximation of one group of energy has been
studied, obtaining a fast convergence both for the eigenvalue and the eigenfunction.
It remains for a future work to extend the formalism to be able to compute the
problem in the energy multi-group approximation and to be able to study reactors
in 3D geometries.
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Let the laplace equation in spherical coordinates be

∆y ≡ 1

r2

∂

∂r

(
r2 ∂y

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂y

∂θ

)
+

1

r2 sin2 θ

∂2y

∂φ2
= 0 ,

applying the separation of variables technique, with y(r, θ, ϕ) = R(r)Y (θ, ϕ),
where Y (θ, ϕ) = f(θ)g(ϕ), the angular part of the equation becomes

sin θ

f

∂

∂θ

(
sin θ

∂f

∂θ

)
− l(l + 1) sin2 θ = −1

g

∂2g

∂ϕ2
.

From this equation it is concluded that both parts of the equation must be equal
to a constant, m2:

d2g

dϕ2
= −m2g , (A.1)

1

sin θ

d

dθ

(
sin θ

df

dθ

)
− m2

sin2 θ
f − l(l + 1)f = 0 . (A.2)

Equation (A.1) is easily solved

g(ϕ) = eimϕ ,
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and the, if the angular part of the solution for the Laplace equation in spherical co-
ordinates, Y (ϕ, θ), has a unique value associated when ϕ takes the value 2π, then
m must be equal to zero, or a positive or negative integer: m = 0,±1,±2, . . .. Fur-
thermore, the equation (A.2) can be rewritten in the form of Legendre differential
equation making the change cos θ = x,

d

dx

(
1− x2

) d

dx
f(x)−

(
l(l + 1) +

m2

1− x2

)
f(x) = 0 . (A.3)

It is worth to note that the differential equation (A.3) remains the same after
changing x by −x. Thus, the solutions must be chosen as even or odd functions for
x. This equation has nontrivial solution in [−1, 1] if it is satisfied that −l ≤ m ≤ l.

A.1 Legendre polynomials

Before starting with equation (A.3) the solution for the ordinary Legendre equation
is commented for m2 = 0;

d

dx

(
(1− x2)

d

dx
f(x)

)
+ l(l + 1)f(x) = 0 . (A.4)

The solutions of this equation are the called Legendre polynomials [93], defined
by means of the following recurrence

(2l + 1)xPl(x) = (l + 1)Pl+1(x) + lPl−1(x), l = 1, 2, . . . ,

P0(x) = 1, P1(x) = x .

Working with this recurrence it is possible to obtain a more compact representation
for the Legendre polynomials, which is known as the Rodrigues’ Formula [30]

Pl(x) =
1

2ll!

dl

dxl
(
(x2 − 1)l

)
.

The differential operator of equation (A.4) is selfadjoint. It is known that the
solutions, Pl(x), are orthonormal in [−1, 1], i.e.,∫ 1

−1

Pl(x)Pm(x) dx =
2

2l + 1
δml ,

where δml is the Kronecker Delta function, which takes the value 1 if l = m, and
takes the value 0 if l 6= m.
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A.2 Associated Legendre functions

The regular solutions for the equation (A.3), denoted as Pml (x), are

Pml (x) = (1− x2)m/2
dm

dxm
Pl(x) ,

and they are called associated Legendre functions, for the indices m = 0, 1, . . . , l,
and the relation with the negative indices is given by

P−ml (x) = (−1)m
(l −m)!

(l +m)!
Pml (x) .

Making use of the Rodrigues formula it is obtained

Pml (x) =
(1− x2)

m
2

2ll!

dl+m

dxl+m
(
(x2 − 1)l

)
.

By means of the change of variables x = cos θ, the trigonometric representation of
the associated Legendre functions is

Pml (cos θ) = sinm θ
dm

d(cos θ)m
Pl(cos θ) .

The associated Legendre functions for the same index, m, are orthogonals in [−1, 1]
by means of the relation∫ 1

−1

Pmp (x)Pmq (x) dx =
2

2q + 1

(q +m)!

(q −m)!
δqp ,

or in polar coordinates,∫ π

0

Pmp (cos θ)Pmq (cos θ) sin θ dθ =
2

2q + 1

(q +m)!

(q −m)!
δqp .

It is also possible to find a orthogonality relationship for the associated Legendre
functions with the same subindex but different upperindex as follows,∫ 1

−1

Pml (x)Pnl (x)

1− x2
dx =

2

2q + 1

(l +m)!

m(l −m)!
δnm ,

or in polar coordinates,∫ π

0

Pmp (cos θ)Pmq (cos θ) sin θ dθ =
2

2q + 1

(q +m)!

(q −m)!
δqp .
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The associated Legendre functions satisfy different recurrence relations. Due to
the existence of two indices instead of one, there is a wide variety of recurrence
relations [93], as follows

(2l + 1)xPml (x) = (l +m)Pml−1(x) + (l −m+ 1)Pml+1(x) , (A.5)

(2l + 1)

sin θ
Pml (cos θ) = Pm+1

l+1 (cos θ)− Pm+1
l−1 (cos θ) , (A.6)

(2l + 1)

sin θ
Pml (cos θ) = (l +m)(l +m− 1)Pm+1

l+1 (cos θ)

− (l −m+ 1)(l −m+ 2)Pm+1
l+1 (cos θ) , (A.7)

Based on Figure A.1, the Legendre polynomial of µ∗ = cos θ∗ (the cosine of the

angle between ~Ω and ~Ω∗), can be rewritten in terms of the Legendre polynomials
for µ = cos θ and µ′ = cos θ′ due to the Addition Theorem

Pl(µ
∗) = Pl(µ)Pl(µ

′) + 2

l∑
m=1

(l −m)!

(l +m)!
Pml (µ)Pml (µ′) cosm(ϕ− ϕ′) , (A.8)

x y

z
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θ′

Ω

ψ

θ

θ∗

Figure A.1: Magnitudes for the Addition theorem for the Legendre polynomials.
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A.3 Spherical Harmonics

The azimuthal equation (A.1) has the solution

gm(ϕ) = eimϕ ,

with the orthogonality condition∫ 2π

0

e−im1ϕeim2ϕ dϕ = 2πδm2
m1

.

Note that this is the inner product g∗m1
(ϕ)gm2

(ϕ), where ∗ indicates the complex
conjugate function. This basis can be made orthonormal by means of the definition

Gm(ϕ) =
1√
2π
eimϕ .

Then, removing the azimuthal dependence (ϕ), the polar dependence (θ) has the
associated Legendre equation (A.2), which is satisfied by the associated Legendre
functions. These functions are orthogonal, and an orthonormal formulation is
obtained by means of

Pml (cos θ) =

√
2l + 1

2

(l −m)!

(l +m)!
Pml (cos θ) , −l ≤ m ≤ l .

The function Gm(ϕ) is orthonormal with respect to the azimuthal angle ϕ, while
the function Pml (cos θ) is orthonormal with respect to the polar angle θ. Then,
the product of both functions define the spherical harmonics

Y ml (θ, ϕ) ≡ Hm
l P

m
l (cos θ)eimϕ , (A.9)

where

Hm
l =

√
2l + 1

4π

(l −m)!

(l +m)!
, (A.10)

when functions depending of both angles (and with two indices) are obtained,
which are orthonormals over the surface defining the sphere. The orthogonality
relationship for these functions is described by∫ 2π

ϕ=0

∫ π

θ=0

Y m1∗
l1

(θ, ϕ)Y m2

l2
(θ, ϕ) sin θ dθ dϕ = δl2l1 δ

m2
m1

. (A.11)
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A basic set of these functions is written as follows

Y 0
0 (θ, ϕ) =

√
1

4π
, (A.12a)

Y −1
1 (θ, ϕ) = −

√
3

8π
sin θ(cosϕ− i sinϕ) , (A.12b)

Y 0
1 (θ, ϕ) =

√
3

4π
cos θ , (A.12c)

Y 1
1 (θ, ϕ) =

√
3

8π
sin θ(cosϕ+ i sinϕ) . (A.12d)

A.4 Relations

Taking into account Figure A.1, and using the values obtained at the equa-
tions (A.12), the directions represented by the unit vector ~Ω = (Ωx,Ωy,Ωz) defined
by means of the spherical harmonics as follows

Ωx ≡ sin θ cosϕ =
1

2H1
1

(
Y 1

1 − Y −1
1

)
, (A.13a)

Ωy ≡ sin θ sinϕ =
−i

2H1
1

(
Y 1

1 + Y −1
1

)
, (A.13b)

Ωz ≡ cos θ =
1

H0
1

Y 0
1 . (A.13c)

Using the definition of the terms (A.13), and reordering the equation it is obtained
that

~Ω · ~∇ =
1

2H1
1

(
Y 1

1 − Y −1
1

) ∂

∂x
+
−i

2H1
1

(
Y 1

1 + Y −1
1

) ∂
∂y

+
1

H0
1

Y 0
1

∂

∂z

=
Y 1

1 (~Ω)

2H1
1

(
∂

∂x
− i ∂

∂y

)
− Y −1

1 (~Ω)

2H1
1

(
∂

∂x
+ i

∂

∂y

)
+
Y 0

1 (~Ω)

H0
1

∂

∂z
. (A.14)

Now it is necessary an alternative expression of Y ml (~Ω)(~Ω · ~∇) as a linear combina-

tion of the spherical harmonics. First of all, we deal with the term Y ml (~Ω)
Y 1

1 (~Ω)

2H1
1

,
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using the property (A.6) for the associated Legendre functions, it is obtained that

Y ml (~Ω)Y 1
1 (~Ω)

2H1
1

=
1

2H1
1

(
Hm
l P

m
l (µ)eiϕm

) (
H1

1 sin θeiϕ
)

=
Hm
l

2
sin θPml (µ)eiϕ(m+1)

=
Hm
l

2

Pm+1
l+1 (µ)− Pm+1

l−1 (µ)

2l + 1
eiϕ(m+1)

=
Hm
l

2(2l + 1)Hm+1
l+1

Y m+1
l+1 (~Ω)− Hm

l

2(2l + 1)Hm+1
l−1

Y m+1
l−1 (~Ω)
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2(2l + 1)
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− 1
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(
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= Al,m1 Y m+1
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l−1 (~Ω) , (A.15)

where the following notation has been used

Al,m1 =
1

2

(
(l +m+ 2)(l +m+ 1)

(2l + 3)(2l + 1)

) 1
2

,

Al,m2 =
1

2

(
(l −m)(l −m− 1)

(2l + 1)(2l − 1)

) 1
2

. (A.16)
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Now, to deal with the term Y ml (~Ω)
Y −1

1 (~Ω)

2H1
1

, using the property (A.5) of the asso-

ciated Legendre functions, it is obtained

Y ml (~Ω)Y −1
1 (~Ω)

2H1
1

=
1

2H1
1

(
Hm
l P

m
l (µ)eiϕm

) (
H1

1 (− sin θ)e−iϕ
)

= −H
m
l

2
sin θPml (µ)eiϕ(m−1)

= −Hm
l

−(l −m+ 2)(l −m+ 1)Pm−1
l+1 (µ)

2(2l + 1)
eiϕ(m−1)

−Hm
l

(l +m− 1)(l +m)Pm−1
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2(2l + 1)
eiϕ(m−1)
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Hm
l (l −m+ 2)(l −m+ 1)

2(2l + 1)Hm−1
l+1

Y m+1
l+1 (~Ω)

−H
m
l (l +m)(l +m− 1)

2(2l + 1)Hm−1
l−1

Y m+1
l−1 (~Ω)
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(l −m+ 2)(l −m+ 1)

2(2l + 1)


2l + 1

4π
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2l + 3
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) 1
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Y m−1
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= Al,m3 Y m−1
l+1 (~Ω)−Al,m4 Y m−1

l−1 (~Ω) , (A.17)

where the following notation has been used

Al,m3 =
1

2

(
(l −m+ 2)(l −m+ 1)

(2l + 3)(2l + 1)

) 1
2
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Al,m4 =
1

2

(
(l +m)(l +m− 1)

(2l + 1)(2l − 1)

) 1
2

. (A.18)
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Finally, to deal with the term Y ml (~Ω)
Y 0

1 (~Ω)

H0
1

, using the property (A.7) for the

associated Legendre functions, it is obtained

Y 0
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2
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(
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) 1
2

Y ml+1(~Ω)

= Al,m5 Y ml−1(~Ω) +Al,m6 Y ml+1(~Ω) , (A.19)

where the following notation has been used

Al,m5 =

(
(l +m)(l −m)

(2l + 1)(2l − 1)

) 1
2

,

Al,m6 =

(
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) 1
2

. (A.20)

Thus, multiplying the equation (A.14) by Y ml (~Ω), and substituting by means of
the equalities (A.15), (A.16) and (A.18), the following identity is obtained

Y ml (~Ω)(~Ω · ~∇) =
(
Al,m1 Y m+1

l+1 (~Ω)−Al,m2 Y m+1
l−1 (~Ω)

)( ∂

∂x
− i ∂

∂y

)
+
(
−Al,m3 Y m−1

l+1 (~Ω) +Al,m4 Y m−1
l−1 (~Ω)

)( ∂

∂x
+ i

∂

∂y

)
+
(
Al,m5 Y ml−1(~Ω) +Al,m6 Y ml+1(~Ω)

) ∂

∂z
, (A.21)
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where using the information of the identities (A.16), (A.18) and (A.20), it is ob-
tained that

Al,m1 =
1

2

(
(l +m+ 2)(l +m+ 1)

(2l + 3)(2l + 1)

) 1
2

,

Al,m2 =
1

2

(
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(2l + 1)(2l − 1)

) 1
2

,

Al,m3 =
1

2

(
(l −m+ 2)(l −m+ 1)

(2l + 3)(2l + 1)

) 1
2

,

Al,m4 =
1

2

(
(l +m)(l +m− 1)

(2l + 1)(2l − 1)

) 1
2

,

Al,m5 =

(
(l +m)(l −m)

(2l + 1)(2l − 1)

) 1
2

,

Al,m6 =

(
(l +m+ 1)(l −m+ 1)

(2l + 3)(2l + 1)

) 1
2

. (A.22)
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Evaluation of the
polynomials and the
integrals
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B.1 Evaluation of the modified Dubiner’s polynomials

To evaluate the modified Dubiner’s polynomials we have used the following re-
currence relations:

Q1,1
0 (x′, y′) = 1 , Q1,1

1 (x′, y′) = 2x′ + y′ − 1 ,

Q1,1
i+1 (x′, y′) =

1

a1i

(
a3i(2x

′ + y′ − 1)Q1,1
i (x′, y′)

−a4i (1− y′)2
Q1,1
i−1 (x′, y′)

)
, i ≥ 2 , (B.1)

where

a1i = 4(i+ 1)2(i+ 3),

a3i = 4(i+ 1)(i+ 2)(2i+ 3),

a4i = 4(i+ 1)2(i+ 2),
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and

Pα,β0 (x′) = 1 , Pα,β1 (x′) =
1

2
(α− β + (α+ β + 2)x′) ,

Pα,βj+1 (x′) =
1

b1j

(
(b2j + b3jx

′)Pα,βj (x′)− b4jPα,βj−1 (x′)
)
, (B.2)

where

b1j = 2(j + 1)(j + α+ β + 1)(2j + α+ β),

b2j = (2j + α+ β + 1)(α2 − β2),

b3j = (2j + α+ β)(2j + α+ β + 1)(2j + α+ β + 2),

b4j = 2(j + α)(j + β)(2j + α+ β + 2).

The derivatives of the polynomials can be evaluated by means of the recurrence
relations obtained deriving the relations (B.1) and (B.2).

B.2 Evaluation of the integrals by means of quadrature
rules

The first step to calculate the integrals appearing in equations (2.51), (2.52),
(2.53) and (2.54) is to map each physical element, Ωe, into the reference element,
ΩREF , by means of the change of variables (2.46).

It is easy to see that the Jacobian and the differential area of this change of
variables for each element are

|J | =
∣∣∣∣ ∂(x, y)

∂(x′, y′)

∣∣∣∣ = −x1y0 + x2y0 + x0y1 − x2y1 − x0y2 + x1y2 = C ,

dx dy = C dx′ dy′ ,

where C is a constant depending on the vertex coordinates of each element.

We have to calculate three kinds of integrals, and each one has a particular form.
Thus, we distinguish three cases.

case 1) To evaluate an integral of the form∫∫
Ωe

~∇h1(x, y) · ~∇h2(x, y) dx dy ,

by means of the change of variables (2.45) we get∫∫
Ωe

~∇h1(x, y) · ~∇h2(x, y) dx dy =

∫∫
ΩREF

(
(a2

1 + a2
2)
∂h1

∂x′
∂h2

∂x′

+ (a1a2 + b1b2)

(
∂h1

∂x′
∂h2

∂y′
+
∂h2

∂x′
∂h1

∂y′

)
+ (b21 + b22)

∂h1

∂y′
∂h2

∂y′

)
C dx′ dy′ ,
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where each one of the terms inside the integral are polynomials.

case 2) To evaluate an integral of the form∫∫
Ωe

h1(x, y)h2(x, y) dx dy ,

by means of the same change of variables used above, we obtain the following
integral ∫∫

ΩREF

h1(x′, y′)h2(x′, y′) C dx′ dy′ .

case3) Finally, if we deal with a line integral of the form∫
Γ

h1(x(l), y(l))h2(x(l), y(l)) dl ,

where the parameterization of the polygonal is defined on the domain [−1, 1],
then we have that the product inside the integral is a product of two poly-
nomials. For this reason we can express this integral as the integral of a
polynomial on the domain [−1, 1].

For case 1) and case 2) we obtain integrals of the form

I =

∫∫
ΩREF

f (x′, y′) dx′dy′ , (B.3)

where f(x′, y′) is a two dimensional polynomial over the reference domain ΩREF .

(0,1)

(1,0)

(0,0)

y´

x´ xr

yr (1,1)

(1,-1)(-1,-1)

(-1,1)

Figure B.1: Change of variables mapping the reference domain into the rectangle
[−1, 1] × [−1, 1].

To evaluate these integrals, we make use of the change of variables (B.4).

x′ =
1

4
(1 + xr) (1− yr)

y′ =
1

2
(yr + 1)

⇐⇒ xr =
2x′

1− y′
− 1

yr = 2y′ − 1
, (B.4)

183



Chapter B. Evaluation of the polynomials and the integrals

As it is shown in Figure B.1, this change of variables transforms the reference do-
main, ΩREF , into the rectangle [−1, 1]× [−1, 1]. The Jacobian and the differential
area for this new change of variables are given by

|J | =
∣∣∣∣ ∂(x′y′)

∂(xr, yr)

∣∣∣∣ =
1

8
(1− yr) , dx′ dy′ =

1

8
(1− yr) dxr dyr .

Thus, we obtain

I =

∫∫
ΩREF

f (x′, y′) dx′dy′

=

∫ 1

−1

∫ 1

−1

f

(
(1 + xr)(1− yr)

4
,

(yr + 1)

2

)(
1− yr

8

)
dxrdyr , (B.5)

which can be computed calculating two one-dimensional integrals over [−1, 1]. As
the integrands are polynomials, these integrals can be computed exactly making
use, for example, of the Gauss-Legendre quadrature rules [32, 94]. From equa-
tions (B.5), we can write

I =

sy∑
i=1

sx∑
j=1

(
1− yri

8

)
wiwjf

(
(1 + xrj)(1− yri)

4
,

(yri + 1)

2

)
(B.6)

where xrj , yri are Gaussian quadrature points for the directions xr and yr, and
the corresponding weights are wj and wi. We can calculate this formula by means
of

I =

sy∑
i=1

sx∑
j=1

cijf(x′ij , y
′
ij)

where, cij , x
′
ij and y′ij can be obtained from the relations

cij =
(1− yrj)

8
wiwj , x′ij =

(1 + xrj)(1− yri)
4

, y′ij =
(yrj + 1)

2
,

and the value of sx and sy depend on the degree of the polynomials constituting
the integrands.
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and J. Serra. Consistent generation and functionalization of one-dimensional
cross-sections for TRAC-BF1. Nucl. Technol., 107:125–137, 1994.

187



Bibliography

[41] K. Sing and V. Kumar. Solution of the multigroup diffusion equation in hex-z
geometry by finite Fourier transform. Annals of Nuclear Energy, 20:153–161,
1993.

[42] J. Y. Cho and C. H. Kim. Higher order polynomial expansion nodal method
for hexagonal core neutronics analysis. Annals of Nuclear Energy, 25:1021–
1031, 1998.
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