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Abstract. We report on the new version of mu-term, a tool for prov-
ing termination properties of variants of rewrite systems, including con-
ditional, context-sensitive, equational, and order-sorted rewrite systems.
We follow a unified, logic-based approach to describe rewriting computa-
tions. The automatic generation of logical models for suitable first-order
theories and formulas provides a common basis to implement the proofs.

1 Introduction

mu-term is a tool that can be used to automatically verify termination prop-
erties of variants of Term Rewriting Systems (TRSs): termination and inner-
most termination of TRSs using the DP Framework for TRSs [10] (this frame-
work is also used to prove termination of String Rewriting Systems); termina-
tion and innermost termination of context-sensitive rewriting [16, 17] using the
Context-Sensitive DP Framework [2, 13]; termination of rewriting modulo asso-
ciative/commutative theories using the A∨C-DP Framework [4]; termination of
order-sorted rewriting using the Order-Sorted DP Framework [22]; and opera-
tional termination of Conditional TRSs (CTRSs) using the 2D DP Framework
[24, 25]. In this setting, describing different kinds of rewriting computations as
proofs of goals s→ t and s→∗ t with respect to an appropriate inference system
is useful. Such an approach, exploiting the logic-based description of rewriting
computations, involves the use of several techniques which have been recently
investigated elsewhere: (i) the generation logical models and well-founded re-
lations [19], (ii) modeling operational termination of CTRSs with conditional
dependency pairs [23], (iii) the use of removal triples [24] generated by logi-
cal models [25], etc. Giving support to such techniques in termination proofs
motivated the development of a new version of our tool, mu-term 6.0:

http://zenon.dsic.upv.es/muterm

We report on the new logic-based approach followed by mu-term 6.0, and also
on the new features included since the last description of the system in 2010 [3].

? Supported by EU (FEDER), and projects RTI2018-094403-B-C32, PROME-
TEO/2019/098, and SP20180225. Also by INCIBE program “Ayudas para la exce-
lencia de los equipos de investigación avanzada en ciberseguridad” (Raúl Gutiérrez).
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2 New Features of mu-term

In the following, we enumerate the new features of mu-term 6.0 and illustrate
them with some examples. Examples are intended to provide a better under-
standing of the techniques and often display solutions not necessarily obtained
by an automatic proof with the tool, where the use of a specific proof strategy
combining a sequence of several techniques (see Section 3) may dismiss the fo-
cused technique. Although we use some examples from other papers, all proofs
of (operational) termination displayed here are new. For instance, the CTRS in
Example 1 was proved operationally terminating in [25, Ex. 33], but the use
of models in Example 3 below to show the absence of a link in the dependency
graph is new. Examples 6 and 7 (of Order-Sorted TRSs) are discussed and proved
here for the first time.

2.1 Logic-Based Representation of CTRSs

Given an oriented CTRS R, with rules `→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn,1 an infer-
ence system I(R) is obtained from the following generic inference system ICTRS

(Rf)
x→∗ x (C)f,i

xi → yi
f(x1, . . . , xi, . . . , xk)→ f(x1, . . . , yi, . . . , xk)

for all f ∈ F (k) and 1 ≤ i ≤ k

(T)
x→ y y →∗ z

x→∗ z (Rl)α
s1 →∗ t1 · · · sn →∗ tn

`→ r
for α : `→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn ∈ R

by specializing (C)f,i for each k-ary symbol f in the signature F and 1 ≤ i ≤ k,
and (Rl)α for all conditional rules α : ` → r ⇐ c in R. Rules B1 ··· Bn

A
in I(R) are

schematic: they can be used under any instance σ(B1) ··· σ(Bn)
σ(A)

by a substitution σ.

We write s →R t (s →∗R t) iff there is a proof tree for s → t (s →∗ t) using I(R).
Operational termination of R is defined as the absence of infinite proof trees for goals
s → t and s →∗ t in I(R) [21]. In the analysis of computational properties of R,
we use the first-order theory R obtained from I(R) by translating the inference rules
(ρ)B1 ··· Bn

A
in I(R) into sentences ρ of the form (∀x) B1 ∧ · · · ∧ Bn ⇒ A, for x the

sequence of variables occurring in A,B1, . . . , Bn [18, Sect. 4.5].

Example 1. For the following CTRS R [27, Ex. 7.2.51]

h(d) → c(a) (1)

h(d) → c(b) (2)

f(k(a), k(b), x) → f(x, x, x) (3)

g(x) → k(y)⇐ h(x) ≈ d, h(x) ≈ c(y) (4)

the theory R is given in Figure 1.

2.2 Operational Termination of Conditional Rewrite Systems

In [24, 25] a framework for automatically proving operational termination of (oriented)
CTRSs using appropriate notions of dependency pairs (adapting the original notion for
TRSs [5]) has been introduced: the 2D DP Framework.

1 Oriented CTRSs treat conditions si ≈ ti in rules as rewriting goals σ(si) →∗ σ(ti)
for appropriate substitutions σ [27, Def. 7.1.3].
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x→∗ x x→ y ∧ y →∗ z ⇒ x→∗ z
x1 → y1 ⇒ f(x1, x2, x3)→ f(y1, x2, x3) x2 → y2 ⇒ f(x1, x2, x3)→ f(x1, y2, x3)

x3 → y3 ⇒ f(x1, x2, x3)→ f(x1, x2, y3) x→ y ⇒ c(x)→ c(y)

x→ y ⇒ g(x)→ g(y) x→ y ⇒ h(x)→ h(y)

x→ y ⇒ k(x)→ k(y) h(d)→ c(a)

h(d)→ c(b) f(k(a), k(b), x)→ f(x, x, x)

h(x)→∗ d ∧ h(x)→∗ c(y)⇒ g(x)→ k(y)

Fig. 1. First-order theory R for R in Example 1 (all variables universally quantified)

Dependency Pairs for CTRSs. Given a CTRS R, two new CTRSs DPH (R)
and DPV (R) are introduced to capture the two horizontal and vertical dimensions of
operational termination of CTRSs [23]: the usual absence of infinite rewrite sequences
(termination), and the absence of infinite climbings’ on a proof tree when trying to prove
a goal s → t or s →∗ t (called V -termination). DPH (R) consists of rules u → v ⇐ c
whose terms u and v capture the progress of infinite rewrite sequences involving rules
`→ r ⇐ c with u and v marked versions of ` and a subterm of r respectively (only the
root symbol f is marked as f ], or just capitalized: F ). Similarly, DPV (R) consists of
rules u → v ⇐ d where v is a marked subterm of si for a condition si ≈ ti in c and d
is s1 ≈ t1, . . . , si−1 ≈ ti−1.2

Example 2. For R in Example 1, we have DPH (R) = {F(k(a), k(b), x) → F(x, x, x)}
and DPV (R) = {G(x)→ H(x),G(x)→ H(x)⇐ h(x) ≈ d}

As in [7, Sect. 5], we use a set of sorts SDP = {s, p} so that symbols f are (automat-
ically) given a rank f : s · · · s → s and marked symbols are given rank F : s · · · s → p
[25, Sect. 4.3]. Variables of formulas in R (e.g., Figure 1) are then assumed to be
universally quantified on sort s.

The 2D DP Framework for CTRSs. The absence of infinite chains of 2D
DPs (i.e., sequences of 2D DPs which model infinite branches in the proof trees for
goals s → t and s →∗ t) characterizes operational termination of CTRSs [23]. This is
proved using a divide-and-conquer strategy which successively decomposes operational
termination problems into smaller and simpler ones. Processors P are used for this
purpose [24]. They simplify problems by decomposing or shrinking them. In particular,
the appropriate estimation of graphs G whose nodes are dependency pairs is useful
to analyze the existence of such infinite chains as cycles in the graph. The absence
of cycles implies operational termination. The presence of conditional rules and pairs
introduces some particular issues which we enumerate, and discuss below.

1. Some pairs could be infeasible, i.e., unable to be used in any of the aforementioned
chains. Then, we could remove them [24, Sect. 4]. Also, arcs in G are defined by
specific (often undecidable) sequences s1 ./1 t1, . . . , sn ./n tn (called f-sequences

2 A third set of dependency pairs DPVH (R) ⊆ DPH (R) is used in [23]. For simplicity,
in the examples of this paper, DPVH (R) is empty and we pay no attention to it.
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[15]) where si and ti are terms and ./i are predicates→∗i that capture the possibility
of having two nodes involved in a chain [20, Sect. 4.5] and must be proved feasible
or infeasible (for some substitution σ which applies to terms si and ti). A typical
strategy is discarding arcs whose associated sequence is infeasible. We discuss this
in paragraph Infeasibility in Termination Proofs below (see Examples 3 and 4).

2. Some pairs could be ‘harmless’, i.e., unable to be persistently used in any infinite
chain. This can be shown if we prove a ‘decrease’ when such pairs are used in a
chain. Again, we can remove them to obtain a simplification [25, Sect. 4.3]. We
discuss this in paragraph Use of Well-Founded Relations below (see Example 5).

Infeasibility in Termination Proofs. Given a (C)TRS R we say that a sequence
s1 →∗ t1, . . . , sn →∗ tn is R-infeasible if there is no substitution σ such that σ(si)→∗R
σ(ti) holds for all 1 ≤ i ≤ n. In [20] it is proved that a sequence s1 →∗ t1, . . . , sn →∗ tn
is R-infeasible if there is a model of R ∪ {¬(∃x) s1 →∗ t1, . . . , sn →∗ tn}, where x
contains the variables in s1, t1, . . . , sn, tn. In termination proofs, proving infeasibility
is useful at different levels. As remarked above, when the conditional part c of a pair
u→ v ⇐ c is proved infeasible, we can remove it. Also, the absence of an arc between
two nodes (pairs) u → v ⇐ c and u′ → v′ ⇐ c′ in the graph G can be treated as the
infeasibility of v →∗ u′ (where, as usual, we assume that v and u′ share no variable).
For instance, for R in Example 1, it is possible to prove that there is no arc in the
‘horizontal’ graph which consists of a single node F(k(a), k(b), x)→ F(x, x, x) (the only
dependency pair in DPH (R)) by just finding a model of

R∪ {¬(∃x, y : s) F(x, x, x)→∗ F(k(a), k(b), y)} (5)

For this purpose, model generators AGES [14] and Mace4 [26] are used by mu-term.

Example 3. We obtain a model A of (5) with Mace4. The domain is A = {0, 1} (Mace4
does not support sorts; thus, both s and p are merged into a single sort). Function and
predicate symbols are interpreted as follows:

aA = dA = 0 bA = cA(x) = 1 fA(x, y, z) = gA(x) = 0

hA(x) = 1− x kA(x) = x FA(x, y, z) =

{
1 if x = 0 and y = 1
0 otherwise

x(→R)Ay⇔ x = y x(→∗R)Ay⇔ x = y

Discarding the arc would not be possible by the usual unification-based technique in
[9]. With regard to infeasibility of pairs, consider the following well-known example.

Example 4. Consider the following CTRS R [8, p. 46]:

a → b (6)

f(a) → b (7)
g(x) → g(a)⇐ f(x) ≈ x (8)

where DPH (R) = {G(x) → G(a) ⇐ f(x) ≈ x,G(x) → A ⇐ f(x) ≈ x}. Both pairs in
DPH (R) are R-infeasible: no substitution σ makes σ(f(x))→∗ σ(x) true. We can prove
it if a model A of R∪{¬(∃x) f(x)→∗ x} can be found. We obtain a model with AGES.
The domain is A = N− {0} (since no marked symbol is involved, we can use a single
interpretation domain); for function and predicate symbols:

aA = 1 bA = 2 fA(x) = x+ 1 gA(x) = 1 x(→R)As y ⇔ x(→∗R)As y⇔ y ≥ x

We can safely remove both pairs. Thus no infinite chain of pairs in DPH (R) exists.
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Use of Well-Founded Relations. The removal triple processor [24, Def. 70]
implements the use of removal triples (&,�,=), including a well-founded relation = to
remove pairs from, and hence simplify, termination problems. For instance, as shown
in [25, Sect. 4.3], R in Example 1 is operationally terminating if we find a model A of

SRT
R ∪ {(∀x : s) F(k(a), k(b), x) π= F(x, x, x)} (9)

where π= (a new predicate symbol representing =) is interpreted as a well-founded
relation πA= , and SRT

R extends R with the following additional requirements to apply
the processor [24, Defs. 68 and 69]:

(∀x, y : p) x π& y ∧ y π= z ⇒ x π= z (10)

(∀x, y : p) x→ y ⇒ x π& y (11)

No predicate π� is necessary in this example (where a single pair is considered).

Example 5. We obtain a model A of (9) with AGES. Domains are Ap = {−1, 0, 1} and
As = {0, 1}. With regard to function and predicate symbols:

aA = dA = 0 bA = cA(x) = 1 fA(x, y, z) = gA(x) = 0

hA(x) = 1 kA(x) = 1− x FA(x, y, z) = x− y

x (→)Ap y⇔ x ≥ y x (→∗)Ap y⇔ true x (→)As y⇔ x = y

x (→∗)As y⇔ y ≥ x x πA& y⇔ x ≥ y x πA= y⇔ 6x ≥ 1 + 6y

where, as in the semantic approach in [25, Sect. 4.3],→ and→∗ are overloaded for sorts
p and s; thus, (→)Ap , (→∗)Ap , (→)As , and (→∗)As are the corresponding interpretations.
Note that πA= = {(x, y) | x, y ∈ Ap, 6x ≥ 1 + 6y} = {(0,−1), (1,−1), (1, 0)} is well-
founded on Ap. Thus, we conclude operational termination of R.

2.3 Termination of Order-Sorted Rewriting

Sorts are often used to reinforce program termination. Order-sorted dependency pairs
were introduced in [22] for proving termination of order-sorted TRSs.

Example 6. The following many-sorted TRS R in [29, Sect. 3.3] (in the hopefully self-
explained Maude format [6]) is a terminating version of Toyama’s example, which is
nonterminating as a TRS (i.e., without sort information):

mod Toyama-MS is

sorts S1 S2 .

ops a b : -> S1 . op f : S1 S1 S1 -> S1 . op g : S2 S2 -> S2 .

vars x : S1 . vars y z : S2 .

rl g(y,z) => y . rl g(y,z) => z . rl f(a,b,x) => f(x,x,x) .

endm

The 2010 version of mu-term could not prove it terminating.3 According to [22], R
has a single dependency pair:

F(a, b, x)→ F(x, x, x) (12)

3 Benchmarks available here: http://zenon.dsic.upv.es/muterm/benchmarks/

benchmarks-ostrs/benchmarks.html.
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where F has rank S1 S1 S1 → P for a new sort P [22, Sect. 3.2] and x has sort S1. We
can prove that the dependency graph consisting of this single pair has no cycle. With
AGES we can compute a model of R ∪ {¬(∃x, y : S1) F(x, x, x) →∗ F(a, b, y)} which is
as follows: AS1 = {0, 1}, AS2 = {1}, AP = −N (i.e., the set of nonpositive integers), and
functions and predicates interpreted as follows:

aA = 1 bA = 0 fA(x, y, z) = 1 gA(x) = 1 FA(x, y, z) = x− y − 1

x(→R)AS1y⇔ x = y = 1 x(→∗R)AS1y⇔ true x(→R)AS2y⇔ true

x(→∗R)AS2y⇔ true x(→R)AP y⇔ x = y x(→∗R)AP y⇔ x ≥ y

The crucial point to obtain the proof in Example 6 is the ability to provide different
interpretations to different sorts. The following example from [28] could not be handled
by the 2010 version of mu-term because orderings were generated without paying
attention to sorts (see [22, Sect. 6]).

Example 7. The following OS-TRS R [28, Ex. 11] is nonterminating as a TRS:

mod Example11-OL96 is

sorts S S1 S2 S3 S4 . subsorts S1 S2 S3 S4 < S .

ops f g : S -> S . op g : S3 -> S1 . op g : S4 -> S2 .

op h : S1 -> S2 . op a : -> S3 . op b : -> S4 .

var x : S1 . rl f(x) => f(h(x)) . rl a => b .

endm

There is a single OS-DP forR: F(x)→ F(h(x)), where F has rank S→ P for a new sort P
and x has sort S1. We can prove termination of R by finding a removal triple (&,�,=)
such that the rules of R are compatible with &, and F(x) = F(h(x)) holds whenever
x ranges on terms of sort S1. With AGES we obtain an interpretation A as follows:
sorts are interpreted as AS = {−1, 0, 1}, AS1 = {−1}, AS2 = {−1, 0}, AS3 = {−1},
AS4 = {−1, 0}, and AP = N∪{−1}. Functions and predicates are interpreted as follows:

aA =−1 bA = 0 fA(x, y, z) = x gAS (x) = x
gAS3(x) =−1 gAS4(x) = x hA(x, y, z) = 0 FA(x, y, z) =−x

(where different overloaded versions of g use the input sort as a subindex) and

x(→R)AS y⇔ y = 0 ∧ x = −1 x(→∗R)AS y⇔ true x(→R)AP y⇔ x ≥ y
x(→∗R)AP y⇔ true x &A y⇔ x ≥ y x =A y⇔ x > y

Note that the interpretation of the ‘original’ rewrite relation concerns sort S only
because it is the top sort of the full sort hierarchy.

2.4 Termination of Context-Sensitive Rewriting

In context-sensitive rewriting (CSR [16]), a replacement map µ is used to restrict the
arguments µ(f) ⊆ {1, . . . , k} which can be rewritten for each k-ary symbol f . The
restriction on arguments is top-down propagated to positions of terms t, which are
called active positions of t. We write s ↪→ t if an active subterm of s can be rewritten so
that s→ t. In the dependency pair approach for proving termination of CSR [2], rules of
the form f(`1, . . . , `k)→ r are given dependency pairs f ](`1, . . . , `k)→ g](s1, . . . , sm),
for s = g(s1, . . . , sm) a replacing subterm of r (i.e., a subterm s = r|p occurring at an
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active position p of r) and g a defined symbol. The notation f ] means that f is marked
(capital letters F are often used instead of f ]). However, due to rules ` → r ∈ R
with migrating variables x ∈ Varµ(r) \ Varµ(`) (that are frozen, i.e., not active, in
` but become active in r, possibly ‘awaking’ infinite rewrite sequences), we also need
collapsing dependency pairs `] → x where x is a migrating variable of the rule.

Example 8. For the following TRS R in [30, Introd.]

p(s(x)) → x

0 + x → x

s(x) + y → s(x+ y)

0× y → 0

s(x)× y → y + (x× y)

if(true, x, y) → x

if(false, x, y) → y

zero(0) → true

zero(s(x)) → false

fact(x) → if(zero(x), s(0), fact(p(x))× x)

and µ given by µ(if) = {1} and µ(f) = {1, . . . , k} for any other k-ary symbol f [12,
Ex. 1]. DP(R, µ) consists of pairs

s(x) +] y → x+] y s(x)×] y → y +] (x× y) s(x)×] y → x×] y
FACT(x) → ZERO(x) FACT(x) → IF(zero(x), s(0), fact(p(x))× x)

IF(true, x, y) → x IF(false, x, y) → y

Collapsing pairs capture a kind of recursion which is hidden below frozen parts of the
terms involved in infinite context-sensitive rewrite sequences until a migrating variable
within a rule `→ r shows them up. The hidden terms of a TRS R are defined subterms
occurring at frozen positions in the rhs of some rule of R [2]. Hiding contexts are con-
texts where hidden terms can occur at active positions within a context-sensitive rewrite
sequence [1, 13]. There, hidden terms can restart a delayed recursive call after the appli-
cation of a rule with migrating variables (see [12] for a detailed analysis). ForR and µ in
Example 8, the only rule with hidden terms is fact(x)→ if(zero(x), s(0), fact(p(x))×x).
Symbols fact and ‘×’ hide position 1. Symbol ‘×’ does not hide position 2 because the
second occurrence of variable x in fact(p(x))× x is not frozen in the lhs ` of the rule.
Symbol p hides no position. The refinements introduced in [12] have led to a more pre-
cise notion of hidden terms and contexts, enabling a better analysis of the connections
between them. This has greatly improved the ability of mu-term to prove termination
of CSR. For instance, the proof of termination of R and µ in Example 8, which could
not be obtained with the 2010 version of mu-term, is now possible with mu-term 6.0,
see the proof of CSR 04/ExIntrod Zan97.xml in the 2019 Termination Competition

http://group-mmm.org/termination/competitions/Y2019/caches/termination_33019.html

or in our local benchmarks:

http://zenon.dsic.upv.es/muterm/benchmarks/ijcar20/TRS_Contextsensitive/benchmarks.html

3 Termination Expert

The arbitrary application of processors can generate a huge search space. Furthermore,
proofs usually proceed under some timeout. For this reason, we need to choose a fixed
strategy where fast processors that reduce the number of rules are first used, and
slow processors, or processors that increase the number of rules, are used when fast
processors fail. Hence, the frequency of use for the different processors depends on the
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chosen strategy. With small differences depending on the particular kind of problem,
we do the following:

1. If R is a TRS or a CS-TRS, we check whether the system is innermost equivalent
[3, Sect. 2.2]. If it is true, then we transform the problem into an innermost one.

2. Then, we obtain the corresponding dependency pairs, obtaining a CTRS, OS, CS,
or DP problem. Then we perform the following steps repeatedly
(a) Decision point between processors for proving (operational) non-termination

and the strongly connected component (SCC) processor.
(b) Subterm criterion processor.
(c) Removal triple processor generating models with AGES (we try different con-

figurations, from simpler to more complex).
(d) If R is a CTRS, we apply simplification and removal processors on the condi-

tions (using AGES when a model is necessary).
(e) Transformation processors on rules, pairs and conditions: instantiation, for-

ward instantiation, and narrowing.

Full explanations of the processors can be found in [4, 12, 13, 19, 20, 24, 25]. The mu-term
6.0 logic-based approach has led to dramatic improvements, as reported here:

http://zenon.dsic.upv.es/muterm/benchmarks/ijcar20/Comparison/benchmarks.html

where the use of logical models is compared with the exclusive use of polynomial inter-
pretations (as in mu-term 5.0). Polynomial interpretations are strictly less powerful
in terms of solved examples (as every proof using polynomial interpretations can be
obtained using the new logic-based approach). However, we keep them in mu-term 6.0
as they lead to faster proofs. We use polynomial interpretations as part of mu-term
6.0 strategy (via the removal triple processor).

mu-term 6.0 consists of more than 30000 lines of Haskell code. In the web-based
interface, besides the fully automatic use of the termination expert, we can also use
specific techniques like polynomial orderings, matrix interpretations, (context-sensitive)
recursive path ordering, etc., which we have found useful for teaching purposes.

4 Experimental Evaluation

Since 2014, mu-term has proven to be the most powerful tool for proving operational
termination of conditional rewriting and termination of context-sensitive rewriting,
each year winning the corresponding subcategory of the annual International Compe-
tition of Termination Tools, see http://zenon.dsic.upv.es/muterm/?page_id=82 for
an historical account. In the CSR subcategory, since 2014 mu-term is able to prove all
the examples proved by any other participating tool (thanks to the results in [12]).

The benchmarks web page of mu-term reports on specific experiments comparing
the 2010 and 2020 versions. First, the 2010 version did not support CTRSs. For CS-
TRSs, three new examples can be proved now (and all the examples handled by the
2010 version are also handled now). As for OS-TRSs, mu-term 6.0 is able to prove or
disprove termination of all the OS-TRSs in the 2010 benchmark suite (except a non-
sort-decreasing OS-TRS, not covered by the theory in [22], where sort-decreasingness
[11] is required). The 2010 version could not disprove termination of OS-TRSs.

Acknowledgments We thank the anonymous referees for many remarks and sugges-
tions that led to improve the paper.
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