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RESUMO

Técnicas rapidas, ndo destrutivas e livres de produtos quimicos estdo em crescente
demanda em muitas areas da industria. As técnicas de espectroscopia no infravermelho proximo
(NIRS) e de imagem hiperespectral no infravermelho préximo (NIR-HSI) tém demonstrado
grande potencial na determinacdo de parametros de qualidade de alimentos, autenticagdo de
produtos alimenticios, deteccdo de fraudes alimentares, entre muitas outras aplicagdes. Na
espectroscopia NIR, as medigdes sdo feitas em pontos especificos da amostra, detectando
apenas uma pequena por¢do; enquanto na imagem hiperespectral, as informacdes espectrais e
espaciais sdo combinadas, sendo uma escolha adequada para muitos produtos alimenticios, uma
vez que sao matrizes muito heterogéneas. Portanto, este estudo teve como objetivo revisar todas
as aplicagdes de NIRS (dispersivos), Transformada de Fourier (FT) NIR e HSI na avaliagdo de
parametros de qualidade da farinha de trigo e de produtos a base de trigo, bem como para a
autenticacdo e determinacdo da composi¢do desses produtos. Além disso, este trabalho teve
como objetivo identificar e classificar diferentes tipos de amostras de fibras adicionadas a
semolina e massas produzidas por formulagdes de fibras e semolina, e monitorar o processo de
cozimento dessa massa enriquecida com fibras por técnicas espectrais. Além disso, este trabalho
teve como objetivo a aplicagdo de HSI em outro produto em po, sendo utilizada para quantificar
o teor de pectina em cascas de laranja. Primeiramente, espectros NIR foram adquiridos para
comparar a precisdo na classificagdo de amostras enriquecidas com fibras, para quantificar a
quantidade dessas fibras e verificar sua distribui¢do das fibras adicionadas a semolina. A
Anadlise de Componentes Principais (PCA) e a Soft Independent Modelling of Class Analogy
(SIMCA) foram usadas para a classificagdo. Modelos de regressao de minimos quadrados
parciais (PLSR) aplicados aos espectros NIR-HSI mostraram R2P entre 0,85 ¢ 0,98, ¢ RMSEP
entre 0,5 ¢ 1% do teor de fibra, e os modelos foram usados para construir os mapas quimicos
das amostras. Além disso, NIR-HIS, em conjunto com Multivariate Curve Resolution-
Alternating Least Squares (MCR-ALS), foi testado para investigar a capacidade de avaliacao,
resolugdo e quantificacdo da distribuicdo de fibras em massas alimenticias enriquecidas. Os
resultados mostraram coeficiente de determinacao de validacao (R*V) entre 0,28 ¢ 0,89,% de
falta de ajuste (LOF) <6%, variancia explicada acima de 99% e similaridade entre espectros
puros e recuperados acima de 96% e 98% em modelos usando farinha pura e macarrao controle
como estimativas iniciais, respectivamente. Além disso, o VIS/NIR-HSI no modo de
transmissao foi testado como uma alternativa objetiva para a classificar amostras de acordo com

o tempo de coc¢do de massas alimenticias como forma de automatizar a determinagdo de



atributos de massas alimenticias. A Andlise Discriminante Linear (LDA) mostrou valores de
sensibilidade e especificidade entre 0,14 - 1,00 e 0,51 - 1,00, respectivamente, e taxa de nao
erro (NER) acima de 0,62. A Andlise Discriminante por Minimos Quadrados Parciais (PLSDA)
apresentou valores de sensibilidade e especificidade entre 0,67 - 1,00 e 0,10 - 1,00,
respectivamente, ¢ NER acima de 0,80. Os resultados da primeira parte deste trabalho
mostraram que a técnica NIR-HSI pode ser utilizada para a identificacdo e quantificagdo da
fibra adicionada a semolina. Além disso, NIR-HSI e MCR-ALS, juntos, sdo capazes de
identificar fibras em massas. A imagem hiperespectral no modo de transmissdo demonstrou ser
uma técnica adequada como alternativa objetiva para classificar amostras de macarrdo de
acordo tempo de cocc¢do, como forma de automatizar a determinagdo dos atributos das massas.
A determinag¢do do teor de pectina em cascas de laranja foi investigada usando NIR-HSI. LDA
mostrou melhores resultados de discriminagdo considerando trés grupos: baixo (0-5%),
intermediario (10—40%) e alto (50-100%) conteudo de pectina. Modelos PLSR baseados em
espectros completos mostraram maior precisdo (R*> 0,93, RMSEP entre 6,50 ¢ 9,16% da
pectina) do que aqueles baseados em comprimentos de onda selecionados (R? entre 0,92 € 0,94,
RMSEP entre 8,03 ¢ 9,73% de pectina). Os resultados demonstram o potencial do NIR-HSI
para quantificar o contetido de pectina em cascas de laranja, fornecendo uma técnica valiosa

para produtores de laranja e indistrias de processamento.

Palavras-chave: Espectroscopia no infravermelho proximo, Imagem hiperespectral, Semolina,

Fibra, Farinha de trigo, Tempo de cozimento, Pectina, Residuos de laranja, Casca de laranja.



ABSTRACT

Fast, non-destructive and chemical-free techniques are in increasing demand in
many fields of the industry. Near-infrared spectroscopy (NIRS) and NIR hyperspectral imaging
(NIR-HSI) techniques have shown great potential in determining food quality parameters,
authenticating food products, detecting food fraud, among many other applications. While in
near infrared spectroscopy, the measurements are taken at specific points on the sample,
detecting only a small portion; in hyperspectral imaging, spectral and spatial information are
combined, making it a suitable choice for many food products, since they are very
heterogeneous matrices. Therefore, this study aimed to review all the application of (dispersive)
NIRS, Fourier Transform (FT) NIR, and HSI in assessing wheat flour and wheat-based products
quality parameters, as well for the authentication and determination of composition of these
products. Moreover, this work aimed to identify and classify different types of fibre samples
added to the semolina and pasta produced by semolina-fibre formulations, and to monitor the
cooking process of this fibre-enriched pasta by spectral techniques. In addition, this work had
the aim of applying HSI to other powdered product, so the pectin content in orange peels was
quantified. First, NIR spectra were acquired to compare the accuracy in the classification of
fibre-enriched samples, to quantify the amount of these fibres and verify their distribution on
semolina samples. Principal Component Analysis (PCA) and Soft Independent Modelling of
Class Analogy (SIMCA) were used for classification. Partial Least Squares Regression (PLSR)
models applied to NIR-HSI spectra showed R?p between 0.85 and 0.98, and RMSEP between
0.5 and 1% of fibre content, and the models were used to construct the chemical maps to check
the fibre distribution on the samples surface. Moreover, NIR-HSI together with Multivariate
Curve Resolution-Alternating Least Squares (MCR-ALS), was tested to investigate the ability
for the evaluation, resolution and quantification of fibre distribution in enriched pasta. Results
showed coefficient of determination of validation (R?v) between 0.28 and 0.89, % of lack of fit
(LOF) <6%, variance explained over 99%, and similarity between pure and recovered spectra
over 96% and 98% in models using pure flour and control as initial estimates, respectively. In
addition, VIS/NIR-HSI in the transmission mode was tested as an objective alternative for the
classification of pasta samples according to cooking time as way of automating the
determination of pasta attributes. Linear Discriminant Analysis (LDA) showed values of
sensitivity and specificity between 0.14 — 1.00 and 0.51 — 1.00, respectively, and non-error rate
(NER) over 0.62. Partial Least Square Discriminant Analysis (PLSDA) showed values of
sensitivity and specificity between 0.67 — 1.00 and 0.10 — 1.00, respectively, and NER over



0.80. The results of the first part of this work showed that NIR-HSI technique can be used for
the identification and quantification of fibre added to semolina. Additionally, NIR-HSI and
MCR-ALS are able to identify fibre in pasta. Hyperspectral imaging in the transmission mode
demonstrated to be a suitable technique as an objective alternative for the classification of pasta
samples according to the cooking time as a way of automating the determination of pasta
attributes. Determination of pectin content in orange peels was investigated using NIR-HSI.
LDA showed better discrimination results considering three groups: low (0-5%), intermediate
(1040%) and high (50-100%) pectin content. PLSR models based on full spectra showed
higher precision (R? > 0.93, RMSEP between 6.50 and 9.16% of pectin) than those based on
few selected wavelengths (R? between 0.92 and 0.94, RMSEP between 8.03 and 9.73% of
pectin). The results demonstrate the potential of NIR-HSI to quantify pectin content in orange

peels, providing a valuable technique for orange producers and processing industries.

Keywords: Near infrared spectroscopy, Hyperspectral imaging, Semolina, Fibre, Wheat

flour, Cooking time, Pectin, Orange waste, Orange peel.



RESUMEN

Las técnicas rapidas, no destructivas y libres de quimicos tienen una demanda creciente
en muchos campos de la industria. Las técnicas de espectroscopia de infrarrojo cercano (NIRS)
y de iméagenes hiperespectrales NIR (NIR-HSI) han mostrado un gran potencial para determinar
los parametros de calidad de los alimentos, autenticar los productos alimenticios, detectar el
fraude alimentario, entre muchas otras aplicaciones. Mientras que en la espectroscopia de
infrarrojo cercano, las medidas se toman en puntos especificos de la muestra, detectando solo
una pequeia porcion; en la imagen hiperespectral, la informacion espectral y espacial se
combinan, lo que la convierte en una opcion adecuada para muchos productos alimenticios, ya
que son matrices muy heterogéneas. Por lo tanto, este estudio tuvo como objetivo revisar toda
la aplicacion de NIRS (dispersivos), NIR de Transformada de Fourier (FT) y HSI en la
evaluacion de los parametros de calidad de la harina de trigo y los productos a base de trigo, asi
como para la autenticacion y determinacion de la composicion de estos productos. Ademas,
este trabajo tuvo como objetivo identificar y clasificar diferentes tipos de muestras de fibra
agregadas a la semolina y pasta producidas por formulaciones de fibra y semolina, y monitorear
el proceso de coccidn de esta pasta enriquecida en fibra mediante técnicas espectrales. Ademas,
este trabajo tuvo como objetivo aplicar HSI a otro producto en polvo, por lo que se cuantifico
el contenido de pectina en las cascaras de naranja. Primero, se adquirieron espectros NIR para
comparar la precision en la clasificacion de muestras enriquecidas con fibra, para cuantificar la
cantidad de estas fibras y verificar su distribucion en muestras de sémola. Para la clasificacion
se utilizaron el Anélisis de Componentes Principales (PCA) y el Soft Independent Modelling of
Class Analogy (SIMCA). Los modelos de regresion de minimos cuadrados parciales (PLSR)
aplicados a espectros NIR-HSI mostraron R?P entre 0,85 y 0,98 y RMSEP entre 0,5 y 1% de
contenido de fibra, y los modelos se utilizaron para construir los mapas quimicos para verificar
la distribucion de fibra en las superficies de las muestras. Ademas, se probd el NIR-HSI junto
con los Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) para investigar
la capacidad de evaluacion, resolucion y cuantificacion de la distribucion de fibra en la pasta
enriquecida. Los resultados mostraron coeficiente de determinacion de validacion (R?V) entre
0.28 y 0.89,% de falta de ajuste (LOF) <6%, varianza explicada sobre 99% y similitud entre
espectros puros y recuperados sobre 96% y 98% en modelos que usan harina pura y pasta
control como estimaciones iniciales, respectivamente. Ademas, se probd VIS / NIR-HSI en el
modo de transmision como una alternativa objetiva para la clasificacion de muestras de pasta

segun el tiempo de coccidon como forma de automatizar la determinacion de los atributos de la



pasta. El andlisis discriminante lineal (LDA) mostré valores de sensibilidad y especificidad
entre 0,14 - 1,00y 0,51 - 1,00, respectivamente, y una tasa de ausencia de error (NER) superior
a 0,62. El andlisis discriminante de minimos cuadrados parciales (PLSDA) mostr6 valores de
sensibilidad y especificidad entre 0,67 - 1,00 y 0,10 - 1,00, respectivamente, y NER superiores
a 0,80. Los resultados de la primera parte de este trabajo mostraron que la técnica NIR-HSI se
puede utilizar para la identificacion y cuantificacion de la fibra agregada a la semolina. Ademas,
NIR-HSI y MCR-ALS pueden identificar la fibra en la pasta. La imagen hiperespectral en el
modo de transmision demostrd ser una técnica adecuada como alternativa objetiva para la
clasificacion de muestras de pasta segin el tiempo de coccidon como una forma de automatizar
la determinacion de los atributos de la pasta. La determinacion del contenido de pectina en
cascaras de naranja se investigd usando NIR-HSI. LDA mostré mejores resultados de
discriminacién considerando tres grupos: contenido de pectina bajo (0-5%), intermedio (10—
40%) y alto (50-100%). Los modelos PLSR basados en espectros completos mostraron mayor
precision (R*>> 0,93, RMSEP entre 6,50 y 9,16% de pectina) que los basados en pocas
longitudes de onda seleccionadas (R? entre 0,92 y 0,94, RMSEP entre 8,03 y 9,73% de pectina).
Los resultados demuestran el potencial de NIR-HSI para cuantificar el contenido de pectina en
las cascaras de naranja, proporcionando una técnica valiosa para los productores de naranja y

las industrias de procesamiento.

Palabras clave: Espectroscopia de infrarrojo cercano, Imagen hiperespectral, Sémola, Fibra,
Harina de trigo, Tiempo de coccion, Pectina, Residuos de naranja, Céascara de naranja.



RESUM

Les técniques rapides, no destructives i lliures de quimics tenen una demanda creixent en molts
camps de la industria. Les técniques d'espectroscopia d'infraroig proper (NIRS) i d’imatges
hiperespectrals NIR (NIR-HIS) han demostrat tindre un gran potencial per a determinar
parametres de qualitat d’aliments, autenticar productes alimentaris, detectar frau alimentari
entre moltes altres aplicacions. Mentre que en ’espectroscopia d’infraroig proper les mesures
es prenen en punts especifics de la mostra i es detecta una porci6 menuda, en la imatge
hiperespectral es combina informaci6 espectral i espacial de tal manera que és una opcid adient
per a molts tipus de productes alimentaris, ja que son matrius molt heterogenies. Per tant, este
estudi va tindre com objectiu revisar tota I’aplicaci6 de NIRS (dispersius), NIR de
Transformada de Fourier (FT) i HSI en 1’avaluacid dels parametres de qualitat de la farina de
blat i els productes a base de blat, aixi com per a I’autenticacio i determinaci6 de la composicio
d’estos productes. A més a més, este estudi va tindre com objectiu identificar i classificar
diferents tipus de mostres de fibra afegides a la semolina i pasta produides per formulacié de
fibra i semolina, i monitorar mitjangant técniques espectrals el procés de coccid d’aquesta pasta
enriquida amb fibra. A més, este treball va tindre com objectiu aplicar HSI a un altre producte
en pols, de tal manera que es va quantificar el contingut de pectina en les corfes de taronja.
Primer, es van adquirir espectres NIR per comparar la precisio en la classificacié de mostres
enriquides amb fibra, per quantificar estes fibres i verificar la seua distribucidé en mostres de
sémola. Per a la classificaci6 es van emprar 1’Analisi de Components Principals (PCA) i el
SIMCA (Soft Independent Modelling of Class Analogy). Els models de regressio de minims
quadrats parcials (PLSR) aplicats a espectres NIR-HSI mostraren R2P entre 0,85 i 0,98 1
RMSEP entre 0,5 1 1% de contingut de fibra, i els models s’utilitzaren per construir els mapes
quimics per verificar la distribucid de fibra en les superficies de les mostres. Aixi mateix, es va
provar NIR-HSI amb Multivariate Curve Resolution-Alternating Least Square (MCR-ALS) per
a investigar la capacitat d’avaluacio, resolucid i quantificacié de la distribucio de fibra en la
pasta enriquida. Els resultats mostraren un coeficient de determinaci6 de validaci6 (R*V) entre
0,28 10,89%, lack of fit (LOF) <6%, variancia explicada sobre 99% i similitud entre espectres
purs i recuperats sobre 96% 1 98% en models que empraren farina pura i pasta control com a
estimacions inicials respectivament. D’altra part, es va provar VIS / NIR-HSI en el mode de
transmissio com una alternativa objectiva per a la classificacido de mostres de pasta segons el
temps de coccidé com a forma d'automatitzar la determinacio dels atributs de la pasta. L’analisi

discriminant lineal (LDA) va mostrar valors de sensibilitat i especificitat entre 0,14 — 1,00 1



0,51 — 1,00 respectivament, i una taxa d'abséncia d’error (NER) superior a 0,62. L'analisi
discriminant de minims quadrats parcials (PLSDA) va mostrar valors de sensibilitat i
especificitat entre 0,67 — 1,001 0,10 — 1,00 respectivament, i NER superiors a 0,80. Els resultats
de la primera part d’este treball mostraren que la técnica NIR-HSI es pot emprar per a la
identificaci6 1 quantificacio de la fibra afegida a la semolina. A més a més, NIR-HSI i MCR-
ALS poden identificar la fibra en la pasta. La imatge hiperespectral en mode de transmissio va
demostrar ser una técnica adient com a alternativa objectiva per a la classificacié de mostres de
pasta segons el temps de coccid com forma d’automatitzar la determinacié dels atributs de la
pasta. La determinacié del contingut de pectina en corfa de taronja es va investigar emprant
NIR-HSI. LDA va mostrar millors resultats de discriminaci6 considerant tres grups: contingut
de pectina baix (0-5%), intermedi (10—40%) i alt (50—-100%). Els models PLSR basats en
espectres complets van mostrar major precisio (R2> 0,93, RMSEP entre 6,50 1 9,16% de
pectina) que els basats en longituds d’ona seleccionades (R2 entre 0,92 i 0,94, RMSEP entre
8,031 9,73% de pectina). Els resultats demostren el potencial de NIR-HSI per a quantificar el
contingut de pectina en corfa de taronja i proporcionen una técnica valuosa per als productors

de taronja i les industries de processament.

Paraules clau: Espectroscopia d’infraroig proper, imatge hiperespectral, sémola, fibra, farina
de blat, temps de coccid, pectina, residus de taronja, corfa de taronja.
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1. INTRODUCTION

Food quality and safety have become global issues, since consumers are
increasingly concerned about food contamination, adulteration and authenticity. Food
contamination can be due to physical, chemical, and biological factors. A very clear example
of this is the production of different products in the same facility, which can lead to cross-
contamination. The use of a common, or even close environment for milling peanuts and other
food materials, such as wheat, cocoa beans and soybeans, can enable the contamination of
powdered food products with an allergenic ingredient (Mishra et al., 2015).

Food adulteration usually involves the replacement or dilution of high-cost
ingredients with cheap low-quality products without the consumer’s knowledge. Fraudulent
substitution in ground meat products, for example, involves not only economy, quality and
safety issues, but also religion (Barbin et al., 2020). This is a very important issue since it
represents, not only quality and economic effects, but also health threats to consumers (Verda
et al., 2016). If the product label does not indicate all the ingredients, the consumer can be
deceived about what they are really buying. The intentional addition of bread wheat flour in
durum flour for pasta production, for instance, is an adulteration that leads to a product with a
lower resistance to cooking and therefore lower quality (Cocchi et al., 2006).

In the same way, the enrichment of products with other compounds, such as fibres,
for example, might be controlled. The addition of an alternative ingredient in the formulation
of products increases its nutritional value, and can affect its technological and sensorial
characteristics (Badar¢é et al., 2019). In this context, the authentication of food products has
become crucial to obtain a safe product with high quality.

Moreover, the determination of quality parameters in food products is a key step in
the industry. The variability in the raw materials leads to highly variable products, which must
be controlled. However, analytical techniques used in food industry to determine
physicochemical and quality parameters as pH, colour, protein, fat, moisture and ash content
are destructive, expensive, slow, require sample preparation, besides the amount of chemicals
used, which involves environmental impact (Porep et al., 2015). Apart from that, some of these
assessments have a subjective nature, being subject to variation because of human error that
can be due to fatigue or experience of the assessor (Teye et al., 2015).

Methods based on optical properties, as near infrared spectroscopy (NIR) and NIR
hyperspectral imaging (NIR-HSI), have been widely studied as an alternative to this situation.

Spectroscopy techniques have showed their potential to replace or at least complement classical
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methods. Although these techniques require reference values for the development of calibration
models, once the calibrations have been set, they are easy to use (Ugiinciioglu et al., 2013).
NIRS and NIR-HSI are two of many spectroscopy techniques used to detect food
adulteration and contamination, and to authenticate food products. NIRS is an optical
technology based on the interaction between incident light and molecules in matters. The
resultant spectrum records the absorbed energy by the different molecules in the product,
specifically the overtones and combinations of fundamental vibrations of C-H, N-H, O-H and
S-H bond (Manley, 2014). However, the measurements are taken in specific points of the
sample, detecting only a small portion; therefore, the spectra might not be representative for the
whole sample, especially when the product is a food matrix. In order to obtain spatial
information, another technology, as NIS-HSI can be used. It integrates both spectral and spatial
information in a system, being a suitable choice for food products, since they are heterogeneous
matrices. Moreover, this technique can also be used to develop chemical maps, which allow the
visualization of how components of interest are distributed over the sample surface (Feng and
Sun, 2012). On the other hand, these techniques provide a big amount of information; thus,
chemometric methods are necessary to explore, classify samples or quantify components.
Considering the need for fast and non-destructive food analysis techniques, this
work suggests the use of spectral techniques, as NIR and NIR-HSI, to study the distribution of
fibre added to semolina and pasta. In addition, the study aims to verify the efficiency of such
techniques in the quantification of these fibres. Although widely used, the application of these
techniques in the identification, classification or quantification of fibres in products, such as
pasta, has not yet been reported. Thus, the justification for this work is the use of fast and non-
invasive techniques for control of the type and quantity of alternative ingredients, in this case,
fibres, added to the formulation of semolina and pasta, as an alternative of food authentication
of enriched products. This study also aims to apply two different techniques as NIR-HIS in the
transmission mode to monitor the cooking process of fibre-enriched pasta, as a first step to
determine parameters in cooked pasta. Moreover, this work aims to study the potential of NIR-
HSI for identification of pectin content in orange peels as an alternative for pectin quantification

in orange waste without the previous pectin extraction.
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2. OBJECTIVES

2.1. General Objective

This study aimed to identify and classify different types of fibre samples added to
the semolina and pasta produced by semolina-fibre formulations, and to study and to monitor
the cooking process of this fibre-enriched pasta by spectral techniques. Moreover, this work
aimed to quantify pectin content in orange peels using the spectral information of samples

instead of the extraction of pectin for quantification.

2.2. Specific Objectives

e Acquisition of spectral information of samples of fibre-enriched semolina by two different
techniques (portable near infrared spectrometry and hyperspectral imaging);

e Study of the spectral information of samples, identification of peaks and the molecules
correspondent to each peak. Application of different pre-processing as an alternative to
enhance the information in the spectra. Development of discrimination models to
discriminate fibre from semolina samples and optimization of classification models
according to the type of fibre in each sample;

e Development of regression models to determine the fibre content in semolina;

e Application of the regression models to the hyperspectral images to visualize the
distribution of the fibres in the samples;

e Acquisition of spectral and spatial information of samples of fibre-enriched pasta
hyperspectral imaging;

e Study of the spectral information of samples, identification of peaks and the molecules
correspondent to each peak. Application of different pre-processing as an alternative to
enhance the information in the spectra. Development of a multivariate curve resolution
method to identify fibre distribution in pasta;

e Development of regression models to correlate the amount of fibre estimated by the curve
resolution model and the real content;

e Acquisition of spectral and spatial information of samples of fibre-enriched pasta during

cooking by NIR hyperspectral imaging in the transmission mode;
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e Study of the spectral information of samples, identification of peaks and the molecules
correspondent to each peak. Application of different pre-processing as an alternative to
enhance the information in the spectra. Development of classification and discrimination
models to classify and discriminate samples of pasta regarding their cooking time;

e Acquisition of spectral and spatial information of samples of orange peels by NIR
hyperspectral imaging;

e Study of the spectral information of samples, identification of peaks and the molecules
correspondent to each peak. Application of different pre-processing as an alternative to
enhance the information in the spectra. Development of discrimination models to
discriminate orange peel samples regarding the pectin content;

e Development of regression models based on full spectra and optimum wavelengths to

quantify pectin content in orange peels.

3. THESIS STRUCTURE

The development stages of this research project are presented in 7 chapters. First,
in the Introduction, Objectives and Thesis Structure are presented the main idea of this study,

the objectives and the stages involved for its accomplishment.

In Chapter 1 - Near-infrared spectral techniques for wheat flour and wheat-based
products evaluation: A review, we reviewed the specific applications of Near-Infrared
Spectroscopy, Fourier Transform Near-infrared Spectroscopy, and Hyperspectral Imaging in
assessing wheat flour and wheat-based products quality parameters, as well for the
authentication and determination of composition of these products. This work provided the
information existent in the literature and the gaps in this field, which contribute to the

development of the thesis and the following works.

In Chapter 2 - Identification of fibre added to semolina by Near Infrared (NIR)
spectral techniques, we compare the efficiency of the near infrared and hyperspectral imaging
techniques in the classification of samples of different types of fibres added to semolina,
quantification, and distribution of the fibre content. Three sets of 140, 220 and 351 samples
were prepared, NIR spectra and hyperspectral images were acquired and interpreted using
chemometric techniques. Principal Component Analysis (PCA) of pure samples from both
techniques showed their separation into different groups, especially HSI. Soft Independent

Modelling of Class Analogy (SIMCA), performed in raw and pre-treated spectra, showed high
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values of sensitivity and specificity for HSI data, and the efficiency of the model was confirmed
by the Coomans plot. In turn, NIR spectra showed a very low efficiency in the discrimination
and classification of semolina added of fibre. Regression models were developed with HSI
spectra by Partial Least Squares Regression (PLSR), showing R?p between 0.85 and 0.98,
RMSECYV and RMSEP in the range of 0.5 and 1%. In addition, the models were applied to each

pixel of the hyperspectral images, allowing a visual distribution of the fibres in the samples.

In Chapter 3 - Near infrared hyperspectral imaging and spectral unmixing methods
for evaluation of fibre distribution in enriched pasta, we propose the identification of fibre in
pasta by NIR-HSI imaging, and the study of multivariate analysis tools for fibre identification
in pasta. Seven types of fibre were used in pasta formulation in 2 percentages (3.5 and 7%)).
HSI images were acquired and Multivariate Curve Resolution-Alternating Least Squares
(MCR-ALS) was used for the evaluation and quantification of fibre distribution in these pasta
samples. Results showed R2y between 0.28 and 0.89, %LOF <6%, variance explained over
99%, and similarity between pure and recovered spectra over 96% and 98% in models using
pure flour and control as initial estimates, respectively, demonstrating the applicability of NIR-

HIS and MCR-ALS in the identification of fibre in pasta.

In Chapter 4 - Study of changes in pasta during cooking by hyperspectral imaging,
we suggest the use VIS/NIR-HSI in the transmission mode for the study of changes in pasta
during cooking and the determination of optimal cooking time of pasta as an alternative to
automate the determination of pasta attributes. The fetfuccine samples were produced replacing
flour by seven types of fibre in two percentages (3.5 % and 7 %). For each type and percentage
of fibre, ten portions of 25 grams of pasta were weighted, totalling 140 experiments (7 types of
fibre x 2 percentages x 10 repetitions). Two units of pasta were removed from cooking water
each 90 seconds. The cooking process was carried out for 18 minutes, totalling 13 times (0,
1.5,3,45,6,7.5,9,10.5, 12, 13.5, 15, 16.5 and 18 minutes). VIS/NIR hyperspectral images
were acquired in the transmission mode. The two spectral range were separately evaluated, but
VIS data did not show any relationship among samples. Therefore, further multivariate data
analysis was carried out only on NIR data. PCA was performed and the PCA scores that better
grouped the samples were used as variables to perform a Linear Discriminant Analysis (LDA).
In comparison, Partial Least Square Discriminant Analysis (PLSDA) was performed to test the
ability of the technique to predict optimum cooking time of pasta samples. LDA had values of
sensitivity and specificity between 0.14 — 1.00 and 0.51 — 1.00, respectively, and non-error rate

(NER) over 0.62. PLSDA had values of sensitivity and specificity between 0.67 — 1.00 and 0.10
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— 1.00, respectively, and NER over 0.80. This study suggested that hyperspectral image in the
transmission mode have good potential as an objective method to optimum cooking time

determination, meeting this industry need.

In Chapter 5 - Determination of pectin content in orange peels by Near Infrared
Hyperspectral Imaging, we quantify pectin content in orange residues using NIR-HSI.
Hyperspectral images from orange peel (140 samples) with different amounts of pectin were
acquired and the spectra was used for calibration models using multivariate statistical analyses.
LDA showed better discrimination results considering three groups: low (0-5%), intermediate
(1040%) and high (50-100%) pectin content. PLSR models based on full spectra showed
higher precision (R? > 0.93) than those based on few selected wavelengths (R? between 0.92
and 0.94). The results showed that this technique holds potential as an alternative to the
carbazole colorimetry method to quantify pectin in orange peels, and to categorize orange peel
samples into groups of different pectin concentration, and can be used to justify investments in

the waste processing and extraction methods.

General discussion presents a general discussion of the results obtained in this thesis.
The General conclusion presents a general conclusion of the results obtained in this thesis
linking all the knowledge obtained in response to the general objective of the thesis. Finally,
there is a briefly story regarding the student journey during her PhD in Student Story. All extra
documents regarding other works developed by the student and the permission from the journals

to use the published works in this thesis are in the APPENDIX.
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Abstract

Background: Wheat flour is a food ingredient that provides compounds as fibre, carbohydrates,
and proteins. It is used in different products, including pasta, cake, bread, among others.
Therefore, the authentication and assurance of good quality are of great importance. The
traditional techniques used for quality parameters determinations are laborious, destructive, and
involve chemical reagents. So, it is necessary the development of techniques capable to
overcome these disadvantages. The spectral techniques are rapid, non-destructive, and
chemical-free.

Scope and Approach: This review approaches the applications of Near Infrared (NIR)
Spectroscopy, Fourier Transform Near-Infrared (FT-NIR) Spectroscopy, and Hyperspectral
Imaging (HSI) in the wheat flour and wheat-based products authentication and assessment of
quality parameters, composition, and contamination.

Key Findings and Conclusions: The techniques here approached are effective in the
determination of parameters in wheat flour and wheat-based products, as protein, gluten, fatty
acids and are also non-destructive. Moreover, the detection and quantification of allergens and
insect infestation, and the authentication of flour added of other ingredients showed promising
results using these techniques. Future studies can explore the in/on-line applications of these
techniques for industrial process lines and compare the use of handheld and benchtop
spectrometers in these applications. There is a challenge in the near-infrared capability of
quantifying parameters in low levels; the use of data fusion can be a way to resolve this

challenge.

Keywords: Near-Infrared Spectroscopy, Fourier Transform, Hyperspectral Imaging, flour,

bread, pasta.
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ALS
ASCA
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ELM
ELISA
FT
HFN
HCA
HSI

IR
LDA
%LOF
LV
LWR-PLS
MCR
MEMS
MIR
MLR
MPLS
MSC
MSPC
NIR
OLS
PAT
PC
PCA

Abbreviations
Alternating least squares PCR
ANOV A-Simultaneous Component Analysis P.G.L
Canonical Variables PLS-DA
Extreme Learning Machine PLSR
Enzyme-linked immunosorbent assay RER
Fourier Transform RMSEC
Hagberg Falling Number RMSECV
Hierarchical Cluster Analysis RMSEP
Hyperspectral Imaging RPD
Infrared Rp
Linear Discriminant Analysis R3¢
Percentage of lack of fit R3¢y
Latent Variables R?p
Locally Weighted PLS regression SEE
Multivariate Curve Resolution SEP
MicroElectroMechanical System SG
Mid Infrared SIMCA
Multiple Linear Regression SNV
Modified Partial Least Squares SVM
Multiplicative Scatter Correction SVR
Multivariate Statistical Process Control SW
Near Infrared uv
Ordinary Least Squares VCPA
Process Analytical Technology VIS
Principal Components WILMA

Principal Components Analysis

Principal Component Regression

Protected Geographical Indication

Partial Least Square Discriminant Analysis
Partial Least Square Regression

Ratio of the Range in the Prediction

Root Mean Square Error in Calibration

Root Mean Square Error in Cross-Validation
Root Mean Square Error in Prediction

Ratio of Prediction to Deviation

Coefficient of correlation of prediction
Coefficient of determination of calibration
Coefficient of determination of cross-validation
Coefficient of determination of prediction
Standard Error of Estimation

Standard Error of Prediction

Savitzky-Golay

Soft Independent Modeling of Class Analogy
Standard Normal Variate

Support Vector Machine

Support Vector Regression

Short Wave

Ultra-Violet

Variable Combination Population Analysis
Visible

Wavelet Interface to Linear Modelling Analysis
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1.1.Introduction

Whole-wheat flour is a staple food widely consumed around the world, as it is the
main ingredient for many products, including bread, cake, pasta, cookies, among others. Its
consumption provides many nutrients in the human diet, especially fibre, carbohydrates, and
proteins (Dave & Modi, 2018; Hussain et al., 2019). Moreover, it is usually cheap and
accessible, being a good alternative to be implemented as a food vehicle as a strategy for food
fortification (Akhtar et al., 2008).

The quality of wheat-based products is highly dependent on the grain and flour
quality, so, the evaluation of quality parameters is very important in the food industry (Caporaso
et al., 2018). Analytical methods traditionally used to determine quality parameters in wheat
flour and wheat-based products are centred on laborious and/or destructive techniques. The
gluten content in wheat or other cereals, for example, is determined using an immunological-
based method named enzyme-linked immunosorbent assay (ELISA), which is destructive and
uses reagents for extraction (Haraszi et al., 2011). Moreover, wet and dry gluten, moisture,
protein, and ash contents of wheat flour and rheological properties of wheat dough, as
alveograph and farinograph parameters, are determined by AACC methods (ACCC, 2000). The
determination of quality parameters in pasta, as optimal cooking time, swelling index, cooking
losses, among others, are also determined by time-consuming and destructive techniques
(Bustos et al., 2015).

Although most of these techniques are accurate and are extensively used for flour
parameters determination, they present disadvantages, including chemical reagents, which are
used in most analytical methods. Moreover, some of these techniques, for example, some of the
classical methods used in the industry for gluten determination, rely on forming the dough balls,
washing them out and weighting the remained (gluten). Some other methods as enzyme linked
immunosorbent assay (ELISA), polymerase chain reaction (PCR) and liquid chromatography
coupled with mass spectrometry are also used, but they are expensive and require appropriate
sample preparation (Czaja et al., 2018). Therefore, there is a need in developing rapid, non-
destructive, and chemical-free methods, as spectral techniques, that can predict quantitative
and/or qualitative parameters better or at least equal to the traditional methods (Verdu et al.,
2016).

Many reports can be found in the literature regarding the spectral techniques, more

specifically Near Infrared and Hyperspectral Imaging for food assessment. These techniques,
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more specifically NIR spectroscopy, are reported to be one of the best adapted methods to
evaluate wheat products, since it a straightforward method of analysis for a fast, accurate and
reliable determination of wheat and its derived products. Moreover, it can be used as a screening
method in plant-breeding and as an in-line tool to monitor the changes that may occur during
processing (Ait-Kaddour & Cuq, 2011). In the cereal field, the applicability of NIR
spectroscopy as a tool to monitor wheat product processing and chemical changes during
processing has been reviewed by Ait-Kaddour & Cuq (2011). Recently, quality and safety
parameters assessed by NIR hyperspectral imaging were reviewed by Sendin et al. (2018), and
quantitative and qualitative , analysis of chemical composition in grains using NIR and HSI
techniques were reviewed by Caporaso et al. (2018). In other recent works, Levasseur-Garcia
(2018) introduced an updated overview of Infrared Spectroscopy methods for detecting
mycotoxins on cereals, while Femenias et al. (2020) specifically approached the improvements
in the assessment of Fusarium and deoxynivalenol (a mycotoxin) contamination in cereals
using HSI. Hussain, Sun & Pu (2019) reviewed the classical and emerging technologies for
assessment of safety and quality parameters of cereals. However, no review was found showing
specifically the applicability of spectral techniques for wheat flour and its products. Therefore,
this review brings the specific applications of (dispersive) NIR, FT-NIR, and HSI in assessing
wheat flour and wheat-based products quality parameters, as well for the authentication and

determination of composition of these products.

1.2. Spectral Techniques

Different spectral techniques have been constantly used in the food,
pharmaceutical, and petrochemical fields. These techniques operate in different wavelength
ranges of the electromagnetic field (from 100 nm to 1000 pm), from ultra-violet (UV) to far-
infrared region, going through visible (VIS), near (NIR), and mid (MIR) infrared, according to
the absorbed energy (Porep et al., 2015). In addition, spectrometers can be designed as portable
or benchtop, dispersive or Fourier Transform devices, and their use will depend on the samples
to be evaluated (Lohumi et al., 2015).

Near-infrared spectroscopy is a handy tool in process analytical technology (PAT)
and quality control that has found widespread application in various fields, especially in
qualitative and quantitative analysis of food products (Cortes et al., 2019a; Walsh et al., 2020).

The NIR region covers wavelengths from 780 nm up to 2500 nm, and the resulting spectra of
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such techniques are associated with absorbed energy of organic molecules, specifically the
overtones and combinations of fundamental vibrations of X—H chemical bonds, as C—H, O-H
and N-H bonds. Consequently, as water is the major food constituent and absorbs NIR
radiation, it strongly affects the spectra of food products (Manley, 2014).

The interaction of light and the constituents of food products can happen in many
ways. According to these diverse interactions, in order to determine external and internal
sample properties, this vibrational technique can be used in different spectral modes, as
reflectance (specular and diffuse), transmission, interactance, and transflectance. The spectral
mode choice is made depending on the type, physical properties, and characteristics of the
samples. Reflectance measures the light that reflects or scatters from a sample surface, so,
generally, it is used for measuring the spectra of solids. If the reflection is from a smooth
surface, it is called specular reflectance; whereas, if the reflection is from a rough surface, as in
food samples, it is called diffuse reflectance. In diffuse reflectance, the amount of scattering
through the sample length is so high that the light that could cross the sample thickness is
reflected instead of transmitted (Huang et al., 2008).

In transmission mode, the light passes through the sample and carries information
regarding its internal properties; this mode can be used for analysing solid, liquid, and gaseous
samples. Transflectance and interactance modes combine reflectance and transmittance modes.
In these cases, the transmitted light goes through a sample and it is reflected by either a reflector,
in case of transflectance, or by the own sample, in case of interactance. Therefore, transflectance
is usually applied for measuring the spectra of thin or clear samples; while interactance is
commonly used when the transmission is not enough to obtain information regarding a solid

sample (Lohumi et al., 2015). Figure 1A illustrates the sample presentation techniques

described.
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Figure 1.1. (A) Approaches for spectra acquisition, Scheme of the operation of (B) a dispersive
NIR instrument, (C) a FT-NIR instrument, and (D) a NIR-HSI instrument.

Regarding the NIR instruments available, it is possible to find many models and
brands, which include portable devices, benchtop, hyperspectral devices, Fourier Transform,
among others. The technology behind these instruments is also different. In dispersive infrared
instruments (Figure 1B), the measurements are made at one region of the spectrum at a time,
so each wavelength is measured individually, lowering the scanning speed wavelength. In
contrast, FT-NIR instruments scan the entire infrared spectrum, and individual scans can be
combined to better represent the absorbance of the sample. The detector in these instruments
measures the light intensity, generating an interferogram, which is converted into a spectrum
by a Fourier Transform algorithm. Consequently, there is an increase in the scanning speed and
resolution compared to dispersive equipment (Manley et al., 2002). Figure 1C illustrates the
operation of an FT-NIR instrument.

The application of NIRS in the literature is generally based on benchtop devices
(Casian et al., 2021). However, in the last years, the use of portable devices grew with its
development and marketing (Pasquini, 2018). The most important feature of these devices is

the miniaturization of benchtop equipment. This feature has a great impact in the industrial
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environment as it makes it more feasible to apply NIR technology in for in-line routine
monitoring along the production chain; additionally (Cortes et al., 2019b), the application of
NIR spectroscopy in delivery and supply chains is becoming more practical, allowing the
verification of the compliance in the processing line and the final products. (Gonzéalez-Martin
et al., 2021; Mayr et al., 2021).

In the literature, many studies compare the application of benchtop and portable
devices in various applications (Ayvaz et al., 2015; Bizerra Brito et al., 2017; Casian et al.,
2021; Cecchini et al., 2021; Gonzalez-Martin et al., 2021; Kirchler et al., 2017; Malegori et al.,
2017; Mayr et al., 2021; Rukundo et al., 2021). Although few poor performances, overall, the
portable devices showed good results when compared to benchtop equipment. In the field of
portable NIR devices related to wheat flour and wheat products there are also studies (Badaro
et al., 2019; Chen et al., 2021; Grassi et al., 2018; Jiang et al., 2020; Kumagai et al., 2004;
Stellacci et al., 2012). Overall, the results found in these works were very satisfactory for
portable devices, with exception of the work developed by Badar6 et al. (2019), since the
authors compared the results of a protable NIR spectrometer and a hyperspectral camera.

An important disadvantage of portable devices is the small working area, so that to
obtain representative information of the sample in case of heterogeneous samples, it is
necessary many measurements to cover it. Moreover, the construction of miniaturized
equipment also can result in low signal-to-noise ratios (Mayr et al., 2021; Pasquini, 2018). The
advances in MEMS (MicroElectroMechanical System) technology resulted in the production
of tiny devices that, when together, build a complete handheld device (Pasquini, 2018). These
handheld devices are called “micro” instruments because they are compact and have low weight
(around 100g). Nevertheless, they feature internal radiation sources and wireless technologies
as Bluetooth and Wi-Fi for data transmission. The operation of these instruments is not the
same. As an example, a MicroNIR manufactured by Viavi Solutions contains two small
tungsten filament radiation sources, the wavelength selection is based on a LVF (linearly
variable interference filter) placed on a chip with an array of 124 InGaAs sensors and the
integration time is controlled by a software (Friedrich, 2014). There are several micro
instruments available in the market, which Pasquini (2018) brings a list in his review. The
author detailed the operation of a representative number of micro instruments. As mentioned
by the author, these miniaturized instruments allowed NIRS technology to be used in the field
or at a point of production, for example, however, they require careful evaluation.

The traditional spectrometers only detect one point or a small portion of the

samples, in case of many measurements of the sample, so when it comes to food products,
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which are very heterogeneous matrices, the spectra may not be representative of the whole
sample (Feng & Sun, 2012). An alternative to suppress this situation is the application of
hyperspectral imaging technique (HSI) for simultaneous detection of both spectral and spatial
information.

Near-infrared hyperspectral imaging (NIR-HSI) has demonstrated capable of
exploring both the chemical composition and its spatial distribution within a sample. In
comparison to traditional NIR spectroscopy, HSI applies spectroscopy coupled with imaging
and the data is provided as a “hypercube” due to the three-dimensional structure, with two
spatial dimensions (X, y) and one spectral dimension (A) (Figure 1D) (Amigo et al., 2015).
Therefore, hyperspectral imaging allows the visualization of the distribution of the substance
of interest in samples.

This technique has been used for different purposes, including assessment of the
presence of deoxynivalenol and ergosterol in wheat samples (Femenias et al., 2021); detection
of peanuts in wheat flour (Lohumi et al., 2018); detection and quantification of particles of ergot
bodies in cereal flour (Vermeulen et al., 2017); determination of bulk density and particle size
of wheat flour (Zhu et al., 2017); classification of Italian wheat durum spaghetti (Menesatti &
Bucarelli, 2007), among others.

Even though spectroscopy presents good performance for the described
applications, it provides a large amount of data, which should be processed to extract useful
chemical information and avoid redundant information. Thus, the association of vibrational

techniques to chemometrics becomes necessary (Caporaso et al., 2017).

1.3. Chemometrics

Chemometrics is a research area, which uses mathematical and statistical methods
to extract the relevant information in any type of data, including the chemical information of
spectra and correlate with quality parameters or physical properties of a sample. This technique
involves unsupervised methods of analysis, such as exploratory analysis, or supervised
methods, as classification or prediction of quantitative properties, which are based on reference

chemical or physical measurements (Caporaso et al., 2017).
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1.3.1. Data pre-processing

Prior to the application of multivariate methods of analysis, the data is pre-
processed. The spectrum or the image can be affected by a large number of factors, e.g., the
effects of light scattering as baseline shifts and non-linearities. Moreover, the pixels measured
in hyperspectral images carry all the information from the sample surface, which includes
mixed information from the components, spectral noise, and irrelevant information, spatial
interferences. Therefore, spectra and image pre-processing must be applied in order to reduce
undesirable interference without losing valuable information. Among the most commonly used
pre-processing techniques, there are Multiplicative Scatter Correction (MSC), Standard Normal
Variate (SNV), normalization, which reduce scattering effects; and spectral derivatives, as
Savitzky-Golay (SG) polynomial derivative filters, which smooth spectra by reducing baseline
variations (Lohumi et al., 2015). The pre-processing improves the spectral information by
improving the noise-ratio signal and enhancing peaks that overlap in the raw spectrum. The
parameters used for the pre-processing, such as the selection of the window size and the
polynomial order in a 1% Derivative, for example, has a large influence in smoothing the
spectrum (Su & Sun, 2016). In imaging pre-processing, there is also dead pixels, which are
missing data in the images, and background information, for example, from the surface where
the samples is placed, that can influence the models, so they must be removed (Amigo, 2020).
After pre-processing, data is available for exploratory analysis and the development of

regression, classification or curve resolution models.

1.3.2. Exploratory analysis

Exploratory analysis involves unsupervised methods, such as Principal
Components Analysis (PCA) and Hierarchical Cluster Analysis (HCA). PCA is the most
common method used prior to classification or regression to investigate relationships between
samples and describe the variation among them. This method works by decomposing the data
into new variables, which are linear combination of the original data, called Principal
Components (PC’s). Score plots of the new variables are constructed, allowing the visualization
of the relationship between samples and identifying anomalous samples, called outliers. PCA

can be applied with no prior information about the sample chemical composition. By
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investigating the PCA scores and loadings plots, samples and variables can be selected to create

optimal calibration models and validate them (Manley, 2014).

1.3.3. Quantitative analysis

One of the most powerful methods for quantitative analysis is PLSR, which is
applied to the linear regression modelling of the multivariate to several independent variables.
The PLSR algorithm uses spectral information (X-block) and their respective parameter (Y
variables) to predict unknown samples. The Y variable, also called the dependent variable, is a
chemical or physical parameter (Su & Sun, 2016). In PLSR, the data are reduced by relating
linearly the spectral information and the parameter of interest. The resulting combinations of
the variables are named Latent Variables (LV’s) and are used for the calibration. Hence, it is
essential that the first few latent variables contain as much information of predictive value as
possible. However, an inadequate number of LV’s can lead to an under- or overfitted model
and, consequently, poor predictions result of unknown samples. In order to determine an
optimum number of factors, apart from a small number of LV’s, a low prediction error must be
considered. Moreover, to test the models reliability, the prediction of unknown samples must
be performed (Porep et al., 2015).

Thus, the evaluation of these models’ performance is based on the parameters of
coefficient of determination of prediction (R?%); the root means square error of prediction
(RMSEP); and the ratio of prediction to deviation (RPD). The coefficient of determination of
calibration (R?c) and cross-validation (R?cv) and the root means square error of calibration
(RMSEC), cross-validation (RMSECV) are also considered, but the prediction with
independent external data, which are not included in the models, is necessary. The equations
for the calculation of these parameters are presented in Table 1.1.

Among many applications, PLSR has been used in the prediction of contamination
of organic wheat flour with common wheat flour, cassava flour, and corn flour (Su & Sun,
2017); of wheat flour with peanut and walnut (Zhao et al., 2018); and bulk density prediction
in wheat flour (Zhu et al., 2017).
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1.3.4. Discriminant and classification analysis

Among all discriminant and classification analysis methods, the most used are
Partial Least Square Discriminant Analysis (PLS-DA), Soft Independent Modelling of Class
Analogy (SIMCA), and Linear Discriminant Analysis (LDA). Each one with its particularity,
these supervised methods are used as qualitative multivariate data analysis techniques or pattern
recognition methods by developing specific algorithms with the spectral data matrix (X-block)
and the correlated category of the samples (Y variables) (Su & Sun, 2016).

For a discriminant analysis, PLS-DA, for example, is used to raise the separation
between groups based on Partial Least Square Regression (PLSR) models, where the category
is coded as 0 and 1, with 1 corresponding to the category of samples of interest and 0 to all the
other samples. The classes are delimited adopting a threshold value between 0 and 1 using
probabilistic density functions and the Bayesian theory (Ferreira, 2015). PLS-DA has been
employed in qualitative analysis, as the assessment of rye flour, organic wheat flour, spelt flour
and organic spelt flour (Su & Sun, 2016), and the discrimination of kernels and flours from
bread wheat, spelt, durum, emmer, and einkorn (Ziegler et al., 2016).

Such as PCA, LDA is a classification method used for dimensionality reduction.
However, it searches the Canonical Variables (CV) that maximize the separation between
multiple classes and minimize the variance within the same classes. The first CV represents the
maximum ratio between inter- and intra-class variances. Another particularity of such a method
is the number of samples, which must be greater than the number of variables for calculating
covariance matrices. In addition, if the chosen variables are highly correlated, the model will
be overfitted. Therefore, relevant variables must be selected and this step can be automatically
performed by algorithms as “jack-knife” (Westad & Martens, 2000) or manually, by selecting
the important wavelengths (peaks and valleys) in the loadings plot of PCA (Kumar &
Chandrakant Karne, 2017). This technique showed promising results discriminating between
wheat kernels with high or acceptable Hagberg Falling Number (HFN) and those with
excessively low HFN, which is a parameter used to determine sprouting problems in wheat
(Caporaso et al., 2017).

On the other hand, SIMCA is not only a discriminant method, but a classification
method based on principal component analysis (PCA). Therefore, a PCA is developed for each
class analysed, and the relevant number of components is selected based on the minimum cross-

validation error in order to calculate Q-statistic and Hotelling T? and determine the boundaries
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of each class. SIMCA calculates the Euclidean distance of each class using the principal
component models, and the results can be visualized in the Coomans plot, which shows the
distances for each sample from the model for class 1 against class 2. Different from the others,
SIMCA can classify an unknown sample as belonging to one of the classes of interest or not
(Rodriguez et al., 2019). This method was used to detect quinoa flour adulteration (Rodriguez
et al., 2019); and qualification of Italian pasta produced by traditional or industrial production
parameters (Menesatti et al., 2014).

The evaluation of these models' performance is based on the parameters of
specificity and sensitivity. The capacity of a sample that belongs to the class of interest to be
classified into this class is called sensitivity, while the capacity of a sample that does not belong
to the interest class to be classified into the uninterested class is called specificity. Based on
these parameters, the best models should obtain higher sensitivity and specificity (Ziegler et al.,
2016). The sensitivity and specificity can be described by Equations 1 and 2 (Table 1.1).
Moreover, as PLS-DA is based on PLSR, the calibration, cross-validation, and prediction

errors, are also used to evaluate the performance of the models.

1.3.5. Curve resolution/spectral unmixing methods

As already described, a hyperspectral image consists of a three-dimensional cube,
providing both chemical (spectrum) and spatial (pixels) information of a sample. Each pixel
carries the physicochemical information of mixtures of constituents of a sample. Then, when
describing powerful methods, curve resolution or spectral unmixing methods are important in
hyperspectral image analysis. Multivariate Curve Resolution (MCR) is one of these methods.
MCR is a bilinear model that can relate the pure spectra with the concentrations of each
compound in a mixture. Initially, a matrix containing spatial information (XY) by A (spectral
data) called D is developed reshaping the hyperspectral cube (Forchetti & Poppi, 2017). Then,
MCR is applied to this matrix; a matrix called C is generated containing the concentrations of
the compounds in each pixel, and a matrix called S is also developed with the pure spectra of
the compounds. This model can be described as:

D=CS"+E (1)
Where E is the matrix that expresses the experimental error or variance unexplained by the

bilinear model (Amigo & Ravn, 2009; De Juan et al., 2014).
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The MCR aims to solve the matrix C and the matrix S under constraints and initial
estimates using an algorithm. One of the most common is based on alternating least squares
(ALS) (Forchetti & Poppi, 2017). The choice of constraints and initial estimates is the first step
in the MCR-ALS method and the acquisition of reliable results depends on this choice (Badar6
etal., 2021; De Juan et al., 2014). Constraints function as mathematical conditions that improve
the achievement of final solutions by MCR-ALS; as an example, one constraint can be non-
negativity that forces the profiles to have positive values. Initial estimates must obey the
selected constraints and are spectra or concentration profiles; if there is previous knowledge
(e.g., pure spectra), the initial estimates choice can be based on it.

Considering the approach of MCR, this method is suitable for the formulation of a
mixture analysis model (de Juan & Tauler, 2021). The MCR methods can produce, as already
seen, pure spectra and the concentration distribution map of each compound in a mixture. It is
essential to feature that MCR-ALS on its own is not a quantitative method (Badar6 et al., 2021).
MCR methods have been used to evaluate, resolve, and quantify fibre in enriched pasts (Badaro
etal., 2021) and in the resolution of chemical compounds spectra to improve the interpretability

of the white wheat bread crumb staling process (Amigo et al., 2021).
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Table 1.1. Equations for models’ performance calculation.

Equati . .
quation Parameter Equation Description Range
number
1 Sensitivity Sensitivity (%) = ———— X 100 TP: number of true positives 0-1 or 0-100%;
TP+ FN FN: number of false negatives .
. being 0 no accuracy of the
TN: number of true negatives model and 1 or 100% good
2 Selectivit Sensitivity (%) = ==———— X 100 ; it °
y ensitivity (%) TP TN FP: number of false positives accuracy of the model
3 Determination coefficient 5 bredicted val
of calibration (R%c) Ji- predicted va ues 0-1 or 0-100%;
y;: reference values . .
L . noe =2 _ being 0 no correlation and 1 or
Determination coefficient G- y,: average of reference values . .
4 ¢ lidation (R%cv) RZ = AT _ ber of ) 100% linear correlation between
of cross-validation (R*cv =) .n. n.um er of samples o predicted and reference values
.. . x: C — calibration; CV — cross-validation; P
5 Determination coefficient _ prediction
of prediction (R%) P
Root mean square error * .= y)?
6 . o = |fi=tr T . .
in calibration (RMSEC) RMSEC n—A4-1 ¥,: predicted values
y;: reference values Lower values indicate a better
Root mean square error . o
: L > (3, — y;)? n: number of samples prediction ability (must be as
7 in cross-validation RMSECY = |2i=1t 77 . . .
n A: number of factors used in the model low as possible to obtain
(RMSECYV)
Nyq:: number of samples for external acceptable models)
Root mean square error yovalg — y,)2 validation
8 . . = [Zi=t M T
in prediction (RMSEP) RMSEP Noat
SD: standard deviation
RMSEP: root i . o
Ratio of prediction to SD roe me.an. Sduate errorn Higher values indicate a better
9 RPD prediction

deviation (RPD)
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1.4. Application in wheat flour and wheat-based products

Spectroscopy has been used for the qualification and quantification of many
parameters in wheat flour and wheat-based products. The main techniques used for these
determinations are NIR, FT-NIR, and NIR-HSI. The works found in the literature were
organised and split into sections according to the application. First, the works which spectral
techniques were applied in authentication of wheat flour and wheat-flour products. After that,
the application of these techniques to the determination of quality parameters in those products,
followed by composition determination. Then, other applications of these techniques as the
discrimination of different flours or thermal treatments were also cited. Finally, those works in

which data fusion was used.

1.4.1. Authentication

In recent years, an increase in the demand for healthy food products arose. Thereby,
many fortified products have been developed as pasta enriched with fermented quinoa flour
(Lorusso et al., 2017) or whole wheat cracker fortified with tuna bone bio-calcium (Benjakul &
Karnjanapratum, 2018). The addition of new ingredients in the product formulation can
improve its nutritional characteristics; however, it can affect its structure and sensorial
attributes, generating undesirable modifications in the product (Lorusso et al., 2017). Therefore,
rapid and efficient methods for food authentication must be developed; thus, the use of spectral
techniques is an excellent alternative for food authentication. Some application of spectral
techniques studied in this work for wheat flour and wheat-flour products are summarised in
Table 1.2.

As mentioned before, this technique is based on the chemical information of the
analysed sample, which is directly related to the product used to fortify. Wang et al. (2018)
investigated the practicality of using NIR spectroscopy as a rapid method to quantify the amount
of potato flour used to formulate Chinese steamed bread. Wheat flour was replaced by potato
flour in a range of 0-42% in 2% intervals during bread preparation. The authors reported that,
even with the challenge of having the same major constituents as starch, the NIR spectroscopy
had satisfactory sensitivity and repeatability to quantify samples with potato flour contents
greater than 20% (R?%=0.8865, RPD=3.07). In a similar context, Huang et al. (2018) also
explored the NIR spectroscopy ability to determine the potato flour content added to wheat

flour in the formulation of staple food. In this work, wheat flour was mixed with potato flour
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from 0% to 100% (1% increment) for further NIR analysis. The results showed good
performance, with a coefficient of determination of 0.9995, a standard deviation of 0.69 %, and
an averaged repeatability standard deviation of 0.246, and a coefficient of variation of 0.967.

When it comes to food, which is a very complex matrix, some techniques are more
suitable than others. For example, a recent work compared near-infrared spectroscopy and
hyperspectral imaging techniques in the quantification of fibre added to semolina and its
distribution (Badard et al., 2019). The authors added to semolina different types of fibre, which
differed in source and particle size, in different percentages and compared the accuracy of both
techniques to classify, quantify and identify the fibre distribution in flour samples. The data
were analysed with SIMCA and PLSR. In this work, the portable NIR did not show good results
in the classification of samples with different percentages of fibre, showing sensitivity and
specificity close or equal to zero. On the other hand, the HSI-NIR technique resulted in
sensitivity and specificity values close or equal to one, showing the good performance of the
models. Moreover, the authors used the HSI-NIR spectra to build prediction models, obtaining
R?% over 0.85 and RMSECV and RMSEP between 0.44 and 1.09%. Additionally, as an
advantage of this technique, distribution maps were developed, and the spatial distribution of
the fibre in the sample was successfully identified.

The NIR-HSI evaluation of a wheat product enriched with fibre was also studied in
other work (Badar6 et al., 2021). This work aimed to evaluate and quantify fibre in dry
fettuccine-type pasta since fibre enrichment affects the technological quality of pasta. The pasta
flour was replaced with fibre in seven different types and in four different proportions, 2%,
3.5%, 5%, and 7% (w/w), and controls samples without fibre were also produced. The proposed
analysis technique was MCR-ALS. As initial estimates, the spectra of pure fibre, pure flour,
and control sample were chosen; non-negativity for the concentration profiles and
normalization of the spectral profiles were used as constraints. As already mentioned, MCR-
ALS on its own is not a quantitative method; thus, Ordinary Least Squares (OLS) Regression
was performed using the proportion of fibre obtained by thresholding the MCR-ALS
concentration profiles and the real proportion of fibre. The similarity between pure spectra and
recovered spectra in models using pure flour as the initial estimate was above 96% and using
the control sample was 98%. The percentage of lack of fit (%LOF) was lower than 6%, and
more than 99% of the total variance was explained by MCR-ALS models for all samples.
Differences between real fibre content and the content predicted by the regression were

observed due to the lack of homogeneity as a result of fibre particle size and characteristics.
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Therefore, the authors declared that NIR-HSI coupled to MCR-ALS could be a tool for the
identification and quantification of fibre added to pasta.

The addition of ingredients in food products formulation does not always intend to
promote health and well-being to consumers. The replacement of original ingredients with
cheaper or low-cost materials characterizes an unscrupulous adulteration and food fraud,
requiring rapid and efficient methods to identify and quantify these adulterants. Therefore,
methods based on spectral techniques have been studied for this purpose, as in the study of
Verdu et al. (2016), where the authors verified the capability of short wave (SW) NIR
hyperspectral image technique to identify adulterations in wheat flour and bread with cheap
grains. The authors prepared different binary flour mixtures of wheat flour and sorghum, oats,
and corn flour in the percentages of 2.5, 5, 7.5, and 10% (w/w). Then, these mixtures were used
in the bread preparation. The SW-NIR hyperspectral analysis was carried out in both flour and
bread crumb samples and data analysed based on Multivariate Statistical Process Control
(MSPC). The results obtained in this work were shown in terms of Q-residuals. The samples of
both datasets (flour and bread crumb) were beyond the 95% confidence limit of the pure
samples, and showed similar behaviour, with a slight difference between flour and crumbs in
the distance of sample groups. However, they concluded that the technique reached 2.5% of
adulteration, showing some limitations of the method regarding small concentrations.

The demand for organic food has increased over the years; however, due to the
lower yield and difficult qualification process, the prices of organic products are high.
Therefore, aiming for high profits, the adulteration of organic products has become recurrent,
and the authentication of these products, consequently, became more necessary. For this
objective, Su & Sun (2016) investigated the adulteration of organic spelt flour with a
hyperspectral imaging system. The authors proposed an algorithm to select optimum
wavelengths in order to evaluate the addition of rye flour, organic wheat flour and spelt flour
in organic spelt flour. Samples were adulterated from 3 to 75% (w/w) in a 3% interval. PLS-
DA was applied for the qualitative analysis of the different flours; meanwhile, the quantification
of adulteration was determined by PLSR and MLR. The model’s performance was evaluated in
terms of the R* and RMSE of calibration, cross-validation, and prediction. In addition, the
performance of PLS-DA was also assessed in terms of specificity and sensitivity of cross-
validation. The coefficient of determination of prediction of PLSR models (based on the full
spectrum and optimum wavelengths) was between 0.922 and 0.995, and the errors were lower
than 0.061. With a threshold around 0.5, both the specificity and sensitivity in calibration and

cross validation reached 1.
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These authors also investigated the effectiveness of the same technique to
quantitatively detect Irish organic wheat flour adulterated with common wheat flour, cassava
flour, and corn flour (Su & Sun, 2017). Samples were adulterated from 3 to 75% (w/w) in a 3%
interval, and the quantification of the adulteration was analysed in terms of PCR and PLSR.
The performance of the models was evaluated according to the coefficient of determination,
and root mean square error of prediction, which were very satisfactory (R?: 0.948-0.976 and
RMSEP: 0.035-0.050; R?: 0.968-0.986, RMSEP: 0.026-0.039; R?p:0.951-0.988, RMSEP:
0.051-0.144, for wheat, corn, and cassava flour, respectively). Additionally, the authors
developed reduced models with optimum wavelengths with high accuracy (R%»=0.971, 0.973,
and 0.986 for wheat, corn, and cassava flour, respectively). Based on these models, distribution
maps were predicted to evaluate the adulteration distribution in organic wheat flour.
Considering these satisfactory results, hyperspectral imaging coupled to chemometrics could
be used as a tool for the authentication of organic flour in the industry.

Rachmawati et al. (2017) combined near-infrared spectroscopy and chemometrics
for authentication of few samples of taro flour from wheat and sago flour, which are cheaper
than taro flour and, consequently, potential adulterants for this type of products. The experiment
was carried out using a mixture of 5%, 25%, and 50% of adulterated taro flour from wheat and
sago flour, and the authors used principal component analysis and discriminant analysis to build
an authentication model. The discriminant models built with the principal components showed
good accuracy in authenticating taro flour with 90.48% and 85% of the samples mixed with
wheat and sago flour correctly identified. The authors concluded that the near-infrared
spectroscopy could be used for authentication of taro flour from wheat and sago flour.

Azodicarbonamide is a powder chemical used as a dough conditioner to fortify
gluten in flour. However, its use in flour products has concerned some researchers. In addition
to the indirect changes, it can make in the flour structure and the compounds it generates in the
environment of food processing, Azodicarbonamide can cause severe harm after consumption
for an extended time. Therefore, Che et al. (2017) studied the possibility of using Visible/Near-
Infrared Spectroscopy to detect Azodicarbonamide in wheat flour in a very low concentration.
In this work, samples concentration ranged from 0 to 300 mg/kg, in a concentration gradient of
3 mg/kg. Due to low concentrations, a stepwise dilution method was used in order to reduce the
error. The authors used PLS, Back Propagation Neural Network, and Radial Basis functions to
quantify the samples adulteration and the outcomes were very promising. The best result was

achieved by the Radial Basis model, with R%=0.99996, RMSEP=0.5467, and RPD=116.5858,
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showing the feasibility of using Visible/Near Infrared Spectroscopy coupled to chemometrics
to detect Azodicarbonamide adulteration in wheat flour at very low concentrations.

Spectral techniques have also been applied in the authentication of food products
to reduce or avoid the risk of food contamination, either by allergens or other extraneous
impurities. Peanut, for example, is a popular ingredient in commercial food products, and
several reactions can occur by its ingestion for those who are allergic. Considering this, Mishra
et al. (2015) explored the ability of NIR hyperspectral imaging for the detection and
quantification of peanut traces in wheat flour, which is a very common product. Hyperspectral
images of pure flour, pure peanut, samples with a known position of peanut on the surface, and
eight homogeneously mixed samples of flour and peanut in an adulteration level ranging from
10 to 0.01% were acquired. PCA was performed on the spectral data, and the loadings of the
first principal component were used to detect the pixels related to peanuts and flour. The results
obtained for samples with less than 0.10% of adulteration had high errors and showed to be not
reliable. However, a correlation of 0.946 between actual and predicted values of peanuts
adulteration was achieved. Therefore, the authors concluded that this technique could be used
to detect peanut traces in flour in this range of adulteration, facilitating quality control on
process lines.

In the same context, Zhao et al. (2018) also found promising results in the
evaluation of NIR-HSI for the detection of peanut and walnut powders in whole wheat flour.
Hyperspectral images were acquired from samples contaminated with 0.01%, 0.05%, 0.1%,
0.5%, 1%, 3%, 5%, and 10% (w/w) of the adulterants. PLSR models were developed based on
full and reduced spectra. The authors also faced the challenge of trying to predict the adulterants
at extremely low concentrations. However, models developed for both contaminants showed
good accuracy, with a coefficient of determination ranging from 0.985 to 0.994 and 0.996 to
0.998 for peanut and walnut, respectively. The root mean square error of prediction was also
satisfactory, ranging from 0.251 to 0.398 % and 0.153 to 0.198 % for peanut and walnut. In
addition, reduced models were developed and had excellent performance (R%: 0.981-0.988,
0.990-0.997, 0.960-0.987 and RMSEP: 0.348-0.465 %, 0.170-0.324 %, 0.373-0.645 %, for
peanut, walnut, and peanut + walnut, respectively) and visualization maps were well predicted.
Therefore, this work showed the feasibility of such technique for quantitative analysis of peanut
and walnut contamination in wheat flour.

Moreover, there is a concern about the presence of toxic and undesirable
contaminants in cereals used as ingredients in the food industry. For instance, the presence of

ergot bodies in cereal flour can generate a risk of poisoning due to their toxic components.
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Therefore, the European Commission (EC) has established a limit of 500 mg.kg™!' of ergot
bodies in cereals for human consumption. In this context, Vermeulen et al. (2017) carried out
their studies on the online detection and quantification of particles of ergot bodies in wheat
flour using near-infrared hyperspectral imaging. The authors prepared two sets of experiments,
one containing wheat flour contaminated with ergot from 0% to 2.6%, and one containing wheat
flour contaminated with 50%, 20%, 10%, 5%, and 1% of ergot. A PLS-DA model was
developed for all the samples; meanwhile, another PLS-DA model was developed for the first
set of experiments. The PLS-DA models were built by selecting around 800 pixels of 6 images
containing ergot bodies and 4 images with wheat particles. After the models were created and
evaluated in terms of sensitivity and specificity of cross-validation, they were applied in images
of unknown samples to estimate the amount of ergot bodies in it. Then, the correlation between
the reference and predict values for ergot bodies (mg/kg) was calculated determining the ratio
between the number of pixels detected as ergot bodies and the sum of the pixels detected as
wheat and ergot together. The results were satisfactory in both cases, with R% of 0.99 and 0.87,
respectively. In addition, the results showed that, even with false positives and false negatives,
ergot bodies were detected in all the contaminated samples and no ergot bodies were detected
in pure wheat flour samples. However, although these promising results, the PLS-DA models
did not discriminate samples with a low concentration of ergot bodies.

The contamination by insect fragments was also studied by Bhuvaneswari et al.
(2011). In this study, the authors used near-infrared (NIR) hyperspectral imaging to develop
models for the prediction of insect fragments in semolina. Samples were prepared in a ratio of
0,50, 75, 150, 300 insect fragments per 50 g of semolina. The PLSR model developed achieved
a coefficient of determination of 0.99, showing the effectiveness of NIR hyperspectral imaging
to detect inset fragments in semolina compared to the traditional method (R* = 0.639-0.767).
With the same objective, Mishra et al. (2018) used FT-NIR to determine insect infestation in
wheat grain by analysing the change in uric acid, protein, final moisture content, thousand
kernel weight, and hardness. The insects affect the grain quality by producing holes over the
surface, consuming nutrients; therefore, lowering the kernel weight, and producing uric acid.
For the experiment, two types of insects infested the wheat grain in the following ratios: 0, 5,
10, and 15 insects per 100 g; the containers with wheat grain had as initial moisture content 10,
12, 14, and 16% (wb). The containers were also maintained in an incubator set for 45, 90, 135,
and 180 days. The spectral data were analysed using PLSR. The developed models for the five
quality parameters had R?p varying from 0.895 to 0.938 and RPD from 3.034 to 3.971, showing

a good performance for each parameter. Additionally, the author declared that the model
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predicted the infestation duration efficiently with no significant difference between the
reference analysis and the FT-NIR data (P > 0.05); however, the protein content had a

significant difference (P < 0.05), but, since the Pearson’s correlation coefficient was 0.993, the

model is accurate to predict the protein content.
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Table 1.2. Literature related to the adulteration, contamination, and addition of ingredients in wheat flour and wheat-based products

. Type of i
Cat;gor Sar;np ! Tecill;mq S}l{o;cltgrzl equiIt)men Objective lsia/l[téf}tllgg Performance Reference
Detection of adulterations in wheat flour and
Flour/  VIS/SW-  400-1000 Bench bread ;Vith cheap grains, and comparison of - ANOVA B (Verdt et al.,
Bread NIR-HSI o top _ yperspectral 1gforrqat10n with . s a=0.01 2016)
physicochemical alterations in the properties of ~ MSPC
products
Determination of the fidelity of organic spelt .
900-1700 Bench flour from three categories of adulterants PLSDA, Acc'uracy. IOO%f (Su & Sun,
Flour  NIR-HSI nm top including rye flour, organic wheat fl d PLSR, R’: 0.928-0.998; 2016
y » organic wheat tour an MLR RMSEP<0.116 )
spelt flour
Full spectra:
(WF): R%: 0.948-0.976
RMSEP: 0.035-0.050;
(CoF): R?: 0.968-0.986,
. . . RMSEP: 0.026-0.039,
ﬁ | 900-1700  Bench Detef“on of Ir_lih organic Wlllleat ffll"“r (OWE) " prsr,  (CaF): R%:0.951-0.988, RMSEP:  (Su & Sun,
g Flour NIR-HSI o top adulterated with common wheat flour (WF), PCR 0.051-0.144; 2017)
5 cassava flour (CaF) and corn flour (CoF) .
5 Optimum wavelengths:
= (WF): R%»=0.971, RMSEP=0.038;
’2 (CoF): R%=0.973,
RMSEP=0.036;
(CaF): R%»=0.986, RMSEP=0.026
Flour NIR 1000-2500 Bench Identification and authentication of taro flour PCA, (“ﬁf)c’lggcj]é% (Rachmawati et
nm top from wheat (WF) and sago flour (SF). DA N ok al., 2017)
(SF): 85%
PLSR,
Back
Propagat (PLS): R%=0.99621,
ion RMSEP=5.5411
Flour VIS/NIR 400-2500 Bench Prediction of predict Azodicarbonamide Neural (BP): R%»=0.99937, (Che et al.,
nm top concentrate in wheat flour Network RMSEP=2.3965 2017)
(BP), (RFB): R%»=0.99996,
Radial RMSEP=0.5467
Basis

(RBF)
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Table 1.2. (continued)

Catego Sampl  Techniq Spectral Ty_pe of Objective Sta:lStIC Performance Reference
ry e ue Range equipment Method
Detection and quantification .
Flour =~ NIR-HSI 1000-2500 Bench top of peanut traces in whole PCA R?=0.946 (Mishra et
nm al., 2015)
wheat flour
Full spectra:
(Peanut): R%.0.985-0.994, RMSEP: 0.251-0.398;
. iy (Walnut): R?p.0.996-0.998, RMSEP: 0.153-0.198;
936-1720 Detection and prediction O.f Optimum wavelengths: (Zhao et al
Flour = NIR-HSI am Benchtop  peanut and walnut powders in PLSR (Peanut): R, 0.981-0.988, RMSEP: 0.348-0.465: 2018) ?
whole wheat flour (Walnut): R%.0.990-0.997, RMSEP: 0.170-0.324;
(Peanut+Walnut): R?%.0.960-0.987, RMSEP: 0.373-
0.645
Detection and quantification
_§ Flour  NIR-HSI 1118-2425 Benchtop  of particles of ergot bodies in ~ PLSDA R?p: 0.99 and R?: 0.87 (Vermeulen
= nm etal.,, 2017)
= cereal flour
g (Moisture): R%=0.901
g RMSECV=0.485
3 RPD=3.108
(Protein): R?=0.938
Determination of insect RM&%EZ;%%“
infestation analysing the (Uric acid): Rzp:O 895
Grain  FT-NIR 1100-2500 Bench top change in mic acid, protein, PLSR RMSE C‘sz‘ Sé (Mishra et
nm final moisture content, RPD=3.034 al., 2018)
thousand lﬁe“c’fl weight, and (1000 kernel weight): R%=0.907
araness RMSECV=0.576
RPD=3.170
(Hardness): R%»=0.912
RMSECV=0.762

RPD=3.290
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Table 1.2. (continued)

. Type of .
Categor Sample Techniq Spectral equipme Objective Statistical Performance Reference
y ue Range nt Method
Quantification of potato flour
Bread ~ NIR  1000-2500 Bench added to Chinese steamed PLSR R?=0.8865, RPD=3.07 (Wang et al., 2018)
nm top .
bread formulation
@ . . . . Sensitivity: 0.6-1.0,
5 Flour R/ 900-1700 nny/ P%rgilzllqe/ ifiﬂﬂfﬁﬁﬁﬁoﬁufﬁ glf;fceigg? SIMCA, Specificity: 0.9-1.0, (Badaré et al., 2019)
@ NIR-HSI  900-2500 nm to tvpes of fiber added to semolina PLSR R?%: 0.85-0.98, ?
& P P RMSEP: 0.5-1.0
% R?%:0.28 - 0.90
o 928 — 2524 Bench Evaluation and quantification %LOF < 6% .
;i:’ Pasta  NIR-HSI nm top of fibre in enriched pasta MCR-ALS Similarity (pure spectra and (Badar6 et al., 2021)
:1; recovered): 96% — 98%
2=
Bench Determination of or the potato RS]E:P2396995’
Flour NIR 850-1100 nm ene flour content in potato-wheat PLSR —r (Huang et al., 2018)
top SDr=0.264,
blended powders
CVr=0.967
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1.4.2. Determination of quality parameters

Spectral techniques have also shown their applicability in the determination of
wheat flour and products quality parameters, which include protein, moisture, wet and dry
gluten, sedimentation, enzyme activity, farinograph, and alveograph (Table 1.3) (Baslar &
Ertugay, 2011; Miralbés, 2003). These parameters are directly connected to the final product.
Therefore, to develop a high-quality product, it is imperative to determine these parameters to
properly select the appropriate flour for each product (Chen et al., 2017). In this context, Baslar
and Ertugay (2011) used a NIR spectrometer to analyse protein, wet and dry gluten contents
and Zeleny sedimentation of wheat flours. The authors developed PLS and MLR models with
NIR spectra of 120 varieties of bread wheat from different regions of Turkey. The models
resulted in a very satisfactory prediction, with coefficients of determination of 0.985, 0.976,
0.953, and 0.924 for protein, wet gluten, dry gluten, and Zeleny sedimentation. The authors
concluded that NIR spectroscopy was able to well predict quality parameters and associated the
good performance of wet and dry gluten models to the protein content, which was well predicted
by the models.

In a recent work, Chen et al. (2017) also applied NIR spectroscopy in the rapid
determination of total protein and wet gluten in commercial wheat flour. In addition, the authors
tested a synergy interval algorithm trying to improve the obtained models. Data pre-treatment
was also evaluated to determine the best models. The models with better performance in
determining total protein in wheat flour were Support Vector Regression (SVR) with data pre-
treated with SNV+2" derivative (R%» = 0.888 and RMSEP = 0.512) and PLS with data pre-
treated with SNV (R? = 0.834 and RMSEP = 0.520). In case of wet gluten determination, the
best models were SVR with data pre-treated with SNV+1% derivative (R%» = 0.781 and RMSEP
= 1.303) and PLS with raw data (R% = 0.673 and SEP = 1.503). After variable selection, the
model’s performance improved for both SVR and PLS in both parameters’ determination.
However, SVR showed the best performance, with R?p of 0.906 and 0.862 and RMSEP of 0.425
and 1.122 % for total protein and wet gluten prediction, respectively. The authors concluded
that using the full spectra or a selected interval, the protein content was better predicted than
wet gluten. However, the synergy intervals were able to improve both predictions, indicating
good applicability of NIR spectroscopy and chemometrics to rapidly predict these quality

parameters in wheat flour.
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Aiming to compare the performance of a hyperspectral imaging instrument with
traditional NIR instruments for the prediction of food composition, Morales-Sillero et al. (2018)
determined the protein content of wheat flour as an example to evaluate the accuracy of both
techniques. This work includes the use of two NIR instruments, one NIR System DS2500 (NIR-
DS) and one 5000 Autocup DVP6BX NIR instrument (NIR-Perstop), and one NIR
hyperspectral line-scan camera (NIR-HSI). In addition, the authors tested two strategies to
select calibration and validation sets. The first strategy split randomly 75% and 25% of samples
in calibration and validation sets, respectively. The second strategy built the calibration model
with the first 60 samples analysed, and the 19 remaining samples were used as the external
validation set to check stability of the instruments over time. Moreover, the analysis of all the
samples were carried out with over three consecutive days for all the three instruments. PCA
was performed to have an overview of the datasets, and PLS models were developed with full
spectra range and, also, with the common range among them (1120 — 2424 nm). The Hotelling’s
T2 resulted in average values of 7.62, 6.87, and 15.38 for NIR-DS, NIR-Perstop, and NIR-HSI,
respectively. In other words, the two NIR instruments were closer to the multivariate mean than
HSI, indicating more variability between HSI than NIR data, probably due to the larger amount
of information obtained by the HSI instrument. PLS models based on full wavelengths showed
that NIR-DS had the best performance (R%»=0.99, RMSEP=0.14, and RPD=8.55), followed by
NIR-Pestop (R%»=0.99, RMSEP=0.16 %, and RPD=7.56) and NIR-HSI (R?*=0.99,
RMSEP=0.17 %, and RPD=7.07 %). By selecting the common wavelength range, the first
strategy had the best performance, with the best prediction of NIR-DS (R%=0.99, RMSEP=0.15
%, and RPD=8.08), followed by NIR-HSI (R%=0.99, RMSEP=0.15 %, and RPD=7.92) and
NIR-Pestop (R?%=0.99, RMSEP=0.16 %, and RPD=7.56). Although with the second strategy
was still possible to obtain reliable models (R? over 0.94, RMSEP above 0.23 %, and RPD
above 5.15), prediction decreased compared to the other two procedures. This is an interesting
approach in this work because it is associated with the instrument's stability over time.
Therefore, it can be inferred that these instruments must be calibrated more than once if used
for routine analysis. Moreover, this rises an important point insight about the external
validation, which must be performed to test the robustness of the models. Overall, hyperspectral
imaging proved the ability to quantify chemical parameters in wheat flour, with good potential
to be applied in the industry.

The comparison between equipment was also made by Cecchini et al. (2021). A
sensor with short-wavelength NIR (SW-NIR) range between 700 and 1100 nm and a handheld

NIR spectrometer (1600-2400 nm) were compared as their performance to evaluate durum
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wheat semolina quality. The quality parameters used for this analysis were protein content,
gluten content, gluten index, sedimentation value, alveograph parameters (W and P/L), and
GlutoPeak parameters (maximum consistency and total energy). As chemometric techniques,
PLS Regression was used to predict the quality parameters using the data obtained by the two
equipment and SIMCA was applied to divide the semolina samples into quality classes (best,
good, and sufficient). The protein content was satisfactory predicted using SW-NIR (Rp =
0.9561; RMSEC = 0.2903; SEP = 0.4899) and NIR (Rp = 0.9788; RMSEC = 0.2028; SEP =
0.3263) data but NIR had a better performance. The other quality parameters did not have a
good performance: SW-NIR alveograph P/L parameter had Rp equal to 0.6672, and NIR
alveograph W parameter had Rp equal to 0.7249 as the worst results. The authors stated that a
not large data set could be the reason for the bad robustness of the models. The SIMCA had a
classification performance worst in the NIR data (sensitivity = 60%) than in the SW-NIR data
(sensitivity = 70%).

All quality parameters are fundamental to process control, developing equipment
and products, determining operation efficiency, and so on. Other fundamental parameters of
food powder, as particle size and bulk density, have also been evaluated by spectral techniques.
Zhu et al. (2017) compared VIS/SW-NIR spectroscopy and hyperspectral scattering for the
quantitative determination of bulk density and qualitative analysis of particle size in wheat flour
samples. A total of 474 samples, including different varieties and size fractions, were analysed,
and PLSR and PLS-DA models were developed to determine bulk density and classify particle
size, respectively. PLSR results for NIR and HSI presented R?p of 0.55 and 0.87 and RMSEP
of 57.80 and 30.18 mg mL"!, respectively. Moreover, RPD values for NIR and HSI were 1.47
and 2.79, respectively. Based on these results, the authors concluded hyperspectral scattering
was better than NIR for predicting bulk density of wheat flour. PLS-DA results showed good
accuracy in classifying wheat flour samples, with 96.8 and 98.2% for NIR and HSI,
respectively. Additionally, based on the confusion matrix of wheat flour classification of both
techniques, the authors noticed that NIR spectroscopy performed better than hyperspectral
scattering for samples with bigger particle size and vice versa. In general, the work showed that
hyperspectral scattering technique is able to determine bulk density and particle size, which are
two important parameters in the characterization of wheat flour samples.

The determination of fatty acids is also an important quality parameter during the
storage of wheat flour. During storage, some chemical reactions as oxidation of lipids and
production of carbonyl compounds happen, increasing the fatty acids values. Then, their

increase led to acidity and bitterness of the final product. In a study, Jiang et al. (2020)
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developed a portable NIR spectrometer for this determination. The storage of wheat flour was
made at a temperature of 25 °C; each month occurred a sampling of the wheat flour bag (samples
with 20 g) maintained in storage and the spectra acquisition of the samples. Firstly, relevant
wavelength variables with high correlation with fatty acid values were optimized by variable
combination population analysis (VCPA), as this technique randomly combine different
variable sets; extreme learning machine (ELM) used these different combinations to develop a
quantitative model to predict the fatty acid value in wheat flour at different storage duration.
Considering four cases with different relevant wavelengths, R? was above 0.96 in all models
and RMSEP between 0.9375 and 1.0677 mg KOH/100g. The authors highlighted the
importance of using VCPA for the elimination of useless information from NIR spectra and
declared this capacity reduces the quantitative model complexity.

Other parameter in flour and its products composition is also an important factor in
food quality that directly affects the final characteristic of the final product. The moisture
content in the process of pasta-making, for instance, varies considerably from the beginning to
the end of the process and, consequently, has a great influence on product stability. Therefore,
it is important to know the product parameters to have more rigorous process control and a
quality product. In this context, Czaja et al. (2018) measured and compared the moisture content
in dough and pasta samples by different techniques, including FT-IR, FT-NIR, and FT-Raman.
Samples were analysed at different stages of production: dough (30% of moisture), after pasta
production (22% of moisture), and after pasta drying (9% of moisture), and PLSR models were
developed for each dataset. FT-IR had the best performance for moisture determination
(R?%=0.998, RSEPtest=2.50), followed by FT-NIR (R?=0.997, RSEPtest=3.41) and FT-Raman
(R?%=0.991, RSEPtest=5.18). All three techniques showed potential for moisture quantification
in pasta at different stages of production. Moreover, the work suggested that the lower quality
of Raman compared to the other two techniques may be associated with the radiation absorption

by water, which is weaker in Raman spectrum than in NIR or IR.
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Table 1.3. Literature related to the determination of quality parameters in wheat flour and wheat-based products.

Techniqu

Sample o

Spectral Range

Type of
equipme
nt

Objective

Statistic
al Performance
Method

Reference

Flour NIR

Flour NIR

NIR/

Flour  \1R-HsI

Flour NIR

1100-2500 nm

800-3030 nm

400-2498 nm/
11002498
nm/
1128-2425 nm

899.22-1724
nm

Bench
top

Bench
top

Bench
top

Portable

Determination of protein, wet and dry
gluten contents and Zeleny
sedimentation of flours

Rapid determination of total protein and
wet gluten in commercial wheat flour

Quantification of protein in wheat using
near infrared hyperspectral imaging in
comparison with conventional near
infrared spectroscopy

Determination of fatty acids in wheat
flour at different storage periods using
NIR

(Protein—PLS): R%»=0.985, SEP=0.377
(Wet gluten—PLS): R%»=0.976,
SEP=1.36
(Dry gluten—PLS): R%=0.953,
SEP=0.635
(Zeleny sed-MLR): R%»=0.924,
SEP=3.74
Full spectra:

(Protein):

(SVR): R?%=0.888, RMSEP=0.512;
(PLS): R%=0.834, RMSEP=0.520;
(Wet gluten):

(SVR): R?%=0.781, RMSEP=1.303;
(PLS): R%=0.673, RMSEP=1.503
Optimum wavelengths:
(Protein):

(SVR): R?%»=0.906, RMSEP=0.425;
(PLS): R%=0.887, RMSEP=0.445;
(Wet gluten):

(SVR): R%»=0.862, RMSEP=1.233;
(PLS): R%=0.779, RMSEP=1.283
(NIR1): R?%=0.98-0.99, RMSEP=0.14-
0.16%

(NIR2): R?%=0.98-0.99, RMSEP=0.14-
0.16%

(HSI): R%»=0.94-0.99, RMSEP=0.15-
0.23%

R2p=0.9627-0.9675
RMSEP=0.9375-1.0677 mg KOH/100g

PLS,
MLR

SVR,
PLS

PLS

VCPA,
ELM

(Baslar &
Ertugay,
2011)

(Chen et al.,
2017)

(Morales-
Sillero et al.,
2018)

(Jiang et al.,
2020)
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Table 1.3. (continued)

Sample

Technique

Spectral Range

Type of
equipme
nt

Objective

Statistica
1 Method

Performance

Reference

Semolina

Flour

Pasta

SW-NIR/
NIR

VIS/SW-
NIR/
NIR-HSI

FT-IR/
FT-NIR/
FT-
Raman

700 — 1100 nm/
1600 — 2400 nm

400-1000 nm/
500-1000 nm/

2500-25000
nm/
1100-2500 nm/
2700-100000
nm

Portable

Portable/
Bench
top

Bench
top

Comparison of a SW-NIR sensor and a
NIR portable spectrometer to predict
quality parameters of durum wheat
semolina and to classify according to
quality classes

Bulk density determination and particle
size classification of wheat flour

Determination of moisture content in pasta

PLSR,
SIMCA

PLS,PLS
DA

PLS

(Protein):
SW-NIR R?=0.9462,

NIR R?%=0.9692;
(Sedimentation value): SW-NIR
R%=0.7268,

NIR R?%=0.6599;

(W): SW-NIR R?=0.6555,
NIR R?%=0.6712;

(P/L): SW-NIR R%=0.6178,
NIR R?=0.7070;
(BEM): SW-NIR R%=0.8062,
NIR R?%=0.6392;

(Total energy): SW-NIR R?=0.6552

(NIR): R%=0.55, RMSEP=57.13 mg.mL"
1

RPD=1.47,
Accuracy: 96.8%

(HSI): R%=0.87, RMSEP=30.02 mg.mL-
1

RPD=2.79,
Accuracy: 98.2%
(FT-IR): R?P=0.998,
RSEPcalibration=2.54,
RSEPvalidation=2.15,
RSEPtest=2.50;
(FT-NIR): R?P=0.997,
RSEPcalibration=3.16,
RSEPvalidation=3.32,
RSEPtest=3.41;
(FT-Raman): R?P=0.991,
RSEPcalibration=5.56,
RSEPvalidation=5.67,
RSEPtest=5.18.

(Cecchini et
al., 2021)

(Zhu et al.,
2017)

(Czajaetal.,
2018)
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1.4.3. Other applications

Spectral techniques have also been used for discrimination of different flours,
products, or process types (Table 1.4). The thermal treatment used in pasta, for example, is
performed to reduce mould spores and spoilage microorganisms; however, it has effects on the
product quality due to interactions between proteins and starch. Aiming to evaluate heat
treatment in flour by a VIS/SW-NIR hyperspectral imaging technique, Verdu et al. (2016)
combined different temperatures and times to treat flour samples for cake production to
characterize the heat treatment process by the imaging technique. In addition, cakes produced
with these treated flours were analysed in terms of final height, mass loss during the baking
process, texture profile analysis, and average area of bubble in crumb. The relationship between
these cake parameters and hyperspectral data of flour, was evaluated using SVM. PCA was
carried out on VIS/SW-NIR data, and results gave an overview of samples behaviour based on
time and temperature of the heat treatment in flour. Moreover, a PCA was recalculated with
important wavelengths, and a correlation between the PC1 scores and time and temperature
were constructed, enabling to evaluate how the PC1 evolved regarding these two factors.
According to these results, a non-linear regression model was developed based on the SVM
technique, using the cake properties data as the independent variables and the PCA scores as
the dependent variables. The coefficient of determination in the cross-validation (R*cv=0.985)
suggested a dependency between the spectral information of flour treated by different heat
treatments and cake properties. Thus, hyperspectral information can be an excellent alternative
control and improve heat treatments of flour in the processing line.

These authors also evaluated the effect of wheat flour substitution and heat
treatments of oat flour on bread properties by the same spectral technique. The spectral
information of treated oat flour also showed a pattern regarding the temperature used for heat
treatment. Non-linear regression models based on SVM were built according to the PC1 and
PC2 scores and the two level of flour substitution (10 and 20%). The models had very
satisfactory performance, with R?cv of 0.95 and 0.91, for PC1 and PC2, respectively, in a 10%
level of flour substitution, and R?cv of 0.98 and 0.97, for PC1 and PC2, respectively, in a 20%
level of flour substitution. Additionally, the spectral information of treated oat flour was tested
regarding the bread properties. The R%*cy ranged from 0.81 to 0.97 for a 10% of substitution and
from 0.63 to 0.98 for a 20% of substitution. Therefore, hyperspectral imaging demonstrated the
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applicability also for a non-destructive control tool to monitor heat treatment in oat flour to be
replaced in bread formulation (Verdu et al., 2017).

Ziegler et al. (2016) studied dispersive and FT near-infrared reflectance
spectroscopy for the rapid discrimination of kernels and flours of different wheat species,
including bread wheat, spelt, durum, emmer, and einkorn. Due to the better performance of the
industrial NIR spectrometer (dispersive spectroscopy) for kernel samples, spectra of flour
samples were recorded with this instrument, and data were also analysed by PLS-DA. The
model specificity and sensitivity ranged from 0.91-1.00 and 0.50-1.00, respectively,
considering all five classes. In order to improve the discrimination power of the models, two
classes (bread wheat and spelt) were considered, and the model recalculated, resulting in
specificity values of 0.90 and 0.94, and sensitivity values of 0.94 and 0.90, for bread wheat and
spelt, respectively. Moreover, the authors also investigated the adulteration of these flours, by
mixing them in different ratios. A PLSR model was developed with the NIR spectral data, but
the RMSECV was 22.6%, probably due to the small number of samples. Therefore, this work
showed good discrimination of flour using NIR spectroscopy, with a small limitation on the
number of classes. Additionally, it suggests an alternative technique for flour adulteration,
corroborating with other works mentioned in this review.

Recently, Wadood et al. (2019) analysed wheat kernels and flour with NIR
reflectance spectroscopy to better classify wheat according to the origin, production year, and
genotypes. Samples of three distinct genotypes across 4 years from three different geographical
areas of China were evaluated and PCA was carried out prior to multivariate ANOVA and
LDA. ANOVA showed that all the factors affected the NIR spectra of kernel and flour samples
and a significant difference among them was observed. LDA aimed to classify samples
according to production year, genotypes, and geographical origin in each year. The accuracy of
the model was 69% for production year, 69% for genotypes, and ranged from 72.2 to 100% for
geographical origin for flour samples. This work showed that NIR spectroscopy could be a
successful tool to determine geographical origin, production year, and genotype of flour
samples, which is a valuable contribution to flour traceability.

Firmani et al. (2020) applied NIR spectroscopy to authenticate Gragnano Pasta, a
P.G.I. product that is the eponym of the town in southern Italy where it is produced. In this
study, 949 samples were used and two classes were considered: Gragnano and non-Gragnano.
The proposed chemometric methods were PLS-DA and SIMCA. The models' performance was
very satisfactory: PLS-DA was able to classify correctly 100% of Gragnano samples and

98.10% of the non-Gragnano samples using mean centring and 1% derivative as pre-treatments,
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whereas SIMCA had sensitivity equal to 96.57% and specificity equal to 100% using mean
centring and SNV as pre-treatments. Considering this performance, NIR spectroscopic coupled
with PLS-DA and SIMCA can be a useful tool for the authentication of Gragnano pasta.

Shelf life is also an important factor to be considered in the food industry, since
some problems may occur during this period, as spoilage or changes in texture or taste, concern
both the industry and the consumers. Therefore, the use of technologies to improve quality
control and, consequently, extended the shelf life of the product, are very important. In this
context, NIR Spectroscopy was studied by Cevoli et al. (2015) as a fast and non-destructive
tool to discriminate samples of Piadina, which is an Italian bread, with different formulations,
and to estimate the storage time. PCA was carried out with three out of five formulations and
the scores plot showed a clear separation between the clusters. Moreover, PLSR showed a good
prediction of storage time (R? ranging from 0.959 to 0.969 and RMSEP from 1.87 to 1.98),
suggesting NIR spectroscopy as a good alternative for prediction of storage time of Piadina and
the possibility of using such technique for other types of bread.

The use of edible coatings in food products has gained much interest as an
alternative for protection regarding external factors, and for preventing or reducing microbial
or oxidant activity. One of the important steps in applying an edible coating is the drying time.
Therefore, studies were carried out to rapidly monitor the drying process of edible coating on
bread surfaces (Chakravartula et al., 2019). Samples were tested with one layer, two layers and
two different drying temperatures (25 and 60 °C). A FT-NIR spectrometer was used to provide
spectral information of samples and PCA and PLSR were carried out to evaluate data. PCA was
carried out as an exploratory analysis to identify and discriminate samples submitted to different
drying times. In general, a clear separation was observed among samples regarding the drying
time, and the loadings plot suggested that this separation may be due to moisture and protein
content. Therefore, PLSR was performed to predict the moisture content in the coated bread.
The results showed a successful performance of the model, with R? ranging from 0.902 to
0.963 and RMSEP from 2.51 to 3.15%. Based on these results, this work suggests the
applicability of NIR spectroscopy in moisture prediction and as a potential technique for drying
time determination.

In a different approach, Neves et al. (2019) investigated the applicability of a
handheld NIR spectrometer for rapid determination of nutritional parameters of pasta/sauce
blends. The authors combined five different kinds of pasta and five different sauces in five
blend ratios, totalling 125 samples. The nutritional value of each mixture was determined

according to the information provided in the package. Spectral data were then, recorded and
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PLSR models were developed for each nutritional parameter. The prediction showed reliable
values for all the parameters, with R% 0of 0.86, 0.85, 0.89, 0.90, 0.86 and 0.88, RMSEP of 10.64,
3.59, 0.95, 1.11, 1.39 and 0.61, and RPD of 2.02, 2.54. 2.77, 2.45, 2.26, 2.19, for energy,
carbohydrate, fat, fibre, protein, and sugar, respectively. As many other works mentioned, this
work shows that NIR spectroscopy can be a very powerful tool for quality control, even using

a handheld instrument to predict parameters established in the package.
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Table 1.4. Literature related to other applications of NIR, FT-NIR, and NIR-HSI in wheat flour and wheat-based products.

Sample

Technique

Spectral Range

Type of
equipment

Objective

Statistical
Method

Performance

Reference

Flour/
Cake

Flour/
Bread

Kernel/
Flour

VIS/SW-
NIR-HSI

VIS/SW-
NIR-HSI

NIR/
FT-NIR

400-1000 nm

400-1000 nm

1200-2400 nm/
6502500 nm

Bench top

Bench top

Bench top

Characterization of heat treatment
process of cake wheat flour

Characterization of heat treatment in
oat flour and evaluation of
hyperspectral data and bread

Rapid discrimination of kernels and
flours of different wheat species

PCA, SVM

PCA, PLS

PCA,
PLSDA,
PLS

R?cy=0.985

10% of substitution:
chvl 0.81-0.97
RMSECV: 0.00-4.03
20% of substitution:
R%cy: 0.63-0.98
RMSECV: 0.00-6.00
Five classes:
FT-NIR spectroscopy:
(Kernel):
Sensitivity: 0.35-0.95,
Specificity: 0.86-0.94,
Accuracy: 81.0-94.0%;

Dispersive spectroscopy:

(Kernel):
Sensitivity: 0.65-0.95,
Specificity: 0.90-1.00,
Accuracy: 88.0-99.0%;

(Flour):
Sensitivity: 0.50-1.00,
Specificity: 0.88-1.00,
Accuracy: 85.1-100%;

Two classes:
(Bread wheat flour):
Sensitivity: 0.94,
Specificity: 0.90,
Accuracy: 92.1%;
(Spelt flour):
Sensitivity: 0.90,
Specificity: 0.94,
Accuracy: 92.1%;

(PLSR): R%=0.966,
RMSEC=5.2%
RMSEC=22.6%

(Verdu et
al., 2016)

(Verdu et
al., 2017)

(Ziegler et
al., 2016)
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Table 1.4. (continued).

Sample  Technique  Spectral Range e;ﬁg;ii t Objective Sﬁgjﬁfgl Performance Reference
Flour:
(Origin):
Accuracy: 72.2-100%
(Year):
Accuracy: 69%
Kemnel/ Evaluation of wheat according to Accuracy: 69% (Wadood
NIR 950-1650 nm Bench top the origin, production year and PCA, LDA Kernel: etal.,
Flour ..
genotypes (Origin): 2019)
Accuracy: 61.1-88.9%
(Year):
Accuracy: 55.17%
(Genotypes):
Accuracy: 75.86%
(PLS-DA):
. . Sensitivity=100%,
Differentiation between P.G.1. g 0 . .
Pasta FT-NIR 1000-2500 nm Bench top Gragnano pasta and non- Psl}f/}lc)ﬁ’ Sp ecgﬁ%ﬁi 10% (511?23310?
Gragnano pasta Sensitivity=96.57%,
Specificity=100%
Discrimination of Italian bread
samples as a function of R?: 0.959-0.969, (Cevoli et
Bread NIR 800-2500mm  Benchtop ¢ SE T predictionof ~ TCA PLS RMSEP: 1.87-1.98 al., 2015)
storage time
Lo . (Chakravart
Monitoring the drying process of R?p: 0.902-0.963,
Bread FT-NIR 800-2500 nm Benchtop e coaztging onriread surfaces,  —bFLS RMSEP: 2.51-3.15 ul; Oelt 9231"
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Table 1.4. (continued).

Sample  Technique

A review

Spectral Range

Type of

equipment

Statistical

Performance Reference
Method

products evaluation

Pasta NIR

908-1676 nm

Handheld

Determination of nutritional

parameters of pasta/sauce blends

(Energy): R%=0.86,
RMSEP=10.64,
RPD=2.02;
(Carbohydrate): R%=0.85,
RMSEP=3.59,
RPD=2.54;
(Fat): R%»=0.89,
RMSEP=0.95,
RPD=2.77, (Neves et
(Fibre): R%=0.90, al., 2019)
RMSEP=1.11,
RPD=2.45;
(Protein): R%=0.86,
RMSEP=1.39,
RPD=2.26;
(Energy): R%=0.88,
RMSEP=0.61,
RPD=2.19

PLS
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1.4.4. Data fusion

The individual study of spectral techniques sometimes is not enough to achieve the
desired results. In this point of view, there are advantages in using data fusion combined with
chemometrics, which enable the use of more accurate information about samples and,
consequently, provides more solid results. This method integrates the information from
different techniques using three strategies: low-, mid-, and high-level data fusion (Chen et al.,
2017).

In low-level data fusion, the data is concatenated before multivariate pre-processing
and analysis. In other words, the data is fused in its raw form (Mishra et al., 2019). The most
relevant information is selected in mid-level data fusion and extracted for later fusion and
analysis (Chen et al., 2017). On the other hand, in high-level data fusion, the outputs obtained
by the models developed for each data set individually are fused to improve the final result
(Mishra et al., 2019). Only a few studies were found using data fusion in wheat flour and its
products determinations. Chen et al. (2017) carried out studies on the rapid determination of
farinograph parameters of wheat flour combining NIR and MIR spectral regions. First, the
spectra of each technique were analysed individually by PLSR models but did not achieve good
results. To solve this issue, both data were low and mid-level fused. In low-level data fusion,
NIR and MIR data were combined and, then, analysed. In mid-level data fusion, an algorithm
called forward interval data fusion PLS (fi-DF-PLS) was implemented in the study to select
representative variables in the MIR and NIR regions and improve the performance of the model.
Low-level data fusion performed worse than each method individually, probably due to the high
amount of irrelevant information added to the model. On the other hand, mid-level data fusion
improved the performance of the models. The models parameters with better prediction power
for water absorption, dough development time, dough stability, and degree of softening were R
(correlation coefficient) =0.96, 0.94, 0.95 and 0.94, RMSEP=0.521 %, 0.514 (min), 0.640 (BU)
and 15.014 (BU), and RPD=3.812, 2.814, 2.566 and 2.647. This study shows the potential of
data fusion and spectral techniques as NIR and MIR for prediction of flour parameters.

In another approach, Ringsted et al. (2017) developed two-dimensional correlation
spectroscopy on near and mid-infrared spectra of wheat bread crumb during aging. First,
important regions in MIR and NIR infrared were identified and correlated according to bread
hardness. An important absorption band at 1047 cm™ was observed in the MIR region regarding

amylopectin retrogradation, positively correlated to bread hardness. This band had a very
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satisfactory correlation with three bands in the NIR region, including a band at 910 nm (R?>=0.88
to hardness), at 1688 nm (R>=0.97 to hardness), and at 2288 nm (R?>=0.97 to hardness). Another
important band in the MIR region was found at 1022 cm™ that presented a high negative
correlation to bread crumb hardness. This band seemed to be related to different levels of
hydrogen bonds, and it was correlated with NIR absorbance bands at 974 nm (R?=0.96 to
hardness), 1412 nm (R?>=0.94 to hardness), and 2258 nm (R?=0.92 to hardness). Moreover, PCA
was performed on NIR and MIR data individually, and the first principal components from both
techniques were correlated, with an R?>=0.98. The results showed that bread staling processes
could be evaluated by near and mid-infrared spectroscopy and high-level data fusion. The works
found in the literature regarding the use of data fusion on the wheat flour and wheat-flour

products were summarised on Table 1.5.
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Table 1.5. Literature related to use of data fusion in the analysis of wheat flour and wheat-based products with NIR and MIR.

Sample  Technique  Spectral Range Ty_pe of Objective Statistical Performance Reference
equipment

Method

Investigation of the

potential of combining NIR (WA): Rp=0.96;
and mid-infrared (MIR) RMSEP=0.521; RPD=3.812
spectral regions to predict (DDT): Rp=0.94;
Flour MIR/ 2500-20000 nm/ Bench top wheat flour farinograph PLSR RMSEP=0.514; RPD =2.814 (Chenetal.,
NIR 800-3000 nm quality properties: water (DS): Rp=0.95; 2017)
absorption (WA), dough RMSEP=0.640; RPD =2.566
development time (DDT), (DOS): Rp=0.94;
dough stability (DS), and RMSEP=15.014; RPD =2.647
degree of softening (DOS)
Development of a two-
dimensional correlation (Ringsted et
Bread NIRMIR ~400-2300nm/ o p oy SPectroscopy on near- and PCA R> 0.98 al., 2017)

2500-20000 nm mid-infrared spectra of

wheat bread crumb during
aging




Chapter 1 - Near-infrared spectral techniques for wheat flour and wheat-based

products evaluation: A review 73

1.5. Conclusions and future trends

This review summarized spectral techniques for wheat flour and wheat-based
products, more specifically near-infrared, Fourier-transform near-infrared and hyperspectral
imaging. Overall, the techniques have been used in different range within the near infrared
spectrum, with different instruments. The number of samples, acquisition mode and statistical
methods performed varied according to the study aim. Another important detail is the condition
of analysis, which was performed in the laboratory in most of the studies, and there is not a lot
of information about the application in the industry.

These techniques showed to be more related to determine composition,
authentication, and quality parameters. However, future works could explore other important
parameters in the cereal and bakery industry as to defects of pasta or bread. In addition,
assuming good performance of quantitative and qualitative models for parameters in wheat
flour and wheat-based product, studies can be carried out to determine other parameters based
on these easily detected. An example of this methodology is the work of Mishra et al. (2018)
here reviewed that used quality parameters of wheat grain to determine insect infestation.

Only a few works have applied the spectral technique in-line, suggesting a deep
study in order to apply these techniques in the process line so that the industry would have a
more controlled process. The combination of off-line and in-line measurements could be a first
step on the use of NIR in in-line analysis. Also, handheld spectrometers could be used in the
process line; therefore, the literature comparing the application of benchtop and handheld
equipment in different situations is needed for the application of these equipment to develop
new equipment.

The application of the techniques here approached for the determination of wheat
based products geographical origin and production process was demonstrated by Wadood et al.
(2019) and Firmani et al. (2020). The adulteration of these products can occur and are not easily
noticed; for consumer protection, these techniques can be more studied. Additionally, the use
of data fusion for the determination of quality parameters in wheat flour and wheat-based
products is still scarce. One of the biggest challenges of using near infrared is the development
of models to quantify parameters at a low level. Therefore, data fusion could allow the
association of techniques that, together, could be more sensitive to small concentrations,

enabling the development of more reliable and accurate models for quantitative determinations.
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ARTICLE INFO ABSTRACT

Ingredients added in food products can increase the nutritional value, but also affect their functional properties.
After processing, determination of added ingredients is difficult, thus it is important to develop rapid techniques
for quantification of food ingredients. In the current work, near infrared spectroscopy (NIRS) and hyperspectral
imaging (NIR-HSI) were investigated to quantify the amount of fiber added to semolina and its distribution. NIR
spectra were acquired to compare the accuracy in the classification, quantification and distribution of fibers
added to semolina. Principal Component Analyses (PCA) and Soft Independent Modeling of Class Analogy
(SIMCA) were used for classification. Partial Least Squares Regression (PLSR) models applied to NIR-HSI spectra
showed R between 0.85 and 0.98, and RMSEP between 0.5 and 1%, and were used for prediction map of the
samples. These results showed that NIR-HSI technique can be used for the identification and quantification of

Keywords:

Near infrared spectroscopy
Hyperspectral imaging
Semolina

Fiber

fiber added to semolina.

1. Introduction

Wheat flour is widely used as the main ingredient for many pro-
ducts, such as bread, cookies, cakes and pasta, due to its source of
proteins, fats and vitamins (FAO, 2017). Hence, it is an appropriate
food vehicle, since it can add nutrients such as vitamins, proteins and
fiber (Akhtar, Anjum, Rehman, Sheikh, & Farzana, 2008).

Fiber-fortification of food products has been associated to many
health benefits, including the reduction of chronic diseases. However,
the addition of alternative ingredients in the formulation of some pro-
ducts can affect their technological and sensory properties. Thus, the
nutrient should be properly distributed in the product, and in the right
amount it is informed in the package. Brazilian food legislation, for
instance, considers a product “source of fiber” if it has at least 2.5g of
fiber per 100 g and “high fiber” if it has a minimum of 5 g of fiber per
100 g of product (ANVISA, 2012). In Europe, the specifications are at
least 3 g per 100 g portion of product to be considered “source of fiber”
and 6 g per 100g of product to be considered “high fiber” (European
Commission, 2012).

Rapid and non-destructive vibrational techniques have been devel-
oped to evaluate food quality, being used in laboratory and industrial
scale. Near infrared spectroscopy (NIRS) and hyperspectral imaging
(HSD) have shown promising results in several fields, such as

* Corresponding author.

agricultural and pharmaceutical, among others (Porep, Kammerer, &
Carle, 2015).

NIRS is a vibrational technique based on the interaction of radiation
with the sample, being influenced by overtones, combinations and re-
sonances of fundamental vibrations of C—H, N—H, O—H and S—H bond
in organic molecules (Pasquini, 2018). Therefore, this technique has
been widely used in the food field to analyze constituents such as fat,
sugars, protein, and moisture. However, the potential of NIRS for
analysis of technological or sensory attributes of food products is
complex in case of heterogeneous matrices, once spectroscopic equip-
ment offer spectral information of a small portion of the sample and do
not provide information on the spatial distribution.

In order to overcome this challenge and obtain spatial information
of the sample, computer vision techniques are required. Also, systems
that work on the visible range of the electromagnetic spectrum are not
usually enough for detecting chemical and biological parameters.
Therefore, a technique that combines both spectroscopy and computer
vision, such as NIR-HIS, becomes a wise alternative (Feng & Sun, 2012).
NIR-HSI integrates spectra and images of a sample, so spectral and
spatial information are obtained. The final data acquired by NIR-HSI
systems, called “hypercube” or hyperspectral image, contains three
dimensions (x, y, A.), being two for spatial coordinates (x and y) and one
for spectral information (). Due to the large amount of information,
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more difficulties are found in data processing (Feng & Sun, 2012).

To facilitate data processing, statistical and mathematical methods
are combined to extract only relevant information from hyperspectral
images. Chemometrics uses mathematics and statistics to interpret the
data by using multivariate analysis. Cluster analysis, such as Principal
Component Analysis (PCA), and classification analysis, such as Soft
Independent Modeling of Class Analogy (SIMCA), are used as multi-
variate classifications for qualitative determinations of parameters of
interest. Partial Least Square Regression (PLSR), on the other hand, is
applied in the prediction of desired parameters in samples for quanti-
tative determinations (Porep et al., 2015).

NIR-HSI technique has shown good performance on the quantitative
detection and visualization of contamination of peanut and walnut
powders in whole wheat flour (Zhao et al., 2018). In previous works,
Mishra et al. (2015) demonstrated the potential of NIR-HSI in detecting
and quantifying peanut traces in wheat flour products; Vermeulen,
Ebene, Orlando, Fernandez Pierna, and Baeten (2017) showed the ap-
plicability and efficiency of the technique in discriminating ergot body
particles from cereal flour. NIR-HIS demonstrated its aptitude for in-
spection of adulterants in terms of common wheat flour, cassava flour
and corn flour in organic Avatar wheat (Triticum spp.) flour (Su & Sun,
2017) and for determination of purity of organic spelt flour from three
categories of adulterants, including rye flour, organic wheat flour and
spelt flour (Su & Sun, 2016). Zhu, Xing, Lu, Huang, and Ng (2017)
compared visible/short-wave near infrared (Vis/SW-NIR) spectroscopy
and hyperspectral scattering for bulk density determination and particle
size classification of wheat flour. Recently, Rachmawati, Rohaeti, and
Rafi (2017) combined near infrared spectroscopy and chemometrics for
authentication of few samples of taro flour from wheat and sago flour.
Although all these works provided encouraging results on the applica-
tion of NIR technique for flour attributes assessment, the use of such
technique for analysis of semolina and fiber has not been previously
reported.

Therefore, the purpose of this study is to compare NIRS and NIR-HSI
techniques for classification of different types of fiber added to semo-
lina. In addition, it aims to quantify the amount of fiber from different
sources and particle sizes added to semolina and show the spatial dis-
tribution using chemical maps.

2. Material and methods
2.1. Sample preparation

Three different brands of semolina were purchased in a local market
and five types of fibers, which differ on source, particle size and solu-
bility (Table 1), were obtained from a food ingredients company. The
study was divided into three sets of experiments (Fig. 1). In the first set,
140 samples (20 samples of semolina from 3 different brands + 20
samples x 3 types of fiber + 10 samples X 2 types of fiber) were
weighed in a total of 20 g each.

In the second set of experiments, only one brand of semolina was
used, and three groups of samples were prepared: pure semolina, and
samples prepared with semolina with two percentages of fiber, 3.5%

Table 1
Samples properties.

Sample Source Particle size (um)
Semolina 1 - 320

Semolina 2 - 80

Semolina 3 - 160

Fiber 1 20% psyllium 80% bamboo 160

Fiber 2 Bamboo 60

Fiber 3 Wheat 60

Fiber 4 50% psyllium 50% cellulose 160

Fiber 5 Cellulose 115
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and 7% by weight. Samples were vigorously mixed to get a total sample
weight of 20 g each time at every mixture of semolina and fiber. Then,
220 samples (20 samples of semolina with 3.5% of fiber and 20 samples
of semolina with 7% of fiber x 5 types of fiber and 20 samples of pure
semolina) were obtained. During spectra acquisition, samples were
placed on vials with no absorbance on the NIR range and for image
acquisition samples were placed in Petri dishes with an exposed sample
surface area of 19.63 cm?

In the third set, brand of semolina was used, and six groups of
samples were prepared: pure semolina, and samples prepared with se-
molina with five percentages of fiber, 2%, 3.5%, 5%, 7% and 8% by
weight. Samples were vigorously mixed to get a total sample weight of
10 g at every type of semolina and fiber. Then, 351 samples (5 samples
of semolina with 2% of fiber, 25 samples with 3.5% of fiber, 5 samples
with 5% of fiber, 25 samples with 7% of fiber, 5 samples with 8% of
fiber x 5 types of fiber and 26 samples of pure semolina) were pre-
pared. The samples were placed in Petri dishes for image acquisition.

2.2. NIR spectra and hyperspectral image acquisition

NIR spectra were recorded from 900 to 1700 nm at 3.51 nm inter-
vals using a portable spectrometer (DLP NIRscan Nano Evaluation
Module (EVM), Texas Instruments, Dallas, TX), in absorbance mode.
The spectrometer is equipped with a reflective sampling module with 2
tungsten lamps, and the process was controlled by DLP NIRscan Nano
Reference Software, with a diffuse reflectance standard as white re-
ference.

A SisuCHEMA SWIR hyperspectral camera (Specim Spectral
Imaging Ltd, FIN-90571 Oulu, Finland) was used to acquire the NIR
hyperspectral images. The spectral range was 928-2524 nm at 6.23 nm
intervals, 10 nm spectral resolution and 320 pixels per line scan. The
camera is equipped with a tungsten-halogen source and two-dimen-
sional array detectors with 256 wavelength channels. The samples were
placed on the translational base and moved to reach the field of view of
the equipment and the spectra were acquired with an exposure time of
2.1 ms using a 50 mm lens, and the process was controlled by Evince
software (UmBio AB, Sweden). The program automatically subtracted
the white (~99% reflectance) and dark (0% reflectance) references
from subsequently acquired images.

In the first and second set of experiments, a spectrum and an image
were acquired from each sample, using the portable NIR equipment and
the HSI system, respectively. In the third set, an image was acquired
from each of the 351 samples.

2.3. Preprocessing of hyperspectral data

A binary mask was constructed by subtracting a low-reflectance
band image (162nm) from a high-reflectance band image (58 nm) in
the same hyperspectral image, for segmentation of the regions of in-
terest (ROI). After removing the background from the image, morpho-
logical operations of erosion were performed to remove edges of Petri
dishes, creating a final mask containing only the region of interest
(ROI). The ROI was used to acquire an average spectrum for each
sample. The procedure was repeated for all hyperspectral images ac-
quired. Image segmentation and spectrum extraction were performed
using Matlab R2016a software (The Mathworks Inc., Natick, MA, USA).

2.4. Spectral pre-processing

The entire set of spectral data acquired by NIRS and NIR-HSI were
mean centered prior to any analysis. Pre-processing techniques, such as
first derivative (1st Der) (Savitsky-Golay smoothing, 15 points window,
2 order polynomial), Standard Normal Variate (SNV) and a combina-
tion of both, were used. The multivariate data analysis was performed
using The Unscrambler X 10.4 software.
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Fig. 2. Average raw (a and b) and pre-processed spectra after SNV (c and d) and 1st Der (e and f) of each pure semolina and fiber.

2.5. Data analysis

Principal Component Analysis (PCA) were applied on both NIRS and
NIR-HSI raw and pre-processed data, as exploratory data analysis, to

obtain an overview of spectral variation among samples. PCA is an
unsupervised method that linearly combines the variables into principal
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components (PCs), which explain the greatest variance in the dataset
and keep only the relevant information of the spectra (Rachmawati
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Fig. 3. Score plots (PC1 vs PC2) of PCA performed on spectra after Savitzky—Golay 1st Der pre-processing (a and b) and their correspondent Loadings plots (¢ and d)

for NIR and HSI data, respectively.

et al., 2017).

2.6. Discriminant analysis

Based on raw and pre-processed data, a Soft Independent Modeling
of Class Analogy (SIMCA) was performed on the second dataset, to
discriminate pure and fiber-added semolina. SIMCA is a supervised
chemometric method for pattern recognition based on principal com-
ponent analysis. A PCA is developed for each class and analyzed in-
dividually, so each method has its relevant number of components. F-
statistic and Hotelling T? were calculated and the models were vali-
dated in the new dataset (not included in the calibration set). SIMCA
determines the class distance using Euclidean distance from the prin-
cipal component models and its results are plotted in the Coomans plot,
which shows the distances of each sample from two different classes in
the same time. In this plot, there are four zones with a confidence level
of, usually, 95%. One zone represents samples of class 1, another re-
presents samples of class 2, one for both classes and one for samples
which do not belong to any classes. This method can assign the samples
into one class, more than one class or to any of them (Rodriguez,
Rolandelli, & Buera, 2019).

In order to test the model in a new set of data, seventy percent of the
samples were assigned to the calibration set and the remaining 30% of
samples constituted the validation set (independent test set). The cali-
bration models were evaluated based on a full cross validation (leave-
one out) and in the test set validation. The evaluation of these models
performance was based on the parameters of sensitivity (a measure of
how often the model correctly identified a positive sample as positive)
and specificity (a measure of how accurate the model was against false-
positives) and the best models are plotted in the Coomans Plots.

198

2.7. Development of the prediction model and distribution map

In the third dataset, Partial Least Square Regressions (PLSR) were
performed to test the ability of NIR-HSI to quantify the different per-
centages of fiber added to semolina. Similarly to SIMCA, seventy per-
cent of the samples were assigned to the calibration set and the re-
maining 30% of samples constituted the validation set (independent
test set). The calibration models were applied on raw spectra and
evaluated based on a full cross validation (leave-one out) and in the test
set validation. Moreover, latent variables (LV) and loadings resulting
from PLSR were used to select calibration samples (using Kennard-
Stone algorithm) and optimal wavelengths, respectively. Once calibra-
tion set and optimal wavelengths were identified, a new PLSR model
was recalculated using the spectral data at these wavelengths. The
performance of these models was evaluated by coefficient of determi-
nation and root mean square error of cross-validation (Rgv, RMSECV)
and prediction (RZ, RMSEP). The new PLSR model was, then, used to
predict the fiber content in each pixel of the hyperspectral image,
creating a chemical map of the samples.

3. Results and discussion
3.1. Raw spectra of samples

The average NIRS and NIR-HSI raw and pre-processed spectra of
pure semolina and fiber are shown in Fig. 2. All spectra in each tech-
nique had a very similar shape but differed in the intensity of absor-
bance across the spectral region. Differences on baseline between
samples can be observed on raw spectra (Fig. 2a and b) and corresponds
to modification in the scattering properties of the samples, probably
associated to fiber granulometry. Semolina 1, which has the biggest



88

Chapter 2 - Identification of fibre added to semolina by Near Infrared (NIR)

spectral techniques

A.T. Badaré, et al.

Food Chemistry 289 (2019) 195-203

Table 2
SIMCA models performance for NIRS and NIR-HSI applied for discrimination of pure lina and fiber-added li
NIR spectroscopy
. Sensitivity Specificity
N ) Number Calibration Validation Calibration Validation
Fiber Type Pre-processing of
Samples (| c2 c3 Cl c2 c3 C1 Cc2 c3 C1 c2 c3
None 60 0.13 0.08 0.07 0.00 0.25 0.00 0.14 0.10 0.63 0.62 0.00 0.54
Fiber 1 SNV 60 0.00 0.00 0.00 0.00 0.13 0.00 0.48 0.00 0.56 0.62 0.00 0.38
Ist derivative 60 0.00 0.08 0.20 0.00 0.25 0.00 0.63 0.01 0.70 0.77 0.00 0.69
SNV+lst derivative 60 0.07 0.00 0.47 0.00 0.00 0.40 0.67 0.27 0.67 0.77 0.20 0.54
None 60 0.38 0.08 0.15 0.00 0.00 0.14 0.38 0.31 0.48 0.50 0.09 0.18
Fiber 2 SNV 60 0.19 0.00 0.08 0.50 0.00 0.14 0.81 0.14 0.34 1.00 0.27 0.36
Ist derivative 60 0.56 0.38 0.15 0.75 0.14 0.00 0.88 0.38 0.79 1.00 0.36 0.45
SNV+lst derivative 60 0.50 0.15 0.23 0.50 0.14 0.14 0.92 0.38 0.62 1.00 0.27 0.45
None 60 0.18 0.08 0.15 0.00 0.00 0.14 0.60 0.20 0.17 0.40 0.20 0.00
Fiber 3 SNV 60 0.41 0.00 0.00 1.00 0.00 0.00 0.00 0.50 0.24 0.00 0.40 0.27
Ist derivative 60 0.00 0.00 0.08 0.00 0.00 0.00 0.80 0.37 0.00 0.53 0.30 0.00
SNV+1* derivative 60 0.24 0.00 0.15 0.33 0.00 0.14 0.88 0.60 0.14 0.73 0.40 0.09
None 60 0.38 0.00 0.08 0.50 0.00 0.00 0.46 0.31 0.23 0.50 0.29 0.30
Fiber 4 Sh"\’ ‘ 60 1.00 0.00 0.08 1.00 0.00 0.00 0.93 0.58 0.47 0.92 0.43 0.60
Ist derivative 60 1.00 0.00 0.08 1.00 0.50 0.00 1.00 0.58 0.47 1.00 0.43 0.80
SNV+lst derivative 60 1.00 0.00 0.08 1.00 0.25 0.00 1.00 0.58 0.47 1.00 0.43 0.70
None 60 0.56 0.00 0.00 0.00 0.00 0.00 0.65 0.59 0.29 0.57 0.38 0.00
Fiber § SNV 60 0.63 0.47 0.09 0.50 0.60 0.22 0.85 0.78 0.55 0.57 0.77 0.56
Ist derivative 60 0.81 0.67 0.36 0.75 0.80 0.22 0.81 0.89 0.74 0.64 0.85 0.78
SNV+1st derivative 60 1.00 0.93 0.45 1.00 0.80 0.44 0.88 0.89 0.97 0.79 0.85 0.89
NIR-HSI
Sensitivity Specificity
) ) Number Calibration Validation Calibration Validation
Fiber Type Pre-processing of

Samples C1 c2 c3 C1 c2 c3 C1 c2 C3 C1 c2 Cc3
Fiber 1 None 60 1.00 0.87 0.92 0.83 1.00 0.86 1.00 0.96 0.93 1.00 0.92 1.00
SNV 60 0.93 0.07 0.46 0.83 0.2 0.29 1.00 0.7 0.52 1.00 0.62 0.64
Ist derivative 60 1.00 1.00 1.00 1.00 0.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SNV-+Ist derivative 60 1.00 0.93 0.62 083 1.00 0.71 1.00 0.81 0.97 1.00 085 1.00
Fiber 2 None 60 1.00 0.93 0.93 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00
SNV 60 0.92 0.73 0.64 0.86 1.00 0.83 1.00 0.78 0.86 1.00 0.92 1.00
Ist derivative 60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SNV-+Ist derivative 60 1.00 1.00 1.00 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Fiber 3 None 60 1.00 1.00 1.00 0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SNV 60 1.00 03 0.79 0.8 0.71 0.83 1.00 0.9 0.68 1.00 091 0.83
Ist derivative 60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SNV-+Ist derivative 60 1.00 1.00 1.00 08 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Fiber 4 None 60 0.6 0.23 0.43 0.2 0.71 0.17 0.74 0.52 0.86 0.77 0.18 0.92
SNV 60 0.6 0.23 0.57 08 0.57 0.33 0.78 0.59 0.86 0.77 0.55 0.92
Ist derivative 60 0.80 1.00 1.00 1.00 1.00 0.83 1.00 0.90 1.00 1.00 0.91 1.00
SNV-+Ist derivative 60 08 1.00 1.00 1.00 1.00 0.5 1.00 0.89 1.00 1.00 0.72 1.00
Fiber 5 None 60 1.00 0.84 0.92 1.00 1.00 1.00 0.96 0.97 0.97 1.00 1.00 1.00
SNV 60 1.00 0.62 0.67 1.00 043 1.00 1.00 0.86 0.83 1.00 1.00 0.6
Ist derivative 60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SNV+Ist derivative 60 1.00 1.00 0.92 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00 1.00

C1 = Semolina, C2 = Semolina + 3.5% of fiber, C3 = Semolina + 7% of fiber.
C1 = Semolina, C2 = Semolina + 3.5% of fiber, C3 = Semolina + 7% of fiber.

particle size, had high absorbance values, followed by Semolina 3. Fi-
bers 2 and 3, which have the same particle size had very similar spectra
on both techniques. Fibers 1 and 4, on the other hand, although having
the same particle size, presented different behaviour. This could be due
to the fibers composition, since they are not from the same source, but
rather a mixture of soluble and insoluble fibers. Even though some
samples presented higher absorbance, caused by larger particle size
(Mishra et al., 2015), this was not observed for all samples. This may be
explained by the fact that all samples had an average particle size, so
the number of particles with smaller size in each sample is unknown.
Analyzing the raw NIRS spectra, four absorption peaks were ob-
served at 1190 nm, 1215 nm, 1388 nm and 1450 nm, which correspond
to stretching vibration of C—H in the second overtone and O—H in the
first overtone. In NIR-HSI, the same peaks were observed, in addition to
peaks at 1206 nm, 1664nm and 2300nm, corresponding to C—H
stretching vibration in the first and second overtone and at 1450 nm

and 1940nm corresponding to O—H stretching vibration or O—H-O
combination of deformation. A peak at 1820 nm corresponds to O—H or
C—O stretching vibration, characteristic of cellulose. Peaks at 2000 nm
denote O—H and C—O stretching vibration or a combination of de-
formation, and at 2242nm corresponds to N—H stretching vibration
(Osborn, Fearn, & Hindle, 1993).

In order to reduce scattering effects, SNV and 1st Der were applied
to NIRS and NIR-HSI raw spectra (Fig. 2). Regarding SNV pre-processed
spectra, it could be observed peaks around 970 and 1580 nm, which
correspond to O—H stretching vibration in the second and first over-
tones, associated to water and starch, respectively. After 1st Der pre-
processing, NIRS spectra showed peaks around 970 and 1528nm,
which correspond to O—H stretching vibration in the second and first
overtone, also characteristic of water and starch, respectively. A peak at
1150 nm corresponding to C—H stretching vibration in the second
overtone was also observed. After 1st Der, HSI spectra showed peaks at
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Table 3

Model performance of PLSR based on characteristic wavelengths for quantitative analysis of fiber added to semolina.
Models Optimal wavelengths (nm) Lv Ry R} RMSECV RMSEP
Fiber 1 1206, 1450, 1664, 1820, 1940, 2000, 2242, 2300 2 0.92 0.95 0.83 0.62
Fiber 2 1206, 1450, 1664, 1820, 1940, 2000, 2242, 2300 2 093 093 0.79 0.68
Fiber 3 1206, 1450, 1664, 1820, 1940, 2000, 2242, 2300 5 0.96 098 0.59 0.44
Fiber 4 1206, 1450, 1664, 1820, 1940, 2242, 2300 6 0.88 0.85 1.02 1.09
Fiber 5 1206, 1450, 1664, 1820, 1940, 2000, 2242, 2300 5 0.96 0.95 0.58 0.52

1620 and 1700 nm, associated to C—H stretching vibration in the first
overtone, and a peak at 2100 nm, related to combination of O—H de-
formation and C—O stretching vibration, associated to starch.

3.2. Principal components analysis (PCA)

Principal component analysis was performed on both NIRS and NIR-
HSI spectra of the first dataset, in order to visualize any variation
among samples. In order to obtain a better sample separation, 1st Der,
SNV, and a combination of both were applied. Both data showed better

separation when 1st Der (Savitsky-Golay smoothing, 15 points window,
2 order polynomial) was applied. PCA scores of pre-processed spectra
with 1st Der and their correspondent loadings are illustrated in Fig. 3.

The first two principal components on both techniques explained

more than 90% of the total
observed on the scores could

variance of the samples. This variability
be due to chemical bonds or to the larger

particle size of the samples, which could affect the spectral signal
(Manley, 2014). Thus, by observing the loadings it is possible to iden-
tify wavelengths that contributed in the sample separation, with higher
absolute values. The observed wavelengths are similar to those
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Fig. 5. Predicted vs. measured plot for the PLSR models obtained on the raw spectra. (a) Fiber 1, (b) Fiber 2, (c) Fiber 3, (d) Fiber 4 and (e) Fiber 5 added to semolina.

observed in pre-processed spectra, most predominantly related to C—H
and O—H bonds, associated to water, starch and cellulose.

Even though it is noticeable that all semolinas and fibers formed
different clusters, NIR-HSI showed better performance when grouping
samples of the same set. Still, PCA was able to distinguish among se-
molina and fiber samples for both techniques.

3.3. Sample classification

SIMCA models applied on NIRS data (Table 2) presented sensitivity
and specificity close or equal to zero, showing very low efficiency on
discriminating and classifying the samples. The heterogeneity of the
samples may be the cause of the poor performance of NIRS. As NIR
spectra were acquired only in one single point of the sample, the
spectrum could not be representative of the whole sample. Even though
NIRS has been widely used to analyze different matrices, it is still a
challenge when used in food products, once they are very hetero-
geneous (Porep et al., 2015). On the other hand, SIMCA models applied
on raw and pre-processed NIR-HSI data (Table 2) generally obtained
high values of sensitivity and specificity for calibration and validation.
Spectral information pre-processed by Savitzky-Golay 1st Der provided
increased accuracy for classification and differentiation between sam-
ples. Hyperspectral images have been a powerful tool to characterize
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complex matrices as food, according to Lohumi, Lee, Lee, and Cho
(2015). In this work, the mean spectra of each sample were enough to
show the efficiency of NIR-HSI technique to distinguish and classify
among pure semolina and samples containing 3.5 and 7% of fiber.

In addition, Fig. 4 illustrates the class responses for the calibration
(Fig. 4a, ¢, e, g and i) and prediction steps (Fig. 4b, d, f, h and j) for the
models with the best performance (highlighted in dark grey on
Table 2). These figures show overall classification (significance level of
5%) for each class. Within the confidence limit of 95%, calibration
models show misclassified samples for Fiber 4, and for validation step,
the models developed for fibers 1 and 4 presented some misclassified
samples. However, this did not undermine the model efficiency. Fiber 2,
even though it had two samples in the validation set which exceeded
the confidence limit, had no misclassified samples. This may have
happened due to the distance between classes, which was closer to the
real class (Class 3) than to Class 2. The visual representation in Fig. 4,
for calibration and prediction, confirms the results presented on Table 2
for the three classes.

3.4. Prediction models

As in the discriminant analysis, the average spectrum of each
sample showed promising results to quantify the amount of fiber added
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Fig. 6. Prediction maps for visual identification of fiber added to semolina using PLSR models. The dark blue image represents pure semolina, otherwise fiber. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

in semolina. After selection of the optimal wavelengths, new models
were developed with raw spectra and applied to an independent vali-
dation set, being able to predict the amount of fiber added to semolina
with R of 0.95, 0.93, 0.98, 0.85 and 0.95 for fibers 1, 2, 3, 4 and 5,
respectively. These results agree with those found by Su and Sun (2016)
for rapid determination of the purity of organic spelt (Triticum spelta L.)
flour using spectral imaging. The authors were able to quantify the
adulteration level between 3 and 75%, with R? over 0.93. Moreover,
values of root mean squares errors of cross-validation (RMSECV) and
prediction (RMSEP) are comparable, within a range between 0.5 and
1%. Table 3 reports the results of the regression models calculated on
the raw spectra by PLS models.

Models for fibers 1, 2, 3 and 5, developed with eight wavelengths,
and fiber 4, with seven wavelengths, showed that a simpler model is
able to predict the amount of fiber added to semolina. Fiber 3 had the
best accuracy as it had the highest Ri and lowest RMSEP, followed by
fiber 5, 1, 2 and 4, respectively. One of the main reasons for this dif-
ference is probably the variety among fiber particle size. The predicted
values from each PLS models are displayed in Fig. 5.

According to these results, the developed calibration models are
representative and can be used in the development of distribution
maps, which allow to visualize the content of fiber in the spatial di-
mension from hyperspectral images.

3.5. Distribution maps

NIR-HSI technique has the advantage, not only to predict the per-
centage of fiber added to semolina, but to identify the spatial dis-
tributions of the fibers in the sample. The dot product between the
optimal regression coefficients and their correspondent wavelengths is
applied in each pixel of the image for spatial visualization.

Fig. 6 presents the prediction maps of some samples (from 0 to 8%
of fiber). These maps were generated using a colour scale from low
(dark blue) to high (red) concentration, where dark blue represents
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semolina and light blue, fibers. Su and Sun (2017) showed the effi-
ciency of spectral imaging associated to PLSR models for inspection of
adulterants in organic wheat flour (OWF) adulterated in terms of
common wheat flour (WF), cassava flour (CaF) and corn flour (CoF).
The authors successfully obtained reasonably accurate prediction maps
with concentration in a range of 3-75%.

The mixture of fiber and semolina is not homogeneous, for this
reason, the colour varied not only among samples, but also within
different locations of the same sample. Poor homogenization of these
samples, for example, can generate major problems in other products
which have these ingredients in their formulation. In an industrial scale
it is not possible to visually identify these problems, so these dis-
criminations can be carried out by hyperspectral imaging.

4. Conclusion

NIR-HSI can be used for the identification and quantification of
different types of fiber added to semolina. Moreover, the technique
showed a great potential on the visualization of different percentage of
fiber in the spatial dimension based on spectral characteristics. This
work shows that, by using this methodology, several fibers added to
semolina can be identified and quantified.

Near infrared spectroscopy, on the other hand, even though is
widely used in the food field, did not provide good results in identifying
and discriminating the five different fibers added to semolina. It was
easier to identify the different clusters by observing the PCA scores,
when pure samples were scanned with the portable near infrared
spectrometer. However, when the fiber samples were added to semolina
and generated a heterogeneous sample, the spectrum of a single point
was not representative of the whole sample.
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ARTICLE INFO ABSTRACT

Keywords: Pasta is mostly composed by wheat flour and water. Nevertheless, flour can be partially replaced by fibers to
Pasta o provide extra nutrients in the diet. However, fiber can affect the technological quality of pasta if not properly
:;:HSPQCHJI imaging distributed. Usually, determinations of parameters in pasta are destructive and time-consuming. The use of Near
Spectral unmixin: Infrared-Hyperspectral Imaging (NIR-HSI), together with machine learning methods, is valuable to imp. the
Nf L i . efficiency in the assessment of pasta quality. This work aimed to investigate the ability of NIR-HSI and
ultivariate curve resolution L . N i N
augmented Multivariate Curve Resolution-Altemating Least Squares (MCR-ALS) for the evaluation, resolution
and quantification of fiber distribution in enriched pasta. Results showed R?, between 0.28 and 0.89, %LOF <
6%, variance explained over 99%, and similarity between pure and recovered spectra over 96% and 98% in
models using pure flour and control as initial respectively, di rating the licability of NIR-HSI

and MCR-ALS in the identification of fiber in pasta.

1. Introduction

Pasta is a prevalent staple food around the world. Its main in-
gredients are wheat flour and water, although different components can
partially replace flour as proteins, antioxidants, and fibers in order to
provide an extra amount of nutrients in the human diet (Kowalczewski
etal., 2015). Recently, fiber has been added to pasta as a nutrient for a
healthy diet (Ferreira, 2018; Muneer et al., 2018; Rakhesh, Fellows, &
Sissons, 2015). However, the fortified product has to agree with the food
regulations. In the case of fiber fortification, the Brazilian food legisla-
tion considers a product “source of fiber™ if it has at least 2.5 g/100 g and
“high fiber” if it has a minimum of 5 g/100 g of product (ANVISA, 2012).
In Europe, the food regulation considers a product “source of fiber” with
3 g/100 g portion of product and “high fiber” with a minimum of 6 g/
100 g of product (Ewropean Comission, 2012).

Additionally, the quality parameters of pasta (e.g., cooking time,

* Corresponding author.
E-mail addresses: tbadaro.amanda@

gmail.com (A.T. Badard), josemanuel.amigo@ehu.eus (J.M. Amigo), jblasco.i

cooking losses, water absorption, texture, among others) depend on the
interaction between starch and proteins during processing, and the
addition of fiber or other ingredients in the formulation can affect the
structure, taste, and physicochemical properties of the cooked pasta
(Bustos, Perez, & Leon, 2015). Moreover, the analysis of these properties
is destructive and time-consuming. Pasta firmness and adhesiveness, for
instance, are measured with a texture analyzer (TPA) after cooking. This
technique is performed by a sequence of compressing and releasing
operations on the sample to simulate the chewing process. At the end of
the analysis, the remaining sample is discarded (Bustos et al., 2015).
These methods do not usually provide any spatial information on the
distribution of the elements in the surface of the pasta. Therefore, the
use of faster and accurate technologies is required to improve the effi-
ciency in the assessment of the abovementioned characteristics (Huang,
Liu, & Ngadi, 2014).

Vibrational spectroscopy techniques, as near infrared (NIR)
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Fig. 1. NIR spectra of the control, pure flour, and pure fiber samples.

spectroscopy, are an altemative for rapid and non-destructive mea-
surements. These measurements are usually taken from one or a few
single points of the sample and are considered to represent the entire
sample. Nevertheless, the composition of food products usually is het-
erogeneous, and much important information can be lost if the spatial
distribution of the ingredients is not considered, affecting the accuracy
and the representativeness of the collected data for decision-making
during processing. Near infrared spectroscopy has a significant advan-
tage in requiring several measurements for heterogeneous samples. In
order to overcome this situation, near infrared spectroscopy can be in-
tegrated with hyperspectral imaging devices (HSD. NIR-HSI is an
alternative for measurements of quality parameters in food products
(Wu & Sun, 2013) considering the spatial distribution of the compounds
in the measured surface of the product. NIR-HSI has already shown
excellent results in qualitative and quantitative determinations of
foodstuffs; however, only a few works can be found in the application of
NIR-HSI in pasta, as the characterization of important parameters of
Italian pasta produced by traditional or industrial production parame-
ters (Menesatti, Antonucci, Pallottino, Bucarelli, & Costa, 2014) or in the
discrimination between different production technology approaches
(Menesatti & Bucarelli, 2007).

The great amount of information contained in the 3D cube makes the
interpretation of the data a cumbersome task, requiring the association
with advanced machine learning methodologies to extract relevant and
useful information (Amigo, 2020; Ma, Sun, Pu, Cheng, & Wei, 2019; Wu
& Sun, 201 3). Machine learning (a.k.a. Multivariate analysis) compiles
several algorithms with different purposes like spectral preprocessing,
qualitative and quantitative data analysis, etc (Ferreira, 2015; Vidal &
Amigo, 2012). When individual pixels are composed of a mixture of the
signal of different compounds, the well-known spectral unmixing
methodologies become a perfect choice in order to separate the
weighted influence of the signal for each compound in the individual
pixels (de Juan, 2020; Nascimento & Martin, 2020). Among them,
Multivariate Curve Resolution with Alternating Least Squares (MCR-
ALS) is one of the major algorithms used in hyperspectral image analysis
in food (Forchetti & Poppi, 2017; Zhang, de Juan, & Tauler, 2015),
pharma (Franch-Lage, Amigo, Skibsted, Maspoch, & Coello, 2011),
chemical compounds in biodegradable active films (Terra et al., 2020),
ibuprofen-nicotinamide cocrystal formation (Ishihara, Hattori, &
Otsuka, 2019).

MCR-ALS is a bilinear model that aims at decomposing the hyper-
spectral image in the spectral profiles and relative distributions for each

compound in the sample (de Juan et al, 2004; Ghaffari, Hugelier,
Duponchel, Abdollahi, & Ruckebusch, 2019). One of the major proper-
ties of MCR-ALS (or in any curve resolution method) is the second-order
property. That is the ability to model the presence/absence of a partic-
ular component in the presence of unexpected interferences or when the
mixture changes in composition. Nevertheless, the apparent simplicity
of this model is hampered by the existence of ambiguities (rotational and
intensity) that makes the model unstable towards a unique solution. The
importance of the ambiguities strongly depends on the spectral differ-
ences of the components involved in the mixture. That is, the high de-
gree of overlapping/similarity between the spectra of the components
and the spectral variability between different fibers. Food is a complex
matrix, and NIR is not a very specific method. This promotes that 1) a
“pure component” can be, indeed, a mixture of several components or 2)
there is not enough spectral information of minor components in the
sample (rank deficiency). To solve or, better said, to minimize these two
issues, several strategies are normally followed. The first one is the
imposition of what is known as natural constraints, being non-negativity
one of the most important ones (Amigo & Ravn, 2009). Another strategy,
if possible, is to augment the images (i.e., analyze several images
together, multiset arrangement). Augmenting the image can be done
with other images of the same nature containing extra information about
the pure compounds (Franch-Lage et al., 2011).

Moreover, MCR-ALS has the versatility of adding spectral and spatial
information to the original data, and single or multiset arrangement can
be used for model development (Franch-Lage et al., 2011; Piqueras,
Burger, Tauler, & de Juan, 2012), in order to reduce the rank deficiency.
In the food field, these techniques have been applied in the study of the
distribution of different components in white and milk chocolate (Zhang
et al., 2015), and in the detection and quantification of adulterants in
milk powder (Forchetti & Poppi, 2017). However, no studies regarding
pasta, especially fiber-enriched pasta, have been reported to our
knowledge.

This work hypothesized that NIR-HSI, together with MCR-ALS, has
the ability for the evaluation, resolution, and quantification of fiber in
enriched pasta. The development of MCR-ALS models verified this hy-
pothesis by studing the signal contributions and spatial distributions of
fiber in the sample surface. Different strategies were tested in order to
evaluate the feasibility of MCR-ALS in obtaining information in the pasta
samples by using images of the raw ingredients (fiber and flour). Finally,
the proposed methodology was tested as an alternative for rapid eval-
uation and authentication of fiber-enriched pasta.
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2. Materials and methods
2.1. Sample preparation

Dry fettuccine-type pasta samples were produced in the Department
of Food Technology at University of Campinas (Brazil) according to the
methodology proposed by Ferreira (2018), replacing the flour by seven
different types of fiber (Supplementary material — Fig. 1) in four per-
centages: 2%, 3.5%, 5% and 7% (w/w). For each percentage of fiber, 30
samples of fettuccine were produced, totaling 120 samples per type of
fiber (Supplementary material — Table S1). In addition, 30 samples
without fibers were produced (control samples).

2.2. Image acquisition

Images of samples were acquired using a SisuCHEMA SWIR hyper-
spectral camera (Specim Spectral Imaging Ltd, Finland). The system is
composed of a high-speed push-broom camera that operates in the
spectral range of 928-2524 nm with a spectral resolution of 6.3 nm and
320 spatial channels (156 um pixel size). The camera is equipped with a
tungsten-halogen source and two-dimensional array detectors with 256
wavelength channels. The spectra were acquired with an exposure time
of 2.1 ms using a 50 mm lens and a scanning speed of 15.8 mmy/s. The slit
width was 30 um. The measurement was controlled by Evince software
(UmBio AB, Sweden). The software automatically subtracted the white
(~99% reflectance measured with Spectralon) and dark (0% reflec-
tance) references from subsequently acquired images. To optimize the
process, one image included three samples, although they were indi-
vidually analyzed. Images from pure fiber and wheat flour were also
taken.

2.3. Data analysis: MCR-ALS

MCR-ALS assumes that the relative concentration and distribution of
compounds in a sample of interest are determined according to the pure
compounds based on a bilinear model, as showed in eq. (1).

D=CS"+E (6]

Where D is the 2D matrix built by unfolding the original hypercube, C is
the concentration matrix provided by the algorithm, S is the matrix
containing the pure spectra information, and E is the matrix expressing
the error or variance unexplained by the bilinear model (Supplementary
material — Fig. §2).

The original hypercubes are firstly unfolded into a matrix (D) of n
dimensions (XY) by m wavelengths (). After that, all matrices are joined
and preprocessed with standard normal variate (SNV) before MCR-ALS
analysis to correct the effects of light scattering.

The first step in MCR-ALS is to determine the number of components,
the initial estimates, and the correct constraints to be applied in the
model development. In this work, two components were taking into
account, since they were the major constituents in pasta samples. This
was done by performing Principal Component Analysis (PCA) before
MCR. The initial estimates and the correct constraint are the key to
achieve reliable results (de Juan, Jaumot, & Tauler, 2014). The data
analysis was carried out considering two different types of initial esti-
mates: (a) pure fiber and pure flour spectral information, and (b) pure
fiber and control samples spectral information. The constraints used
here were non-negativity for the concentration profiles and normaliza-
tion of the spectral profiles, so all components had the same relative
importance in the model (Zhang & Tauler, 201 3). Moreover, closure was
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Fig. 4. Identification of fiber granules in Sample 3, comparing the 3 thresholds. A) Sample with 2% of fiber, B) Sample with 3.5% of fiber, C) Sample with 5% of

fiber, and D) Sample with 7% of fiber.

applied to the concentration profiles. This assumption could be done in
this case since 1) in NIR, the absorbance for each pixel in each wave-
length can be assumed to be the sum of the individual absorbance of
each compound, and 2) neglecting the minimal influence of artifacts,
pasta is composed by two compounds. These constraints help to reduce
the effects of rotational ambiguity and, consequently, increasing

spectral and spatial resolution, since they provide some more informa-
tion about the ST and C matrices (Firmani, Hugelier, Marini, & Ruck-
ebusch, 2018). Then, the ALS optimization was performed until the
convergence criterion was satisfied (0.1%).

A total of 14 augmented MCR-ALS models were developed (2 initial
estimates x 7 types of samples). The percentage of lack of fit (%LOF) and
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Table 1
Parameters of OLS regression models.

Expected fiber content - Flour as initial estimate

Sample  Threshold  biasC biasV R% R%y RMSEC  RMSEV

Pasta 1 0.25 -0.03 —-0.03 0.01 0.05 0.48 0.53
0.30 0.00 -0.01 0.06 0.06 0.09 0.10
0.40 0.00 0.00 0.04 0.06 0.01 0.01
Pasta2  0.25 0.05 0.04 014 015 073 0.89
0.30 0.00 0.00 0.01 0.01 0.05 0.04
0.40 0.00 0.00 0.03 0.00 0.01 0.02
Pasta3  0.25 0.93 121 085 0.84 371 3.84
0.30 0.79 0.90 0.85 0.89 299 2.86
0.40 0.57 0.59 084 0.84 210 2.00
Pasta 4 0.25 0.31 0.26 0.34 0.36 4.02 4.08
0.30 0.16 —0.04 0.22 0.28 242 257
0.40 0.04 0.05 0.30 0.38 0.33 0.31
Pasta 5 0.25 1.76 203 0.67 0.71 9.70 9.28
0.30 1.65 175 0.62 0.66 8.20 8.19
0.40 0.80 095 0.51 0.51 4.30 4.36
Pasta 6 0.25 0.39 0.58 0.41 0.36 233 2.41
0.30 0.11 0.10 0.21 0.25 0.99 0.91
0.40 0.00 0.00 0.35 0.41 0.02 0.03
Pasta 7 0.25 0.10 0.15 0.66 0.63 274 2.66
0.30 0.22 —0.04 0.71 0.72 2.02 2.16
0.40 0.27 0.31 078  0.80 1.26 1.19

Expected fiber content — Control sample as initial estimate
Sample  Threshold  biasC  biasV  R%  R%  RMSEC  RMSEV

Pasta 1 0.25 -0.25 —0.45 0.01 0.02 3.11 3.40
0.30 0.00 —0.03 0.07 0.06 0.25 0.31
0.40 0.00 0.00 028 0.28 0.02 0.02
Pasta 2 0.25 2.56 272 0.33 0.37 16.55 1417
0.30 1.05 0.59 0.31 0.38 6.58 7.10
0.40 0.01 0.04 0.15 0.12 0.13 0.09
Pasta 3 0.25 1.45 1.44 0.85 0.90 571 5.59
0.30 1.22 1.66 091 0.89 4.01 4.08
0.40 0.70 045 0.89 0.90 229 2.38
Pasta 4 0.25 0.71 1.62 0.35 0.35 10.26 9.68
0.30 1.03 -0.21 0.40 0.53 6.88 7.86
0.40 0.31 043 0.35 0.34 2.01 2.01
Pasta 5 0.25 4.77 4.15 0.71 0.73 22.78 22.95
0.30 5.73 4.36 0.73 0.78 23.45 22.44
0.40 3.90 4.39 0.60 0.64 18.34 18.67
Pasta 6 0.25 0.53 —0.01 0.22 0.26 6.27 7.66
0.30 0.62 0.76 037 0.34 368 3.78
0.40 0.01 0.03 0.19 0.21 0.13 0.10
Pasta 7 0.25 -1.95 -2.31 0.01 0.02 11.85 12.04
0.30 -0.13 0.40 0.30 0.28 5.06 4.78
0.40 0.27 0.15 0.73 0.75 1.65 170

the percentage of explained variance were considered to evaluate the
model performance. Moreover, the histograms of the concentration
maps generated by the MCR-ALS models were considered to evaluate the
concentration value obtained by MCR-ALS in the sample surface,
together with the Pearson correlation coefficient between the pure and
the recovered spectra of the constituents (similarity). MCR-ALS is not,
per se, a quantitative method. Therefore, Ordinary Least Squares (OLS)
Regression was performed considering the real percentage of fiber and
the one obtained by thresholding the fiber findings in the so-called
concentration profiles obtained by MCR-ALS. The models were cross-
validated by 10 iterations of random subsets (30% of the data in each
iteration). The assessment of the OLS models was done by calculating
the bias, R* and the root mean square error (RMSE) in calibration and
validation. Data analysis was performed using Matlab software (R2016a,
The Mathworks Inc., Natick, MA, USA) and the MCR-ALS 1.0 toolbox,
freely available at www.mcrals.wordpress.com (last accessed July
2020).

3. Results and discussion
3.1. Control sample and pure flour spectra as initial estimates

The mean NIR spectra of the control, flour, and fiber samples are
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shown in Fig. 1. The spectra of all fiber samples were strongly similar,
with a slight variation on the baseline. Control samples had the highest
absorbance values, followed by pure flour and, then, pure fiber samples.
Additionally, it was possible to observe a peak around 1200 nm, which
corresponds to the stretching vibration of the G—H bond in the second
overtone. Two absorption bands of stretching vibration of the O—H
bond in the first overtone of water were also observed around 1450 and
1940 nm. Peaks of absorption around 1780 nm and 2100 nm were also
highlighted, corresponding to the stretching vibration of the C—H bond
in the first overtone of cellulose and a combination of O—H deformation
and C—O stretching vibration, characteristic of starch. Peaks at 2242
and 2294 nm were also noticed, corresponding to N—H stretching vi-
bration. Finally, a combination of C—H and C—C stretching vibration
was observed at 2480 nm (Osborn, Fearn, & Hindle, 1993). It is
important to observe the high similarity between pasta/flour and fiber
spectra. This had a negative impact on further MCR-ALS models, making
necessary the constraints and additional information mentioned before
to obtain reliable models.

3.2. MCR-ALS in pasta samples

3.2.1. Fiber distribution

MCR-ALS models were developed for each type of sample separately,
using the spectra of pure fiber, pure flour, and control sample as initial
estimates. Some of the final concentration profiles obtained can be seen
in Fig. 2. The concentration maps revealed how fibers behaved in each
sample. Some fibers showed to be better distributed in the samples, as
Fiber 1. However, some of them agglomerated in some parts of the
sample, as Fibers 3, 4, and 7. This may be explained by the particle size,
composition, and/or percentage of fiber added to the samples. The
particle size of the fiber shown on Supplementary material — Table S1 is
the average of different size meshes used for granulometry determina-
tion. However, Fibers 3 and 7, for instance, presented bigger particles, as
can be noticed on Supplementary material - Fig. S1. This aspect could be
noticed in their respective concentration maps (Samples 3 and 7), where
red spots (fiber) could be clearly identified.

Besides, the composition of each fiber was different. Fibers 2, 3, 6,
and 7 are pure insoluble fibers, while 1, 4, and 5 are a mix of different
soluble and insoluble fibers in a different ratio. However, even having
soluble fibers in common, Fibers 1, 4, and 5 were differently distributed
in their respective samples (Samples 1, 4, and 5). The amount of soluble
fiber may explain this fact in each mix, which is 20%, 80%, and 50%,
respectively. Soluble fibers generate a network around the granules of
starch (Brennan & Tudorica, 2007), so the higher amount of psyllium in
Fiber 4 may have led to the agglomerates observed in Sample 4. Similar
behavior was observed on the concentration map of Sample 5 (data not
shown).

The histograms of samples considering the spectral information of
the control sample as the initial estimate are shown in Fig. S3 (Supple-
mentary material). As observed, most of the pixels in the samples had
fiber concentrations between 0 and 0.5. Apart from Sample 5, which had
the most spread pixels values, all the samples showed a Gaussian dis-
tribution of the pixels. Moreover, Samples 3, 4, and 7 were slightly more
disperse than Samples 1, 2, and 6. In addition, it is important to highlight
that some samples presented a large number of pixels around 1, espe-
cially Samples 3 and 7, as seen in their respective concentration maps,
indicating the presence of pure fiber in some of the pixels.

3.2.2. MCR-ALS models

The results of %LOF and similarity are reported on Supplementary
material — Table S2. The LOF percentages of the MCR-ALS models for all
samples were lower than 6%, regardless of the initial estimates. More-
over, all the models were able to explain more than 99% of the total
variance in each sample, suggesting a good performance of the models.
The similarity between the pure spectra and the spectra recovered by the
augmented models was above 96% and 98% in models using pure flour
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Fig. 5. Expected versus Predicted fiber content after MCR-ALS analysis (Models highlighted in dark grey in Table 1 for the control sample as the initial estimate).

and control sample as the initial estimates, respectively. Fig. 3 shows an
overview of both pure and recovered spectra for Sample 3 using the
control sample as the initial estimate. The results for the rest of the
samples were of the same quality, assessing the validity of the MCR-ALS
models performed and the fact that even having one pure spectrum as
initial estimates, the actual composition of the fiber in the samples might
be slightly different. An example of this is the fact that there is a

deviation between the obtained spectral profiles and the considered
pure ones. Nevertheless, this deviation occurs around 1450 nm, asso-
ciated with water (Osborn et al., 1993). This may be associated with the
fact that pure fiber used as the initial estimate was in its powder form,
and the prediction was performed on the pasta samples, which have
passed through the drying process.
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3.2.3. Distribution of fiber content in the surface of samples

The concentration maps resulted from MCR-ALS models do not give
the exact amount of fiber added to the samples since they provide the
signal contribution of each constituent (fiber and flour/control sample)
that can be more related to the volume fraction than to the mass fraction
(Franch-Lage et al., 2011). However, they provide the necessary infor-
mation to establish a threshold and use the obtained value to make a
regression model (with OLS) to ascertain the validity of the approach.
Establishing a proper threshold is not an easy task. In our case, we tested
three different values (0.25, 0.30 and 0.40) that we found significant in
the concentration maps of enriched-pasta samples (Fig. 2) and the cor-
responding histograms (Supplementary material — Fig. $3). Pixels with
values over the threshold were identified as plausible fiber indicators,
and those below the threshold were identified as flour/control sample.
As an example, the concentration maps of Sample 3 and its respective
images for each threshold are shown in Fig. 4. The lower was the
threshold value, the more pixels were identified as fiber; consequently,
the higher was the predicted amount of fiber. Then, the amount of fiber
was determined by the ratio in the sample of the area defined as fiber to
the area defined as flour/control sample. This step provided a better
overview of fiber distribution in the sample surface.

Bearing in mind that this is a semi-quantitative strategy, the per-
centage of fiber found by MCR-ALS was used as a parameter to perform
regression with the real value. The results are displayed in Table 1. In
this table, values of bias, R> and RMSE are reported for both calibration
(C) and validation (V). Moreover, Fig. 5 shows the fiber content pre-
dicted versus expected using fiber and control sample as initial esti-
mates. The differences observed between the actual values and the
values predicted by regression were due to the fact that during sample
production, the fiber characteristics and the particle size interfered in
the complete dissolution of the powder in the mixture, being possible the
presence of agglomerates of fiber, what may explain the lack of homo-
geneity in the sample surface. Moreover, from the amount of sample
produced, only 30 samples of each type were randomly selected, which
did not guarantee that each sample of pasta analyzed contained the
exact amount of fiber indicated. This, in fact, emphasizes the importance
of this work, since the distribution of fiber within the sample is not
homogeneous, which may affect the quality and properties of the batch
produced in the industry, that may not contain the minimum level
necessary, while other parts of the batch may have a higher amount of
fiber.

The models with the best performance according to each threshold
for each sample are highlighted in dark grey. Overall, Samples 3, 5, and
7 showed the best correlation with the real content, unlike Samples 1, 2,
4, and 6. However, this may not indicate a bad performance of the
models, but, as mentioned before, a problem with the homogeneity of
the sample. Also, a great dispersion regarding the predicted fiber content
among samples with the same percentage of fiber, which may have
decreased the performance of the models.

4. Conclusions

The results found in this work confirmed the hypothesis that NIR-
HSI, coupled to MCR-ALS, can identify and quantify fiber added to
pasta samples. Homogeneity is a very important feature in the industry
to guarantee the quality of the final product. In this work, the homo-
geneity of pasta samples showed to be a barrier in the quantification of
the expected fiber content in the sample. However, the results showed
low LOF, high total variance, and great similarity between pure and
recovered spectral profiles, denoting good replicability of the models
and ability to quantify the amount of fiber in the region of the sample
analyzed.

This target could have been addressed by using other approaches
(classification models, Classical Least Squares, etc.). Nevertheless, due
to the complexity of the signals (high similarity of the fiber and flour/
control sample spectra), we found that a step of resolution/unmixing
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was needed to extract semi-quantitative results. The outputs showed
that even using the raw ingredient spectral information as in pure fiber
and flour, it is possible to develop reliable models to identify fiber in
pasta. In addition, the concentration maps can be very useful in moni-
toring the homogeneity of the samples. The performance of the models
also showed that it is possible to have a qualitative overview of the fiber
distribution in pasta samples, and, in some cases, it is possible to
quantify the amount of fiber in the sample surface. Thus, this tool pre-
sented a great possibility to apply such technique as a qualitative and
quantitative method for authentication of fiber-enriched pasta.
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Abstract

Pasta is a very important and popular food. The addition of fibre to pasta can affect its structure,
since it modifies the protein-matrix. Among the most important pasta attributes, optimal
cooking time, cooking and overcooking tolerance, can be named. Some of these assessments
can be very subjective, so this study investigates the use VIS/NIR-HSI in the transmission mode
for the study of changes in pasta during cooking and the determination of optimal cooking time
of pasta as an alternative to automate the determination of pasta attributes. Fettuccine samples
were produced with seven types of fibre in two percentages (3.5 % and 7 %). A total of 140
experiments (7 types of fibre x 2 percentages x 10 repetitions) were carried out and, for each
one, two units of pasta were removed from cooking water each 90 seconds. The cooking
process was carried out for 18 minutes, totalling 13 times. VIS/NIR hyperspectral images were
acquired and the two spectral range were separately evaluated, but VIS data did not show any
relationship among samples. Therefore, further multivariate data analysis was carried out only
on NIR data. PCA was performed and the PCA scores that better grouped the samples were
used as variables to perform a Linear Discriminant Analysis (LDA). In comparison, Partial
Least Square Discriminant Analysis (PLSDA) was performed. LDA had values of sensitivity
and specificity between 0.14 — 1.00 and 0.51 — 1.00, respectively, and non-error rate (NER)
over 0.62. PLSDA had values of sensitivity and specificity between 0.67 — 1.00 and 0.10 — 1.00,
respectively, and NER over 0.80. This study suggested that hyperspectral image in the
transmission mode have good potential as an objective method to optimum cooking time

determination, meeting this industry need.

Keywords: Cooking time, Enriched-pasta, Fibre, Multivariate data analysis.
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4.1.Introduction

Pasta is a very important and popular food due to its ease of preparation,
transportation and cooking, relatively low price, and nutritional value. It is traditionally
obtained from the extrusion of durum wheat semolina and water, followed by drying. From the
nutrition point of view, pasta has a low fat and salt content and a high content of carbohydrates,
making it a suitable energy source (Majzoobi et al., 2011). Beyond these many pasta quality
parameters, its long shelf life and stability, when compared to others flour products, make pasta
a potential food for addition of alternative ingredients, as fibres. The incorporation of dietary
fibres in pasta can considerably contribute to reducing its glycaemic index, for instance, which
would result in a product with a higher nutritional value to the consumer, in comparison to

conventional pasta (Bustos et al., 2011).

However, the incorporation of nutrients in traditional foods can affect their sensory
and technological properties in a negative way. By adding functional ingredients, desirable
properties of pasta, such as textural and cooking qualities, can change (Rakhesh et al., 2015).
The addition of fibre, for instance, can affect pasta structure, since it modifies the protein-
matrix. Soluble fibres bind with protein, difficult the interactions between starch and protein
difficult (Bustos et al., 2015). Consequently, the amount and type of ingredient used in pasta
enrichment must be controlled in a way that the new product has satisfactory taste and
nutritional value, but without many quality parameters changes. Among the most important
pasta attributes, optimal cooking time, cooking and overcooking tolerance, colour and cooking
losses can be named. However, for most of these attributes, the traditional methods of analysis
can be time-consuming, expensive, and invasive, besides not allowing a control of how added
nutrients can influence the food matrix. Moreover, some of these analyses used to estimate
pasta-cooking quality can be very subjective, as sensory analysis, which is a challenge when
many samples must be evaluated. In addition, optimal cooking time of pasta is determined by
observing the time that the core of the pasta sample stays between two transparent glass slides

when squeezing them (Del Nobile et al., 2005).

Therefore, many researchers have searched for more objective methods to evaluate
pasta cooking quality parameters. Thus, techniques such as Near Infrared Hyperspectral
Imaging (NIR-HSI) can be used to evaluate cooking time of fibre-enriched pasta. NIR-HSI

combines spectral and spatial information of a sample, being able to provide both physical and
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chemical characteristics at the same time. This technique has been widely used, including for
the inspection of adulterants in organic wheat flour (Su and Sun, 2017) and for the
differentiation between industrial and traditional pasta production (Menesatti et al., 2014).
However, NIR-HSI systems measure the surface of the sample, entering only few millimetres
in the sample, which is not always representative for tick and very heterogeneous samples. In

this case, a transmission measurement is an option (Wold et al., 2016).

Thus, the aim of this study is to use VIS/NIR-HSI in the transmission mode for the
study of changes in pasta during cooking and the determination of optimal cooking time of

pasta as an alternative to automate the determination of pasta attributes.

4.2.Materials and methods

4.2.1. Sample preparation

Samples of dry fettuccine-type pasta were produced in the Department of Food
Technology at University of Campinas (Brazil) according to the methodology proposed by
Ferreira (2018). The fettuccine samples were produced replacing flour by seven types of fibre
in two percentages (3.5 % and 7 % (w/w)). Fibres differed on source, particle size and solubility

(Table 4.1).

Table 4.1. Properties of fibres used in pasta formulation.

Average particle size

Pasta sample Fibre source
(um)
1 0 M 0
Pasta 1 Mix of 20 A) soluble psyllium and 80 % 160
insoluble bamboo
Pasta 2 Insoluble bamboo 60
Pasta 3 Insoluble bamboo 145
1 0 1 V)
Pasta 4 Mix of 80 A) soluble psyllium and 20 % 160
insoluble cellulose
1 0 M 0
Pasta 5 Mix of 50 A) soluble psyllium and 50 % 160
insoluble cellulose
Pasta 6 Insoluble wheat 60

Pasta 7 Insoluble wheat 145
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4.2.2. Cooking process

Pasta samples (approximately 1 cm wide x 0.2 cm tick) were cut into pieces
approximately 5 cm long. The cooking process was carried out following the AACCI (2010)
protocol with some modifications. For each type and percentage of fibre, ten portions of 25
grams of pasta were weighted, totalling 140 experiments (7 types of fibre x 2 percentages x 10
repetitions). The cooking process was carried out for 18 minutes, when two units of pasta were
removed from cooking water each 90 seconds, totalling 13 times (0, 1.5, 3, 4.5, 6, 7.5, 9, 10.5,
12, 13.5, 15, 16.5 and 18 minutes). In total, there were 1820 samples analysed (140 experiments

x 13 times).

4.2.3. Acquisition hardware

The pasta VIS/NIR-HSI images were acquired in a Hyperspectral Imaging System
consisting of a monochrome camera (CoolSNAP ES, Photometrics, AZ, USA) with a high level
of sensitivity between 320 nm and 1100 nm, coupled to two liquid-crystal tuneable filters
(LCTF), one sensitive to the visible (Varispec VIS07, CRI Inc) and one sensitive to NIR
(Varispec NIRO7, CRI Inc). The samples were placed on a holder that fit in a hemispherical
dome as shown in Figure 4.1 and illuminated by a halogen lamp (20W) from below, so that the
VIS/NIR-HSI images were acquired in transmission mode. However, due to the thin thickness
of pasta samples, a lot of light crossed the samples and the images appeared saturated, being
necessary the correction of the time of the light exposition in each wavelength. Therefore, a
calibration was carried out so that the integration time was decreased/increased as much as
possible while ensuring that the maximum intensity (saturation) was not reached for any
wavelength in any region of the image. The calibration was defined using uncooked pasta
samples without fibre as the target reference, considering that this was the case that the
maximum light would cross. As an alternative to ensure that any other sample would have
saturated pixels, a percentage of 80% of maximum intensity (saturation) was considered to
establish the integration time. Moreover, to avoid the low sensitivity of the sensors close to the
edges of this range, the images were captured at every 10 nm in the working spectral range of

450-1020 nm. Samples were removed from water, and the excess of water was removed by
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using paper towel. The two units of cooked pasta samples were placed manually on the holder

in a way that only the light that was transmitted through the pasta reached the camera.

1- Sample holder

2- Halogen lamp

3- Transmitted light

4- VIS/NIR filter

5- Hyperspectral Camera
6- Hemispherical Dome

Figure 4.1. Scheme of the apparatus used for acquiring the images, the zoomed image shows

the surface used to place the cooked pasta samples.

4.2.4. Data processing

The hyperspectral images were pre-processed for segmentation of the regions of
interest (ROI). The ROIs were manually selected with help of a Matlab routine. After removing
the background from the images and creating a final image containing only the region of interest
(ROI), a mean spectrum that represent each sample was extracted (the mean spectrum of the
two pasta units). In order to extract the actual response of the samples at each wavelength,
while avoiding light-dependent intensities, a correction was performed using the image of a
standard pasta reference, the same used to build the calibration of the system. The influence of
the minimum dark current of the camera was also captured by switching off the lamps and
placing a cap in the lens to prevent the light from getting inside the camera. After that, a mean
spectrum of white and dark references were extracted. Then, the correction was performed
using the Equation (1):

| = Io— Iplack (1)

Iwhite= Iplack
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where Io is the mean spectrum of the raw image of the pasta, Lwhie 1S the mean spectrum of the
image of the standard pasta reference, and Ipiack is the mean spectrum of the image acquired
while avoiding any light source. Image segmentation and spectrum extraction were executed
using Matlab R2019b software (The Mathworks Inc., Natick, MA, USA). It is important to
highlight that VIS and NIR spectral information were extracted separately.

4.2.5. Multivariate data analysis

Principal Component Analysis (PCA) was applied on VIS/NIR-HSI data, as
exploratory data analysis, to obtain an overview of variation among the samples. PCA is an
unsupervised method which combines linearly the variables into components known as
principal components (PCs), which explain the greatest variance in the dataset and keep only
the relevant information of the spectra (Rachmawati et al., 2017). Spectral pre-processing
techniques were applied to investigate the effect of light scattering and other effects non-related
to the sample composition in the spectral data. Hence, Standard Normal Variate (SNV),
Multiplicative Scatter Correction (MSC), 1%t and 2™ derivatives (order: 2, window: 7 points)

were applied and compared to the PCA for raw data.

Linear discriminant analysis (LDA) is a very popular method for authentication,
characterization and adulteration detection in foodstuffs (Esteki et al., 2018). In this study,
LDA was applied in cooked pasta samples to verify the occurrence of a linear relationship in
between the variables and to separate them into different classes. According to the literature,
classification models based on small groups of classes perform better than multi-classes
(Ziegler et al., 2016). Therefore, samples were split in 3 groups: 1 — Low cooking time (time 0
to 4.5 minutes); 2 — Intermediate cooking time (6.0 to 10.5 minutes); and 3 — High cooking time
(12 to 18 minutes). These groups were established based on optimum cooking time of these

type of pasta and the information found by Ferreira (2018).

Samples were also evaluated on PCA plots according to these groups. Then, PCA
scores that better grouped the samples were used as variables to perform a Linear Discriminant
Analysis (LDA). In comparison, Partial Least Square Discriminant Analysis (PLSDA) was
performed to test the ability of the technique to predict optimum cooking time of pasta samples.
The PLSDA assigned pasta samples into one of the three groups based on its spectral

fingerprint. This technique is based on PLS regression technique and involves reduction of
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dimensionality by projecting the data onto latent variables (LVs) subspace. Therefore, we chose
an optimal number of LVs to constructed models based on the lowest prediction error in
calibration and cross-validation (Erkinbaev et al., 2017). As both methods are supervised, and
to test the model in an independent dataset Kennard-stone algorithm was used to split the data.
Therefore, 70% of the samples were assigned to the calibration set and the remaining 30%
constituted the validation set. The calibration models were developed based on cross-validation
(random subsets with 10 splits and 5 iterations), and the classification model performance in
both techniques was evaluated by calculating sensitivity, specificity and non-error rate (NER)
in the validation. PCA and PLSDA were executed using Matlab R2019b software (The
Mathworks Inc., Natick, MA, USA) and PLS Toolbox (Eigenvector Research, Inc., Manson,
Washington, USA). LDA was executed using Classification toolbox for MATLAB - version
5.4 free available at www.michem.unimib.it (last accessed July 2021) (Ballabio & Consonni,

2013).

4.3.Results and discussion

4.3.1. Raw spectra of samples

The average VIS and NIR-HSI raw spectra of cooked pasta are shown in Figure
4.2. Samples were plotted according to the cooking time (0 - 18 minutes). Overall, NIR spectra
had very similar shape, regardless the cooking time, but differed in the intensity of transmittance
across the spectral region. Pasta samples 1, 2, 4, 5 and 7 (Figures 4.2H, 4.21, 4.2K, 4.2L and
4.2N) had similar shape, with a slight valley around 710 nm corresponding to C-H stretching
vibration in the fourth overtone and one around 960 nm, which correspond to stretching
vibration of O-H in the second overtone. Except for Pasta 2 (Figure 4.21), all other samples
showed a slight peak around 850 nm related to C-H or C-C stretching vibration. Pasta 3 and 6
(Figures 4.2] and 4.2M) showed a peak around 950 nm followed by a valley at 960 nm.
Differences on baseline between samples can be observed on all spectra. Samples removed
from cooking at the beginning of the process had higher transmittance, confirming the
assumption taken when performing the calibration that uncooked pasta samples had maximum

light crossing them.
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Figure 4.2. Average raw spectra of pastas samples in the NIR range (A to G) and in the VIS
range (H to N).
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On the other hand, VIS spectra did not show similar behaviour across the spectral
region. The visible spectral range (400—720 nm) is related to the transition of electrons, which
are associated to the determination of samples colour (Xiao et al., 2018). Figure 4.3 shows the
visual changes in two types of pasta during cooking. A slight change in colour can be identified,
at the beginning of cooking process, samples colour had dark yellow colour, and at the end light
yellowish colour could be observed. The same was noticed in the other types of pasta (data not
shown). A peak around 450 — 500 nm can be observed, associated to the yellow light (Xiao et
al., 2018). Undercooked samples are more translucent, allowing that more light crosses the
samples and is detected by the camera. This corroborates with what can be observed on Figure
4.2. Samples at time 0 had the highest transmittance values, while overcooked samples had
lower transmittance values. However, it was expected a sequence of transmittance values from
the highest to the lowest, from time 0 to time 18, respectively, as observed in the NIR spectra,
but this did not happen. It is important to highlight that some of the fibre added to the pasta
formulation were very insoluble and can be visually identified in the images displayed on Figure
4.3. These fibres may have blocked that transmission of light in the visible range, and as they
are not equally distributed across the samples, this may have affected the transmittance detected
by the camera. In fact, this was also observed in a previously work (Badar¢ et al., 2021) and
emphasizes the importance of this work, since the distribution of fibre within the sample is
heterogeneous and it may affect the properties of the final products, including the behaviour of
samples during cooking. In order to reduce scattering effects, SNV, MSC, 1% and 2™ derivatives
were applied to NIR and VIS spectra prior multivariate analysis. Data were also mean centred
prior analysis. However, as expected, VIS spectra did not show any relationship among

samples, so PCA, LDA and PLSDA analyses were carried out only with NIR data.
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Pasta 1

(NN

Time 10.5| Time 12.0 | Time 13.5 | Time 15.0 | Time 16.5 Time 18.0 l1cm

Figure 4.3. Images of pasta samples in each cooking time.
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4.3.2. Principal Component Analysis (PCA)

Principal component analysis was performed on NIR spectra of all pasta samples,
in order to visualize any variation among samples. In order to obtain a better sample separation,
all pre-processes aforementioned were applied. All types of pasta showed better separation
when 1%t and 2" derivatives (Savitsky—Golay smoothing, 7 points window, 2 order polynomial)
were applied. Moreover, variable selection was manually performed by selecting the peaks in
the loadings plot to improve the separation among samples. PCA scores of Pasta 1 and their

correspondent loadings (after variable selection) are illustrated in Figure 4.4.
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Figure 4.4. Score plots (PC1 vs PC2) of PCA performed on NIR spectra of Pasta 1 after
Savitzky—Golay 1% derivative and the correspondent loadings plot.
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The first two principal components explained around 78% of the total variance of
the samples. This variability observed on the scores might be due to chemical changes that
happen during cooking. Considering that the factors that can affect the characteristics of cooked
pasta as quality and quantity of semolina protein, drying conditions, and the composition of
cooking (Cunin et al., 1995) water were kept constant, the variation observed among pasta
samples might be due to composition of fibre and cooking time. Commonly, at the beginning
of cooking process starch granules are deeply in a protein matrix. However, the replacement of
semolina for fibre during pasta production produces a less homogeneous product, which can
affect gluten development (Aravind et al., 2012; Cunin et al., 1995). Figure 4.4 shows that
samples at time 0 formed a cluster in the positive side of PC1. A high variance is observed
among these samples and samples from next group (at time 1.5), suggesting a high chemical
variation among these samples. Cunin et al. (1995) observed that starch granules were strongly
swollen after immersing the pasta samples (spaghetti type) for 1 second in boiling water, but
after 45 seconds, the surface became smoother, and some regions contained a filamentous
network with rests of swollen granules. The time interval between these groups of samples were
90 seconds, which can explain the high lap between them in the score plot. Samples at 1.5
minutes were followed by samples at 3.0 minutes, and so on, until samples at 18 minutes, which
formed a cluster in the negative side of PC1. However, visually analysing the PCA scores, we
can state that samples around 12 — 13.5 minutes of cooking did not show a clear separation,
suggesting that there was not a lot of chemical changes after this cooking time. Cunin et al.
(1995) also reported that after 13 minutes of cooking process, it was not possible to distinguish
between protein and starch, and, after 5 minutes in boiling water, the starch granules were

swollen and had lost their shape.

The same behaviour was observed in the score plots of other pasta samples (data
not shown). Taking this interpretation into account and considering the importance of
identifying the cooking time, PCA was performed considering the three groups of samples
previously established (low, intermediate and high cooking time). PCA score plots and their

respective loadings plot, considering these three classes, are shown in Figure 4.5.
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Overall, both pre-treatments showed good separation among the groups of samples.
The variance among samples regarding cooking time is most explained by PC1. After pre-
treated with 1% derivative, samples of low cooking time were displayed in the positive side of
PC1 and samples of high cooking time were displayed in the negative side. Samples of
intermediate cooking time is displayed in between the other two groups. For some of the pasta
samples, there is no clear separation among the groups, with some overlapping of samples.
Second derivative showed similar results, but samples of low cooking time displayed in the
negative side of PC1, while samples of high cooking time were displayed in the positive side.
In order to test the ability of classifying cooked pasta samples according to the cooking time,

the PCA scores were used as input variables to developed discriminant classification models.

4.3.3. Classification of pasta samples - Linear Discriminant Analysis (LDA)

Linear discriminant analysis (LDA) is a classification method used to discriminate
samples into classes, i.e., low, intermediate and high cooking time. PCA scores were used as
predictors for LDA models, and, as in PCA, samples were grouped into three classes defined
as “Low cooking time” (0 — 6.0 minutes), “Intermediate cooking time” (7.5 — 10.5) and “High
cooking time” (12 — 18 minutes). These classes were used to develop the classification models.
Table 4.2 shows the models performance of LDA for qualitative analysis of cooking time of
pasta. Data pre-treated with 1% and 2™ derivatives provided the calibration models with the best
accuracies, and highest values of sensitivity, specificity and non-error rate (NER). However,
Pastas 3 and 4 did not show good results for class 2, which is the intermediate cooking time.
By observing the PCA scores of these two pasta samples, we can identify some overlapping.
On the other hand, non-error rate (NER), or balanced accuracy, had satisfactory results,
demonstrating good capacity of the models to discriminate pasta samples according to the
cooking time. However, as an alternative to improve the discrimination of pasta samples,

PLSDA models were constructed.
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Table 4.2. Results of LDA models.

Pre- mber Sensitivit Specificit
Sample trea tlflen ¢ 1\2; Pges SRS Y G 1 P o Y 3 Accuracy NER
Pasta 1 1%t derivative 3 0.58 040 0.89 1.00 0.81 0.71 72% 0.62
2" derivative 4 0.62 0.65 098 1.00 0.90 0.79 83% 0.75
Pasta 2 1%t derivative 3 0.93 0.38 0.98 1.00 0.96 0.62 79% 0.76
2" derivative 3 0.86 0.46 0.98 1.00 0.95 0.66 80% 0.76
Pasta 3 1%t derivative 2 0.93 0.15 0.89 0.94 090 0.63 72% 0.66
2" derivative 3 0.92 0.17 098 0.87 096 0.70 72% 0.69
Pasta 4 1%t derivative 3 0.88 0.57 0.83 0.98 0.84 0.83 79% 0.76
2" derivative 4 0.85 0.18 1.00 0.98 0.96 0.51 74% 0.68
Pasta 5 1%t derivative 3 0.95 0.14 1.00 0.98 1.00 0.55 74% 0.70
2" derivative 3 0.76 024 0.95 1.00 0.90 0.62 75% 0.65
Pasta 6 1%t derivative 5 0.70 0.80 0.88 0.99 0.85 0.92 84% 0.79
2" derivative 4 0.69 0.67 1.00 1.00 0.93 0.81 87% 0.79
Pasta 7 1%t derivative 3 0.84 0.29 1.00 0.98 0.95 0.65 78% 0.71
2" derivative 4 0.74 0.79 0.85 1.00 0.82 0.91 81% 0.79

C1 = Low cooking time
C2 = Intermediate cooking time
C3 = High cooking time

4.3.4. Classification of pasta samples - Partial Least Squares Discriminant Analysis
(PLSDA)

In order to further explore the dataset and try to improve the classification ability,
a supervised PLSDA model was built. Table 4.3 shows the results of PLSDA model for the
validation set. As in PCA and LDA, 1% and 2™ derivatives had the best classification metrics.
For most of the models two Latent Variables (LVs) were selected. It is important to highlight
that PLSDA models showed better classification ability after variable selection, which was
manually performed by selecting the peaks in the regression vectors created by the models.
Although PLSDA involves reduction of dimensionality similarly to the principles of PCA, the
models were not very accurate against false positives of class 2. The sensitivity and balanced
accuracy were very satisfactory for all classes, though. Therefore, this suggests a good
alternative in discriminating pasta samples according to the cooking time, regardless of content
and source of the fibre added to the formulation, showing that the technique is suitable for

different types of pasta.
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Table 4.3. Results of PLSDA models.

Pre- Number of Sensitivit Specificit
Sample o atment LVs Cl C2 yc3 Cl : C2 : c3 VER
pasta ] | derivative 3 0.82 095 096 097 016 065 0091
2nd derivative 2 091 095 1.00 0.99 0.17 0.61 0.95
pastay | derivative 2 0.67 094 1.00 097 0.10 088 087
20 derivative 2 073 0.89 096 099 0.1 082 0.86
pasta3 | derivative 2 071 095 1.00 098 0.8 073 0.89
2 derivative 2 076 1.00 1.00 1.00 025 078 0.92
pasta4 | derivative 3 082 095 096 097 0.16 077 091
2 derivative 2 091 095 1.00 097 0.7 058 095
pastys | derivative 4 100 091 1.00 099 0.18 055 097
2 derivative 2 100 1.00 1.00 097 015 055 1.00
pasta | derivative 2 073 090 0.83 092 0.4 077 082
M derivative 2 073 090 098 092 0.6 077 087
pasty 7 1 derivative 2 0.88 0.76 091 089 023 067 085
2 derivative 4 071 0.79 091 095 0.7 061 0.80

C1 = Low cooking time
C2 = Intermediate cooking time
C3 = High cooking time

4.4.Conclusion

In conclusion, this work showed that NIR-HSI in the transmission mode is a
suitable technique as an objective alternative for the determination of cooking time of pasta as
way of automating the determination of pasta attributes. Although some low values were found
for one of the classes, in general, the models showed good ability in classifying pasta samples
according to the cooking time. LDA models constructed based on PCA scores showed to be a

good way of classifying samples with reduced dimensionality.

This work suggests hyperspectral image to have good potential as an objective
method to cooking time determination, meeting this industry need. Although the spectrum
range used in this work was small, it showed a great possibility to optimize food quality
evaluation. Future studies should involve the use of such technique in a range that comprises

more information about chemical changes that may occur during cooking.
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ARTICLE INFO ABSTRACT

Pectin has several purposes in the food and pharmaceutical industry making its quantification important for
further extraction. Current techniques for pectin quantification require its extraction using chemicals and pro-
ducing residues. Determination of pectin content in orange peels was investigated using near infrared hyper-
spectral imaging (NIR-HSI). Hyperspectral images from orange peel (140 samples) with different amounts of
pectin were acquired in the range of 900-2500 nm, and the spectra was used for calibration models using
multivariate statistical analyses. Principal component analysis (PCA) and linear discriminant analysis (LDA)
showed better results considering three groups: low (0-5%), intermediate (10-40%) and high (50-100%) pectin
content. Partial least squares regression (PLSR) models based on full spectra showed higher precision
(R® > 0.93) than those based on few selected wavelengths (R? between 0.92 and 0.94). The results demonstrate
the potential of NIR-HSI to quantify pectin content in orange peels, providing a valuable technique for orange

Keywords:

Principal component analysis

Linear discriminant analysis

Partial least squares regression, near infrared
spectra

Agriculture

producers and processing industries.

1. Introduction

Citrus are among the most cultivated crops around the world since
they are beneficial for human consumption due to their nutritional and
antioxidant properties. As a result, the citrus industry is responsible for
millions of jobs (Garcia-Martin, Olmo, & Garcia, 2018; Garcia, Olmo, &
Garcia, 2016). Spain is the first producing country of oranges and juices
in the European Union and the fifth in the world. This agricultural
activity is mainly located in Valencia, producing 3 million tons of citrus
per year, of which, according to the Spanish Ministry of Agriculture,
Fishing and Food (2017) (Ministerio de Agricultura, 2019), 1.5 million
are oranges. The orange juice sector generates about 1.2 million tons
waste per year in Spain. This waste is mainly used for animal feed
(which is energy costly) or is ploughed into landfills. However, this
organic waste has great potential for the food industry as source of
many important and valuable compounds (Lessa, Gularte, Garcia, &
Fajardo, 2017).

Orange waste can include peel, pulp, seeds, leaves and oranges
without the quality requirements. This waste contains, as average,
16.9% (wt.) soluble sugars, 9.21% (wt.) cellulose, 10.5% (wt.)

* Corresponding author.

hemicelluloses, and 42.5% (wt.) pectin, which is its most important
component. The soluble sugars present in orange peel are glucose,
fructose, and sucrose. The insoluble polysaccharides of the cellular wall
of the orange peel are composed of pectin, cellulose, and hemi-
celluloses. Pectin and hemicelluloses are rich in galacturonic acid,
arabinose, and galactose, and contain small amounts of xylose, rham-
nose and glucose (Grohmann, Cameron, & Buslig, 1995; Rezzadori,
Benedetti, & Amante, 2012). Pectin is composed of a main chain, which
has a linear structure of a-p-galacturonic acids linked by a-(1,4)-gly-
cosidic bonds, and a side chain that mainly contains neutral sugars (Liu,
Fishman, Kost, & Hicks, 2003).

Pectin has several purposes in the food and pharmaceutical in-
dustry, as itis used as thickener, stabilizer, gelling agent, emulsifier and
drug delivery vehicle (Wicker, Kim, Thirkield, Lin & Jung, 2014).
Hence, the extraction of pectin from orange waste is very important and
requires an economically feasible alternative. Among the different
pectin extraction methods (dialysis, metal precipitation, membrane
separation, etc.), alcohol precipitation is the most widely used methods
despite its high energy and ethanol requirements (Ren et al., 2019).
However, it is also important to quantify the amount of pectin in orange
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Fig. 1. Spectra of orange peels and pectin: a) Smoothing, b) Smoothing + SNV, ¢) Smoothing + 1st derivative, d) Smoothing + 2nd derivative, e)
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legend, the reader is referred to the web version of this article.)

residue, in order to justify investments in the waste processing and
extraction methods. The current techniques for pectin quantification
requires the previous pectin extraction. In this sense, the commonly-
used sulphuric acid-carbazole colorimetric method for pectin content
measuring in citrus involves pectin extraction, pectin depolymerisation,
reaction of pectin with carbazole and absorbance measurement at ap-
proximately 525 nm (Wang, Chuang, & Hsu, 2008).

Some works have been reported using vibrational techniques, more
specifically near infrared spectroscopy and Fourier transform near in-
frared spectroscopy, to determine some parameters in orange, including
orange firmness, peel thickness and total pectin content (Bizzani,
Flores, Colnago, & Ferreira, 2017; Chen et al, 2018). Although this
techniques have achieved good results for many parameters, the fact
that it only detects a single point of the sample at a time can be a barrier

for complex samples (Feng & Sun, 2012).

In this context, near infrared hyperspectral imaging (NIR-HSI), as an
emerging technology, offers numerous advantages over conventional
analysis methods and can overcome some problems faced by near in-
frared spectroscopy. Combined to chemometrics, NIR-HSI has achieved
very precise results for many compounds and properties in food, as
colour and pH in meat (Elmasry, Sun, & Allen, 2012), fibre in flour
(Badar6, Morimitsu, Ferreira, Clerici, & Barbin, 2019) and melamine in
milk powder (Forchetti & Poppi, 2017). As the hypercube data are
massive, chemometrics is used to reduce the high dimensionality to the
most meaningful dimension (data simplification) without compro-
mising the information contained into the original image (Feng,
Makino, Oshita, & Martin, 2018). Hence, HSI could provide a dis-
tribution map of pectin in the orange waste, as other authors have
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developed in other fruit such as peach (Zhu, Huang, Wu, Chen, & He,
2017). For quantitative assessment, partial least squares regression
(PLSR), a type of linear analysis, is widely used to establish the corre-
lation between spectral data of the hypercubes and real quantities or
concentrations of the compound measured by ordinary laboratory as-
sessments (Feng et al., 2018). NIR-HSI coupled with PLSR could be used
in a preliminary analysis of orange waste to determine its constituents
(such as pectin) in a quick way, to further decide whether to extract
them or not based on the concentrations determined, being an alter-
native to improve extraction yield.

Thus, the hypothesis of this work is that NIR-HSI has a potential
application for identification of pectin content in orange peels. This
hypothesis will be verified by identification of the wavelengths that
most contribute in the development of models with good precision and
accuracy (defined as optimum wavelengths) and development of a

prediction model to quantify pectin content in orange peels.
2. Material and methods
2.1. Pectin extraction from raw material

Lanelate oranges harvested from January to July of 2019 were
supplied by Export Orange S.L. The oranges were ground
(1em x 1em X 1 cm)and the juice was separated from the peel using
a strainer. The peel was washed with water at 100 °C, and washed again
with water at 50 °C. This step was carried out to remove most of sugars.
Then, the peel was strained and oven dried at 45 °C for 2 days. After,
the peel was milled using a milling machine and sieved with an ASTM
N°50 mesh (300 um diameter). A sample of 5 g was dispersed in water
at a solid-liquid ratio of 1:40 (w/v) and the pH of the mixture was
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Table 1
LDA models performance for qualitative analysis of pectin in orange peels.
Pre-treatment Wavelengths (nm) itivity (Validati pecificity (Vali ) Accuracy - Calibration
Model (%)
C1 c2 c3 c1 c2 c3
Smoothing 1100, 1290, 1442, 1775, 1918, 2032, 2118, 2289 0.58 0.67 1.00 0.83 0.81 1.00 83.51
Smoothing + SNV 1318, 1442, 1775, 1871, 2032, 2213 0.67 0.40 0.93 070 0.81 1.00 84.54
Smoothing + 1st Derivative 1014, 1252, 1376, 1547, 1747, 1842, 1918, 0.67 0.67 0.93 083 0.81 1.00 92.78
1985, 2080, 2185, 2251
Smoothing + 2nd Derivative 1071, 1166, 1242, 1318, 1404, 1595, 1718, 0.58 0.73 1.00 0.87 0.81 1.00 90.72
1785, 1871, 1947, 2042, 2147, 2213
Smoothing + MSC 1318, 1452, 1775, 1871, 2051, 2213 0.67 0.47 0.93 073 0.81 1.00 85.57
Smoothing + MSC + 2nd Derivative 1081, 1166, 1233, 1309, 1404, 1595, 1718, 0.58 0.67 1.00 0.83 0.81 1.00 88.66
1785, 1871, 1947, 2042, 2137, 2213
Smoothing + SNV + 1st Derivative 1014, 1252, 1376, 1547, 1747, 1842, 1918, 0.67 0.60 0.93 0.80 0.81 1.00 91.75

1985, 2080, 2185, 2251

C1: low pectin content (0-5%); C2: intermediate pectin content (10-40%); C3: high pectin content (50-100%).

Table 2
PLSR model performance for quantitative analysis of pectin in orange peels.
Pre-treatment Wavelengths (nm) LV R RMSECV R} RMSEP SEP  RPD RER
Smoothing Full spectra 6 0.93 8.54 0.93 9.16 8.27 4.11 12.09
1271, 1366, 1452, 1690, 1766, 1861, 1947, 2261, 2365 6 0.93 8.61 0.93 8.84 8.04 4.22 12.44
Smoothing + SNV Full spectra 6 0.95 7.43 0.94 7.99 7.15 4.75 13.98
1271, 1328, 1452, 1690, 1766, 1871, 1947, 2261, 2346 5 0.95 7.57 0.94 8.42 7.59 4.47 1317
Smoothing + 1st Derivative Full spectra 3 0.93 8.71 0.95 7.94 7.66 4.43 13.06
1223, 1395, 1652, 1728, 1813, 1899, 2166, 2318 2 0.94 8.37 0.92 9.73 9.20 3.69 10.87
Smoothing + 2nd Derivative Full spectra 4 095 7.42 0.96  6.50 6.32 5.37 1581
1062, 1214, 1318, 1433, 1690, 1861, 2051, 2118, 2204, 2270 2 0.94 8.15 0.94 8.03 7.33 4.63 13.64
Smoothing + MSC Full spectra 4 0.96 6.68 0.94 8.23 7.88 4.30 12.68
1328, 1452, 1690, 1766, 1871, 1937, 2194, 2237 4 0.95  7.60 0.94 8.03 7.70 4.41 12.99
Smoothing + MSC + 2nd Derivative  Full spectra 4 095  7.30 096 6.94 6.67 5.09 14.99
1033, 1318, 1423, 1690, 1861, 2118, 2204, 2270 2 094 7.85 0.94 8.32 7.85 4.32 1274
Smoothing + SNV + 1st Derivative Full spectra 5 0.95 7.13 0.95 7.96 7.51 4.52 13.32
1290, 1395, 1499, 1652, 1728, 1899, 2166, 2299 3 0.95 7.54 0.94 8.44 7.90 4.29 12.66

adjusted to 1.5 with 0.1 M HCl. Subsequently, the mixture was placed 2.2. Sample preparation and image acquisition

in a water bath between 70 and 85 °C at 300 rpm for 70 min. After, the

mixture was centrifuged at 5000 rpm for 20 min. The supernatant Standard pectin (Apple pectin powder — 100% purity, Solgar, Inc.

(solution of pectin extract) was removed and the liquid residue was Leonia, USA) was added to the dried residue of orange peel without

oven dried at 45 °C for 2 days. Then, the dried residue was milled and pectin in the following percentages: 0, 1, 5, 10, 15, 20, 30, 40, 50, 60,

sieved with the ASTM N°50 mesh. 70, 80, 90 and 100% (being 0% residue of orange peel without pectin
addition, and 100% pure pectin without residues of orange peel). Ten
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Fig. 4. Predicted vs. reference plot for the PLSR models obtained with full spectra: a) Smoothing, b) Smoothing + SNV, ¢) Smoothing + 1st derivative, d)
Smoothing + 2nd derivative, e) Smoothing + MSC, f) Smoothing + MSC + 2nd derivative, g) Smoothing + SNV + 1st derivative.

samples of 5 g of each percentage were prepared, totalizing 140 sam-
ples. Samples were placed in Petri dishes of 3 cm of diameter for image
acquisition.

NIR hyperspectral images were acquired from each sample in the
reflectance mode using a SWIR camera (Headwall Photonics SWIR M
series, Massachussets, USA), in the range of 900-2500 nm, with an il-
luminator of 75 W and a scanning speed of 14.7 mm/s. The program
automatically subtracted the white (~99% reflectance) and dark (0%
reflectance) references from subsequently acquired images.

2.3. Spectra extraction and multivariate analysis

Image segmentation and spectrum extraction were performed using
a code developed by the research group using the open software Python
(version 3.7.0; Python Software Foundation License). The averaged
reflectance spectra were smoothed (Savitzky-Golay) and mean centred
prior to multivariate data analysis. Data were pre-treated with Standard

Normal Variate (SNV), Multiplicative Scatter Correction (MSC), first
derivative (1st Der) (Savitsky-Golay smoothing, 11 points window, 2nd
order polynomial), second derivative (2nd Der) (Savitsky-Golay
smoothing, 11 points window, 2nd order polynomial) and a combina-
tion of MSC + 2nd der, and SNV + 1st der. After that, qualitative and
quantitative analysis such as Principal Component Analysis, Linear
Discriminant Analysis and Partial Least Square Regression were carried
out. The multivariate data analysis was performed using The
Unscrambler X 10.4 software.

2.4. Principal components analysis (PCA)

PCA was performed as exploratory data analysis, in order to obtain
an overview of the variation among samples, identify clusters and
outliers. This step is applied to reduce the spectral information into
principal components (PCs), which are a linear combination of the
variables in the spectra data and contain most of the relevant
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Fig. 5. Regression coefficients for the PLSR models obtained with full spectra: a) Smoothing, b) Smoothing + SNV, ¢) Smoothing + 1st derivative, d)
Smoothing + 2nd derivative, e) Smoothing + MSC, f) Smoothing + MSC + 2nd derivative, g) Smoothing + SNV + 1st derivative.

information (Rachmawati, Rohaeti, & Rafi, 2017). Moreover, through
PCA scores, data from both sets of experiments were split into cali-
bration and validation sets (independent sets), using Kennard-Stone
algorithm (Kennard & Stone, 1969), in a ratio of 70 and 30%, respec-
tively. In addition, the loadings plot were used to manually select the
wavelengths that contained the relevant information about the sample,
defined as optimum wavelengths. These optimum wavelengths were
chosen based on the most prominent peaks and valleys for further
qualification quantification analysis (LDA).

2.5. Linear discriminant analysis (LDA)

Linear discriminant analysis (LDA) is a classification method used to
differentiate samples into different classes. As a particularity of LDA
method, the number of variables must be smaller than the number of

samples (Manley & Baeten, 2018). Therefore, optimum wavelengths
selected in the loadings plot of PCA were used as the data input to
perform LDA analysis in all pre-treated data. LDA was performed with a
leave-one-out cross-validation method and an external validation was
carried out with the independent dataset. Models performance was
measured in terms of sensitivity, specificity (of validation set) and ac-
curacy of calibration model. Values of sensitivity and selectivity close or
equal to 1.00 and accuracy of 100% show good discriminative power.

2.6. Partial least Square regression (PLSR)

Partial Least Square Regressions (PLSR) was performed to test the
ability of NIR-HSI data to quantify the different percentages of pectin
added to the residues of orange peel. First, calibration models were
developed using full spectra, and, then, the weighted regression
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coefficients (B,,) resulting from these PLSR models were used for the
development of reduced models. The wavelengths with the highest
values (regardless of sign) were selected as optimum wavelengths. All
the models were developed based on a full cross validation (leave-one
out), and the models performance was evaluated in terms of coefficient
of determination and root mean square error of cross-validation (R,
RMSECV) and prediction (Rj, RMSEP), the ratio performance to de-
viation (RPD) and the ratio of error range (RER), both based on the
standard error of validation (SEP). It is expected coefficients of de-
termination close to 1, errors close to 0, RPD and RER above 3 and 10,
respectively (Malley, Yesmin, & Eilers, 2002).

3. Results and discussion
3.1. Spectral analysis

The average HSI reflectance spectra of orange peel and pectin in
each percentage are presented in Fig. 1. The smoothed spectra (Fig. 1a)
showed very similar shape for all samples, only differing in the intensity
of reflectance across the spectral region. Overall, samples with lower
amount of pectin had higher reflectance. This baseline difference was
minimized after spectra pre-treatment with SNV and MSC (Fig. 1b and
le, respectively). Peaks were observed around 1214 and 1728 nm,
which correspond to stretching vibrations of C—H in the first and
second overtone. A valley at 1306 nm indicated stretching vibration of
C—H or a combination of deformation. The peak around 1918 nm is
related to the stretching vibration of C=O0 in the second overtone of
amides. At 2100 nm, there was a peak which denotes a combination of
O—H deformation and C—O stretching vibration, associated to starch.

After 2nd derivatives and the combination of pre-treatments
(MSC + 2nd der), other peaks and valleys were highlighted along the
spectra (Fig. 1d and 1g). Most of these denote stretching vibrations of
C—H in the first and second overtones or combination of deformation.
In addition, the 2nd derivative highlighted in the spectra a peak around
2000 nm, which denote a combination of vibration of O—H and C—O
deformation in starch, and a valley at 2080 nm corresponding to a
combination of vibrations of O—H stretching and O—H deformation,
associated to sucrose and starch (Osborn, Fearn, & Hindle, 1993).

3.2. Principal components analysis (PCA)

According to the literature, the performance of classification models
based on multi-classes seems to be worse than classifications based on
group of classes (Ziegler et al., 2016). Therefore, in order to achieve a
better performance for models with different percentages of pectin,
three classes were created and defined as “Low content” (samples with
0-5% of pectin), “Intermediate content” (samples with 10-40% of
pectin) and “High content” (samples with 50-100% of pectin), based on
the average pectin content in orange peels reported by other authors
(El-Nawawi & Shehata, 1987; Rouse & Crandall, 1976), which is
roughly 30% (wt.) on a dry matter basis. Then, principal component
analysis was performed on reflectance spectra with all pre-treatments
based on these classes. Those pre-treatments that better separated the
groups of samples are displayed in Fig. 2. Fig. 2a, 2c and 2d show the
scores plots of PC1 and PC3 for spectra pre-treated with 2nd derivative,
a combination of SNV and 1st derivative, and 1st derivative only, re-
spectively; whereas, Fig. 2b shows the scores plot of the first two
principal components for spectra pre-treated with a combination of
MSC and 2nd derivative. Overall, samples with high content of pectin
are spread in the negative side of PC1, while samples with a low content
of pectin are in the positive side. Accordingly, samples with an inter-
mediate content of pectin are disposed between the other two groups.

The first three principal components explained over 75% of the
variance among samples, and the loadings plot of these three PCs are
represented in Fig. 2(e-h). Most of the peaks and valleys observed in
these plots agree with the respective spectra, especially those associated
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to cellulose, starch and sucrose. Consequently, these loadings plot were
used in order to identify the wavelengths that most contributed to se-
parate the groups of samples. Then, these optimum wavelengths were
selected, and a new PCA was recalculated for each of the pre-treatments
(Fig. 3 a-d). Fig. 3a and 3b showed that over 90% of the variance be-
tween samples were explained by the first two PCs, with samples of low
pectin content displayed in the left side of PC1 and negative part of
PC2, and samples of high pectin content in the right side of PC1 and
positive part of PC2. Samples of intermediate pectin content remained
in between the other two classes of samples. After variable selection,
data pre-treated with SNV + 1st der and only 1st derivative showed
similar behaviour on PCA plot as with full spectra, with PC1 and PC2
explaining 89% of the variance among samples.

3.3. Linear discriminant analysis (LDA)

The selected wavelengths from PCA loadings were used as pre-
dictors for LDA models, in order to evaluate the pre-treatments that
better discriminated samples into their respective classes. Table 1
shows the models performance of LDA for qualitative analysis of pectin
in orange peels. As in PCA, samples containing different percentages of
pectin were grouped into three classes defined as “Low content”
(samples with 0-5% of pectin), “Intermediate content” (samples with
10-40% of pectin) and “High content” (samples with 50-100% of
pectin). These classes were used to develop the classification models of
samples added of pectin. Data pre-treated with 1st derivative and a
combination of SNV + 1st derivative provided the calibration models
with the best accuracy (92.78 and 91.75%, respectively), and high
values of sensitivity and specificity (0.60-1.00), thus demonstrating
good capacity of the models to discriminate samples of residues of or-
ange peel with different pectin content. Calibration models developed
with pre-treated data with 2nd derivative and a combination of
MSC + 2nd derivative had the second and third best accuracy (90.72
and 88.66%), respectively. However, the sensitivity and selectivity of
these models were lower than those, ranging from 0.58 to 1.00. Data
that was only smoothed, and SNV and MSC pre-treatments showed a
suitable accuracy for calibration models (83.51, 84.54 and 85.57%,
respectively). However, they did not improve the model discriminant
power, since sensitivity and specificity of some classes were lower than
0.50. In addition, Class 3 had less misclassified samples when compared
to Classes 1 and 2. This was also observed in the PCA score plots (Fig. 2
e-h), where, visibly, the distance between Classes 1 and 2 were closer
than Class 3, so there was an overlap of samples from those classes.

3.4. Partidl least Square regression (PLSR)

The PLSR models performances for pectin content in orange peels
are presented on Table 2. The predicted values of each PLSR model
based on full spectra are displayed in Fig. 4. Overall, these models
showed good precision, with high values of coefficient of determination
(over 0.93), and errors slightly lower than those obtained by models
based on optimum wavelengths, for both cross-validation and external
validation.

The development of representative and accurate models with few
wavelengths is more functional and interesting, especially for industrial
applications. The weighted regression coefficients (B,,) provide in-
formation about the model quality, and those with large absolute value
can be used as optimum wavelengths to develop reduced models
(Kamruzzaman, Makino, Oshita, & Liu, 2015). Therefore, the important
wavelengths were selected based on these weighted regression coeffi-
cients obtained by the full PLSR models, and the reduced models were
developed. The results obtained by the reduced models also showed
good coefficient of determination, which ranged from 0.92 to 0.94.
Additionally, the errors of most models were slightly higher than those
with full spectra, but still very close. Moreover, all the models based on
full spectra or reduced models had RPD > 3 and RER > 10, which
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showed a good calibration performance of the models.

The weighted regression coefficients carry a lot of information re-
garding the variables in the dataset. While those of high absolute values
have a large contribution in the model, those of small values have a
little contribution in the model (Elmasry et al., 2012). The weighted
regression coefficients of the PLSR models developed in this work
(Fig. 5) showed strong peaks and valleys, which are positive and ne-
gatively related to the important variables for pectin quantification.
Most of these peaks and valleys are the same to those observed in the
pectin spectra, as show in Fig. 1. In addition, they had spectral char-
acteristics and did not show a lot of noise, suggesting that the models
can be considered reliable and this technique can be considered for
further application.

4. Conclusion

Hyperspectral imaging technique showed a great potential to clas-
sify orange peel samples according to the pectin content. As PCA, LDA
was able to separate the groups of samples containing different per-
centages of pectin into the same three classes (low, intermediate and
high pectin content). Among the different combinations of data pre-
treatments assayed, 1st derivative and a combination of SNV + 1st
derivative achieved the best accuracy (92.78 and 91.75%, respectively),
and the highest sensitivity and specificity (between 0.6 and 1.0).
Additionally, PLSR models for pectin content quantification based on
full spectra showed excellent precision, providing high coefficients of
determination (over 0.93), whereas those of the PLSR models built with
the most contributing wavelengths ranged between 0.92 and 0.94.

Hence, the study confirms the hypothesis that NIR-HSI can be used
for quantification of pectin content in orange peels. The results showed
that this technique holds potential as an alternative to the carbazole
colorimetry method to quantify pectin in orange peels, and to cate-
gorize orange peel samples into groups of different pectin concentra-
tion, and can be used to justify investments in the waste processing and
extraction methods.
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The need of fast, non-destructive and chemical-free techniques are in increasing
demand in many fields of the industry. Near-infrared spectroscopy and hyperspectral imaging
techniques have showed to have great potential in determining food quality parameters,
authenticating food products, detecting food fraud, among many other applications. Because of
this, in the recent years, many studies have emerged in the application of these techniques as an
alternative for fast and automated determinations in the food industry. In the cereal field,
spectroscopy techniques have been used for various applications, such as determination of
grains quality parameters, assessment of mycotoxins in cereals, authentication of pure flour,
determination of quality parameter in flour, among others. These applications were reported

and discussed in Chapter 1.

Although many applications can be found in the literature for spectral techniques
applied to cereals, the field is very wide and there is still a lack of some applications. In this
context, this thesis was developed aiming to study the potential of NIR and NIR-HSI for
identification, classification and quantification of different types of fibre samples added to the
semolina and pasta produced by semolina-fibre formulations, and to monitor the cooking
process to this fibre-enriched pasta by spectral techniques. The knowledge of these techniques
allowed us to expand the initial objective of the thesis and applied NIR-HSI to quantify pectin
content in orange peels as a faster and non-invasive method to justify investments in the waste

processing and extraction methods.

Therefore, we started this thesis by investigating the potential of a near-infrared
spectrometer and a hyperspectral imaging system in the assessment of five different types of
fibre added in two different percentages to semolina (Chapter 2). In this part of the thesis, we
dealt with many challenges, such as the heterogeneity of the samples, which showed us to be a
barrier when working with single point’s measurements. Soft Independent Modelling of Class
Analogy (SIMCA) was performed on NIR data to discriminate pure and fibre-added semolina
but presented sensitivity and specificity close or equal to zero, showing very low efficiency on
discriminating and classifying the samples. The heterogeneity of the samples may be the cause
of the poor performance of NIR. However, imaging techniques, such as NIR-HSI demonstrated
to have a great potential in quantifying the amount of fibre in semolina as well as allowing the
spatial distribution of fibre on the surface of semolina samples. SIMCA models applied on raw
and pre-processed NIR-HSI data generally obtained high values of sensitivity and specificity
for calibration and validation. Partial Least Square Regression (PLSR) was performed to test

the ability of NIR-HSI to quantify the different percentages of fibre added to semolina. The



136 General Discussion

developed calibration models were representative and could be used to develop chemical maps,

which allowed to visualize the content of fibre in the spatial dimension of hyperspectral images.

As aforementioned, these techniques have been investigated for the determination
of many parameters in the cereal field. However, the use of such techniques for fibre
determination in semolina and pasta was not found. Taking it into account, we followed the
study by applying hyperspectral imaging in pasta samples in order to quantify fibre in pasta
samples and identify its distribution (Chapter 3). In this part of the thesis, we applied
Multivariate Curve Resolution with Alternating Least Squares (MCR-ALS) on the
hyperspectral images to decompose them in the spectral profiles and relative distributions for
each component in the sample. This algorithm showed its ability, together with NIR-HSI, for
the evaluation, resolution, and quantification of fibre in enriched pasta. This part of the thesis
allowed the study of the signal contributions and spatial distributions of fibre in the sample
surface. Moreover, we were able to test different strategies to evaluate the feasibility of MCR-
ALS in obtaining information in the pasta samples by using images of the raw ingredients (fibre
and flour). The concentration maps constructed with the MCR-ALS results revealed how fibres
behaved in each sample. Issues regarding the heterogeneity of the samples were also faced in
this study. Some fibres showed to be better distributed, while some of them agglomerated in
some parts of the sample. The results found by the MCR models as lack of fit (LOF), variance
explained and similarity between the pure spectra and the spectra recovered by the augmented
models were very satisfactory, suggesting a good performance of the models. Moreover, the
concentration models provided us the necessary information to establish a threshold and use the
obtained value to make a regression model (with OLS) to ascertain the validity of the approach.
Half of the models showed good correlation with the real content, unlike the others. However,
this may not indicate a bad performance of the models, but, as mentioned before, a problem
with the homogeneity of the sample. Also, a great dispersion regarding the predicted fibre
content among samples with the same percentage of fibre, which may have decreased the

performance of the models.

At this point of the thesis, we saw the opportunity to enrich the content of this work.
Therefore, we developed a study using hyperspectral images in the transmission mode for the
determination of cooking time in pasta (Chapter 4). Optimal cooking time is a very subjective
method, performed by manually pressing pasta samples between two glass slides. Then, this
part of the thesis showed the good potential of HSI as an objective method to cooking time

determination, as a first step to determine the optimum cooking time of pasta, meeting this
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industry need. Linear Discriminant Analysis (LDA) models were built using the PCA scores
and showed good ability in discriminating pasta samples in different times of cooking. Partial
Least Squares Discriminant Analysis (PLSDA) models were also suitable to discriminate pasta
samples. Moreover, the results demonstrate the possibility of developing qualitative models

based on NIR-HSI transmission data.

Chapter 5 also presents good findings regarding hyperspectral imaging technique.
In this part of the thesis, this technique was tested for the identification of pectin content in
orange peels, in order to justify investments in the waste processing and extraction methods.
Samples were separated in three groups that we named “Low content”, “Intermediate content”
and “High content”, based on the average pectin content in orange peels reported by other
authors. LDA models were developed in order to distinguish samples into one of these three
classes, but, differently from previously chapter, the models were built with optimum
wavelengths selected based on PCA loadings. The results for sensitivity and specificity were
very satisfactory, demonstrating good capacity of the models to discriminate samples of
residues of orange peel with different pectin content. Partial Least Squares Regression (PLSR)
models for pectin content quantification showed excellent precision based on full or reduced

spectra, providing high coefficients of determination.
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The review developed in Chapter 1 provided an overview on the application of
spectral techniques for wheat flour and wheat-based products, more specifically near-infrared,
Fourier-transform near-infrared and hyperspectral imaging. Moreover, this chapter provided
information about the common wavelength ranges used for determination of this types of
product, number of samples, acquisition mode and statistical methods performed used
according to the study aim. In addition, we could identify the techniques more suitable to
determine composition, authentication, and quality parameters. From that, we could link the

initial idea of the project with the gaps found in the literature.

Chapter 2 revealed the potential of NIR-HSI for the identification and quantification
of different types of fibre added to semolina. The results found in this chapter also showed the
possibility of visualization of different percentage of fibre in the spatial dimension based on
spectral characteristics. Moreover, this study showed that near infrared spectroscopy, although
is widely used in the food field, did not provide good results in identifying and discriminating
the different fibres added to semolina. Pure samples scanned with the portable near infrared
spectrometer were easily identified by observing the PCA scores; however, when the fibre
samples were added to semolina and generated a heterogeneous sample, the spectrum of a single
point was not representative of the whole sample. Based on the results of this work, I
methodology based on HSI could be developed and implemented in the wheat flour industry,

to authenticate fibre enriched flour.

Chapter 3 showed that NIR-HSI, coupled to MCR-ALS, can identify and quantify
fibre added to pasta samples. In this work, the homogeneity of pasta samples also showed to be
a barrier, in the quantification of the expected fibre content in the sample. However, the results
showed low LOF, high total variance, and great similarity between pure and recovered spectral
profiles, denoting good replicability of the models and ability to quantify the amount of fibre
in the region of the sample analysed. Although there is a high similarity of fibre and
flour/control sample spectra, the outputs showed that even using the raw ingredient spectral
information as in pure fibre and flour, it is possible to develop reliable models to identify fibre
in pasta. In addition, the concentration maps can be very useful in monitoring the homogeneity
of the samples. The performance of the models also showed that it is possible to have a
qualitative overview of the fibre distribution in pasta samples, and, in some cases, it is possible
to quantify the amount of fibre in the sample surface. Thus, this chapter presented a great
possibility to apply such technique as a qualitative and quantitative method for authentication

of fibre-enriched pasta.
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Chapter 4 demonstrated that NIR-HSI in the transmission mode is a suitable
technique as an objective alternative for the determination of optimal cooking time of pasta as
way of automating the determination of pasta attributes. Although some low values were found
for one of the classes, in general, the models showed good ability in classifying pasta samples
according to the cooking time. LDA models constructed based on PCA scores showed to be a
good way of classifying samples with reduced dimensionality. Therefore, this work suggested
that hyperspectral imaging have good potential as an objective method to cooking time
determination, meeting this industry need. Although the spectrum range used in this work was
small, it showed a great possibility to optimize food quality evaluation. Based on the results of
this work, we could develop a methodology to determine the optimum cooking time of pasta
and other pasta attributes that are very difficult to measure with good precision. The
determination of these parameters would contribute to determine these parameters in the pasta

industry.

Finally, chapter 5 confirmed the potential of hyperspectral imaging technique to
classify orange peel samples according to the pectin content. LDA models were able to separate
the groups of samples containing different percentages of pectin into the same three classes
(low, intermediate and high pectin content). Additionally, PLSR models for pectin content
quantification based on full and reduced spectra showed excellent precision, providing high
coefficients of determination. The results showed that this technique holds potential as an
alternative to the carbazole colorimetry method to quantify pectin in orange peels, and to
categorize orange peel samples into groups of different pectin concentration and can be used to
justify investments in the waste processing and extraction methods. Although this work was
tested by using the orange peels in the powder form, the results were very satisfactory and
showed the possibility to apply this technique for pectin determination. Thus, future works

could include the determination of pectin in orange peels in the fresh form.



Student Story 141

STUDENT STORY



142 References

The Food Engineer Amanda Teixeira Badar6 started as a Master’s student at School
of Food Engineering (FEA) at University of Campinas (UNICAMP), with a financial support
of CNPq for 18 months (from august/2016 to February/2018). During this time, she fulfilled all
the required credits related to the mandatory subjects of the program, as well as elective
subjects, aiming to acquire more knowledge related to the project field. In all subjects attended,
she reached maximum grade. Amanda also participated in the Training Internship Program
(PED) to improve the student's education as a trainee in teaching experience. Due to her
outstanding performance, she was advised by the board of lecturers that evaluated her after the
first year to change for PhD before finishing her MSc degree. Hence, in fact, she spent her first
year mainly taking lecturers and writing the project for a Master thesis, and she only changed

to PhD in March 2018, with the financial support of FAPESP (grant number 2017/17628-3).

Once she started her PhD, the interest in a collaboration with Instituto Valenciano
de Investigaciones Agrarias (IVIA) arose, and we contacted Professor Jose Blasco-Ivars to be
a board member of her qualification exam. After, it was possible to obtain funding from
FAPESP (grant number 2019/06842-0) for Amanda to stay in Valencia for one year to perform
part of her PhD, under supervision of Professor Jose Blasco. After the student demonstrated
competencies and skills to excel in the graduate program and securing funding approval for the
student to stay abroad, she started as a PhD student in Food Science, Technology and
Management at Universitat Politécnica de Valéncia (UPV) in a cotutelle agreement under the

supervision of Professor Nuria Aleixo Borras.

During her PhD, she contributed to experimental activities in other projects in the
field, helping other students. In addition, she participated in events, international conferences
and courses. Furthermore, she worked developing other projects in parallel, which generated

co-authorship on other studies. All the studies that Amanda has participated in are listed below.

Published papers:

BADARO, A. T., DE MATOS, G. V., KARAZIACK, C. B., VIOTTO, W. H., BARBIN, D.
F. (2021). Automated Method for Determination of Cheese Meltability by Computer Vision.
FOOD ANALYTICAL METHODS, v.1, p.1 - . https://doi.org/10.1007/s12161-021-02094-1



Student Story 143

BADARO, A. T.; AMIGO, J. M.; BLASCO, J.; ALEIXOS, N.; FERREIRA, A. R.; CLERICI,
M. T. P.S.; BARBIN, D. F. (2021). Near infrared hyperspectral imaging and spectral unmixing
methods for evaluation of fiber distribution in enriched pasta. FOOD CHEMISTRY, v. 343, p.
128517. https://doi.org/10.1016/j.foodchem.2020.128517

BADARO, A. T.; MARTIN, J. F. G.; BARRERA, M. C. L.; BARBIN, D. F.; MATEOS, P. A.
(2020). Determination of pectin content in orange peels by Near Infrared Hyperspectral
Imaging. FOOD CHEMISTRY, v. 323, p- 126861.
https://doi.org/10.1016/j.foodchem.2020.126861

MARTIN, J. F. G.; BADARO, A. T.; BARBIN, D. F.; MATEOS, P. A. (2020). Identification
of Copper in Stems and Roots of Jatropha curcas L. by Hyperspectral Imaging. PROCESSES,
v. 8, p. 823. https://doi.org/10.3390/pr8070823

CARVALHO, L. M.; MADRUGA, M. S.; ESTEVEZ, MA.; BADARO, A. T.; BARBIN, D.
F. (2020). Occurrence of wooden breast and white striping in Brazilian slaughtering plants and
use of near-infrared spectroscopy and multivariate analysis to identify affected chicken breasts.
JOURNAL OF FOOD SCIENCE, v. 85, p. 3102-3112. https://doi.org/10.1111/1750-
3841.15465

BADARO, A. T.; MORIMITSU, F. L.; FERREIRA, A. R.; CLERICI, M. T. P. S.; BARBIN,
D. F. (2019). Identification of fiber added to semolina by near infrared (NIR) spectral
techniques. FOOD CHEMISTRY, V. 289, p. 195-203.
https://doi.org/10.1016/j.foodchem.2019.03.057

PEREZ, 1. M. N.; CRUZ-TIRADO, L. I. P.; BADARO, A. T.; DE OLIVEIRA, M. M.;
BARBIN, D. F. (2019). Present and future of portable/handheld near-infrared spectroscopy in
chicken meat industry. NIR NEWS, . 30, p.  096033601986147-29.
https://doi.org/10.1177/0960336019861476



144 References

BARBIN, D. F.; BADARO, A.T.; HONORATO, D. C. B.; IDA, E. Y.; SHIMOKOMAKI, M.
(2019). Identification of turkey meat and processed products using near infrared spectroscopy.

FOOD CONTROL, v. 107, p. 106816-9. https://doi.org/10.1016/j.foodcont.2019.106816

NOLASCO PEREZ, 1. M.; BADARO, A. T.; BARBON, S.; BARBON, A. P. A. C;
POLLONIO, M. A. R.; BARBIN, D. F. (2018). Classification of Chicken Parts Using a Portable
Near-Infrared (NIR) Spectrophotometer and Machine Learning. APPLIED SPECTROSCOPY,
v. 1, p. 000370281878887, 2018. https://doi.org/10.1177/00037028 18788878

Book chapters:

ZARPELAO, B. B.; JUNIOR, S. B.; BADARO, A. T.; BARBIN, D. F. On the use of
blockchain for agrifood traceability. Food Authentication and Traceability. 1% ed.: Elsevier,

2021, p. 279-302. https://doi.org/10.1016/B978-0-12-821104-5.00001-5

JUNIOR, 8. B.; SANTANA, E. J.; BADARO, A. T.; BORRAS, N. A.; BARBIN, D. F.
Advantages of Multi-Target Modelling for Spectral Regression. Spectroscopic Techniques &
Artificial Intelligence for Food and Beverage Analysis. 1% ed.: Springer Singapore, 2020 , p.
95-121. https://doi.org/10.1007/978-981-15-6495-6 5

BADARO, A. T.; PASQUINI, C.; BARBIN, D. F. Food Quality and NIR Spectroscopy in the
Omics Era. Reference Module in Food Science. 1% ed.: Elsevier, 2020, p. 1-.

https://doi.org/10.1016/B978-0-08-100596-5.22849-7



References 145

REFERENCES



146 References

Badar6, A.T., Morimitsu, F.L., Ferreira, A.R., Clerici, M.T.P.S., Fernandes Barbin, D., 2019.
Identification of fiber added to semolina by near infrared (NIR) spectral techniques. Food

Chem. 289. https://doi.org/10.1016/j.foodchem.2019.03.057

Barbin, D.F., Badar6, A.T., Honorato, D.C.B., Ida, E.Y., Shimokomaki, M., 2020.
Identification of Turkey meat and processed products using near infrared spectroscopy. Food

Control 107. https://doi.org/10.1016/j.foodcont.2019.106816

Cocchi, M., Durante, C., Foca, G., Marchetti, A., Tassi, L., Ulrici, A., 2006. Durum wheat
adulteration detection by NIR spectroscopy multivariate calibration. Talanta 68, 1505-1511.
https://doi.org/10.1016/j.talanta.2005.08.005

Feng, Y.-Z., Sun, D.-W., 2012. Application of Hyperspectral Imaging in Food Safety Inspection
and Control: A Review. Critt Rev. Food Sci. Nutr. 52, 1039-58.
https://doi.org/10.1080/10408398.2011.651542

Manley, M., 2014. Near-infrared spectroscopy and hyperspectral imaging: non-destructive
analysis ~ of  biological = materials. = Chem. Soc. Rev. 43, 8200-8214.
https://doi.org/10.1039/c4cs00062¢

Mishra, P., Herrero-Langreo, A., Barreiro, P., Roger, .M., Diezma, B., Gorretta, N., Lled, L.,
2015. Detection and quantification of peanut traces in wheat flour by near infrared hyperspectral
imaging spectroscopy using principal-component analysis. J. Near Infrared Spectrosc. 23, 15—

22. https://doi.org/10.1255/jnirs.1141

Porep, J.U., Kammerer, D.R., Carle, R., 2015. On-line application of near infrared (NIR)
spectroscopy in  food production. Trends Food Sci. Technol. 46, 211-230.
https://doi.org/10.1016/j.tifs.2015.10.002

Teye, E., Huang, X., Sam-Amoah, L.K., Takrama, J., Boison, D., Botchway, F., Kumi, F., 2015.
Estimating cocoa bean parameters by FT-NIRS and chemometrics analysis. Food Chem. 176,

403—410. https://doi.org/10.1016/j.foodchem.2014.12.042

Ucgiinciioglu, D., Ilaslan, K., Boyaci, I.H., Ozay, D.S., 2013. Rapid detection of fat adulteration
in bakery products using Raman and near-infrared spectroscopies. Eur. Food Res. Technol. 237,

703-710. https://doi.org/10.1007/s00217-013-2030-x

Verdu, S., Vasquez, F., Grau, R., Ivorra, E., Sanchez, A.J., Barat, J.M., 2016. Detection of

adulterations with different grains in wheat products based on the hyperspectral image



References 147

technique: The specific cases of flour and bread. Food Control 62, 373-380.
https://doi.org/10.1016/j.foodcont.2015.11.002



148 Final Considerations

FINAL CONSIDERATIONS



Final Considerations 149

First of all, I would like to thank Douglas and Nuria for the supervision in this
thesis. Secondly, I would like to thank the evaluators for taking the time to correct the thesis
and give their suggestions so I could improve my work and acquire more knowledge. I corrected
most of the comments, which I strongly agreed on. I am writing these final considerations to

explain some points raised during the correction of the thesis.

I will start explaining the broader title of the thesis. My supervisors and I decided
to go for a broader title because the thesis includes more than one topic. At first, I was going to
work with NIRS and HSI to study flour and pasta, but during these five years of PhD we dealt
with many drawbacks, which lead me to participate in other works. Then, we saw that my thesis
was more about the techniques than the product. So, when I was doing my internship in Spain,
Douglas and I had the opportunity to work with a group of researchers from Universidad de
Sevilla, which was working with the application of HSI to quantify the amount of pectin orange
peels. As I had worked with the technique in other powdered product, we decided that it would
be suitable for me to work with them. Oranges are abundant in Spain, so it would be a great
alternative to quantify the pectin in oranges peel prior extraction. That is why I also included a

chapter about the pectin in orange peels.

Moreover, the initial idea of working with flour and pasta was not so applicable so
we tried to fill the gaps we found in the literature. Some of the comments in this thesis was
regarding the applicability of the work. The industry of pasta needs more objective and fast
techniques to improve their assessments. In this context, we wanted to develop alternative
techniques to authenticate enriched flour/pasta products and investigate the cooking process to,

in the future, be able to determine the optimum cooking time by pressing pasta samples.

The fact that some errors were found to be higher than expected raised a question
about either the work was applicably or not. In fact, there is a large gap for the application of
these techniques in the food industry, and only a few works have applied spectral techniques
in-line. Therefore, there is the need for further studies in order to apply these techniques in the
process line so that the industry would have a more controlled process. The combination of off-
line and in-line measurements could be a first step on the use of NIR in in-line analysis. Also,
handheld spectrometers could be used in the process line.

In addition, another problem we faced during the development of the work was the
heterogeneity of the samples. The fibre and flour did not mix well, so, by comparing a low cost

and not so sensitive spectrometer with a robust hyperspectral camera, the results were quite
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discrepant. Although HSI overcomes the problem with spatial information, some points
regarding the heterogeneity in the depth of the samples were questioned. With flour samples, |
believe that this could be solved by using a thin layer all the surface analysed. In contrast, pasta
samples were approximately 2 mm tick, so we considered that all the information in the depth
was acquired.

Finally, the reviewers raised some points regarding the theory of chemometrics,
which, in fact, were not fully described in some specific parts. Hence, all changes were properly

addressed when feasible.
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3.20.1 Introduction

Nowadays there is a great concern regarding the authentication of food, from different points of view. It is highly demanded to
produce safer food products, but also to determine their origin, precedence, and composition. Authentication involves procedures
to determine whether a food sample complies with its label description and is in accordance with legal standards (Abbas et al., 2018).

Food fraud is generally performed for economic reasons and it is estimated that it causes a deficit of around US$ 49 billion per
year (McGrath etal, 2018). These losses are related mainly to an increase in different types of cheating and the difficulty to identify
the different aspects of fraud (Bouzembrak and Marvin, 2016). These aspects involve several different traits of modification, such as
adulteration, falsification, substitution or incorrect labeling of the product presented to consumer (Galvin-King et al., 2018; Lohumi
et al., 2015; Spink and Moyer, 2011).

Fraudulent adulteration of foodstuffs may involve quality improvements only in appearance, but not real (such as adding color-
ants), reduction of costs by replacement of ingredients with low cost substituents, or using forbidden substances to extend product
shelf-life (Barreto etal,, 2018). In this sense, products of high economic value are usually the most susceptible to food frauds. These
products include herbs and spices (Oliveira et al., 2019), olive oil (Azadmard-Damirchi, 2010), milk (Abernethy and Higgs, 2013;
Kim et al., 2015), honey (Xue et al., 2013).

How food fraud started and have spread is still unknown. If the fraud seeks monetary profit, probably does not result in safety
risks and mostly, there is no feedback regarding food safety by consumers (Johnson, 2014). Therefore, global regulations have been
created in order to avoid fraud and mislabeling and to guarantee the authenticity of food products, and must be based on reliable
techniques of analysis (Bohme et al., 2019). Regarding food composition and its quality attributes, there has been extensive search
for development of analytical methods that may identify food composition with high accuracy, or that may determine its main
attributes that differentiates from others (Lohumi et al,, 2015).

Analytical methods of food authentication can be target or non-target. The methods most commonly used involve either iden-
tification of physical parameters such as color and texture measurements, as chemical methods such as high performance liquid
chromatography (HPLC) and mass spectrometry (MS) (Lohumi et al., 2015). Recently, the called “-omics” science has gained
much interest, and these technologies include proteomics, metabolomics and genomics (Ortea, O'Connor and Maquet, 2016).

Proteomics involves the knowledge of protein structure and function. This approach also includes the quantification of protein,
how they interact between them or their mechanism of action (Ortea et al., 2016). The tools based on this approach can be very
useful in food authentication, since proteins are present in food components and products. One of the methods for protein analysis
is mass spectrometry (MS). This method is performed by characterizing and sequencing peptides and proteins, and, through it is
also possible to obtain information about specific proteins (Bohme et al., 2019). In this context, untargeted proteomics does
not measure a specific protein, it detects and compares patterns among different samples, which allows the detection of a wide

Comprehensive Foodomics, Volume 3 https://doi.org/10.1016/B978-0-08-100596-5.22849-7 231
Comprehensive Foodomics, 2021, 231-243



154 APPENDIX I - Food Quality and NIR Spectroscopy in the Omics Era

232 Food Quality and NIR Spectroscopy in the Omics Era

group of proteins simultaneously. On the other hand, targeted proteomics refers to a specific group of protein to be analyzed.
However, targeted and untargeted proteomics can be used in a complementary way (Liebler and Zimmerman, 2013).

Metabolomics identify and quantify the metabolites of a biological system. This approach determines the protein activity,
biochemical processes and the metabolites function (Van Emon, 2016). This study can be performed either comparing patterns
from different metabolites groups (metabolite fingerprinting) or within a specific group (metabolic profiling). The most used tools
for these analyses are MS and nuclear magnetic resonance (NMR). Theses techniques allow the high precision analysis of various
components concomitantly, being first the primary polar compounds, followed by polar and nonpolar lipids, terpenoids, and
sterols. Despite this great advantage and specificity, the amount of data generated by these analyses must be correctly interpreted,
and only relevant information analyzed. Therefore, chemometrics have been used together with these techniques (Bohme et al.,
2019; Ferri etal, 2015).

On the other hand, genomics involves the analysis of DNA structure and function. DNA-based techniques, as polymerase chain
reaction (PCR), have been routinely used in the food field, since they allow the detection of low concentration of adulterants in food
matrices. Recently, innovative genomics-based techniques as next-generation sequencing (NGS), high resolution melting (HRM),
droplet digital PCR (ddPCR), loop mediated isothermal amplification (LAMP) and DNA-barcoding have been applied to identify
food fraud as an alternative to improve DNA-based techniques in various terms (Bohme et al., 2019).

In food adulteration assessment, these targets can be used as markers for further determinations (Gallo and Ferranti, 2016).
However, the methods of analysis performed in these techniques usually has a high detection cost, long period of analysis and
use of reagents. Therefore, promising and innovative spectral techniques are an alternative in the ~omics (Han et al., 2019).

Spectroscopic techniques have been investigated to evaluate a broad range of foods. These methods are minimally invasive, do
not require chemical reagents (green chemistry), are adaptable to in-line inspection lines, and considering the number of samples it
can analyze, less expensive (Porep et al., 2015).

Currently, the inspection of food in the supply chain to avoid food fraud represents large investments, since there are several
stages during the production and distribution of food products. However, addressing these tasks to guarantee the product origin
and prevent any type of modification during its production and distribution may help economic growth and increase the consumer
confidence (van Ruth et al,, 2017; Velasquez et al.,, 2017).

In this regard, the consumer must be aware of the tasks performed to prevent product alteration, as having knowledge of this
management may enhance consumer assurance on the product or brand (de Jonge et al,, 2004). This communication has become
more important considering recent food fraud scandals that have affected consumer confidence.

3.20.2 Recent Advances in Food Quality and NIR Spectroscopy

Food authentication and fraud detection has faced great challenges as the number of different adulterants increase widely. Hence,
identifying specific compounds has become a daunting task. Establishing targets for some specific elements might be easier to
accomplish, but it must be strictly for the target compound. In this context, two approaches can be considered for food authenti-
cation: targeted and untargeted (or non-targeted) strategies (Pustjens et al., 2015).

Targeted analytical methods analyze a relatively small and specific number of compounds that are chemically characterized with
established importance before data acquisition. In this sense, it is necessary to know how they behave (e.g., mass spectra, retention
times) and the results expected. The main disadvantage is that other chemicals that could be present in the sample would not be
identified. In addition, these methods usually are expensive and require a large amount of time, since quantification of metabolites
is achieved using chemical standards and calibration curves for each specific metabolite; which limits their application to the labo-
ratory (Esslinger et al., 2014).

On the other hand, untargeted approaches are developed in order to detect unpredicted variations in metabolite concentrations.
The main objective is to maximize the number of components that could be detected and therefore allow for the identification of
unexpected variations. A non-targeted method would allow detection of foreign substances, both known and unknown; thus, there
is an increasing interest for applications of this methods in food and agricultural products (Esslinger et al., 2014).

The most commonly non-targeted methods include vibrational spectroscopy (Fourier Transform Infrared (FT-IR), near-infrared
(NIR), hyperspectral imaging (HSI), multispectral imaging (MSI) and Raman imaging), isotopic techniques that include nuclear
magnetic resonance (NMR) and electric spin resonance (ESR), and techniques based on spectrometry and chromatography
(McGrath et al, 2018). The main advantage of vibrational spectroscopy is the capability of adaptation for online and infield appli-
cations (Veldsquez et al., 2017). In contrast, the biggest challenge for non-targeted analysis is the data processing, since there is
a large amount of data generated for each measurement. Therefore, these techniques rely on multivariate statistical analyses and
chemometrics to analyze the results and efficiently achieve practical results (McGrath et al., 2018). Thus, major efforts have been
done in the development of new statistical methods to attend this demand.

3.20.3 Vibrational Spectroscopy

Vibrational spectroscopy is a fast, reliable and future technique that has been increasingly applied to different fields, including the
authentication and characterization food products. Vibrational techniques include Raman, Near Infrared Spectroscopy (NIR),
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Fourier Transform Infrared Spectroscopy (FI-IR), and Hyperspectral Imaging (HIS). Even though these techniques are accurate,
rapid, non-destructive, reagent free and allow the determination of different components using the same spectrum; each system
has its particularities. The biggest differences are based on the dimension (spatial, spectral), sensitivity to minor constituents,
amount of information provided and so on. However, these techniques have shown incredible potential in the authentication
of food products (Lohumi et al., 2015; Oliveira et al., 2019).

Vibrational spectroscopy can be implemented using portable or benchtop devices. Usually, handheld devices are cheaper and
easier to use, whereas benchtop can be more accurate, depending on what is being analyzed. Basically, a NIR spectrometer contains
aradiation source, a sample holder, a device used for wavelength selection, a detector and a computer system. Moreover, the many
platform and technology available suggest to use data fusion as a new strategy to improve the outcomes (Deidda et al., 2019; Oli-
veira et al., 2019; Porep et al., 2015).

3.20.4 Near Infrared Spectroscopy

Near Infrared (NIR) is a vibrational spectroscopy that covers wavelengths from 750 to 2500 nm (13,333 to 4000 cm ™ '). This spec-
tral region, considered of low energy when compared with the ultraviolet and visible regions, interacts with the chemical species by
increasing their vibrational energy. The potential energy of a given vibration of a chemical bond between two atoms in a molecule
describes a relationship in close agreement with the anharmonic behavior of the atomic oscillator, as shown in Fig. 1. The quantic
anharmonic oscillator model restricts the vibrational energy to well defined levels, as also shown in Fig. 1.

Energy transitions between the quantum vibrational levels may result from the absorption of the energy transported by an elec-
tromagnetic wave of radiation. In this case, the radiation energy must match the difference of the energy of the vibrational levels. It
means that the energy difference between two vibrational levels (4E) must be,

AE=hv (1)

where h is the Planck constant and v is the frequency of the electromagnetic wave. In terms of vibrational levels transitions, is also
true that the frequency of the radiation must match the vibrational frequency of the atomic oscillator, given by

1 |k
_1 Jk 2
v=0e\u (2)
where u is the reduced mass of the oscillating system constituted of two bonded atoms, equals to
__mmy 3)

my + my

Potential energy

e . .
Interatomic distance
Figure 1 Potential energy behavior of a typical diatomic oscillator. d., equilibrium distance; a, harmonic potential; b, anharmonic potential; c,
fundamental vibrational energy transition, d and e, first and second overtone transition.
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In addition to the above requirements, the vibrational mode must produce a change in the dipole moment of the chemical bond
in order the electromagnetic energy can be converted to the mechanical vibrational energy and thus absorbed. Those vibrational
mode are referred as infrared active modes.

Though the most probably transition occurs between the fundamental level, where most of the molecules are found in ambient
conditions, and the adjacent level, the energy correspondent to this transition are associated with the frequencies of the radiation
covered by the mid infrared region. Nevertheless, the anharmonic behavior of the potential energy of real atomic oscillators permits
transitions among the fundamental level and superior levels defined as overtones of the fundamental transition (as pointed in
Fig. 1). The radiation associated with overtone energy transitions are of higher frequency, proportional to the energy differences
between the fundamental level and the overtone level. Several chemical bonds are excited to the first, second and even third over-
tones requiring the radiation energy associated with higher radiation frequencies frequently to belong to the near-infrared spectral
region.

In addition, the mechanical and electronic anharmonicity of a chemical bond allows for some vibrational modes to couple to be
excited as a combination mode requiring the radiation energy that is the sum of the original excited levels. The energy associated
with the excitation of a combination also may require the frequency of the radiation to belong to the near-infrared spectral region.

As a matter of fact, a typical NIR spectrum of a material results from the absorption of the radiation mostly employed to excite
overtones and combinations of vibrational modes associated to the chemical bonds present in the chemical species present in that
material. Secondarily, a number of vibrational phenomena, such as Fermi and Darling-Davison resonance, may contribute to the
complexity of the NIR absorption spectra.

Due to the requirements for an anharmonic vibrational behavior and the higher energy associated with the overtones and
combinations, the interaction of the NIR radiation with matter occurs mainly due to excitation chemical groups containing atoms
of carbon, nitrogen, oxygen or sulfur linked to hydrogen (Abbas et al., 2018; Pasquini 2003, 2018).

Though the limited types of chemical bond probed by NIR radiation are very limited, several additional effects occurring at
secondary microscopic and macroscopic level contribute to increase the amount of information captured by an NIR absorption
spectrum. In this way, changes in the chemical bond energy caused, for example, by substitution of hydrogen atoms ina C - H
bond by a highly electronegative atom in a molecule, or change in the mass of the element isotopes result in shifts of the frequency
of the absorbed radiation, according with Eq. (2). The inter-molecular hydrogen bonds reduce the bond energy between the donor
and hydrogen atoms and decrease its degree of anharmonicity. Consequently, the absorption frequency of the donor-hydrogen
vibration is shifted to low energies and the intensities of absorption reduced. The way a long hydrocarbon chain conforms in a solid
sample state and the temperature of the samples are examples macroscopic level effects causing changes in the NIR absorption
spectra.

Overall, the primary and secondary effects on the NIR spectrum of the chemical species adds a considerable amount of unique
information about the chemical composition and physical characteristics, which can be used to identify, classify or quantify several
samples properties.

In addition to the great amount of information captured in a NIR spectrum, the sample measurement can be easily performed,
contributing to the dissemination of the use of this type of spectroscopy. In fact, most of the measurement in this spectral region
can be performed directly in the intact sample or after it had been submitted to a little, fast and greener pre-treatment like grinding.
In consequence, reflectance of grinding solids is the most used form of sample measurement in NIR. In this case, the radiation
beam is impinged on the sample surface. Depending on the beam power, the radiation can penetrate up to 2-4 mm in the sample
surface, interacting with the chemical species there present and return to be measured by the spectrophotometer detection system.
Thus, the NIR spectrum is rapidly acquired, and NIR spectroscopy have been widely used in this way for food quality assessment
(Table 1 and 2)

NIR spectroscopy provides a large amount of data, which must be correctly interpreted. In fact, NIR spectra usually have a great
number of overlapping bands, reflecting the sample composition and several physical characteristics. Therefore, in order to obtain
correct and reliable chemical information from sample spectrum, multivariate data analysis is required. This allows to extract rele-
vant information from spectra without losing wanted information, and to develop suitable models for the characteristic to be
studied (Kemsley et al., 2019; Manley, 2014).

3.20.5 Chemometrics

Chemometrics is a science that uses mathematics and statistics to select required and important information from a complex data-
set, as NIR spectral data, and to develop models for further chemical investigation. Therefore, chemometrics in spectral data involves
the reduction of the original data for better interpretation, performance of spectral correction (pre-processing), development of
models according to the feature of interest (qualitative or quantitative analysis), and interpretation of results (Fernandez Pierna
et al, 2012).

In addition, the data analysis can be divided into two categories: unsupervised and supervised. Unsupervised methods are used
when there is not a specific characteristic to be explored and seek to explore the behavior of the samples group. On the other hand,
supervised methods relate the spectral data with an expected response, which can be a dass (cassification methods) or a value
(regression methods) (Lohumi et al., 2015).
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Table 1 Food quality assessment using NIR spectroscopy in the last 5 years
Food product Task Equipment  Spectral range Statistical analyses References
Beef, pork and  Determination and quantification of Benchtop  850-2000 nm LDA, PLSR Kuswandi et al. (2015)
chicken meat  pork adulteration in beef meatball
Assessment of plant and animal proteins Benchtop ~ 400-1000 nm LDA, decision trees, KNN, PLS- Rady and Adedeji
as potential adulterants in minced beef 900-1700 nm DA, FFNN, SVM, Naive Bayes ~ (2018b)
and pork (NB).
Prediction of aging time of beef steaks  Portable ~ 350-2500 nm PCA, PLS-DA Moran et al. (2018)
Comparison of NIR spectroscopy with ~ Portable ~ 900-1700 nm PCA, LDA, PLSR Nolasco-Perez et al.
other techniques (2019)
Fish Identification according to production ~ Benchtop  1100-2500 nm PCA, OPLS-DA Ghidini et al. (2019)
method and geographical origin
Honey Detection of honey origin and adulterants Benchtop  400-2500 nm PCA, PLSR Kumaravelu and Gopal
(2015)
Quantification of honey adulterated with Benchtop  400-2500 nm PCA, HCA, LDA, PLSR Ferreiro-Gonzélez et al.
high fructose corn syrup (2018)
Identification of adulterants (rice syrup  Benchtop  400-2500 nm HCA, LDA, PLSR Aliafo-Gonzélez et al.
invert sugar, brown cane sugar, (2019)
fructose syrup)
Vinegars Typification of Spanish wine vinegars ~ Benchtop  12000-4000cm™"  PCA, PLS-DA Rios-Reina et al. (2018)
with protected designation of origin
Identification of wine vinegar from Benchtop  12000-4000 cm~"  (PCA, PARAFAC, MCR for Rios-Reina et al. (2019)
protected denomination of origin decomposition) PLS-DA,
NPLS-DA
Fruits Identification of apple origin, cultivarand Benchtop  10000-4000cm~'  PCA, QDA Eisenstecken et al.
elevation (2019)
Rice Classification into quality grades and Handheld, 740-1070 nm PCA, k-NN, SVM Teye et al. (2019)
identification of origin portable
Discrimination between organic and Benchtop  830-2500 nm PCA, PLS-DA Xiao et al. (2019)
conventional
Cocoa powder  Detection of the adulteration in cocoa  Benchtop  1100-2500 nm PCA, PLS-DA, PLSR Quelal-Vésconez et al.
powders with carob powder (2018)
Milk Detection of adulteration of skim milk ~ Benchtop  400-2498 nm PCA, SIMCA, PCR, PLSR Capuano et al. (2015)
powder
Detection of adulteration in camel milk ~ Benchtop  700-2500 nm PCA, PLS-DA, PLSR Mabood et al. (2017)
with goat milk
Authentication of organic milk Portable ~ 908-1676 nm PCA, PLS-DA Liu et al. (2018)
Coffee Detection of comn adulteration in coffee  Benchtop  400-2500 nm PLSR Winkler-Moser et al.
samples (2015)
Identification and quantification of Portable ~ 908-1676 nm PCA, PLSR Correia et al. (2018)
Arabica coffee adulterations with
Robusta coffee, corn, peels, and sticks
Nuts Detection of hazelnut adulteration Benchtop  12000-3650cm~'  SIMCA Marquez et al. (2016)
Starch Classification and quantification of Benchtop  1100-2300 nm PCA, OPLS-DA, PLSR, (i, si)-  Ma et al. (2017)
cheaper starches (corn and wheat PLSR
starch) in ultrafine granular powder of
Shanyao
Flour Authentication of taro flour from wheat Benchtop  10000-4000cm~' PCA, DA Rachmawati et al.
and sago flour (2017)
Detection and quantification of unripe ~ Portable ~ 447-1005 nm PCA, PLSR Faith et al. (2019)
banana flour adulteration with wheat
flour
Qil Classification and quantification of palm Portable ~ 950-1650 nm SIMCA, PLSR, CARS-PLSR Basri et al. (2017)
oil adulteration
Detection of extra virgin olive oil Benchtop  12000-4000cm~' PCA, SIMCA Vanstone et al. (2018)
adulteration
Authentication of extra virgin olive oil ~ Benchtop  1100-2500 nm PARAFAC, PCA, PLS1-DA, Jiménez-Carvelo et al.
origin NPLS-DA (2019b)
Detection and quantification of argan oil Portable ~ 500-1000 nm PCA, PLSR Farres et al. (2019)
adulteration with cheap vegetable oils 1000-1700 nm
Detection of fraud in oil capsules Portable  900-1700 nm PCA Leme et al. (2019)
Butter Detection and quantification of tallow ~ Benchtop  10000-4000 cm~" PCA, PLS-DA, PLSR Mabood et al. (2018)
adulteration in clarified butter
Spices Detection of metanil yellow in turmeric ~ Portable ~ 900-1700 nm PCA, PCR, PLSR Kar et al. (2018)

powder
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Table 2 Omics approach in food products

Field Task Technique isti R
Metabolomics Determination of perseitol (marker for the botanical HPLC, NIR PCR, MPLS Dvash et al. (2002)
origin of avocado honey)
Discrimination between conventional and organic rice  UHPLC-Q-TOF MS PCA, HCA, PLS-DA, OPLS-  Xiao et al. (2018)
analysis DA
Genomics Discrimination between grains from two gene groups  NIR Classification and regression Curzonetal. (2019)
Discrimination between meat and bone meal FTIR PCA, PLS-DA Han et al. (2019)
Proteomics  Discrimination between conventional and organic rice  Nano LC-MS/MS analysis PCA, HCA Xiao et al. (2019)
Identification of N-Glycosites in chicken egg white MS/MS analysis - Geng et al. (2017)
proteins

In the context of omics science, more specifically in foodomics, data analysis usually aimed to explore the data, to identify
patterns or to predict parameters (as in regression or classification models). Both unsupervised and supervised methods of analysis
are very important in foodomics, and sometimes these methods are used together to achieve a better result (Bevilacqua et al., 2017).

Moreover, the methods of data analysis can still be classified as linear and nonlinear. As the name implies, linear methods are
those applied when there is a linear relation between the dataset, whereas nonlinear methods are those used for nonlinear relation-
ship (Rosipal, 2010). Linear methods include, among others, Principal Component Analysis (PCA), Linear Discriminant Analysis
(LDA), Partial Least Squares (PLS), Partial Least Squares Discriminant Analysis (PLS-DA) and Soft Independent modeling by class
analogy (SIMCA). Nonlinear methods include Neural Networks (NN), Deep Learning (DL), Support Vector Machine (SVM) and
Random Forest (RF). Linear methods continue to be the most used among researchers.

3.20.6 Spectral Pre-processing

Data pre-processing is usually the first step in chemometrics. This step is required in order to remove unwanted information, as light
scattering and noise, and improve data interpretation. The spectral pre-processing methods often used are scattering correction and
derivatives. The scattering correction can be performed by Multiplicative Scatter Correction (MSC), Standard Normal Variate (SNV)
ornormalization. Usually, this issue is faced when there is difference in particle size in the sample to be analyzed, and this effect can
generate baseline variations. The derivatives are also able to reduce this effect by smoothing the spectra and; moreover, correct over-
lapping bands (Lohumi et al., 2015; Manley, 2014). Another commonly used method is the Mean Centring (MC), which averages
the spectrum and subtract it from the original one. Consequently, this methods allow to minimize the sources of unwanted data
variability, such as scattering, facilitating data interpretation (Porep et al., 2015).

3.20.7 Linear Methods
3.20.7.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is the exploratory method of analysis most used in chemometrics for pattern recognition. PCA
isan unsupervised technique that allows the reduction of the original data into new variables, named Principal Components (PCs),
which provide most of the information existent in the original data. Therefore, these new variables are a linear combination of the
original data projected in a smaller dimension (Berrueta et al., 2007).

In general, the first PC holds the greatest variability between the samples, followed by the second PC, and so on, until all the
variance is explained. Consequently, in order to choose a suitable number of PCs, it is ideal to analyze the percentage of variance
of each PC and the cumulative percentage. Then, it is possible to better investigate the relationship between the groups of samples,
where this relationship may be based, and, also, to identify outliers (Berrueta et al,, 2007; Manley, 2014).

The results of a PCA are basically represented in two plots: scores and loadings. The scores plot gives the information regarding
samples, their behavior, clustering, and anomalous samples. On the other hand, the loadings plot provides the information about
the variables, and their contribution in separating the samples (Bona et al., 2018).

3.20.7.2 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) appears to be the most used supervised qualitative discrimination method. As PCA, this is
a pattern recognition method that seeks dimensionality reduction by defining a smaller dimension of the hyperplane and projecting
the original higher dimension data in this new plan. However, unlikely PCA, this projection is performed by calculating the variance
between classes and within a class. Thus, a linear projection is constructed by maximizing the variance between-class and mini-
mizing the variance within-class (Abdolmaleki et al, 2015; Sendin et al., 2018). The new variables generated by LDA, called latent
variables (LV) are, then, a linear combination of the original variables (Berrueta et al,, 2007).
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The reliability of an LDA model is based on parameters of sensitivity and specificity. Sensitivity represents the model capacity in
correctly classify the samples to the interest class, whereas the specificity expresses the model capacity in correctly classify the samples
when they do not belong to the interest class (Su and Sun, 2016). Still, it is worth mentioning that, as a discriminant analysis, the
samples will always be classified into one of the given classes, what may be a disadvantage if the sample does not belong to any class.
In addition, a constraint of LDA models is the number of variables that should not exceed the number of samples, being necessary the
variable selection prior development of the models (Berrueta et al,, 2007). Commonly, LDA is processed after a PCA analysis, using
the scores of a few significant principal components as the reduced set of variables, as studied by (De Girolamo et al,, 2019).

NIR spectroscopy combined with LDA have been used in the discrimination of pure and adulterated meat samples (Kuswandi
et al., 2015; Nolasco-Perez et al,, 2019; Rady and Adedeji, 2018a); and honey (Aliano-Gonzilez et al.,, 2019; Ferreiro-Gonzalez
etal, 2018).

3.20.7.3 Soft Independent Modeling by Class Analogy (SIMCA)

Soft independent modeling by class analogy (SIMCA) is a supervised qualitative method in multivariate analysis. Unlikely LDA,
SIMCA is not only a discrimination, but a classification method, that is, SIMCA is able to classify samples as belonging to one class,
more than one or neither class. SIMCA model is built based on principal component analysis, with one PCA performed for each
class. Each PCA is individually developed and evaluated, with the appropriate number of principal components chosen according
to the minimum cross-validation error. Moreover, Q-statistic and Hotelling T* are evaluated to set the boundary of each class
(Badar6 et al.,, 2019; Rodriguez et al., 2019).

Furthermore, SIMCA calculates the class distance, discriminatory power and modeling power. The class distance can be deter-
mined by the geometric distance from the principal component models. However, another concept is commonly used, which
consider the boundary as a region of space with a 95% confidence level that a sample belongs to a class. The discriminatory power
is determined as the ability of a variable to discriminate two classes, whereas the modeling power describes how the variable
contribute to the model in classifying samples (Berrueta et al., 2007; Brereton, 2003).

The results of SIMCA models can be interpreted by observing the Coomans plot. This graph evaluates the distance between two
classes and it is divided in four regions (with a confidence level of 95%): one representing samples from class 1, one for class 2, one for
overlapping samples and one for those samples that do not belongto any class. In addition, the performance of SIMCA models canbe
evaluated as mentioned for LDA models, based on parameters of sensitivity and specificity (Badaré et al., 2019; Berrueta et al., 2007).

SIMCA can define the class of an authentic food in an untargeted way, exhaustively considering the variability of the authentic
food during the modeling stage. Therefore, this approach can lead to a more robust classification, as any change from several origin
of the food composition, detectable by the used analytical technique, can be potentially identified (Brereton, 2003).

SIMCA have been applied in NIR data to classification of pure and adulterated milk powder (Capuano et al., 2015); hazelnut
(Marquez et al., 2016); and edible oil (Basri et al., 2017; Vanstone et al., 2018).

3.20.7.4 Partial Least Squares (PLS) and Partial Least Squares Discriminant Analysis (PLS-DA)

Partial Least Squares (PLS) is the most known and used quantitative method in chemometrics. PLS is a supervised method that
establish a relationship between the dependent (Y) and independent (X) variables. The matrix X can be spectral information,
whereas the matrix Y is a parameter, as protein content or percentage of adulteration. During the development of a PLS model, those
independent variables that most contributed to describe the dependent variables are considered. Then, the software algorithm gives
more importance or weight to the variables that are more correlated to the output and less importance to those that are irrelevant or
carry noise. So, PLS is a reduction method that defines the latent variables (LV) (or factors) that well predict the parameter of interest
(Berrueta et al., 2007; Porep et al., 2015).

These LV are a linear combination of the original variables that maximize the covariance between the matrices of dependent and
independent variables. The first few LV carry most of the relevant information necessary for the prediction, and an appropriate
number of factors must be selected in order to obtain a good performance of the model. If it is selected fewer samples than needed,
the model will not cover all the relevant information, while more samples than needed will generate a noisy model. In both cases,
the models developed will result in a poor prediction of the parameter of interest. Therefore, a wise choice of the number of factor
together with similar prediction error is fundamental. The cross-validation in calibration models plays an important role in selecting
the suitable number of latent variables (Porep et al,, 2015).

The performance of PLS models is evaluated based on the coefficients of determination (R?), and root mean square errors
(RMSE) of cross-validation (R’cy, RMSECV) and prediction (R”p, RMSEP). The R, represents the fraction of variance of the property
or concentration explained by the spectral data variability and ranges from 0 to 1 (with 1 indicating 100% explanation). Then,
a value close to one is desired to have a good performance of the model. R? is heavily dependent of the range and distribution
of the values of the property or concentrations, and must be reported with care to avoid misinterpretation of the model quality.
On the other hand, RMSE estimates the difference between the reference and predicted values. In the development of calibration
models, samples are selected according to diverse criteria and left out of the modeling stage. Equations are developed in order to
predict those samples. This is called cross-validation, and this process is conducted until all the samples in the dataset is validated.
The RMSECV is, then, calculated in relation to reference and predict values from cross-validation. In contrast, the RMSEP estimates
the difference between the experimental and predict values of an independent dataset (external validation) (Porep et al, 2015).
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NIR coupled to PLS have been applied to quantify the level of adulteration in meat (Kuswandi et al.,, 2015; Nolasco-Perez et al,
2019); milk (Capuano et al., 2015; Mabood et al., 2017); coffee (Correia et al., 2018; Winkler-Moser et al., 2015); starch (Ma et al.,
2017); oil (Basri et al., 2017; Farres et al,, 2019); butter (Mabood et al., 2018); spices (Kar et al., 2018); honey (Aliano-Gonzalez
et al., 2019; Ferreiro-Gonzilez et al., 2018; Kumaravelu and Gopal, 2015); flour (Faith et al., 2019); and cocoa powder (Quelal-
Visconez et al., 2018).

Another approach is a PLS-based method called Partial Least Squares Discriminant Analysis (PLS-DA). The principals of PLS-DA
do not differ from PLS, where a model is developed to relate a matrix X of independent variables with a matrix Y of dependent
variables. However, in a PLS discriminant analysis, the matrix Y is a class, and the optimal number of factors (also determined
by cross-validation) is selected in order to discriminate samples in the dataset. In contrast to the discriminant methods mentioned
before, this method discriminates only two classes at a time. Therefore, a new Y matrix is created typically assigning the value 1 for
one class and 0 for all the others. An interesting point is that, in PLS-DA, the information regarding matrices X and Y are considered.
In other words, the scores from matrix Y are used to calculate the loadings of matrix X and vice versa. Thus, a model is built for each
class (Berrueta et al., 2007).

In this context, if the value predict for the unknown sample is close to 1, it is more likely the sample belongs to the studied class,
and 0 otherwise. The coefficients of determination (R?) and root mean square errors (RMSE) are considered to evaluate the model
performance, though, as discriminant method, the parameters of sensitivity and specificity defines the effectiveness of the model
(Berrueta et al,, 2007).

PLS-DA have been applied in NIR data for discrimination between pure and adulterated samples of milk (Mabood etal., 2017);
meat (Rady and Adedeji, 2018b); butter (Mabood et al., 2018); oil (Jiménez-Carvelo et al., 2019b); cocoa powder (Quelal-Vasconez
et al, 2018); starch (Ma et al., 2017). This method also was applied in the discrimination of sea bass samples according to their
production method, stocking density and geographical origin (Ghidini et al., 2019); characterization and authentication of the
wine vinegar (Rios-Reina et al., 2019; Rios-Reina et al., 2018); prediction of aging time of beef steaks (Moran et al., 2018); authen-
tication of organic milk (Liu et al,, 2018); and discrimination between organic and conventional rice (Xiao et al., 2019).

3.20.8 Non-linear Methods
3.20.8.1 Neural Networks (NN)

Artificial neural network (ANN) or simply “neural networks” is a nonlinear learning method of Machine learning (ML). ANNs are
parallel structures composed by processing units called neurons (or nodes), which have the ability to perform the data processing. A
neural network contains an input layer, composed by neurons structured in parallel and representing the independent variables
(one neuron for each variable), hidden layers (one or more) that create the nonlinear relationship between the layers, and an output
layer, composed by the dependent variables (one neuron for each parameter). Basically, the input variables provide the information
to the hidden layers, which use it for the learning process. Then, the ANN algorithm finds the weights of each neuron that better
predict the output feature (Berrueta et al,, 2007; Haykin, 2010). Fig. 2 schematizes how an ANN is disposed.

Usually, the most common ANNSs are Kohonen, counter propagation, radial basis function and probabilistic neural networks
(PNN); however, the most used is back-propagation ANN. In this approach, the information goes through the network via synapses;
then, the ANN algorithm predicts the results and compare them to the expect values. After that, the error of prediction is calculated
and propagated backwards from the output to the input layers, passing through all the hidden layers. This error is used by the algo-
rithm to correct the weight of each neuron in each layer according to the previously one. This learning process is repeated until all
the weights are able to predict the output with high precision (Berrueta et al., 2007).

The learning process of a network initiates with random values of weights, and the parameters used must be well selected. The
number of hidden layers and training cycles (epochs) are tested until the error of prediction is minimum. This test is based on trial
and error, and in the prediction accuracy of the model. A large number of nodes in the hidden layers, for example, can over fit the
model, which decreases the calibration error, but does not improve the validation. On the other hand, if fewer hidden nodes than
necessary are chosen, the algorithm will not be able to accurately predict the outputs (Berrueta et al,, 2007; Haykin, 2010).

Usually, one hidden layer is enough for learning processing; in despite of cases where there are discontinuities. In this case, two
hidden layers may be indicated. It is still worth to mention that it is not necessary to know deeply the relationship between input
and output variables, since they will learn this relation through the training process. However, the data must be always balanced to
avoid bias. Furthermore, ANN can be used in prediction or classification tasks. Then, the model performance is based on root mean
square error and the determination coefficient of prediction for regression analysis, and the model ability in classify correct or incor-
rectly the samples for classification analysis (Berrueta et al., 2007). Feedforward Artificial Neural Networks coupled to NIR data have
been used to classify pure and adulterated samples of meat (Rady and Adedeji, 2018b).

3.20.8.2 Deep Learning (DL)

Deep learning is another tool of machine learning method which is based on neural networks. In comparison to ANN, deep
learning has more hidden layers, deals with a lot more data, and has stronger learning ability. Therefore, based on these features,
DL is able to obtain very great results (Zhang et al., 2019).
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| Independentvariables |
| Dependent variables |

Hidden layers Output layer

Figure 2 - Scheme of a neural network with inputs, output and hidden layers.

Deep learning uses the hidden layers with integrated data and passes the information from one layer to another until the suitable
prediction. In DL, the prediction is done without many information from the object to be studied, but through training. Based on
this, the machine finds more improved patterns and is able to learn complicated functions (Navarro, 2019).

The omics science involves a huge amount of data, including genome, transcript and proteome data. Moreover, to solve some
issues, it is necessary to combine different source of data, what makes much more difficult to extracted relevant information and
build reliable models. Therefore, deep learning is a good alternative to handle these complex data and obtain more accurate results
(Zhang et al., 2019).

3.20.9 Support Vector Machine (SVM)

Support Vector Machine is another feedforward network used in linear or nonlinear cases. This supervised method is based on
alearning algorithm that separates a dataset by a hyperplane and its application includes classification or regression (Haykin, 2010).
This hyperplane is constructed by a kernel method which is an algorithm that seeks to minimize the classification error and maxi-
mize the separation margin between samples. The margin separation represents the maximum this limit can extend before meeting
the closest samples in the dataset. These samples are known as support vectors (Mahadevan et al, 2008).

The kernel algorithms will transform the data according to their behavior. That means, if the input data and the expected
response have a linear relationship and a hyperplane can be designed in the original space, the SVM model uses a linear kernel.
Otherwise, if the data do not have a linear relationship, they are projected in a higher dimension space by the inner product kernel
between these support vectors and a vector of the original data. Thus, a linear relation is created in this new higher space, also known
as a kernel trick. Then, SVM methods can deal with higher complex and nonlinear data if compared to other multivariate methods
such as PCA, PLSR or PLS-DA (Jiménez-Carvelo et al., 2019a; Mahadevan et al., 2008).

3.20.10 Random Forests (RFs)
Beyond the machine learning methods aforementioned, Random Forests have also been widely used as supervised method for data

analysis. However, there is not many works regarding RFs in the food field as for SVM (Xu and Sun, 2018). RF is one of the decision
tree (DT) methods used for pattern recognition. A DT consists of an initial node, internal nodes or branches, which represent the
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characteristics used to classify the samples into their respective classes, and end nodes or leaves, which are the final labels (or classes)
(Jiménez-Carvelo et al., 2019a; Kucheryavskiy, 2018).

This method separates the samples into random subsets based on the variables, and predicts them according to the suitable
outcome. The highest rated result creates additional nodes that are branched into other possibilities until the final determination,
thus generating a tree-shape structure, as the name suggest (Ai et al., 2014; Jiménez-Carvelo et al,, 2019a).

In DT, the subsets are selected by using boosting or bagging, which increases the model prediction power. Their main difference
is the iteration: while boosting weights the outcome in each node and learns successive models according to the misclassified
samples, bagging creates different models for each sub-dataset. The RF is one of the most known bagging methods (Jiménez-
Carvelo et al, 2019a). Therefore, since the calibration models of each subset are random and do not contain all the samples, those
not included in the model are used as an internal validation set, dismissing the need of a cross-validation (Kucheryavskiy, 2018).
Consequently, the RF method generates classification parameters for each subset model, as accuracies and out-of-bag (OOB) errors.
Thus, the final predicted class is determined by averaging all the parameters (Xu and Sun, 2018).

3.20.11 Data Fusion

In this growing search for new strategies that will improve the food quality and authentication, emerged the data fusion technique.
Fusion of data together with chemometrics have shown a great power in predict more reliable results. However, Borras etal. (2015)
point out the fact that this strategy have been used for more time that it seems, since single chemical parameters evaluated by
different analysis have been combined in order to improve food authentication. Nowadays, though, the challenge is to fuse big
amount of complementary data rather than individual data.

In this context, data fusion has been used in the combination of different techniques, such as NIR, MIR and Raman spectroscopy,
and liquid or mass chromatography. This strategy can be applied in three levels: low-, mid-, and high-level (Cuevas et al., 2017).

In low-level data fusion, the original data from both techniques are pre-processed and, then, combined in one single matrix for
further multivariate analysis and extraction of relevant information. Even though the great advantage of this strategy in straightfor-
ward results, it also has two main disadvantages. First, a scaling step is necessary to balance the variance in each dataset to make
them compatibles; and second, as usually these datasets carry a great amount of irrelevant information, there is a big risk in
increasing the number of insignificant variables in the model. In mid-level data fusion, optimum variables are first selected from
the original and unprocessed data to, then, be subjected to multivariate analysis. This strategy is more used with the aim at predic-
tion rather than interpretation. On the other hand, high-level data fusion evaluates each data individually and, then, the models
obtained by each technique are merged (Bevilacqua et al., 2017; Chen et al,, 2017; Oliveira et al., 2019). Therefore, this approach
combines the data of different techniques, and in different levels, in order to generate more accurate classifications and predictions
than an individual technique (Chen et al., 2017).

The biological system is characterized by all the levels analyzed in omics science, including proteins, metabolites and DNA.
Therefore, more than one platform can be used in order to have an idea of the whole system. In this regard, the use of data fusion
from different techniques in the omics emerges as an alternative for improving the identification of biomarkers or the knowledge
about the metabolic pathways. In addition, the fusion of data in omics science integrate genes, proteins and metabolites, giving an
overview of a system based on more reliable information. Even though the use of high-level data fusion has constantly increased in
omics science, mid-level is more used, especially in food authentication (Bevilacqua et al., 2017).

High- and mid-level data fusion were used to verify the combination of FT-Raman and NIR in the detection of hazelnut adul-
teration (Mdrquez et al., 2016). Mid-level data fusion, and Common Component and Specific Weights analysis multiblock method
were applied in four techniques, including Fourier-transform mid-infrared spectroscopy (MIR), near infrared spectroscopy (NIR),
multi-dimensional fluorescence spectroscopy (EEM) and proton nuclear magnetic resonance ('H-NMR) for characterization and
classification of wine vinegars with protected designations of origin (Rios-Reina et al., 2019).
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Abstract

Meltability is the property of a cheese to flow and spread, as well as the loss of the integrity of the cheese structure by heating,
and is of great importance for cheeses used as ingredients in other products. Analytical methods for determination of cheese
meltability are laborious and time-consuming, requiring heating of cheese samples followed by assessment of the dimensional
changes, such as diameter and height. In this study, computer vision is proposed for rapid and accurate determination of
meltability for five different types of cheese and compared to the reference Schreiber method. Digital images were acquired
from the samples before and after melting, and the variation of samples was measured after segmentation and identification
of the region of interest (ROI). The meltability measured by the Schreiber method varied from 0 to 45.37%, while the results
determined by the computer vision method varied from 0.37 to 99.64%. The computer vision method presented high correla-
tion with the Schreiber method, providing better results for samples that had irregular shape after melting, when compared
to the traditional method. Additionally, the correlation between the manual and the automatic methods was calculated and
the results showed a perfect correlation between all the computer vision methods (> 0.99). The results indicate the potential
application of computer vision as a standard analytical method for determination of cheese meltability.

Keywords Schreiber method - Image analyses - Food; Process analytical technology - Mozzarella - Meltability

Introduction

Food quality, safety, and physicochemical properties are
primary concern of consumers, industry, and federal regu-

B4 Douglas Fernandes Barbin lations directly connected to the food field. Over the years,
difbatbin Gunicamp.be several analytical methods have been developed and vali-
:“z“d“ Teixgi'fc‘\ B“dﬂé dated for the determination of food composition, such as

i B ) @ . . .
tbadaro.amandas gmatl.com moisture, protein, fat, and carbohydrates. Most of these
Gustavo ‘(’:Ch‘“ de@ M““’?i techniques, such as the Kjeldahl procedure for protein or
gustavo.vdematos @gmail.com Soxhlet extraction for fat determinations, are still used these
C““’ll'll“’— B!lhiré(“r“?’er days due to the easy availability of chemicals or equipment
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carol karaziackfgmail.com in the laboratories. However, there has been major concern
WT;‘“ ia g““‘?d“ V‘°l"‘° regarding the fast-paced processing industry, which demands
walkyoto@unicamp.br fast analytical methods with reduced need for chemicals and

! Department of Food Engineering, School of Food “green technologies” with reduced amount of residues. In
Engineering, University of Campinas, Campinas, Brazil addition, several food analytical techniques are laborious

2 School of Mechanical Engineering, University of Campinas, and time-consuming; therefore, fast and accurate techniques
Campinas, Brazil could help to expedite food analysis, finding applications in

3 Department of Food Technology, School of Food laboratories and in the industrial environment (Gallo and
Engineering, University of Campinas, Campinas, Brazil Ferranti 2016).
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Functional properties are of great importance for cheeses
used as ingredients in other products. Due to the wide range
of characteristics that cheese presents, they are used for dif-
ferent purposes in food, according to the desired final prod-
uct, such as used in natura or processed, in several foods
like pizzas and sandwiches (Guinee and Kilcawley 2004).

The ability of a cheese to flow and spread, as well as the
loss of the integrity of cheese structure by heating, is defined
as cheese meltability (Lucey et al. 2003). Meltability is one
of the main functional properties of cheeses, specifically
when used as fillings and toppings for some processed food
(Lucey 2008). In this case, the cheese must have an attractive
elastic appearance after heat treatment (Altan et al. 2005).
Cheese with poor meltability is tough, while excessive melt-
ing may result in undesirable texture and appearance, thus
being avoided by the food industry.

The attempts to measure meltability in cheese include
empirical and objective methods. The current empirical
methods for determination of cheese meltability require
accurate and reliable measurements methods that consist
of heating cheese samples and measuring the dimensional
changes, such as diameter and height (Altan et al. 2005).
There are some chemical and textural differences between
the cheese core and the rind, which can influence the melting
and negatively affect the sensorial properties of the product.
The precision of the test should also be able to differentiate
between the types of cheese depending on its application,
for example, Mozzarella is expected to melt when used in
pizza, whereas Coalho cheese is grilled, so it is not expected
to melt during heating.

One of the methods used to measure cheese meltability
is Schreiber’s test, which is based on the increase in sample
diameter after melting (Kosikowski 1982). Although less
common than Schreiber’s test, the Arnott test is another
method used for determination of cheese meltability. In
this test, meltability is determined by difference of height
between samples, in percentage, before and after melting
(Wang and Sun 2002a). The precision of the Schreiber
method depends on the shape of the sample and how the
measurements are taken, since they must represent the whole
sample.

Other objective but more complex methods are related to
the rheological properties of cheese. These methods include
dynamic stress rheometry (DSR), melt profile analysis (UW
Meltmeter), and rapid visco analyzer (RVA). Although
widely adopted, these methods have some inconsisten-
cies, as cheese samples melt in irregular ways and several
directions, thus making it difficult to achieve precise deter-
mination of meltability (Wang et al. 1998). Therefore, the
Schreiber method has good repeatability and it is simpler
than other more accurate methods, making it the most used
in the food industry and the reference for the development

@ Springer

of other methods for cheese meltability (Altan et al. 2005;
Calvini et al. 2020).

Recently, a significant growth has been observed both in
the plurality of process analytical technologies (PAT) and in
the diversity of applications for food samples (Tsakanikas
et al. 2015). Computer vision is one of these techniques,
where image acquisition and processing techniques allow
transferring analytical methods from laboratories to process-
ing lines. Image analysis relies on the extraction of vari-
ous image features such as color, texture, shape, and size,
among others, that can be related to sample attributes, find-
ing several applications in the food industry. Some image
features are used for predictors of physical attributes, grad-
ing, and classification of several food and agricultural sam-
ples (Shetty et al. 2019), such as meat (Nolasco-Perez et al.
2019), chicken (Barbin et al. 2016; Geronimo et al. 2019),
cereals and grains (Lopes et al. 2019; Li et al. 2009), pasta
and bread (Mastelini et al. 2018; Yin et al. 2021), fruits
(Zhang et al. 2014; Santos Pereira et al. 2018; Udomkun
et al. 2019), and cocoa (Oliveira et al. 2021). As a result,
these resources can also be used for automated processes
aimed at quality inspection through application of image
processing algorithms in industrial computer vision systems
(CVS) (Valous et al. 2009).

Analytical techniques based on image analysis (Wang and
Sun 2002a, b, ¢; Minz and Saini, 2019) and spectroscopic
analysis (Amamcharla and Metzger 2015; Fagan et al. 2007)
have been proposed for determination of cheese properties.
However, these techniques were tested for few types of
cheese (Cheddar and Mozzarella), thus lacking further inves-
tigation for other types of cheeses from different regions. In
addition, the correlation between results obtained by imag-
ing techniques and analytical methods presented high levels
of variation, as image analyses are highly dependent of steps
adopted during image processing. Differences in color and
texture influence image processing tasks, such as segmenta-
tion and feature extraction. Hence, these techniques have not
been adopted as analytical methods. It is majorly relevant to
develop methods that can be applied for different types of
samples, to reduce the effect of sample variation in image
analysis, allowing for its adoption as a reference method.

In the current research, an image analyses approach is
proposed for determination of cheese meltability for five dif-
ferent types of cheeses, with a wide range of technological
attributes (color, texture, meltability). Image features were
extracted from cheese samples and compared to the tradi-
tional method (Schreiber’s test) in order to provide an objec-
tive and accurate method for determination of meltability.
The objective was to propose a robust method, validated
on five different types of cheese, that can later be expanded
to other samples and thus become an analytical method of
reference.
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Material and Methods
Sample Preparation

Five types of cheese from seventeen different brands were
acquired in the local market: Coalho (n=3), Meia Cura
(n=5), Mozzarella (n=3), Prato (n=3) and Requeijao do
Norte (n=3). Samples were kept in a freezer at— 18 °C and
transferred to a refrigerator at 5 °C for 60 min before used
for determination of meltability. Different cheese types were
chosen to cover a wide range of meltability, among the most
consumed in Brazil.

Mozzarella cheese is the most consumed cheese in Bra-
zil and largely consumed worldwide, mainly due to its use
as an ingredient in pizzas and frozen foods. Melting is the
main expected characteristic of Mozzarella. Prato cheese is
a cheese with similar characteristics to Gouda and Danbo
cheeses, while Minas Meia Cura, Coalho, and Requeijao do
Norte are handmade products with regional characteristics.
Minas Meia Cura is a semi-cooked cheese, sold with at least
10 days of storage, mainly for direct consumption. Coalho,
on the other hand, is a semi-hard and elastic cheese, origi-
nating in the northeastern region of Brazil, but with a con-
siderable increase in industrially produced Coalho cheese,
countrywide. Coalho is grilled for consumption; thus, melt-
ability is an undesired characteristic in this type of cheese.
Requeijdo do Norte is a processed cheese that has a large
free oil formation as a characteristic. Regarding the techni-
cal properties, Prato should present low meltability, while
Minas Meia Cura and Requeijao do Norte should not melt
when exposed to heating.

Determination of Meltability

Before analysis, samples were removed from the refrigerator
and a probe was used to slice similar cylindrical subsamples
from each cheese. Six subsamples with 36 mm of diameter
and 5 mm of height were obtained from each cheese, total-
izing 102 samples. These cylindrical samples were used for
modified Schreiber’s test, as they were placed in Petri dishes,
and left in room temperature for 30 min. Subsequently, the
Petri dishes containing the samples were placed inside an
oven at 100 °C for 7 min. Samples were removed from the
oven and cooled at room temperature for 30 min. The diam-
eter of the samples after melting was determined as the aver-
age of four different measurements across the sample, with
45° between each measurement, using a ruler. The increase
in diameter was determined as follows:

(Di-D;) ‘
My = === X 100% )

where M, (%) is the percentage of increase in diameter,
and D; and D; are, respectively, the final and the initial diam-
eters, in millimeters. This measurement was adopted as the
reference value for meltability of the respective sample.

Computer Vision System and Image Acquisition

The computer vision system was previously described
(Santos Pereira et al. 2018), and includes a CCD camera
(Sony DSC-HS55, Japan) installed inside a dark chamber,
with an illumination unit comprised of two LED lamps
(Natural daylight, 100 W). As standard setting conditions,
the angle between the camera lens and the lighting source
was approximately 45°, since diffuse reflection occurs at this
angle (Valous et al. 2009). The surface used to acquire the
images included two rulers positioned perpendicularly, used
as a source of information for the calibration of colors in the
image. Moreover, they allowed the conversion of the number
of pixels to mm. The system was started 30 min before tests.
Images were acquired using the following camera settings:
manual exposure with shutter speed of 1/60 s (zoom and
flash functions off) and ISO number of 200. One image was
taken before and another after melting for each sample, and
saved in TIFF format for further analyses.

Image Analyses

RGB images are comprised of three two-dimensional gray-
scale matrices, where pixel values vary from O to 255, as 0
represents pure black, 255 represents pure white, and any
intermediary values are shades of gray (Gunasekaran 1996).
The three channels from an RGB image represent the inten-
sity of different colors: R (red), G (green), and B (blue). In
the proposed method, two approaches were compared, one
using manual identification of the region of interest (ROI),
and the other using an automatic method of ROI selection.

Manual ROI Selection

During image processing, images were segmented for isola-
tion of the cheese sample from the background. First, it was
performed a manual selection of the ROI as a reference to
test the reliability of the automatic methods. In this case,
ROI was manually selected from three different images: (1)
the original RGB image; (2) the original RGB image was
splitinto its 3 color channels, channels R and G were added
and channel B was subtracted, and the resulting image used
to select the ROI; (3) the original RGB image was converted
to L*a*b* and the b* channel was used to manually select
the ROI. Then, the number of pixels from the selected ROI
using these three methods was averaged. This procedure was
used for images before and after melting, to provide an aver-
age result and reduce misinterpretation due to difficulties in
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identifying the edges of the ROI. Similarly to the modified
Schreiber method, the increase in area was determined as
follows:

_ (Af _Al)
a~ A.

i

% 100% @

where M, (%) is the percentage of area increase and A;
and A; are, respectively, the final (after melting) and initial
(before melting) areas, measured in number of pixels (Wang
and Sun 2002a).

Automatic Selection of ROI

Four different approaches were investigated for automatic
selection of ROI, for comparison purposes and process
automation:

(a) R+ G-B + Otsu + median filter: Each RGB image
(Fig. 1A) was initially separated in its 3 color chan-
nels. Since the color yellow is formed by high values
in R and G channels and low values in B channel, and
the white color is formed by high values in all channels,
the channels R and G were summed up (Fig. 1B) to
enhance contrast between the cheese sample (yellow)
and the background (black). After, channel B was sub-
tracted from this image to eliminate brightness from the
oil in the cheese borders (Fig. 1C), which could affect
the measurements. Otsu’s method for thresholding was
applied in the resulting image (Fig. 1D) and a median
filter was used to eliminate background noise and to
reduce the error from the bright spots in the borders

Fig.1 Image processing steps:
1A—original RGB image:
IB—sum of channels R and G;
1C—subtraction of channel B;
1D—image after segmentation
by Otsu’s method; 1E—image
filled for gaps; 1IF—segmented
cheese sample

@ Springer

(Fig. 1E). After, other large objects remaining in the
image, like the Petri dish, were removed (Fig. 1F).

(b) R+ G-B+median filter + Otsu + median filter: Simi-
lar to proposed approach (a); however, in this case, the
median filter was also applied before the segmentation
by Otsu’s method.

(c) b*+ Otsu+ median filter: Each RGB image (Fig. 2A)
was initially converted in L*a*b* space color (Fig. 2B).
After, Otsu’s method for thresholding was applied on
channel b* (Fig. 2C) and a median filter was used to
eliminate background noise and to reduce the error
from the bright spots in the borders (Fig. 2D). Then,
other large objects remaining in the image were
removed (Fig. 2E).

(d) b*+ median filter + Otsu + median filter: Similar
to proposed approach (c); however, in this case, the
median filter was also applied before the segmentation
by Otsu’s method.

The remaining area of the cheese samples was meas-
ured, and similarly to the manual method, the increase in
area was determined by Eq. 2. All results were reported as
the average of three measurements. All image processing
steps were performed in a script developed by the authors
using ImageJ (open access) and Matlab R2015a software
(Mathworks, Natick, MA, USA). Statistical analyses
were carried out using Microsoft Excel (Windows Office,
U.S.A).
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Fig.2 Image processing steps:
2A—original RGB image:
2B—image in the b* channel;
2C—image after segmentation
by Otsu’s method; 2D—image
after median filter; 2E—seg-
mented cheese sample

Results and Discussion
Sample Diameter

Table 1 shows the diameter measurements taken from the
102 cheese samples (17 samples X 6 subsamples) and the
respective standard deviation (SD) of the four diameter
measurements. In general, samples showed a small varia-
tion from the average diameter, what can be explained by the
low SD. However, some samples showed a high SD, as Meia
Cura D (subsamples 1 and 3), Mozzarella B (subsample 4),
Prato A (subsample 1), and Requeijao B (subsample 5). This
high variation may be due to the fact that these samples
spread irregularly after melting, so the positions where the
diameters were measured were very different.

Chemical and textural differences occur among differ-
ent types of cheese or even between the same types, when
they are from different regions of the sample (cheese core
or rind) from where the subsamples are taken, and this can
influence melting. Thus, the four diameter measurements
were averaged and the results are summarized in Table 1.
The high SD values obtained by Coalho B and Meia Cura
B suggest that there was a high difference between the sub-
samples of this type of cheese, what may be explained by
the region of where samples were taken. Moreover, this table
showed that even samples from the same type of cheese had
significant difference between the diameters after melting,
as Meia Cura A. This sample was not significantly different
from Meia Cura C or E, but it was significantly different
from Meia Cura B and D. Samples of Meia Cura C differ
significantly from all the other samples of Meia Cura, except
Meia Cura A. Requeijao samples presented similar results
for melting, demonstrating that even different samples had

related properties. This difference in diameter after melting
may be due to the chemical composition and differences in
processing steps of each cheese, which might be different,
even for samples of the same type.

Comparison Between the Schreiber Method
and Computer Vision

The meltability results of 17 different cheeses determined
by both the Schreiber and computer vision methods (manual
selection of the ROI) are presented in Table 2. The melt-
ability of cheeses determined by the Schreiber method var-
ied from 0 to 45.37% among the different types and brands
of cheese, while the results found by the computer vision
method varied from 0.37 to 99.64%. As expected, Mozza-
rella samples presented higher values of meltability. Fig-
ure 3 shows the appearance of a Mozzarella sample before
and after melting. On the other hand, although Coalho was
expected to have very low meltability, this was not observed
for sample Coalho C. Prato may present some degree of
meltability, as observed in sample A, since its use in pro-
cessed food has increased. The observed variation between
samples of the same type of cheese may occur due to some
lack of standardization in cheese production from different
brands, which could lead to differences in composition that
might affect cheese properties (Kapoor and Metzger 2008).

The result of meltability measured by the Schreiber
method for Coalho A, Meia Cura A, and Requeijao A was
zero, indicating that the increase was so subtle that the ref-
erence method was not capable to detect any difference
between the samples before and after heating. However, it
was possible to identify a slight increase in sample area, by
computer vision.

@ Springer
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Table 1 Sample diamgler Cheese Subsample Diameter after melting (mm) Average +SD (mm)
measurements determined by
the modified Schreiber method Coalho A 1 36 36 36 36 36.00+ 0.0
2 36 36 36 36 36.00+0.0
3 36 36 36 36 36.00£0.0
4 36 36 36 36 36.00£0.0
5 36 36 36 36 36.00+£0.0
6 36 36 36 36 36.00£0.0
Average* 36.00°" +0.00
Coalho B 1 44 43 45 44 44.00+0.82
2 38 39 38 37 38.00+0.82
3 45 45 44 43 44.25+0.96
4 38 38 39 38 38.25+0.50
5 41 42 42 41 41.50+0.58
6 36 36 36 36 36.00+0.00
Average* 40.33*+3.43
Coalho C 1 48 51 49 49 49.25+1.26
2 49 50 47 47 48.25+1.50
3 45 45 45 46 45.25+0.50
4 50 52 49 49 50.00£1.41
5 49 51 50 51 50.25+0.96
6 47 50 48 46 47.75+1.71
Average* 48.46% +1.85
Meia Cura A 1 36 36 36 36 36.00+0.00
2 36 36 36 36 36.00+0.00
3 36 36 36 36 36.00+0.00
4 36 36 36 36 36.00 £0.00
5 36 36 36 36 36.00 £0.00
6 36 36 36 36 36.00+0.00
Average* 36.00°° +0.00
Meia Cura B 1 40 39 39 40 39.50+0.58
2 51 53 51 52 51.75+£0.96
3 35 35 35 35 35.00+0.00
4 50 46 46 47 47.25+1.89
5 49 49 48 47 48.25+0.96
6 48 48 48 48 48.00+0.00
Average* 44.96%+6.33
Meia Cura C 1 34 34 34 34 34.00+0.00
2 34 34 34 34 34.00+0.00
3 33 33 33 33 33.00+0.00
4 35 35 35 35 35.00+0.00
5 34 34 34 34 34.00 £0.00
6 33 34 33 34 33.50+0.58
Average* 33.92°+0.66
Meia Cura D 1 41 43 40 38 40.50+2.08
2 49 49 48 48 48.50+0.58
3 43 52 52 43 47.50+5.20
4 50 46 47 48 47.75+1.71
5 48 45 45 47 46.25 +1.50
6 48 46 45 46 46.25+1.26
Average* 46,13 £2.89
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Table 1 (continued) Cheese

Subsample Diameter after melting (mm) Average +SD (mm)
Meia Cura E 1 42 42 40 41 41.25+0.96
2 38 38 38 38 38.00+0.00
3 41 39 40 41 40.25 +0.96
4 37 37 37 37 37.00+0.00
5 38 39 39 38 38.50+0.58
6 40 40 40 40 40.00+0.00
Average* 39.17°+1.59
Mozzarella A 1 43 43 43 42 42.75+0.50
2 46 44 45 45 45.00+0.82
3 48 50 51 48 49.25+1.50
4 47 47 46 45 46.25 +£0.96
5 45 44 46 46 45.25+0.96
6 50 49 49 48 49.00+0.82
Average* 46.25% £2.50
Mozzarella B 1 51 53 50 52 51.50+1.29
2 51 50 49 50 50.00+0.82
3 55 53 54 56 54.50+1.29
4 56 53 54 49 53.00+2.94
5 53 55 54 53 53.75+£0.96
6 52 50 50 53 51.25+1.50
Average* 52.33*+1.70
Mozzarella C 1 38 38 38 38 38.00+0.00
2 39 39 40 39 39.25+0.50
3 38 38 38 38 38.00+0.00
4 34 34 34 34 34.00 +0.00
5 41 42 41 40 41.00+0.82
6 37 37 36 38 37.00+0.82
Average* 37.88°+2.34
Prato A 1 48 48 42 44 45.50+3.00
2 47 46 48 48 47.25+£0.96
3 52 51 52 52 51.75+0.50
4 48 50 51 48 49.25 +1.50
5 44 45 45 46 45.00+0.82
6 48 47 48 47 47.50+0.58
Average* 47.71% +£2.50
Prato B 1 40 41 40 38 39.75+1.26
2 43 41 39 39 40.50+1.91
3 40 40 39 42 40.25+1.26
4 40 41 42 40 40.75 £0.96
5 44 42 41 41 42.00+141
6 40 40 40 40 40.00+0.00
Average* 40.54% +0.80
Prato C 1 40 41 41 41 40.75+0.50
2 38 38 38 37 37.75+0.50
3 42 42 41 41 41.50+0.58
4 39 39 40 40 39.50 +0.58
5 40 40 40 40 40.00 +0.00
6 44 42 41 41 42.00+1.41
Average* 40.25% £1.53
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Table 1 (continued)

Cheese Subsample

Diameter after melting (mm) Average +SD (mm)

Requeijio A 1

L=

Average*

Requeijdao B

= S I L I S

Average®

Requeijio C

WM =

N W B

Average*

36 36 36 36 36.00+0.00
36 36 36 36 36.00+0.00
36 36 36 36 36.00 £0.00
36 36 36 36 36.00 £0.00
36 36 36 36 36.00£0.00
36 36 36 36 36.00+0.00
36.00°"+£0.00
36 37 36 36 36.25+0.50
38 37 36 36 36.75+0.96
36 39 37 35 36.75+1.71
37 36 35 35 35.75+0.96
40 37 35 36 37.00 £2.16
36 36 36 37 36.25+0.50
36.46° +0.46
36 36 36 36 36.00+0.00
36 36 36 36 36.00+0.00
37 37 36 37 36.75+0.50
36 36 36 36 36.00 £0.00
38 36 36 37 36.75 +£0.96
36 37 38 38 37.25+0.96
36.46° +£0.53

Results for each subsample are reported as averages of four measurements + standard deviation

“Results for each sample are reported as averages of six subsamples (measurements +standard deviation).
Different letters in the same column are significantly different as determined by Tukey’s test (p <0.05)

SD standard deviation

The most important value to be observed is C2 (Fig. 4),
the correlation between final diameter measured by the
Schreiber method and final increase in area measured by
computer vision. Due to the irregular variation of the sample
after melting (Fig. 5), measuring the diameter sometimes
is not accurate, as samples may not spread regularly, but in
different directions. Although four diameter measurements
were taken and averaged, this was not enough to detect small
differences in the sample diameter after melting. However,
these differences were identified by the computer vision
method. Since the proposed method takes into account the
whole area of the sample, it is feasible to claim that it pro-
vides more accurate results. The results also demonstrate
that the increase in the diameter did not cause the same per-
centage increase in the area. Additionally, values for stand-
ard deviation obtained by computer vision were very high,
indicating a wider range among samples that indicates the
sensitiveness of the proposed approach, compared to the
Schreiber method.

The correlations between the percentage of increase in
diameter and area (C1) and between the final values of diam-
eter and area (C2) are shown in Fig. 4. Overall, most of the
cheese samples showed high correlation, with high values of

@ Springer

C1 and C2. However, some of them, such as Coalho C and
Meia Cura C, showed a negative correlation (C1). This result
may be explained by the fact that C1 is a correlation between
the difference of final and initial diameters, and final and
initial areas. Therefore, considering that the diameter is the
value measured by the Schreiber method and the area by the
computer vision method, it was observed that some of the
samples that had the highest difference of diameter had the
lowest difference of area, resulting in a negative correlation.
However, in the case of Meia Cura C samples, apart from
the C1 value, cheese samples showed negative results for
both diameter and area increases, indicating that samples
shrunk after heat treatment. Moreover, samples of Requei-
jao B showed a negative result for area increase, suggesting
that the computer vision method detected sample shrink-
age rather than expansion. Shrinkage and reduction of area
has been previously related to evaporation of moisture and
oiling-off during cheese heating (Wang and Sun 2002b).
Furthermore, the low and the negative correlations can
also be explained by the fact that the script was optimized
for all samples, which varied between different shades of
yellow. The negative correlations were observed for samples
that presented very subtle variations in the diameter after
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Table 2 Comparison of meltability results obtained by the modified
Schreiber method and computer vision with manual segmentation, for
different cheese types

Sample Average increase in diam-  Average increase
eter+SD (%)* inarea+SD (%)*
Coalho A 0.00+0.00 041+0.82
Coalho B 12.04+8.69 26.08 +20.63
Coalho C 34.61+4.68 70.53+7.94
Meia Cura A 0.00+0.00 0.37+£042
Meia Cura B 24.88+16.05 54.48 +40.40
Meia Cura C —5.79+0.60 —-3.15+042
Meia Cura D 28.13+2.45 51.54+1091
Meia Cura E 8.80+4.04 10.38+6.50
Mozzarella A 28.47+6.35 56.52+16.42
Mozzarella B 45.37+4.31 99.64 + 14.42
Mozzarella C 5214222 18.95+4.18
Prato A 32.52+4.63 71.76 £ 1.76
Prato B 12.62+3.89 18.22+8.75
Prato C 11.81+3.89 2441875
Requeijio A 0.00+0.00 0.43+0.36
Requeijiao B 1.27+1.16 —-0.31+1.06
Requeijio C 1.27+1.35 0.38+1.02

“Results for each sample are reported as averages of six replicates
Increase in diameter: result obtained by the modified Schreiber
method

Increase in area: result obtained by computer vision

SD standard deviation

melting. The subtle variation was also detected by computer
vision, but the replicates were not necessarily similar for
both methods, thus resulting in negative correlation.

Fig.3 Mozzarella sample
before (A) and after melting
(B) (for interpretation of the
references to color in the figure,
the reader is referred to the web
version of this article)

Comparison Between Manual and Automatic
Selection of ROI

Manual selection can be quite tedious and laborious depend-
ing on the number of images to be analyzed. Therefore, auto-
matic techniques of segmentation were tested to achieve
an accurate and faster method for determination of cheese
meltability that could be used in laboratories and food pro-
cessing lines. Figure 6 reports the results of the correlation
between percentage of increase in diameter and percentage
of increase in area (C1’), and between the final diameter and
area increase (C2’), determined by the Schreiber method
and image analysis using automatic segmentation techniques
previously described in Material and Methods.

Again, it is important to analyze the values of C2’, the
correlation between the final diameter measured by the mod-
ified Schreiber method and the final area measured by the
computer vision with automatic ROI segmentation. Over-
all, the results presented high values of correlation with the
Schreiber method. Since this method was not able to identify
any difference in sample diameter after heating, samples of
Coalho A, Meia Cura A, and Requeijdo do Norte A showed
a coefficient of correlation of zero, similar to the correlation
obtained using the manual ROI selection.

Additionally, the correlation between the manual and the
automatic methods was calculated and the results showed a
perfect correlation between all the computer vision meth-
ods (>0.99), showing the feasibility of automation of image
analysis for cheese meltability.

Compared to previous works (Wang and Sun 2002a, b, ¢),
that used features such as diameter, perimeter, area, and cir-
cularity, our method presented a simpler and more straight-
forward approach, reducing processing time and providing
highly accurate results.

It was observed that other factors may influence the
results: some samples presented bubbles while melting mak-
ing it difficult for identification of ROI; Requeijdo do Norte
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Fig.4 Correlation between the

Schreiber method and manual Requeijdo C
computer vision method (C1: Requeijao B —
correlation between percent- Requeijdo A
age of increase in diameter and Prato C
percentage of increase in area Prato B
and C2: correlation between the 0 Prato A
final diameter and area increase 9
. . @ Mozzarella C
using manual method of seg- E m lla B
mentation) (for interpretation 8 ozzarella
of the references to color in the Mozzarella A
figure, the reader is referred to s Meia Cura E
the web version of this article) 8 Meia Cura D
£ MeiaCuraC —_—
O  MeiacuraB
Meia Cura A
Coalho C
Coalho B
Coalho A

-1.00 -0.75 -0.50 -0.25 ©0.00 0.25 0.50 0.75 1.00
Correlation

C2mucC1

flg.§ Cheese samp%evs . Before melting After melting
ing irregular meltability after

heating (for interpretation of the
references to color in the figure,
the reader is referred to the web
version of this article)

o
-
@-!
«

g

released oil under heating; these phenomena could influence ~ high correlation between the traditional analytical method
model precision. Nevertheless, the results obtained show a  (Schreiber) and the automated method this article proposes.
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Fig.6 Correlation between R+G-B + Otsu + | R+G-B + filter + | b* + Otsu + b* + filter +
manual and automatic computer filter Otsu + filter filter Otsu + filter
vision methods (C1°: cor- c1' c2' c1' c2' c1' c2' c1' c2'
relation between percentage CoalhoA | 0.00 | 000 | 0.0 | 000 | 0.00 | 0.00 | 0.00 | 0.00 1.00
of increase in diameter and
. Coalho B
percentage increase of area
and C2’: correlation b Coalho C
the final diameter measured by Meia Cura A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
the Schreiber method and area Meia Cura B
increase calculated by automatic Meia Cura C
method of segmentation) (for
. . Meia Cura D
interpretation of the references -
to color in the figure, the reader Meia Cura E
is referred to the web version of Mozzarella A -0
this article) Mozzarella B | 0.62 0.62 0.63 0.63
Mozzarella C
Prato A 0.63 0.63 0.62 0.61
Prato B 0.37 0.42 0.36 0.42 0.41 0.43 0.42 0.43
Prato C -0.17 -0.10 -0.16 -0.10 -0.17 -0.11 -0.17 -0.10
Requeijdo A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Requeijso B | 0.70 | 0.57 0.57 0.55 0.55
Requeijdo C -1.00

Conclusions

Results for determination of cheese meltability demon-
strated good correlation between the computer vision
method proposed in this study and the traditional method
(modified Schreiber method). The Schreiber method is
susceptible to precision of human visual imprecision and
errors caused by human fatigue, which could interfere in
the results. These errors are prevented by using a fully
automated computer vision method. Moreover, the pro-
posed method showed its ability to measure the whole area
of cheese samples rather than just the diameter, which is
a great advantage for cheese samples with irregular melt-
ability. Thus, the computer vision could be more accurate
than the reference method adopted in this study. Addition-
ally, the system could be applied for simultaneous imag-
ing of several samples, and after image acquisition, the
script can rapidly analyze the images and provide accurate
results for cheese meltability. Considering all the advan-
tages, the proposed automated method is a reliable, pre-
cise, and fast tool to determine cheese meltability, and it
can be improved for further types of samples or adapted
to other applications.
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Keywords:
Authentication

Meat processors and consumers are greatly concerned about nutritional value, safety and quality of food pro-
ducts. Besides the reproducibility, which is a significant quality parameter of processed food product, the

Ham adulteration of meat products is a crucial concern for manufactures and consumers. Therefore, fast and objective

Partial least squares
Discriminant analysis
Principal component analysis

techniques are demanded to ensure the quality of raw or processed meat. In the current study, near-infrared
(NIR) spectroscopy was verified as a prospective technique to discriminate turkey cuts and processed turkey
meat products. Spectral information in the wavelengths between 400 and 2500 nm of raw material and ready-to-

eat turkey products were acquired and studied for their potential application for quality control and authenti-
cation. Principal component analysis (PCA) was explore the spectra information and samples were classified
using linear discriminant analysis (LDA). PCA carried out on NIR dataset revealed the effect of chemical com-
position and quality features on the spectra. This investigation suggested that NIR spectroscopy is a convenient
tool for quality evaluation of turkey meat.

1. Introduction

The designation ‘ham’ entails the thigh and rump of pork; however,
the name can be used to processed poultry products if the meat have as
a source the breast or leg of the animal, although this is usually qua-
lified with the species of the animal as with ‘turkey ham’ (Feiner, 2006).
The production and commercialization of a wide variety of processed
meat products has increased as required by the industry and consumers
to be used as catering, delicatessen, and ingredient (Igbal, Valous,
Mendoza, Sun, & Allen, 2010).

Consumers are greatly concerned about nutritional value, safety and
quality in terms of health and sensory properties of food products. On
the other hand, meat processors are concerned about products tech-
nological quality and safety (Zamora-Rojas, Garrido-Vado, Pedro-Sanz,
Guerrero-Ginel, & Pérez-Marin, 2011). Low variability in product at-
tributes is an essential feature of processed food quality. There are

currently few studies concerning reproducibility of consecutive batches
in production lines. The assessment of the variability in product char-
acteristics demands a considerable number of data, which often makes
it difficult to analyse the results (Probola & Zander, 2007).

In addition, meat adulteration is a crucial concern for both the meat
handlers and consumers. Fraudulent substitution in ground meat pro-
ducts with low-price meat or non-meat substances is a growing issue
that involves not only economy, quality and safety, but also religion
(Deniz et al., 2018). Ground meat production homogenizes the muscles
characteristics and replacement, thus making adulterant identification
an extremely difficult task (Kamruzzaman, Makino, Oshita, & Liu,
2015).

Therefore, it is necessary to rigorously control the procedures to
ensure the quality of raw or processed meat (Prieto, Roehe, Lavin,
Batten, & Andrés, 2009). The meat industry and consumers demand fast
screening techniques in order to determine meat quality and verify
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product label (Zamora-Rojas et al., 2011). Consequently, the determi-
nation of quality parameters and inspection becomes continuously
important for both manufacturers and consumers (Igbal et al., 2010).

In recent years, many works have been reported investigating
techniques able to identify meat adulteration and verify labelling
statements. Methods based on ELISA, nucleic acid amplification and
mass spectrometry have been used; however, they are time-consuming
and demand technical knowledge (Masiri et al., 2017). Thus, an easy,
fast and accurate method implemented for the regulation of food label
and product quality control is a good alternative (Meza-Marquez,
Gallardo-Velazquez, & Osorio-Revilla, 2010). Process analytical tech-
nology (PAT) is an effective tool to delineate, inspect and supervise
manufacturing processes by measuring critical process parameters
(CPP) and monitoring them, since this parameters can influence the
quality attributes of food products.

Spectroscopic measurements span throughout the visible, near-,
mid- and far-infrared region. The NIR region (750-2500 nm) involves
the radiation associated to overtones and combinations of fundamental
vibrational modes of carbon, nitrogen, oxygen and sulphur, each
bonded to a hydrogen molecule. On the other hand, visible wavelength
ranges are useful in muscle food applications due to pigments in the raw
material (Kumar & Chandrakant Karne, 2017).

Spectral data comprise a large amount of co-linear and redundant
information. Hence, multivariate statistical approach is essential to
reduce the data dimension without missing functional information.
Multivariate statistical analysis methods have been often used in such
situations, allowing for variables reduction and clearer interpretation of
results (Lohumi, Lee, Lee, & Cho, 2015). Principal component analysis
(PCA) is usually the first move for exploring spectral data. This tech-
nique is able to linearly reduce the large amount of variables in the
original data into principal components, which contain the majority of
variability of source data (Kumar & Chandrakant Karne, 2017).

NIR spectroscopy has been used as in-line and on-line monitoring
tool to reduce production-cycling time, avoid batches rejection and
allow real time monitoring of parameters (Roggo et al., 2007). Spec-
troscopy techniques are fast, often non-destructive, and once the
models are calibrated, they are easy to use, representing an interesting
option for food inspection (Alamprese, Casale, Sinelli, Lanteri, &
Casiraghi, 2013). Rady and Adedeji (2018) built classification and
prediction models based on Vis-NIR data for detecting plant and an-
imal-origin adulterants on minced beef and pork. Promising results
were found by De Marchi et al. (2017) in the prediction of sodium
content in commercial processed meat products using near infrared
spectroscopy. However, this technique has not been used with the
specific propose of identifying turkey cuts and turkey processed pro-
ducts.

Therefore, the aim of the current work was to explore the potential
use of NIR spectroscopy as a rapid and chemical free technique to
discriminate different turkey cuts and turkey meat products. Specific
objectives were (1) to characterize the different products according to
chemical composition during processing steps, (2) acquiring NIR spec-
tral information from the samples and investigating the influence of
samples chemical composition on spectra, (3) to apply chemometric
methods to discriminate between different samples, (4) identifying
most significant wavelengths to discriminate samples with reduced
spectral information.

2. Materials and methods
2.1. Sample preparation

The experiment was carried out in two parts. In the first part, 100
fresh meat samples of turkey cuts (20 wings, 20 legs, 20 drumsticks, 20
breasts and 20 skin) were analysed. In the second part of the experi-
ment, four different processed turkey products (blanquet, cooked ham,
turkey breast and smoked breast) were examined (Table 1). Samples

Food Control 107 (2020) 106816

were analysed in three processing stages: (1) sample mixture without
addition of brine, (2) sample mixture after addition of brine, and (3)
final products after processing.

Several different batches were acquired for each sample from meat
processing plant in Parana, Brazil. Each batch, containing three units
(Mot = 158 samples), was randomly taken and transported under re-
frigeration to the Laboratory of Food Science at the State University of
Londrina, Londrina-PR, Brazil, for analysis. A multiprocessor was used
for grinding and blending of the samples, and 50 g of each sample were
used for analysis. The experiment was performed in duplicate.

2.2. Analytical measurements

Samples were thawed at 10°C for 24h. Colour was determined
using a Minolta colorimeter (CR 400, Konica-Minolta Sensing Inc.,
Osaka, Japan) with a D65 illuminant and a 10° observer; 4 measure-
ments of each sample were taken and averaged. The calibration was
performed with a standard ceramic tile. Colour was expressed in terms
of values for lightness (L*), redness (a*), yellowness (b*), Chroma (C*),
and hue angle (h*) according to the Commission Internationale de
PEclairage (CIE) colour system (CIE, 1976; Feiner, 2006; Honikel,
1998).

2.3. Chemical analysis

Moisture, fat, ash and protein content were determined using the
whole parts and ground samples and used as reference values for fur-
ther NIR data. Samples were evaluated by traditional analytical
methods immediately after NIRS analysis. The moisture content was
determined according to 1SO-1442 (1997) by oven drying the samples
until constant weight at 100 °C. Fat content was measured following the
Soxhlet procedure (ISO-1443, 1973), ash content was determined after
incineration at 550 °C following ISO-936 (1998), total protein was de-
termined by the Kjeldahl method (1SO-937, 1978) and carbohydrates
were calculated by difference.

2.4. Near-infrared spectroscopy

The sample spectral information was acquired using an XDS Near-
Infrared model XM 1100 series — Rapid Content Analyser (Foss
NIRSystems, Denmark), which covers the wavelength range from 400 to
2498 at 2-nm intervals. Measurements were collected in reflectance
mode and converted as absorbance (log 1/R). After each measurement,
the sample cell was washed with ethanol (70% v/v), rinsed with dis-
tilled water and dried using soft paper tissue. Turkey cut spectra were
collected directly from the sample.

2.5. Statistical analysis

2.5.1. ANOVA

The results were assessed by analysis of variance (ANOVA) and the
Tukey test with a significance level of 0.05 using Statistica software 7.0
(StatSoft Inc., USA).

2.5.2. PCA and classification models and selection of optimal wavelengths

Spectral data were, first, evaluated by a PCA in order to explore the
variance among samples. The method was used in two separate data
sets: Set 1 - turkey cuts; and Set 2 - processed samples (without and with
addition of brine) and final products.

The near infrared spectrum comprises many overtones and combi-
nation bands. Therefore, designating some important wavelengths can
reduce in a significant way the amount of data regarding the response
of interest. The loadings obtained from PCA using full spectra can be
useful for selecting the optimum wavelengths, yielding fairly similar
results compared with model using all the wavelengths.

In order to classify turkey cuts and processed meat turkey samples
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Table 1
Basic composition of processed turkey meat products.
Product Ingredients
Blanquet White breast meat, turkey fat, water, soy protein, malt dextrin, cassava starch, salt, natural spices, sugar, sodium polyphosphate (INS 452i), carrag (INS
407), sodium nitrite (INS 250) and sodium erythorbate (INS 316).
Cooked ham Dark meat from whole drumstick, salt, malt dextrin, soy protein, natural spices, sugar, carmine natural colour (INS 120), sodium nitrite (INS 250), carrageenan

(INS 407), sodium polyphosphate (INS 452i), monosodium glutamate (INS 621) and sodium erythorbate (INS 316).

Turkey breast
452i) and sodium erythorbate (INS 316).
Smoked breast

White meat from whole breast, sugar, salt, malt dextrin, soy protein, natural spices, carrageenan (INS 407), sodium nitrite (INS 250), sodium polyphosphate (INS

White breast meat, dark meat from drumstick, turkey fat, water, salt, sugar, soy protein, malt dextrin, cassava starch, natural spices, sodium polyphosphate (INS

452i), carrageenan (INS 407), sodium nitrite (INS 250) and sodium erythorbate (INS 316), colorant.

according to product characteristics, linear discriminant analysis (LDA)
was performed (Massart et al., 1997). LDA is considered a probabilistic
classification method, since it optimizes the separation among cate-
gories. NIR spectroscopy encompasses a large number of information
from the samples. Since the amount of variables must be lower than
samples, LDA was determined using few selected wavelengths. LDA was
performed with a cross-validation (leave one out) and external valida-
tion, where samples were split in two groups: calibration (70% of
samples) and validation (30% of samples). The models performance
was tested with raw and pre-treated data, using Multiplicative Scat-
tering Correction (MSC), Standard Normal Variate (SNV), 1st and 2nd
Derivative pre-treatments. All multivariate analysis were performed
with the Unscrambler software (version 9.7, CAMO, Trondheim,
Norway).

3. Results and discussion
3.1. Chemical composition of processed Turkey products

Table 2 summarizes chemical composition of tested turkey cuts,
while Table 3 presents the variations in colour (L* a*, b* Chroma and
Hue angle and chemical composition of tested turkey products. The
quality characteristics results suggested that there is a wide variance
range in these attributes. Breast and wing samples had the greatest
protein content (24.80 and 23.98%, respectively), differentiating sig-
nificantly from other samples. Skin had the smallest protein content
(9.94%). Even though the moisture content were very similar between
the turkey cuts, samples were significantly different between each
other. The fat content was significantly higher in skin samples
(15.28%), while leg and drumstick, and wing and breast samples had no
significant difference between them. Wing and drumstick had no dif-
ference among ash content, while skin samples that had the smallest
content, varied significantly from other samples.

Cooked ham samples presented the smallest L* values and differ-
entiated significantly from all the samples, both in samples without
brine, with brine and final products. Since a* represents the samples
redness, this parameter can be affect by the myoglobin content, which
is different in samples with only breast meat or only drumstick meat
(Wideman, O'Bryan, & Crandall, 2016), showing significant difference
between samples. Cooked ham is a product composed by dark meat
from drumstick (Table 1) and showed the highest a* values, regardless

Table 2
Experimental results for chemical composition of the tested turkey cuts.

of whether the samples were without brine, with brine or final pro-
ducts. Moisture is the largest component in the samples and, even
though had not varied much between samples and processing stages (no
brine, with brine and final products), the differences were significant.
Blanquet and cooked ham had the highest moisture content in samples
without brine, which differentiated significantly between the other
samples. In samples with brine and final products, this parameter was
higher in cooked ham, which was different from the other samples.
Protein content had no significant difference in samples without brine,
but after the stage with addition of brine, the protein content decreased
and cooked ham differed from other samples. Turkey breast had the
highest protein content in final products, differing from other samples.
The carbohydrate content of turkey cuts and processed turkey products
was calculated as a difference of 100 minus the sum of the other
proximate components means (eq. (1)); hence, those who the other
components exceed 100%, the carbohydrate content was not calcu-
lated.

c=100-(p+m+f +a [0))

Where, c is the carbohydrate content, p is the mean protein content,
is the mean moisture content, f is the mean fat content and a is the
mean ash content.

3.2. Spectral characteristics of samples

The average NIR spectra acquired from each cut and product in the
range of 400-2500 nm are shown in Fig. 1. The NIR range comprises
spectral features regarding absorption bands of many chemical com-
pounds. Overtones and combinations of fundamental vibrations of C-H,
N-H, O-H and S-H functional groups are most prominent absorption
bands in the NIR region (Kumar & Chandrakant Karne, 2017).

Local absorption peaks at 446, 560, 980, 1210, 1450, 1950 nm, and
a slope starting at 2240 nm can be noticed in the turkey meat spectra.
Even though the spectral profiles of the samples presented similar
pattern, there is difference in absolute reflectance values. Leg and
drumstick samples (Fig. 1a) had the highest absorbance values in the
visible range. These cuts have high myoglobin content, which are re-
sponsible for the darker colour (Wideman et al., 2016). Therefore,
cooked ham (Fig. 1b), which contains drumstick meat as main in-
gredient, showed the same behaviour, indicating its darker colour in
comparison with the other products.

Turkey cuts Protein (%) Moisture (%) Fat (%) Ash (%) Carbohydrate (%)
Wing 23.98" + 0.24 7277* +0.12 244" +0.30 1.06" + 0.01 -

Leg 19.42" + 0.41 74.87" + 0.29 377" + 0.21 113" + 0.01 0.81

Drumstick 20.84° + 0.14 74.36° + 0.12 366" + 0.28 1.10°" + 0.02 0.04

Breast 24.80" + 0.11 73.23* + 0.21 1.53" + 0.42 1.13" + 0.02 -

skin 9.94¢ + 0.63 7440 + 0.11 15.28¢ + 0.76 0.43° + 0.02 -

Results are reported as averages of three or more determinations =+ standard deviation. Different letters in the same column are significantly different as determined

by Tukey test (p < 0.05).
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Experimental results for physical attributes and chemical composition of the tested turkey samples.

Product/ L* a* b* c* h* Protein (%) Moisture (%) Fat (%) Ash (%) Carbohydrates (%)

Attribute

NO BRINE

Blanquet 634+ 18 88+ 17 148°+1.4 173" £ 1.8 054°*008 217°*09 743°+05 220°*0.55 1.08°*006 072

Cooked ham  41.0" + 41 157" + 09 104" £ 39 19.0° + 29 100" + 013 205'+14 741°+07 223°+044 146" £ 001 171

Turkey 586°+36 67°+12 86"+ 16 11.0°+16 066 + 011 207°+31 723"+ 05 396"+ 039 103003 201
breast

Smoked 624*+38 109°+16 114" +09 158 +13 076°+008 202°+0.6 708" + 09 251°+0.16 1.29°*0.01 520
breast

WITH BRINE

Blanquet 61.9°+36 109°+18 139°+24 17.7°° 3.0 066°*004 17.8°+03  709°+09 444°+0.34 330°+02 356

Cooked ham 48.8" + 53 146" + 29 107" + 28 18.3*+30 093" * 017 146" + 03 752" + 03 336" = 050 3.91" + 0.01 293

Turkey 64.6°+26 6.1°%14 100" +11 117+ 14 054 + 009 165°+03 772+ 03 221°+023 34°*03 0.69
breast

Smoked 637°+42 6.6°+19 125 + 20 142" +25 048°+008 177°*12  716°+07 243% 026 213°*009 614
breast

FINAL PRODUCTS

Blanquet 709°+20 85 *13 89°+09 124° £ 06 076 + 011 182 + 0.7 701°*02 403°+048 471°*002 296

Cooked ham 57.8" + 2.6 156" + 1.5 8.6+ 0.9 17.8" + 16 106°+0.04 17.1°+03 747" + 08 471°+0.16 332" + 0.02 017

Turkey 69.2°+17 8608 82°+04 11.9°£ 05 080" +0.06 2251°+008 725°+01 420°+0.77 29°+02 -
breast

Smoked 705°+14 7.0°+04 84°+05 10.9°+06 069" £ 0.01 190" + 09 73.0°+01 500°%+0.32 3.02"+001 -
breast

Results are reported as averages of three or more determinations + standard deviation. Different letters in the same column of each section (no brine, with brine and

final products) are significantly different as determined by Tukey test (p < 0.05).

A peak at 1730 nm and 2310 nm can be observed in the spectra of
skin samples. These regions correspond to stretching first overtone of
CH, associated to fat and fatty acids and CH combinations related with
fat, respectively (Cozzolino & Murray, 2004).

The most intensive absorption peaks identified in the NIR range at
980 nm, 1450 nm and 1950 nm are due to O-H stretching third, second
and first overtones, respectively, mainly related to water (Osborn,
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Fearn, & Hindle, 1993). After addition of brine (Fig. 1¢), cooked ham
and breast samples have shown the highest absorption in this range,
while smoked breast had lowest values, corroborating the experimental
results obtained for moisture content. Absorption bands around
1210 nm are related to stretching and deformation of C-H bonds, while
the region around 2240 nm is influenced by N-H stretching and de-
formation associated to amino acids (Osbomn et al., 1993).
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Fig. 1. Spectral information for samples a) turkey cuts, b) raw material without brine, ¢) raw material with brine, d) final products.
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Fig. 2. Score plot of the first two principal components and loadings plot (PC1, PC2 and PC3) for spectral data of turkey samples: a) turkey cuts, b) raw samples
without brine, ¢) raw samples with brine, d) final products.

3.2.1. Spectral multivariate analyses visualizing the PC scores. Scores of the first two principal components
Qualitative discrimination among samples was evaluated by a PCA, of Set 1 and 2 were plotted and are presented in Fig. 2.
which was performed with a cross-validation (leave one out) on the Fig. 2a represents the score plots of turkey cuts, with the first two

spectral data. The original spectral data was rebuilt to a reduced the PCs explaining 99% of the total variance. Five different clusters can be
amount of variables, so that, samples were grouped according to their clearly observed, where skin samples are in the negative region of PC1
PCA scores instead of reflectance intensities. For all groups of samples, while the other samples are in the positive region. Still, the two groups
the first two principal components explained over 90% of the total composed by leg and drumstick samples are very distant from wing and
variance among meat samples. The PCA is normally interpreted breast samples and can be observed in the upper region of PC2. These
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Fig. 3. Score plot of the first three principal components for spectral data of turkey products samples: a) turkey cuts, b) without brine, ¢) with brine, d) final products.

principal components have shown to be in accordance to the fat content
of turkey cuts.

Regarding the processed products, the first two principal compo-
nents shown in Fig. 2b suggested that the samples without brine ad-
dition were spectrally different, being able to discriminate them into
separate classes. Samples were grouped into four distinct groups, in-
dicating that the sample characteristic in the same cluster are very si-
milar and those in different clusters are distinct. The cluster re-
presenting cooked ham is isolated in the positive region of PC2,
meanwhile other samples are very close in the negative region of PC2.
The blanquet is observed in the region between breast and smoked
breast clusters.

Fig. 2c represents the score plot after addition of brine and shows
breast samples in the negative region of PC2, while the other clusters
are in the positive region of PC2. Final products (Fig. 2d) had very
different profiles and can be clearly distinguished in the score plot of
PC1 vs PC2.

These principal components seems to be related mainly to the
colour characteristics values (L* and a*) of the samples without addi-
tion of brine and final products, while moisture content is mostly in-
fluencing the spectral information after addition of brine. Thus, samples
showing similar characteristics regarding spectral information tend to
be close predicted in the principal component space.

3.2.2. Identification of optimal wavelengths

Models based on a few number of wavelengths, which have most of
the information in the data set, may be equal or better than models
based on full wavelengths (Wold, Jakobsen, & Krane, 1996). Selecting a
few wavelengths can be sufficient to perform most of the classification,

being suitable for online application as an alternative to remove re-
dundant information, improve data processing and posterior analysis
(Ariana, Lu, & Guyer, 2006; Nakariyakul & Casasent, 2008; Vila et al.,
2005).

In this study, optimal wavelengths were identified and selected
using the PCA loadings (Fig. 2e, f, g and h). The PCA loadings can be
interpreted as the regression coefficients of each wavelength at each
principal component, indicating which wavelengths the most influence
the discrimination (Lawrence, Windham, Park, Smith, & Poole, 2004).
The loadings of PC1, PC2 and PC3 were chosen for wavelength selection
since they explained most of the variance in the data. The peaks and
valleys at these loadings were selected, which corresponded to some of
the main wavelengths observed in the spectra (446, 516, 560, 980,
1380, 1450, 1950 and 2220 nm), to test the ability of the selected
wavelengths in discriminate the samples.

A new PCA was built with only the optimum wavelengths and Fig. 3
exhibits for the first three PCs the score plots of turkey cuts and pro-
cessed products. After variable selection, the clusters were further se-
parated from each other, even though they presented the same pattern.
InFig. 3a, PC1 and PC2 explained 100% of the difference among turkey
cut samples, according to fat content determined by chemical analysis.
After variable selection, skin samples remained in the negative side of
PC1 and the other samples are in the positive side; however, leg and
drumstick samples grouped together in the lower part of PC2, mean-
while wing and breast samples were in the upper part. Nevertheless,
there are a clear separation among the clusters.

In Fig. 3b, PC1 and PC3 explained the difference among samples
without addition of brine related to colour parameters, with cooked
ham in the positive region of PC1. The cluster represented by breast
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Table 4
LDA parameters for classification of turkey cuts using selected wavelengths.
TURKEY CUTS PRE-TREATMENT CALIBRATION VALIDATION
Sensitivity Selectivity Sensitivity Selectivity

WING None 1.00 1.00 0.86 1.00
MSC 1.00 1.00 1.00 1.00
SNV 1.00 1.00 1.00 1.00
1st Derivative 1.00 1.00 0.86 1.00
2nd Derivative 1.00 1.00 1.00 1.00

LEG None 0.93 1.00 0.80 0.80
MSC 0.93 1.00 0.80 1.00
SNV 1.00 1.00 0.80 1.00
1st Derivative 1.00 0.94 0.60 1.00
2nd Derivative 1.00 0.88 0.80 0.80

DRUMSTICK None 1.00 0.98 0.83 0.83
MSC 1.00 0.93 1.00 0.86
SNV 1.00 1.00 1.00 0.86
1st Derivative 0.92 1.00 1.00 0.75
2nd Derivative 0.85 1.00 0.83 0.83

BREAST None 1.00 1.00 1.00 0.83
MSC 1.00 1.00 1.00 1.00
SNV 1.00 1.00 1.00 1.00
1st Derivative 1.00 1.00 1.00 0.83
2nd Derivative 1.00 1.00 1.00 1.00

SKIN None 1.00 1.00 1.00 1.00
MSC 1.00 1.00 1.00 1.00
SNV 1.00 1.00 1.00 1.00
1st Derivative 1.00 1.00 1.00 1.00
2nd Derivative 1.00 1.00 1.00 1.00

after addition of brine (Fig. 3¢) is in the negative region of PC2, with
other samples scattered in the positive part of PC2, corroborating with
moisture content values. Different clusters can be clearly noticed in the
recalculated PCA of final products (Fig. 3d), where smoked ham sam-
ples are isolated in the positive part of PC2, while the remaining sam-
ples are in the negative part.

In this way, as the optimum wavelengths were able the discriminate
samples, data processing time can be significantly reduced by im-
plementing a powerful PAT in the meat processing industry using only
these selected wavelengths. However, these plots only refer to quali-
tative variations of samples, without mentioning their quantitative at-
tributes.

3.2.3. Classification of samples using selected wavelengths

The selected data were also used to classify turkey meat by linear
discriminant analysis (LDA). This technique provides automatic object
classification, by improving the variance ratio between classes e and
reducing the variance ratio within classes, and, consequently, finding
an optimum limit among classes (Mignani, Ciaccheri, Cimato, Attilio, &
Smith, 2005). The selected wavelengths were used instead of the full
spectral data to perform the LDA.

Table 4 shows the classification parameters of turkey cuts using
selected wavelengths. The models based on reduced spectra showed
high values of sensitivity and selectivity (over 75%), indicating ro-
bustness of the discrimination models. Raw data were able to correctly
classify samples with over 80% certainty. Data pre-treated with MSC
and SNV also showed good results classifying the turkey cuts samples.
After 1st and 2nd derivative pre-treatments, the data did not show any
improvement in the model performance. Table 5 shows the classifica-
tion parameters of processed turkey products using the selected wave-
lengths. Overall, raw data were able to correctly classify turkey pro-
ducts (sensitivity and selectivity over 71%); however, the MSC and SNV
pre-treatments clearly improved the models performance, with only few
misclassifications. The high classification sensitivity and selectivity

values point out that the optimum wavelengths had the potential to
discriminate the samples. The results suggest that NIR spectroscopy was
able to distinguish these samples without any physicochemical in-
formation integrated with spectral data, representing a potential PAT
for food processing industry.

4. Conclusion

The traditional techniques used for determination of turkey cuts and
processed meat products have the disadvantage of being time-con-
suming, arduous and demanding technical knowledge, thus not suitable
for evaluation of many samples in the production line. It would be a
great advantage to determinate ate the same time distinct attributes of a
batch, by using only a single device that is non-destructive.

NIR spectroscopy was explored as a non-destructive technique for
classification of several turkey cuts and processed turkey meat products
during different stages along the processing line. A few established
wavelengths indicated presence of water and other chemical compo-
nents in the samples. Identifying and selecting the most important
wavelengths suggest the use of low-price multispectral NIR equipment
for the desired application.

Experimental results indicate that NIR spectroscopy can be an asset
over traditional method used for processed turkey cuts and processed
meat products. The results highlighted the ability of visible and near
infrared spectral information to identify samples without any back-
ground of physicochemical analysis. The technique has potential to be
applied in the poultry industry as a key component in manufacturing,
offering several advantages, which includes elimination of subjective
analysis and the construction real time data of meat products for doc-
umentation, traceability, and labelling.
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Table 5
LDA parameters for classification of processed turkey products using selected wavelengths.
TURKEY CUTS PRE-TREATMENT CALIBRATION VALIDATION
SENSITIVITY SELECTIVITY SENSITIVITY SELECTIVITY
NO BRINE
BLANQUET None 1.00 1.00 1.00 1.00
MSC 1.00 1.00 1.00 1.00
SNV 1.00 1.00 1.00 1.00
1st Derivative 1.00 0.96 1.00 1.00
2nd Derivative 0.96 1.00 0.80 1.00
COOKED HAM None 0.88 0.88 0.71 0.83
MSC 1.00 1.00 1.00 1.00
SNV 1.00 1.00 1.00 1.00
1st Derivative 1.00 0.84 1.00 0.82
2nd Derivative 1.00 0.94 0.93 0.81
TURKEY BREAST None 0.88 0.88 0.86 0.75
MSC 1.00 1.00 1.00 1.00
SNV 1.00 1.00 1.00 1.00
1st Derivative 0.81 1.00 0.79 1.00
2nd Derivative 0.94 0.94 0.79 0.92
SMOKED BREAST None 1.00 1.00 1.00 1.00
MSC 1.00 1.00 1.00 1.00
SNV 1.00 1.00 1.00 1.00
1st Derivative 0.96 1.00 1.00 1.00
2nd Derivative 0.96 0.96 1.00 0.75
‘WITH BRINE
BLANQUET None 1.00 1.00 1.00 1.00
MSC 1.00 1.00 1.00 1.00
SNV 1.00 1.00 1.00 1.00
1st Derivative 0.95 1.00 0.78 1.00
2nd Derivative 0.90 0.86 0.67 0.60
COOKED HAM None 1.00 1.00 1.00 1.00
MSC 1.00 1.00 1.00 1.00
SNV 1.00 1.00 1.00 1.00
1st Derivative 1.00 1.00 1.00 1.00
2nd Derivative 0.92 0.92 0.80 0.57
TURKEY BREAST None 1.00 0.95 1.00 0.73
MSC 1.00 0.95 1.00 0.73
SNV 1.00 0.95 1.00 0.73
1st Derivative 0.95 0.95 1.00 0.80
2nd Derivative 1.00 1.00 1.00 0.80
SMOKED BREAST None 0.94 1.00 0.77 1.00
MSC 0.94 1.00 0.77 1.00
SNV 0.94 1.00 0.77 1.00
1st Derivative 0.94 0.89 1.00 1.00
2nd Derivative 0.82 0.88 0.54 0.88
FINAL PRODUCT
BLANQUET None 1.00 1.00 1.00 1.00
MSC 1.00 1.00 1.00 1.00
SNV 1.00 1.00 1.00 1.00
1st Derivative 1.00 1.00 1.00 1.00
2nd Derivative 1.00 1.00 1.00 1.00
COOKED HAM None 1.00 1.00 1.00 1.00
MSC 1.00 1.00 1.00 1.00
SNV 1.00 1.00 1.00 1.00
1st Derivative 1.00 1.00 1.00 1.00
2nd Derivative 1.00 1.00 1.00 1.00
TURKEY BREAST None 1.00 1.00 1.00 1.00
MSC 1.00 1.00 1.00 1.00
SNV 1.00 1.00 1.00 1.00
1st Derivative 1.00 1.00 1.00 1.00
2nd Derivative 1.00 1.00 1.00 1.00
SMOKED BREAST None 1.00 1.00 1.00 1.00
MSC 1.00 1.00 1.00 1.00
SNV 1.00 1.00 1.00 1.00
1st Derivative 1.00 1.00 1.00 1.00
2nd Derivative 1.00 1.00 1.00 1.00
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