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RESUMO 

Técnicas rápidas, não destrutivas e livres de produtos químicos estão em crescente 

demanda em muitas áreas da indústria. As técnicas de espectroscopia no infravermelho próximo 

(NIRS) e de imagem hiperespectral no infravermelho próximo (NIR-HSI) têm demonstrado 

grande potencial na determinação de parâmetros de qualidade de alimentos, autenticação de 

produtos alimentícios, detecção de fraudes alimentares, entre muitas outras aplicações. Na 

espectroscopia NIR, as medições são feitas em pontos específicos da amostra, detectando 

apenas uma pequena porção; enquanto na imagem hiperespectral, as informações espectrais e 

espaciais são combinadas, sendo uma escolha adequada para muitos produtos alimentícios, uma 

vez que são matrizes muito heterogêneas. Portanto, este estudo teve como objetivo revisar todas 

as aplicações de NIRS (dispersivos), Transformada de Fourier (FT) NIR e HSI na avaliação de 

parâmetros de qualidade da farinha de trigo e de produtos à base de trigo, bem como para a 

autenticação e determinação da composição desses produtos. Além disso, este trabalho teve 

como objetivo identificar e classificar diferentes tipos de amostras de fibras adicionadas à 

semolina e massas produzidas por formulações de fibras e semolina, e monitorar o processo de 

cozimento dessa massa enriquecida com fibras por técnicas espectrais. Além disso, este trabalho 

teve como objetivo a aplicação de HSI em outro produto em pó, sendo utilizada para quantificar 

o teor de pectina em cascas de laranja. Primeiramente, espectros NIR foram adquiridos para 

comparar a precisão na classificação de amostras enriquecidas com fibras, para quantificar a 

quantidade dessas fibras e verificar sua distribuição das fibras adicionadas à semolina. A 

Análise de Componentes Principais (PCA) e a Soft Independent Modelling of Class Analogy 

(SIMCA) foram usadas para a classificação. Modelos de regressão de mínimos quadrados 

parciais (PLSR) aplicados aos espectros NIR-HSI mostraram R2P entre 0,85 e 0,98, e RMSEP 

entre 0,5 e 1% do teor de fibra, e os modelos foram usados para construir os mapas químicos 

das amostras. Além disso, NIR-HIS, em conjunto com Multivariate Curve Resolution-

Alternating Least Squares (MCR-ALS), foi testado para investigar a capacidade de avaliação, 

resolução e quantificação da distribuição de fibras em massas alimentícias enriquecidas. Os 

resultados mostraram coeficiente de determinação de validação (R²V) entre 0,28 e 0,89,% de 

falta de ajuste (LOF) <6%, variância explicada acima de 99% e similaridade entre espectros 

puros e recuperados acima de 96% e 98% em modelos usando farinha pura e macarrão controle 

como estimativas iniciais, respectivamente. Além disso, o VIS/NIR-HSI no modo de 

transmissão foi testado como uma alternativa objetiva para a classificar amostras de acordo com 

o tempo de cocção de massas alimentícias como forma de automatizar a determinação de 



atributos de massas alimentícias. A Análise Discriminante Linear (LDA) mostrou valores de 

sensibilidade e especificidade entre 0,14 - 1,00 e 0,51 - 1,00, respectivamente, e taxa de não 

erro (NER) acima de 0,62. A Análise Discriminante por Mínimos Quadrados Parciais (PLSDA) 

apresentou valores de sensibilidade e especificidade entre 0,67 - 1,00 e 0,10 - 1,00, 

respectivamente, e NER acima de 0,80. Os resultados da primeira parte deste trabalho 

mostraram que a técnica NIR-HSI pode ser utilizada para a identificação e quantificação da 

fibra adicionada à semolina. Além disso, NIR-HSI e MCR-ALS, juntos, são capazes de 

identificar fibras em massas. A imagem hiperespectral no modo de transmissão demonstrou ser 

uma técnica adequada como alternativa objetiva para classificar amostras de macarrão de 

acordo tempo de cocção, como forma de automatizar a determinação dos atributos das massas. 

A determinação do teor de pectina em cascas de laranja foi investigada usando NIR-HSI. LDA 

mostrou melhores resultados de discriminação considerando três grupos: baixo (0–5%), 

intermediário (10–40%) e alto (50–100%) conteúdo de pectina. Modelos PLSR baseados em 

espectros completos mostraram maior precisão (R2> 0,93, RMSEP entre 6,50 e 9,16% da 

pectina) do que aqueles baseados em comprimentos de onda selecionados (R2  entre 0,92 e 0,94, 

RMSEP entre 8,03 e 9,73% de pectina). Os resultados demonstram o potencial do NIR-HSI 

para quantificar o conteúdo de pectina em cascas de laranja, fornecendo uma técnica valiosa 

para produtores de laranja e indústrias de processamento. 

 

 

Palavras-chave: Espectroscopia no infravermelho próximo, Imagem hiperespectral, Semolina, 

Fibra, Farinha de trigo, Tempo de cozimento, Pectina, Resíduos de laranja, Casca de laranja. 

 

 

 

 

 

 

 

 

 

 



 

 

 

ABSTRACT 

 

Fast, non-destructive and chemical-free techniques are in increasing demand in 

many fields of the industry. Near-infrared spectroscopy (NIRS) and NIR hyperspectral imaging 

(NIR-HSI) techniques have shown great potential in determining food quality parameters, 

authenticating food products, detecting food fraud, among many other applications. While in 

near infrared spectroscopy, the measurements are taken at specific points on the sample, 

detecting only a small portion; in hyperspectral imaging, spectral and spatial information are 

combined, making it a suitable choice for many food products, since they are very 

heterogeneous matrices. Therefore, this study aimed to review all the application of (dispersive) 

NIRS, Fourier Transform (FT) NIR, and HSI in assessing wheat flour and wheat-based products 

quality parameters, as well for the authentication and determination of composition of these 

products. Moreover, this work aimed to identify and classify different types of fibre samples 

added to the semolina and pasta produced by semolina-fibre formulations, and to monitor the 

cooking process of this fibre-enriched pasta by spectral techniques. In addition, this work had 

the aim of applying HSI to other powdered product, so the pectin content in orange peels was 

quantified. First, NIR spectra were acquired to compare the accuracy in the classification of 

fibre-enriched samples, to quantify the amount of these fibres and verify their distribution on 

semolina samples. Principal Component Analysis (PCA) and Soft Independent Modelling of 

Class Analogy (SIMCA) were used for classification. Partial Least Squares Regression (PLSR) 

models applied to NIR-HSI spectra showed R2P between 0.85 and 0.98, and RMSEP between 

0.5 and 1% of fibre content, and the models were used to construct the chemical maps to check 

the fibre distribution on the samples surface. Moreover, NIR-HSI together with Multivariate 

Curve Resolution-Alternating Least Squares (MCR-ALS), was tested to investigate the ability 

for the evaluation, resolution and quantification of fibre distribution in enriched pasta. Results 

showed coefficient of determination of validation (R²V) between 0.28 and 0.89, % of lack of fit 

(LOF) <6%, variance explained over 99%, and similarity between pure and recovered spectra 

over 96% and 98% in models using pure flour and control as initial estimates, respectively.  In 

addition, VIS/NIR-HSI in the transmission mode was tested as an objective alternative for the 

classification of pasta samples according to cooking time as way of automating the 

determination of pasta attributes.  Linear Discriminant Analysis (LDA) showed values of 

sensitivity and specificity between 0.14 – 1.00 and 0.51 – 1.00, respectively, and non-error rate 

(NER) over 0.62. Partial Least Square Discriminant Analysis (PLSDA) showed values of 

sensitivity and specificity between 0.67 – 1.00 and 0.10 – 1.00, respectively, and NER over 



0.80. The results of the first part of this work showed that NIR-HSI technique can be used for 

the identification and quantification of fibre added to semolina. Additionally, NIR-HSI and 

MCR-ALS are able to identify fibre in pasta. Hyperspectral imaging in the transmission mode 

demonstrated to be a suitable technique as an objective alternative for the classification of pasta 

samples according to the cooking time as a way of automating the determination of pasta 

attributes. Determination of pectin content in orange peels was investigated using NIR-HSI. 

LDA showed better discrimination results considering three groups: low (0–5%), intermediate 

(10–40%) and high (50–100%) pectin content. PLSR models based on full spectra showed 

higher precision (R2 > 0.93, RMSEP between 6.50 and 9.16% of pectin) than those based on 

few selected wavelengths (R2 between 0.92 and 0.94, RMSEP between 8.03 and 9.73% of 

pectin). The results demonstrate the potential of NIR-HSI to quantify pectin content in orange 

peels, providing a valuable technique for orange producers and processing industries. 

 

 

Keywords: Near infrared spectroscopy, Hyperspectral imaging, Semolina, Fibre, Wheat 

flour, Cooking time, Pectin, Orange waste, Orange peel. 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 



 

 

 

RESUMEN 

Las técnicas rápidas, no destructivas y libres de químicos tienen una demanda creciente 

en muchos campos de la industria. Las técnicas de espectroscopia de infrarrojo cercano (NIRS) 

y de imágenes hiperespectrales NIR (NIR-HSI) han mostrado un gran potencial para determinar 

los parámetros de calidad de los alimentos, autenticar los productos alimenticios, detectar el 

fraude alimentario, entre muchas otras aplicaciones. Mientras que en la espectroscopia de 

infrarrojo cercano, las medidas se toman en puntos específicos de la muestra, detectando solo 

una pequeña porción; en la imagen hiperespectral, la información espectral y espacial se 

combinan, lo que la convierte en una opción adecuada para muchos productos alimenticios, ya 

que son matrices muy heterogéneas. Por lo tanto, este estudio tuvo como objetivo revisar toda 

la aplicación de NIRS (dispersivos), NIR de Transformada de Fourier (FT) y HSI en la 

evaluación de los parámetros de calidad de la harina de trigo y los productos a base de trigo, así 

como para la autenticación y determinación de la composición de estos productos. Además, 

este trabajo tuvo como objetivo identificar y clasificar diferentes tipos de muestras de fibra 

agregadas a la semolina y pasta producidas por formulaciones de fibra y semolina, y monitorear 

el proceso de cocción de esta pasta enriquecida en fibra mediante técnicas espectrales. Además, 

este trabajo tuvo como objetivo aplicar HSI a otro producto en polvo, por lo que se cuantificó 

el contenido de pectina en las cáscaras de naranja. Primero, se adquirieron espectros NIR para 

comparar la precisión en la clasificación de muestras enriquecidas con fibra, para cuantificar la 

cantidad de estas fibras y verificar su distribución en muestras de sémola. Para la clasificación 

se utilizaron el Análisis de Componentes Principales (PCA) y el Soft Independent Modelling of 

Class Analogy (SIMCA). Los modelos de regresión de mínimos cuadrados parciales (PLSR) 

aplicados a espectros NIR-HSI mostraron R2P entre 0,85 y 0,98 y RMSEP entre 0,5 y 1% de 

contenido de fibra, y los modelos se utilizaron para construir los mapas químicos para verificar 

la distribución de fibra en las superficies de las muestras. Además, se probó el NIR-HSI junto 

con los Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) para investigar 

la capacidad de evaluación, resolución y cuantificación de la distribución de fibra en la pasta 

enriquecida. Los resultados mostraron coeficiente de determinación de validación (R²V) entre 

0.28 y 0.89,% de falta de ajuste (LOF) <6%, varianza explicada sobre 99% y similitud entre 

espectros puros y recuperados sobre 96% y 98% en modelos que usan harina pura y pasta 

control como estimaciones iniciales, respectivamente. Además, se probó VIS / NIR-HSI en el 

modo de transmisión como una alternativa objetiva para la clasificación de muestras de pasta 

según el tiempo de cocción como forma de automatizar la determinación de los atributos de la 



pasta. El análisis discriminante lineal (LDA) mostró valores de sensibilidad y especificidad 

entre 0,14 - 1,00 y 0,51 - 1,00, respectivamente, y una tasa de ausencia de error (NER) superior 

a 0,62. El análisis discriminante de mínimos cuadrados parciales (PLSDA) mostró valores de 

sensibilidad y especificidad entre 0,67 - 1,00 y 0,10 - 1,00, respectivamente, y NER superiores 

a 0,80. Los resultados de la primera parte de este trabajo mostraron que la técnica NIR-HSI se 

puede utilizar para la identificación y cuantificación de la fibra agregada a la semolina. Además, 

NIR-HSI y MCR-ALS pueden identificar la fibra en la pasta. La imagen hiperespectral en el 

modo de transmisión demostró ser una técnica adecuada como alternativa objetiva para la 

clasificación de muestras de pasta según el tiempo de cocción como una forma de automatizar 

la determinación de los atributos de la pasta. La determinación del contenido de pectina en 

cáscaras de naranja se investigó usando NIR-HSI. LDA mostró mejores resultados de 

discriminación considerando tres grupos: contenido de pectina bajo (0–5%), intermedio (10–

40%) y alto (50–100%). Los modelos PLSR basados en espectros completos mostraron mayor 

precisión (R2> 0,93, RMSEP entre 6,50 y 9,16% de pectina) que los basados en pocas 

longitudes de onda seleccionadas (R2 entre 0,92 y 0,94, RMSEP entre 8,03 y 9,73% de pectina). 

Los resultados demuestran el potencial de NIR-HSI para cuantificar el contenido de pectina en 

las cáscaras de naranja, proporcionando una técnica valiosa para los productores de naranja y 

las industrias de procesamiento. 

 

 

Palabras clave: Espectroscopia de infrarrojo cercano, Imagen hiperespectral, Sémola, Fibra, 
Harina de trigo, Tiempo de cocción, Pectina, Residuos de naranja, Cáscara de naranja. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

RESUM 

 

Les tècniques ràpides, no destructives i lliures de químics tenen una demanda creixent en molts 

camps de la indústria. Les tècniques d'espectroscopia d'infraroig proper (NIRS) i d’imatges 

hiperespectrals NIR (NIR-HIS) han demostrat tindre un gran potencial per a determinar 

paràmetres de qualitat d’aliments, autenticar productes alimentaris, detectar frau alimentari 

entre moltes altres aplicacions. Mentre que en l’espectroscopia d’infraroig proper les mesures 

es prenen en punts específics de la mostra i es detecta una porció menuda, en la imatge 

hiperespectral es combina informació espectral i espacial de tal manera que és una opció adient 

per a molts tipus de productes alimentaris, ja que són matrius molt heterogènies. Per tant, este 

estudi va tindre com objectiu revisar tota l’aplicació de NIRS (dispersius), NIR de 

Transformada de Fourier (FT) i HSI en l’avaluació dels paràmetres de qualitat de la farina de 

blat i els productes a base de blat, així com per a l’autenticació i determinació de la composició 

d’estos productes. A més a més, este estudi va tindre com objectiu identificar i classificar 

diferents tipus de mostres de fibra afegides a la semolina i pasta produïdes per formulació de  

fibra i semolina, i monitorar mitjançant tècniques espectrals el procés de cocció d’aquesta pasta 

enriquida amb fibra. A més, este treball va tindre com objectiu aplicar HSI a un altre producte 

en pols, de tal manera que es va quantificar el contingut de pectina en les corfes de taronja. 

Primer, es van adquirir espectres NIR per comparar la precisió en la classificació de mostres 

enriquides amb fibra, per quantificar estes fibres i verificar la seua distribució en mostres de 

sèmola. Per a la classificació es van emprar l’Anàlisi de Components Principals (PCA) i el 

SIMCA (Soft Independent Modelling of Class Analogy). Els models de regressió de mínims 

quadrats parcials (PLSR) aplicats a espectres NIR-HSI mostraren R2P entre 0,85 i 0,98 i 

RMSEP entre 0,5 i 1% de contingut de fibra, i els models s’utilitzaren per construir els mapes 

químics per verificar la distribució de fibra en les superficies de les mostres. Així mateix, es va 

provar NIR-HSI amb Multivariate Curve Resolution-Alternating Least Square (MCR-ALS) per 

a investigar la capacitat d’avaluació, resolució i quantificació de la distribució de fibra en la 

pasta enriquida. Els resultats mostraren un coeficient de determinació de validació (R²V) entre 

0,28 i 0,89%,  lack of fit (LOF) <6%, variància explicada sobre 99% i similitud entre espectres 

purs i recuperats sobre 96% i 98% en models que empraren farina pura i pasta control com a 

estimacions inicials respectivament. D’altra part, es va provar VIS / NIR-HSI en el mode de 

transmissió com una alternativa objectiva per a la classificació de mostres de pasta segons el 

temps de cocció com a forma d'automatitzar la determinació dels atributs de la pasta. L’anàlisi 

discriminant lineal (LDA) va mostrar valors de sensibilitat i especificitat entre 0,14 – 1,00 i 



0,51 – 1,00 respectivament, i una taxa d'absència d’error (NER) superior a 0,62. L'anàlisi 

discriminant de mínims quadrats parcials (PLSDA) va mostrar valors de sensibilitat i 

especificitat entre 0,67 – 1,00 i 0,10 – 1,00 respectivament, i NER superiors a 0,80. Els resultats 

de la primera part d’este treball mostraren que la tècnica NIR-HSI es pot emprar per a la 

identificació i quantificació de la fibra afegida a la semolina. A més a més, NIR-HSI i MCR-

ALS poden identificar la fibra en la pasta. La imatge hiperespectral en mode de transmissió va 

demostrar ser una tècnica adient com a alternativa objectiva per a la classificació de mostres de 

pasta segons el temps de cocció com forma d’automatitzar la determinació dels atributs de la 

pasta. La determinació del contingut de pectina en corfa de taronja es va investigar emprant 

NIR-HSI. LDA va mostrar millors resultats de discriminació considerant tres grups: contingut 

de pectina baix (0–5%), intermedi (10–40%) i alt (50–100%). Els models PLSR basats en 

espectres complets van mostrar major precisió (R2> 0,93, RMSEP entre 6,50 i 9,16% de 

pectina) que els basats en longituds d’ona seleccionades (R2 entre 0,92 i 0,94, RMSEP entre 

8,03 i 9,73% de pectina). Els resultats demostren el potencial de NIR-HSI per a quantificar el 

contingut de pectina en corfa de taronja i proporcionen una tècnica valuosa per als productors 

de taronja i les indústries de processament. 

 

Paraules clau: Espectroscopia d’infraroig proper, imatge hiperespectral, sèmola, fibra, farina 
de blat, temps de cocció, pectina, residus de taronja, corfa de taronja. 
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1. INTRODUCTION 
 

Food quality and safety have become global issues, since consumers are 

increasingly concerned about food contamination, adulteration and authenticity. Food 

contamination can be due to physical, chemical, and biological factors. A very clear example 

of this is the production of different products in the same facility, which can lead to cross-

contamination. The use of a common, or even close environment for milling peanuts and other 

food materials, such as wheat, cocoa beans and soybeans, can enable the contamination of 

powdered food products with an allergenic ingredient (Mishra et al., 2015). 

Food adulteration usually involves the replacement or dilution of high-cost 

ingredients with cheap low-quality products without the consumer’s knowledge. Fraudulent 

substitution in ground meat products, for example, involves not only economy, quality and 

safety issues, but also religion (Barbin et al., 2020). This is a very important issue since it 

represents, not only quality and economic effects, but also health threats to consumers (Verdú 

et al., 2016). If the product label does not indicate all the ingredients, the consumer can be 

deceived about what they are really buying. The intentional addition of bread wheat flour in 

durum flour for pasta production, for instance, is an adulteration that leads to a product with a 

lower resistance to cooking and therefore lower quality (Cocchi et al., 2006). 

In the same way, the enrichment of products with other compounds, such as fibres, 

for example, might be controlled. The addition of an alternative ingredient in the formulation 

of products increases its nutritional value, and can affect its technological and sensorial 

characteristics (Badaró et al., 2019). In this context, the authentication of food products has 

become crucial to obtain a safe product with high quality.  

Moreover, the determination of quality parameters in food products is a key step in 

the industry. The variability in the raw materials leads to highly variable products, which must 

be controlled. However, analytical techniques used in food industry to determine 

physicochemical and quality parameters as pH, colour, protein, fat, moisture and ash content 

are destructive, expensive, slow, require sample preparation, besides the amount of chemicals 

used, which involves environmental impact (Porep et al., 2015). Apart from that, some of these 

assessments have a subjective nature, being subject to variation because of human error that 

can be due to fatigue or experience of the assessor (Teye et al., 2015). 

Methods based on optical properties, as near infrared spectroscopy (NIR) and NIR 

hyperspectral imaging (NIR-HSI), have been widely studied as an alternative to this situation. 

Spectroscopy techniques have showed their potential to replace or at least complement classical 
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methods. Although these techniques require reference values for the development of calibration 

models, once the calibrations have been set, they are easy to use (Üçüncüoǧlu et al., 2013). 

NIRS and NIR-HSI are two of many spectroscopy techniques used to detect food 

adulteration and contamination, and to authenticate food products. NIRS is an optical 

technology based on the interaction between incident light and molecules in matters. The 

resultant spectrum records the absorbed energy by the different molecules in the product, 

specifically the overtones and combinations of fundamental vibrations of C-H, N-H, O-H and 

S-H bond (Manley, 2014). However, the measurements are taken in specific points of the 

sample, detecting only a small portion; therefore, the spectra might not be representative for the 

whole sample, especially when the product is a food matrix. In order to obtain spatial 

information, another technology, as NIS-HSI can be used. It integrates both spectral and spatial 

information in a system, being a suitable choice for food products, since they are heterogeneous 

matrices. Moreover, this technique can also be used to develop chemical maps, which allow the 

visualization of how components of interest are distributed over the sample surface (Feng and 

Sun, 2012). On the other hand, these techniques provide a big amount of information; thus, 

chemometric methods are necessary to explore, classify samples or quantify components.  

Considering the need for fast and non-destructive food analysis techniques, this 

work suggests the use of spectral techniques, as NIR and NIR-HSI, to study the distribution of 

fibre added to semolina and pasta. In addition, the study aims to verify the efficiency of such 

techniques in the quantification of these fibres. Although widely used, the application of these 

techniques in the identification, classification or quantification of fibres in products, such as 

pasta, has not yet been reported. Thus, the justification for this work is the use of fast and non-

invasive techniques for control of the type and quantity of alternative ingredients, in this case, 

fibres, added to the formulation of semolina and pasta, as an alternative of food authentication 

of enriched products. This study also aims to apply two different techniques as NIR-HIS in the 

transmission mode to monitor the cooking process of fibre-enriched pasta, as a first step to 

determine parameters in cooked pasta. Moreover, this work aims to study the potential of NIR-

HSI for identification of pectin content in orange peels as an alternative for pectin quantification 

in orange waste without the previous pectin extraction. 
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2. OBJECTIVES 
 

2.1. General Objective 
 

This study aimed to identify and classify different types of fibre samples added to 

the semolina and pasta produced by semolina-fibre formulations, and to study and to monitor 

the cooking process of this fibre-enriched pasta by spectral techniques. Moreover, this work 

aimed to quantify pectin content in orange peels using the spectral information of samples 

instead of the extraction of pectin for quantification.  

 

2.2. Specific Objectives  
 

• Acquisition of spectral information of samples of fibre-enriched semolina by two different 

techniques (portable near infrared spectrometry and hyperspectral imaging); 

• Study of the spectral information of samples, identification of peaks and the molecules 

correspondent to each peak. Application of different pre-processing as an alternative to 

enhance the information in the spectra. Development of discrimination models to 

discriminate fibre from semolina samples and optimization of classification models 

according to the type of fibre in each sample; 

• Development of regression models to determine the fibre content in semolina; 

• Application of the regression models to the hyperspectral images to visualize the 

distribution of the fibres in the samples; 

• Acquisition of spectral and spatial information of samples of fibre-enriched pasta 

hyperspectral imaging; 

• Study of the spectral information of samples, identification of peaks and the molecules 

correspondent to each peak. Application of different pre-processing as an alternative to 

enhance the information in the spectra. Development of a multivariate curve resolution 

method to identify fibre distribution in pasta; 

• Development of regression models to correlate the amount of fibre estimated by the curve 

resolution model and the real content; 

• Acquisition of spectral and spatial information of samples of fibre-enriched pasta during 

cooking by NIR hyperspectral imaging in the transmission mode; 
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• Study of the spectral information of samples, identification of peaks and the molecules 

correspondent to each peak. Application of different pre-processing as an alternative to 

enhance the information in the spectra. Development of classification and discrimination 

models to classify and discriminate samples of pasta regarding their cooking time; 

• Acquisition of spectral and spatial information of samples of orange peels by NIR 

hyperspectral imaging;  

• Study of the spectral information of samples, identification of peaks and the molecules 

correspondent to each peak. Application of different pre-processing as an alternative to 

enhance the information in the spectra. Development of discrimination models to 

discriminate orange peel samples regarding the pectin content; 

• Development of regression models based on full spectra and optimum wavelengths to 

quantify pectin content in orange peels. 

 

3. THESIS STRUCTURE  
 

The development stages of this research project are presented in 7 chapters. First, 

in the Introduction, Objectives and Thesis Structure are presented the main idea of this study, 

the objectives and the stages involved for its accomplishment.  

In Chapter 1 - Near-infrared spectral techniques for wheat flour and wheat-based 

products evaluation: A review, we reviewed the specific applications of Near-Infrared 

Spectroscopy, Fourier Transform Near-infrared Spectroscopy, and Hyperspectral Imaging in 

assessing wheat flour and wheat-based products quality parameters, as well for the 

authentication and determination of composition of these products. This work provided the 

information existent in the literature and the gaps in this field, which contribute to the 

development of the thesis and the following works. 

In Chapter 2 - Identification of fibre added to semolina by Near Infrared (NIR) 

spectral techniques, we compare the efficiency of the near infrared and hyperspectral imaging 

techniques in the classification of samples of different types of fibres added to semolina, 

quantification, and distribution of the fibre content. Three sets of 140, 220 and 351 samples 

were prepared, NIR spectra and hyperspectral images were acquired and interpreted using 

chemometric techniques. Principal Component Analysis (PCA) of pure samples from both 

techniques showed their separation into different groups, especially HSI. Soft Independent 

Modelling of Class Analogy (SIMCA), performed in raw and pre-treated spectra, showed high 
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values of sensitivity and specificity for HSI data, and the efficiency of the model was confirmed 

by the Coomans plot. In turn, NIR spectra showed a very low efficiency in the discrimination 

and classification of semolina added of fibre. Regression models were developed with HSI 

spectra by Partial Least Squares Regression (PLSR), showing R2P between 0.85 and 0.98, 

RMSECV and RMSEP in the range of 0.5 and 1%. In addition, the models were applied to each 

pixel of the hyperspectral images, allowing a visual distribution of the fibres in the samples. 

In Chapter 3 - Near infrared hyperspectral imaging and spectral unmixing methods 

for evaluation of fibre distribution in enriched pasta, we propose the identification of fibre in 

pasta by NIR-HSI imaging, and the study of multivariate analysis tools for fibre identification 

in pasta. Seven types of fibre were used in pasta formulation in 2 percentages (3.5 and 7%). 

HSI images were acquired and Multivariate Curve Resolution-Alternating Least Squares 

(MCR-ALS) was used for the evaluation and quantification of fibre distribution in these pasta 

samples. Results showed R2V between 0.28 and 0.89, %LOF <6%, variance explained over 

99%, and similarity between pure and recovered spectra over 96% and 98% in models using 

pure flour and control as initial estimates, respectively, demonstrating the applicability of NIR-

HIS and MCR-ALS in the identification of fibre in pasta. 

 In Chapter 4 - Study of changes in pasta during cooking by hyperspectral imaging, 

we suggest the use VIS/NIR-HSI in the transmission mode for the study of changes in pasta 

during cooking and the determination of optimal cooking time of pasta as an alternative to 

automate the determination of pasta attributes. The fettuccine samples were produced replacing 

flour by seven types of fibre in two percentages (3.5 % and 7 %). For each type and percentage 

of fibre, ten portions of 25 grams of pasta were weighted, totalling 140 experiments (7 types of 

fibre x 2 percentages x 10 repetitions).  Two units of pasta were removed from cooking water 

each 90 seconds.  The cooking process was carried out for 18 minutes, totalling 13 times (0, 

1.5, 3, 4.5, 6, 7.5, 9, 10.5, 12, 13.5, 15, 16.5 and 18 minutes). VIS/NIR hyperspectral images 

were acquired in the transmission mode. The two spectral range were separately evaluated, but 

VIS data did not show any relationship among samples. Therefore, further multivariate data 

analysis was carried out only on NIR data. PCA was performed and the PCA scores that better 

grouped the samples were used as variables to perform a Linear Discriminant Analysis (LDA). 

In comparison, Partial Least Square Discriminant Analysis (PLSDA) was performed to test the 

ability of the technique to predict optimum cooking time of pasta samples. LDA had values of 

sensitivity and specificity between 0.14 – 1.00 and 0.51 – 1.00, respectively, and non-error rate 

(NER) over 0.62. PLSDA had values of sensitivity and specificity between 0.67 – 1.00 and 0.10 
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– 1.00, respectively, and NER over 0.80. This study suggested that hyperspectral image in the 

transmission mode have good potential as an objective method to optimum cooking time 

determination, meeting this industry need. 

In Chapter 5 - Determination of pectin content in orange peels by Near Infrared 

Hyperspectral Imaging, we quantify pectin content in orange residues using NIR-HSI.  

Hyperspectral images from orange peel (140 samples) with different amounts of pectin were 

acquired and the spectra was used for calibration models using multivariate statistical analyses. 

LDA showed better discrimination results considering three groups: low (0–5%), intermediate 

(10–40%) and high (50–100%) pectin content. PLSR models based on full spectra showed 

higher precision (R2 > 0.93) than those based on few selected wavelengths (R2 between 0.92 

and 0.94). The results showed that this technique holds potential as an alternative to the 

carbazole colorimetry method to quantify pectin in orange peels, and to categorize orange peel 

samples into groups of different pectin concentration, and can be used to justify investments in 

the waste processing and extraction methods. 

 General discussion presents a general discussion of the results obtained in this thesis. 

The General conclusion presents a general conclusion of the results obtained in this thesis 

linking all the knowledge obtained in response to the general objective of the thesis. Finally, 

there is a briefly story regarding the student journey during her PhD in Student Story. All extra 

documents regarding other works developed by the student and the permission from the journals 

to use the published works in this thesis are in the APPENDIX.
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Abstract  

Background: Wheat flour is a food ingredient that provides compounds as fibre, carbohydrates, 

and proteins. It is used in different products, including pasta, cake, bread, among others. 

Therefore, the authentication and assurance of good quality are of great importance. The 

traditional techniques used for quality parameters determinations are laborious, destructive, and 

involve chemical reagents. So, it is necessary the development of techniques capable to 

overcome these disadvantages. The spectral techniques are rapid, non-destructive, and 

chemical-free. 

Scope and Approach: This review approaches the applications of Near Infrared (NIR) 

Spectroscopy, Fourier Transform Near-Infrared (FT-NIR) Spectroscopy, and Hyperspectral 

Imaging (HSI) in the wheat flour and wheat-based products authentication and assessment of 

quality parameters, composition, and contamination. 

Key Findings and Conclusions: The techniques here approached are effective in the 

determination of parameters in wheat flour and wheat-based products, as protein, gluten, fatty 

acids and are also non-destructive. Moreover, the detection and quantification of allergens and 

insect infestation, and the authentication of flour added of other ingredients showed promising 

results using these techniques. Future studies can explore the in/on-line applications of these 

techniques for industrial process lines and compare the use of handheld and benchtop 

spectrometers in these applications. There is a challenge in the near-infrared capability of 

quantifying parameters in low levels; the use of data fusion can be a way to resolve this 

challenge. 

 

Keywords: Near-Infrared Spectroscopy, Fourier Transform, Hyperspectral Imaging, flour, 

bread, pasta. 
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products evaluation: A review 

1.1.Introduction 

 

Whole-wheat flour is a staple food widely consumed around the world, as it is the 

main ingredient for many products, including bread, cake, pasta, cookies, among others. Its 

consumption provides many nutrients in the human diet, especially fibre, carbohydrates, and 

proteins (Dave & Modi, 2018; Hussain et al., 2019). Moreover, it is usually cheap and 

accessible, being a good alternative to be implemented as a food vehicle as a strategy for food 

fortification (Akhtar et al., 2008). 

The quality of wheat-based products is highly dependent on the grain and flour 

quality, so, the evaluation of quality parameters is very important in the food industry (Caporaso 

et al., 2018). Analytical methods traditionally used to determine quality parameters in wheat 

flour and wheat-based products are centred on laborious and/or destructive techniques. The 

gluten content in wheat or other cereals, for example, is determined using an immunological-

based method named enzyme-linked immunosorbent assay (ELISA), which is destructive and 

uses reagents for extraction (Haraszi et al., 2011). Moreover, wet and dry gluten, moisture, 

protein, and ash contents of wheat flour and rheological properties of wheat dough, as 

alveograph and farinograph parameters, are determined by AACC methods (ACCC, 2000). The 

determination of quality parameters in pasta, as optimal cooking time, swelling index, cooking 

losses, among others, are also determined by time-consuming and destructive techniques 

(Bustos et al., 2015).  

Although most of these techniques are accurate and are extensively used for flour 

parameters determination, they present disadvantages, including chemical reagents, which are 

used in most analytical methods. Moreover, some of these techniques, for example, some of the 

classical methods used in the industry for gluten determination, rely on forming the dough balls, 

washing them out and weighting the remained (gluten). Some other methods as enzyme linked 

immunosorbent assay (ELISA), polymerase chain reaction (PCR) and liquid chromatography 

coupled with mass spectrometry are also used, but they are expensive and require appropriate 

sample preparation (Czaja et al., 2018). Therefore, there is a need in developing rapid, non-

destructive, and chemical-free methods, as spectral techniques, that can predict quantitative 

and/or qualitative parameters better or at least equal to the traditional methods (Verdú et al., 

2016).  

Many reports can be found in the literature regarding the spectral techniques, more 

specifically Near Infrared and Hyperspectral Imaging for food assessment. These techniques, 
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more specifically NIR spectroscopy, are reported to be one of the best adapted methods to 

evaluate wheat products, since it a straightforward method of analysis for a fast, accurate and 

reliable determination of wheat and its derived products. Moreover, it can be used as a screening 

method in plant-breeding and as an in-line tool to monitor the changes that may occur during 

processing (Aït-Kaddour & Cuq, 2011). In the cereal field, the applicability of NIR 

spectroscopy as a tool to monitor wheat product processing and chemical changes during 

processing has been reviewed by Aït-Kaddour & Cuq (2011). Recently, quality and safety 

parameters assessed by NIR hyperspectral imaging were reviewed by Sendin et al. (2018), and 

quantitative and qualitative , analysis of chemical composition in grains using NIR and HSI 

techniques were reviewed by Caporaso et al. (2018). In other recent works, Levasseur-Garcia 

(2018) introduced an updated overview of Infrared Spectroscopy methods for detecting 

mycotoxins on cereals, while Femenias et al. (2020) specifically approached the improvements 

in the assessment of Fusarium and deoxynivalenol (a mycotoxin) contamination in cereals 

using HSI. Hussain, Sun & Pu (2019) reviewed the classical and emerging technologies for 

assessment of safety and quality parameters of cereals. However, no review was found showing 

specifically the applicability of spectral techniques for wheat flour and its products. Therefore, 

this review brings the specific applications of (dispersive) NIR, FT-NIR, and HSI in assessing 

wheat flour and wheat-based products quality parameters, as well for the authentication and 

determination of composition of these products. 

 

1.2. Spectral Techniques 

 

Different spectral techniques have been constantly used in the food, 

pharmaceutical, and petrochemical fields. These techniques operate in different wavelength 

ranges of the electromagnetic field (from 100 nm to 1000 µm), from ultra-violet (UV) to far-

infrared region, going through visible (VIS), near (NIR), and mid (MIR) infrared, according to 

the absorbed energy (Porep et al., 2015). In addition, spectrometers can be designed as portable 

or benchtop, dispersive or Fourier Transform devices, and their use will depend on the samples 

to be evaluated (Lohumi et al., 2015).  

Near-infrared spectroscopy is a handy tool in process analytical technology (PAT) 

and quality control that has found widespread application in various fields, especially in 

qualitative and quantitative analysis of food products (Cortes et al., 2019a; Walsh et al., 2020). 

The NIR region covers wavelengths from 780 nm up to 2500 nm, and the resulting spectra of 
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such techniques are associated with absorbed energy of organic molecules, specifically the 

overtones and combinations of fundamental vibrations of X–H chemical bonds, as C–H, O–H 

and N–H bonds. Consequently, as water is the major food constituent and absorbs NIR 

radiation, it strongly affects the spectra of food products (Manley, 2014). 

The interaction of light and the constituents of food products can happen in many 

ways. According to these diverse interactions, in order to determine external and internal 

sample properties, this vibrational technique can be used in different spectral modes, as 

reflectance (specular and diffuse), transmission, interactance, and transflectance. The spectral 

mode choice is made depending on the type, physical properties, and characteristics of the 

samples. Reflectance measures the light that reflects or scatters from a sample surface, so, 

generally, it is used for measuring the spectra of solids. If the reflection is from a smooth 

surface, it is called specular reflectance; whereas, if the reflection is from a rough surface, as in 

food samples, it is called diffuse reflectance. In diffuse reflectance, the amount of scattering 

through the sample length is so high that the light that could cross the sample thickness is 

reflected instead of transmitted (Huang et al., 2008).  

In transmission mode, the light passes through the sample and carries information 

regarding its internal properties; this mode can be used for analysing solid, liquid, and gaseous 

samples. Transflectance and interactance modes combine reflectance and transmittance modes. 

In these cases, the transmitted light goes through a sample and it is reflected by either a reflector, 

in case of transflectance, or by the own sample, in case of interactance. Therefore, transflectance 

is usually applied for measuring the spectra of thin or clear samples; while interactance is 

commonly used when the transmission is not enough to obtain information regarding a solid 

sample (Lohumi et al., 2015). Figure 1A illustrates the sample presentation techniques 

described. 
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Figure 1.1. (A) Approaches for spectra acquisition, Scheme of the operation of (B) a dispersive 

NIR instrument, (C) a FT-NIR instrument, and (D) a NIR-HSI instrument. 

 

Regarding the NIR instruments available, it is possible to find many models and 

brands, which include portable devices, benchtop, hyperspectral devices, Fourier Transform, 

among others. The technology behind these instruments is also different. In dispersive infrared 

instruments (Figure 1B), the measurements are made at one region of the spectrum at a time, 

so each wavelength is measured individually, lowering the scanning speed wavelength. In 

contrast, FT-NIR instruments scan the entire infrared spectrum, and individual scans can be 

combined to better represent the absorbance of the sample. The detector in these instruments 

measures the light intensity, generating an interferogram, which is converted into a spectrum 

by a Fourier Transform algorithm. Consequently, there is an increase in the scanning speed and 

resolution compared to dispersive equipment (Manley et al., 2002). Figure 1C illustrates the 

operation of an FT-NIR instrument. 

The application of NIRS in the literature is generally based on benchtop devices 

(Casian et al., 2021). However, in the last years, the use of portable devices grew with its 

development and marketing (Pasquini, 2018). The most important feature of these devices is 

the miniaturization of benchtop equipment. This feature has a great impact in the industrial 
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environment as it makes it more feasible to apply NIR technology in for in-line routine 

monitoring along the production chain; additionally (Cortes et al., 2019b), the application of 

NIR spectroscopy in delivery and supply chains is becoming more practical, allowing the 

verification of the compliance in the processing line and the final products. (González-Martín 

et al., 2021; Mayr et al., 2021).  

In the literature, many studies compare the application of benchtop and portable 

devices in various applications (Ayvaz et al., 2015; Bizerra Brito et al., 2017; Casian et al., 

2021; Cecchini et al., 2021; González-Martín et al., 2021; Kirchler et al., 2017; Malegori et al., 

2017; Mayr et al., 2021; Rukundo et al., 2021). Although few poor performances, overall, the 

portable devices showed good results when compared to benchtop equipment. In the field of 

portable NIR devices related to wheat flour and wheat products there are also studies (Badaró 

et al., 2019; Chen et al., 2021; Grassi et al., 2018; Jiang et al., 2020; Kumagai et al., 2004; 

Stellacci et al., 2012). Overall, the results found in these works were very satisfactory for 

portable devices, with exception of the work developed by Badaró et al. (2019), since the 

authors compared the results of a protable NIR spectrometer and a hyperspectral camera. 

An important disadvantage of portable devices is the small working area, so that to 

obtain representative information of the sample in case of heterogeneous samples, it is 

necessary many measurements to cover it. Moreover, the construction of miniaturized 

equipment also can result in low signal-to-noise ratios (Mayr et al., 2021; Pasquini, 2018). The 

advances in MEMS (MicroElectroMechanical System) technology resulted in the production 

of tiny devices that, when together, build a complete handheld device (Pasquini, 2018). These 

handheld devices are called “micro” instruments because they are compact and have low weight 

(around 100g). Nevertheless, they feature internal radiation sources and wireless technologies 

as Bluetooth and Wi-Fi for data transmission. The operation of these instruments is not the 

same. As an example, a MicroNIR manufactured by Viavi Solutions contains two small 

tungsten filament radiation sources, the wavelength selection is based on a LVF (linearly 

variable interference filter) placed on a chip with an array of 124 InGaAs sensors and the 

integration time is controlled by a software (Friedrich, 2014). There are several micro 

instruments available in the market, which Pasquini (2018) brings a list in his review. The 

author detailed the operation of a representative number of micro instruments. As mentioned 

by the author, these miniaturized instruments allowed NIRS technology to be used in the field 

or at a point of production, for example, however, they require careful evaluation.     

The traditional spectrometers only detect one point or a small portion of the 

samples, in case of many measurements of the sample, so when it comes to food products, 
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which are very heterogeneous matrices, the spectra may not be representative of the whole 

sample (Feng & Sun, 2012). An alternative to suppress this situation is the application of 

hyperspectral imaging technique (HSI) for simultaneous detection of both spectral and spatial 

information. 

Near-infrared hyperspectral imaging (NIR-HSI) has demonstrated capable of 

exploring both the chemical composition and its spatial distribution within a sample. In 

comparison to traditional NIR spectroscopy, HSI applies spectroscopy coupled with imaging 

and the data is provided as a “hypercube” due to the three-dimensional structure, with two 

spatial dimensions (x, y) and one spectral dimension (λ) (Figure 1D) (Amigo et al., 2015). 

Therefore, hyperspectral imaging allows the visualization of the distribution of the substance 

of interest in samples.  

This technique has been used for different purposes, including assessment of the 

presence of deoxynivalenol and ergosterol in wheat samples (Femenias et al., 2021); detection 

of peanuts in wheat flour (Lohumi et al., 2018); detection and quantification of particles of ergot 

bodies in cereal flour (Vermeulen et al., 2017); determination of bulk density and particle size 

of wheat flour (Zhu et al., 2017); classification of Italian wheat durum spaghetti (Menesatti & 

Bucarelli, 2007), among others. 

Even though spectroscopy presents good performance for the described 

applications, it provides a large amount of data, which should be processed to extract useful 

chemical information and avoid redundant information. Thus, the association of vibrational 

techniques to chemometrics becomes necessary (Caporaso et al., 2017). 

 

1.3. Chemometrics 

 

Chemometrics is a research area, which uses mathematical and statistical methods 

to extract the relevant information in any type of data, including the chemical information of 

spectra and correlate with quality parameters or physical properties of a sample. This technique 

involves unsupervised methods of analysis, such as exploratory analysis, or supervised 

methods, as classification or prediction of quantitative properties, which are based on reference 

chemical or physical measurements (Caporaso et al., 2017). 
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1.3.1. Data pre-processing  

 

Prior to the application of multivariate methods of analysis, the data is pre-

processed. The spectrum or the image can be affected by a large number of factors, e.g., the 

effects of light scattering as baseline shifts and non-linearities. Moreover, the pixels measured 

in hyperspectral images carry all the information from the sample surface, which includes 

mixed information from the components, spectral noise, and irrelevant information, spatial 

interferences. Therefore, spectra and image pre-processing must be applied in order to reduce 

undesirable interference without losing valuable information. Among the most commonly used 

pre-processing techniques, there are Multiplicative Scatter Correction (MSC), Standard Normal 

Variate (SNV), normalization, which reduce scattering effects; and spectral derivatives, as 

Savitzky-Golay (SG) polynomial derivative filters, which smooth spectra by reducing baseline 

variations (Lohumi et al., 2015). The pre-processing improves the spectral information by 

improving the noise-ratio signal and enhancing peaks that overlap in the raw spectrum. The 

parameters used for the pre-processing, such as the selection of the window size and the 

polynomial order in a 1st Derivative, for example, has a large influence in smoothing the 

spectrum (Su & Sun, 2016). In imaging pre-processing, there is also dead pixels, which are 

missing data in the images, and background information, for example, from the surface where 

the samples is placed, that can influence the models, so they must be removed (Amigo, 2020). 

After pre-processing, data is available for exploratory analysis and the development of 

regression, classification or curve resolution models. 

 

1.3.2. Exploratory analysis 

 

Exploratory analysis involves unsupervised methods, such as Principal 

Components Analysis (PCA) and Hierarchical Cluster Analysis (HCA). PCA is the most 

common method used prior to classification or regression to investigate relationships between 

samples and describe the variation among them. This method works by decomposing the data 

into new variables, which are linear combination of the original data, called Principal 

Components (PC’s). Score plots of the new variables are constructed, allowing the visualization 

of the relationship between samples and identifying anomalous samples, called outliers. PCA 

can be applied with no prior information about the sample chemical composition. By 
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investigating the PCA scores and loadings plots, samples and variables can be selected to create 

optimal calibration models and validate them (Manley, 2014). 

 

1.3.3. Quantitative analysis 

 

One of the most powerful methods for quantitative analysis is PLSR, which is 

applied to the linear regression modelling of the multivariate to several independent variables. 

The PLSR algorithm uses spectral information (X-block) and their respective parameter (Y 

variables) to predict unknown samples. The Y variable, also called the dependent variable, is a 

chemical or physical parameter (Su & Sun, 2016). In PLSR, the data are reduced by relating 

linearly the spectral information and the parameter of interest. The resulting combinations of 

the variables are named Latent Variables (LV’s) and are used for the calibration. Hence, it is 

essential that the first few latent variables contain as much information of predictive value as 

possible. However, an inadequate number of LV’s can lead to an under- or overfitted model 

and, consequently, poor predictions result of unknown samples. In order to determine an 

optimum number of factors, apart from a small number of LV’s, a low prediction error must be 

considered. Moreover, to test the models reliability, the prediction of unknown samples must 

be performed (Porep et al., 2015).  

Thus, the evaluation of these models’ performance is based on the parameters of 

coefficient of determination of prediction (R²P); the root means square error of prediction 

(RMSEP); and the ratio of prediction to deviation (RPD). The coefficient of determination of 

calibration (R²C) and cross-validation (R²CV) and the root means square error of calibration 

(RMSEC), cross-validation (RMSECV) are also considered, but the prediction with 

independent external data, which are not included in the models, is necessary. The equations 

for the calculation of these parameters are presented in Table 1.1. 

Among many applications, PLSR has been used in the prediction of contamination 

of organic wheat flour with common wheat flour, cassava flour, and corn flour (Su & Sun, 

2017); of wheat flour with peanut and walnut (Zhao et al., 2018); and bulk density prediction 

in wheat flour (Zhu et al., 2017).  
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1.3.4. Discriminant and classification analysis 

 

Among all discriminant and classification analysis methods, the most used are 

Partial Least Square Discriminant Analysis (PLS-DA), Soft Independent Modelling of Class 

Analogy (SIMCA), and Linear Discriminant Analysis (LDA). Each one with its particularity, 

these supervised methods are used as qualitative multivariate data analysis techniques or pattern 

recognition methods by developing specific algorithms with the spectral data matrix (X-block) 

and the correlated category of the samples (Y variables) (Su & Sun, 2016).  

For a discriminant analysis, PLS-DA, for example, is used to raise the separation 

between groups based on Partial Least Square Regression (PLSR) models, where the category 

is coded as 0 and 1, with 1 corresponding to the category of samples of interest and 0 to all the 

other samples. The classes are delimited adopting a threshold value between 0 and 1 using 

probabilistic density functions and the Bayesian theory (Ferreira, 2015). PLS-DA has been 

employed in qualitative analysis, as the assessment of rye flour, organic wheat flour, spelt flour 

and organic spelt flour (Su & Sun, 2016), and the discrimination of kernels and flours from 

bread wheat, spelt, durum, emmer, and einkorn (Ziegler et al., 2016). 

Such as PCA, LDA is a classification method used for dimensionality reduction. 

However, it searches the Canonical Variables (CV) that maximize the separation between 

multiple classes and minimize the variance within the same classes. The first CV represents the 

maximum ratio between inter- and intra-class variances. Another particularity of such a method 

is the number of samples, which must be greater than the number of variables for calculating 

covariance matrices. In addition, if the chosen variables are highly correlated, the model will 

be overfitted. Therefore, relevant variables must be selected and this step can be automatically 

performed by algorithms as “jack-knife” (Westad & Martens, 2000) or manually, by selecting 

the important wavelengths (peaks and valleys) in the loadings plot of PCA (Kumar & 

Chandrakant Karne, 2017). This technique showed promising results discriminating between 

wheat kernels with high or acceptable Hagberg Falling Number (HFN) and those with 

excessively low HFN, which is a parameter used to determine sprouting problems in wheat 

(Caporaso et al., 2017). 

On the other hand, SIMCA is not only a discriminant method, but a classification 

method based on principal component analysis (PCA). Therefore, a PCA is developed for each 

class analysed, and the relevant number of components is selected based on the minimum cross-

validation error in order to calculate Q-statistic and Hotelling T² and determine the boundaries 
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of each class. SIMCA calculates the Euclidean distance of each class using the principal 

component models, and the results can be visualized in the Coomans plot, which shows the 

distances for each sample from the model for class 1 against class 2. Different from the others, 

SIMCA can classify an unknown sample as belonging to one of the classes of interest or not 

(Rodríguez et al., 2019). This method was used to detect quinoa flour adulteration (Rodríguez 

et al., 2019); and qualification of Italian pasta produced by traditional or industrial production 

parameters (Menesatti et al., 2014). 

The evaluation of these models' performance is based on the parameters of 

specificity and sensitivity. The capacity of a sample that belongs to the class of interest to be 

classified into this class is called sensitivity, while the capacity of a sample that does not belong 

to the interest class to be classified into the uninterested class is called specificity. Based on 

these parameters, the best models should obtain higher sensitivity and specificity (Ziegler et al., 

2016). The sensitivity and specificity can be described by Equations 1 and 2 (Table 1.1). 

Moreover, as PLS-DA is based on PLSR, the calibration, cross-validation, and prediction 

errors, are also used to evaluate the performance of the models. 

  

1.3.5. Curve resolution/spectral unmixing methods 

 

As already described, a hyperspectral image consists of a three-dimensional cube, 

providing both chemical (spectrum) and spatial (pixels) information of a sample. Each pixel 

carries the physicochemical information of mixtures of constituents of a sample. Then, when 

describing powerful methods, curve resolution or spectral unmixing methods are important in 

hyperspectral image analysis. Multivariate Curve Resolution (MCR) is one of these methods. 

MCR is a bilinear model that can relate the pure spectra with the concentrations of each 

compound in a mixture. Initially, a matrix containing spatial information (XY) by λ (spectral 

data) called D is developed reshaping the hyperspectral cube (Forchetti & Poppi, 2017). Then, 

MCR is applied to this matrix; a matrix called C is generated containing the concentrations of 

the compounds in each pixel, and a matrix called S is also developed with the pure spectra of 

the compounds. This model can be described as: 

D = CST + E    (1) 

Where E is the matrix that expresses the experimental error or variance unexplained by the 

bilinear model (Amigo & Ravn, 2009; De Juan et al., 2014). 



45 
 

 

Chapter 1 - Near-infrared spectral techniques for wheat flour and wheat-based 
products evaluation: A review 

The MCR aims to solve the matrix C and the matrix S under constraints and initial 

estimates using an algorithm. One of the most common is based on alternating least squares 

(ALS) (Forchetti & Poppi, 2017). The choice of constraints and initial estimates is the first step 

in the MCR-ALS method and the acquisition of reliable results depends on this choice (Badaró 

et al., 2021; De Juan et al., 2014). Constraints function as mathematical conditions that improve 

the achievement of final solutions by MCR-ALS; as an example, one constraint can be non-

negativity that forces the profiles to have positive values. Initial estimates must obey the 

selected constraints and are spectra or concentration profiles; if there is previous knowledge 

(e.g., pure spectra), the initial estimates choice can be based on it.  

Considering the approach of MCR, this method is suitable for the formulation of a 

mixture analysis model (de Juan & Tauler, 2021). The MCR methods can produce, as already 

seen, pure spectra and the concentration distribution map of each compound in a mixture. It is 

essential to feature that MCR-ALS on its own is not a quantitative method (Badaró et al., 2021). 

MCR methods have been used to evaluate, resolve, and quantify fibre in enriched pasts (Badaró 

et al., 2021) and in the resolution of chemical compounds spectra to improve the interpretability 

of the white wheat bread crumb staling process (Amigo et al., 2021). 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Table 1.1. Equations for models’ performance calculation. 
Equation 
number Parameter Equation Description Range 

1 Sensitivity !"#$%&%'%&(	(%) = 	 ./
./ + 12 	3	100 TP: number of true positives 

FN: number of false negatives 
TN: number of true negatives 
FP: number of false positives 

 
0-1 or 0-100%; 

being 0 no accuracy of the 
model and 1 or 100% good 

accuracy of the model 
2 Selectivity !"#$%&%'%&(	(%) = 	 ./

./ + 12 	3	100 

3 Determination coefficient 
of calibration (R2C) 

6!" =	
∑ ((#8 −	(#:	)"$
%&'
∑ ((% −	(#:)"$
%&'

 

(#8 : predicted values 
(%: reference values  

(#:: average of reference values	 
#: number of samples 

;: C – calibration; CV – cross-validation; P 
– prediction  

0-1 or 0-100%; 
being 0 no correlation and 1 or 

100% linear correlation between 
predicted and reference values 

 

4 Determination coefficient 
of cross-validation (R2CV) 

5 Determination coefficient 
of prediction (R2P) 

6 Root mean square error 
in calibration (RMSEC) 6<!=> = ?∑ ((#8 −	(%)"$

%&'
# − @ − 1  (#8 : predicted values 

(%: reference values  
#: number of samples 

@: number of factors used in the model 
#()*: number of samples for external 

validation 

Lower values indicate a better 
prediction ability (must be as 

low as possible to obtain 
acceptable models) 

7 
Root mean square error 

in cross-validation 
(RMSECV) 

6<!=>A = ?∑ ((#8 −	(%)"$
%&'

#  

8 Root mean square error 
in prediction (RMSEP) 6<!=/ = ?∑ ((#8 −	(%)"$!"#

%&'
#()*

 

9 Ratio of prediction to 
deviation (RPD) 6/B = !B

6<!=/	CD	6<!=>A 

!B: standard deviation  
6<!=/: root mean square error in 

prediction 
6<!=>A: root mean square error in cross-

validation 

Higher values indicate a better 
prediction ability 
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1.4. Application in wheat flour and wheat-based products 

Spectroscopy has been used for the qualification and quantification of many 

parameters in wheat flour and wheat-based products. The main techniques used for these 

determinations are NIR, FT-NIR, and NIR-HSI. The works found in the literature were 

organised and split into sections according to the application. First, the works which spectral 

techniques were applied in authentication of wheat flour and wheat-flour products. After that, 

the application of these techniques to the determination of quality parameters in those products, 

followed by composition determination. Then, other applications of these techniques as the 

discrimination of different flours or thermal treatments were also cited. Finally, those works in 

which data fusion was used.  

 

1.4.1. Authentication  

 

In recent years, an increase in the demand for healthy food products arose. Thereby, 

many fortified products have been developed as pasta enriched with fermented quinoa flour 

(Lorusso et al., 2017) or whole wheat cracker fortified with tuna bone bio-calcium (Benjakul & 

Karnjanapratum, 2018). The addition of new ingredients in the product formulation can 

improve its nutritional characteristics; however, it can affect its structure and sensorial 

attributes, generating undesirable modifications in the product (Lorusso et al., 2017). Therefore, 

rapid and efficient methods for food authentication must be developed; thus, the use of spectral 

techniques is an excellent alternative for food authentication. Some application of spectral 

techniques studied in this work for wheat flour and wheat-flour products are summarised in 

Table 1.2. 

As mentioned before, this technique is based on the chemical information of the 

analysed sample, which is directly related to the product used to fortify. Wang et al. (2018) 

investigated the practicality of using NIR spectroscopy as a rapid method to quantify the amount 

of potato flour used to formulate Chinese steamed bread. Wheat flour was replaced by potato 

flour in a range of 0-42% in 2% intervals during bread preparation. The authors reported that, 

even with the challenge of having the same major constituents as starch, the NIR spectroscopy 

had satisfactory sensitivity and repeatability to quantify samples with potato flour contents 

greater than 20% (R²P=0.8865, RPD=3.07). In a similar context, Huang et al. (2018) also 

explored the NIR spectroscopy ability to determine the potato flour content added to wheat 

flour in the formulation of staple food. In this work, wheat flour was mixed with potato flour 
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from 0% to 100% (1% increment) for further NIR analysis. The results showed good 

performance, with a coefficient of determination of 0.9995, a standard deviation of 0.69 %, and 

an averaged repeatability standard deviation of 0.246, and a coefficient of variation of 0.967.  

When it comes to food, which is a very complex matrix, some techniques are more 

suitable than others. For example, a recent work compared near-infrared spectroscopy and 

hyperspectral imaging techniques in the quantification of fibre added to semolina and its 

distribution (Badaró et al., 2019). The authors added to semolina different types of fibre, which 

differed in source and particle size, in different percentages and compared the accuracy of both 

techniques to classify, quantify and identify the fibre distribution in flour samples. The data 

were analysed with SIMCA and PLSR. In this work, the portable NIR did not show good results 

in the classification of samples with different percentages of fibre, showing sensitivity and 

specificity close or equal to zero. On the other hand, the HSI-NIR technique resulted in 

sensitivity and specificity values close or equal to one, showing the good performance of the 

models. Moreover, the authors used the HSI-NIR spectra to build prediction models, obtaining 

R²P over 0.85 and RMSECV and RMSEP between 0.44 and 1.09%. Additionally, as an 

advantage of this technique, distribution maps were developed, and the spatial distribution of 

the fibre in the sample was successfully identified. 

The NIR-HSI evaluation of a wheat product enriched with fibre was also studied in 

other work (Badaró et al., 2021). This work aimed to evaluate and quantify fibre in dry 

fettuccine-type pasta since fibre enrichment affects the technological quality of pasta. The pasta 

flour was replaced with fibre in seven different types and in four different proportions, 2%, 

3.5%, 5%, and 7% (w/w), and controls samples without fibre were also produced. The proposed 

analysis technique was MCR-ALS. As initial estimates, the spectra of pure fibre, pure flour, 

and control sample were chosen; non-negativity for the concentration profiles and 

normalization of the spectral profiles were used as constraints. As already mentioned, MCR-

ALS on its own is not a quantitative method; thus, Ordinary Least Squares (OLS) Regression 

was performed using the proportion of fibre obtained by thresholding the MCR-ALS 

concentration profiles and the real proportion of fibre. The similarity between pure spectra and 

recovered spectra in models using pure flour as the initial estimate was above 96% and using 

the control sample was 98%. The percentage of lack of fit (%LOF) was lower than 6%, and 

more than 99% of the total variance was explained by MCR-ALS models for all samples. 

Differences between real fibre content and the content predicted by the regression were 

observed due to the lack of homogeneity as a result of fibre particle size and characteristics. 
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Therefore, the authors declared that NIR-HSI coupled to MCR-ALS could be a tool for the 

identification and quantification of fibre added to pasta.  

The addition of ingredients in food products formulation does not always intend to 

promote health and well-being to consumers. The replacement of original ingredients with 

cheaper or low-cost materials characterizes an unscrupulous adulteration and food fraud, 

requiring rapid and efficient methods to identify and quantify these adulterants. Therefore, 

methods based on spectral techniques have been studied for this purpose, as in the study of 

Verdú et al. (2016), where the authors verified the capability of short wave (SW) NIR 

hyperspectral image technique to identify adulterations in wheat flour and bread with cheap 

grains. The authors prepared different binary flour mixtures of wheat flour and sorghum, oats, 

and corn flour in the percentages of 2.5, 5, 7.5, and 10% (w/w). Then, these mixtures were used 

in the bread preparation. The SW-NIR hyperspectral analysis was carried out in both flour and 

bread crumb samples and data analysed based on Multivariate Statistical Process Control 

(MSPC). The results obtained in this work were shown in terms of Q-residuals. The samples of 

both datasets (flour and bread crumb) were beyond the 95% confidence limit of the pure 

samples, and showed similar behaviour, with a slight difference between flour and crumbs in 

the distance of sample groups. However, they concluded that the technique reached 2.5% of 

adulteration, showing some limitations of the method regarding small concentrations.  

The demand for organic food has increased over the years; however, due to the 

lower yield and difficult qualification process, the prices of organic products are high. 

Therefore, aiming for high profits, the adulteration of organic products has become recurrent, 

and the authentication of these products, consequently, became more necessary. For this 

objective, Su & Sun (2016) investigated the adulteration of organic spelt flour with a 

hyperspectral imaging system. The authors proposed an algorithm to select optimum 

wavelengths in order to evaluate the addition of rye flour, organic wheat flour and spelt flour 

in organic spelt flour. Samples were adulterated from 3 to 75% (w/w) in a 3% interval. PLS-

DA was applied for the qualitative analysis of the different flours; meanwhile, the quantification 

of adulteration was determined by PLSR and MLR. The model’s performance was evaluated in 

terms of the R² and RMSE of calibration, cross-validation, and prediction. In addition, the 

performance of PLS-DA was also assessed in terms of specificity and sensitivity of cross-

validation. The coefficient of determination of prediction of PLSR models (based on the full 

spectrum and optimum wavelengths) was between 0.922 and 0.995, and the errors were lower 

than 0.061. With a threshold around 0.5, both the specificity and sensitivity in calibration and 

cross validation reached 1. 
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These authors also investigated the effectiveness of the same technique to 

quantitatively detect Irish organic wheat flour adulterated with common wheat flour, cassava 

flour, and corn flour (Su & Sun, 2017). Samples were adulterated from 3 to 75% (w/w) in a 3% 

interval, and the quantification of the adulteration was analysed in terms of PCR and PLSR. 

The performance of the models was evaluated according to the coefficient of determination, 

and root mean square error of prediction, which were very satisfactory (R²P: 0.948-0.976 and 

RMSEP: 0.035-0.050; R²P: 0.968-0.986, RMSEP: 0.026-0.039; R²P:0.951-0.988, RMSEP: 

0.051-0.144, for wheat, corn, and cassava flour, respectively). Additionally, the authors 

developed reduced models with optimum wavelengths with high accuracy (R²P=0.971, 0.973, 

and 0.986 for wheat, corn, and cassava flour, respectively). Based on these models, distribution 

maps were predicted to evaluate the adulteration distribution in organic wheat flour. 

Considering these satisfactory results, hyperspectral imaging coupled to chemometrics could 

be used as a tool for the authentication of organic flour in the industry. 

Rachmawati et al. (2017) combined near-infrared spectroscopy and chemometrics 

for authentication of few samples of taro flour from wheat and sago flour, which are cheaper 

than taro flour and, consequently, potential adulterants for this type of products. The experiment 

was carried out using a mixture of 5%, 25%, and 50% of adulterated taro flour from wheat and 

sago flour, and the authors used principal component analysis and discriminant analysis to build 

an authentication model. The discriminant models built with the principal components showed 

good accuracy in authenticating taro flour with 90.48% and 85% of the samples mixed with 

wheat and sago flour correctly identified. The authors concluded that the near-infrared 

spectroscopy could be used for authentication of taro flour from wheat and sago flour. 

Azodicarbonamide is a powder chemical used as a dough conditioner to fortify 

gluten in flour. However, its use in flour products has concerned some researchers. In addition 

to the indirect changes, it can make in the flour structure and the compounds it generates in the 

environment of food processing, Azodicarbonamide can cause severe harm after consumption 

for an extended time. Therefore, Che et al. (2017) studied the possibility of using Visible/Near-

Infrared Spectroscopy to detect Azodicarbonamide in wheat flour in a very low concentration. 

In this work, samples concentration ranged from 0 to 300 mg/kg, in a concentration gradient of 

3 mg/kg. Due to low concentrations, a stepwise dilution method was used in order to reduce the 

error. The authors used PLS, Back Propagation Neural Network, and Radial Basis functions to 

quantify the samples adulteration and the outcomes were very promising. The best result was 

achieved by the Radial Basis model, with R²P=0.99996, RMSEP=0.5467, and RPD=116.5858, 
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showing the feasibility of using Visible/Near Infrared Spectroscopy coupled to chemometrics 

to detect Azodicarbonamide adulteration in wheat flour at very low concentrations. 

Spectral techniques have also been applied in the authentication of food products 

to reduce or avoid the risk of food contamination, either by allergens or other extraneous 

impurities. Peanut, for example, is a popular ingredient in commercial food products, and 

several reactions can occur by its ingestion for those who are allergic. Considering this, Mishra 

et al. (2015) explored the ability of NIR hyperspectral imaging for the detection and 

quantification of peanut traces in wheat flour, which is a very common product. Hyperspectral 

images of pure flour, pure peanut, samples with a known position of peanut on the surface, and 

eight homogeneously mixed samples of flour and peanut in an adulteration level ranging from 

10 to 0.01% were acquired. PCA was performed on the spectral data, and the loadings of the 

first principal component were used to detect the pixels related to peanuts and flour. The results 

obtained for samples with less than 0.10% of adulteration had high errors and showed to be not 

reliable. However, a correlation of 0.946 between actual and predicted values of peanuts 

adulteration was achieved. Therefore, the authors concluded that this technique could be used 

to detect peanut traces in flour in this range of adulteration, facilitating quality control on 

process lines.  

In the same context, Zhao et al. (2018) also found promising results in the 

evaluation of NIR-HSI for the detection of peanut and walnut powders in whole wheat flour. 

Hyperspectral images were acquired from samples contaminated with 0.01%, 0.05%, 0.1%, 

0.5%, 1%, 3%, 5%, and 10% (w/w) of the adulterants.  PLSR models were developed based on 

full and reduced spectra. The authors also faced the challenge of trying to predict the adulterants 

at extremely low concentrations. However, models developed for both contaminants showed 

good accuracy, with a coefficient of determination ranging from 0.985 to 0.994 and 0.996 to 

0.998 for peanut and walnut, respectively. The root mean square error of prediction was also 

satisfactory, ranging from 0.251 to 0.398 % and 0.153 to 0.198 % for peanut and walnut. In 

addition, reduced models were developed and had excellent performance (R²P: 0.981-0.988, 

0.990-0.997, 0.960-0.987 and RMSEP: 0.348-0.465 %, 0.170-0.324 %, 0.373-0.645 %, for 

peanut, walnut, and peanut + walnut, respectively) and visualization maps were well predicted. 

Therefore, this work showed the feasibility of such technique for quantitative analysis of peanut 

and walnut contamination in wheat flour.  

Moreover, there is a concern about the presence of toxic and undesirable 

contaminants in cereals used as ingredients in the food industry. For instance, the presence of 

ergot bodies in cereal flour can generate a risk of poisoning due to their toxic components. 
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Therefore, the European Commission (EC) has established a limit of 500 mg.kg–1 of ergot 

bodies in cereals for human consumption. In this context, Vermeulen et al. (2017) carried out 

their studies on the online detection and quantification of particles of ergot bodies in wheat 

flour using near-infrared hyperspectral imaging. The authors prepared two sets of experiments, 

one containing wheat flour contaminated with ergot from 0% to 2.6%, and one containing wheat 

flour contaminated with 50%, 20%, 10%, 5%, and 1% of ergot. A PLS-DA model was 

developed for all the samples; meanwhile, another PLS-DA model was developed for the first 

set of experiments. The PLS-DA models were built by selecting around 800 pixels of 6 images 

containing ergot bodies and 4 images with wheat particles. After the models were created and 

evaluated in terms of sensitivity and specificity of cross-validation, they were applied in images 

of unknown samples to estimate the amount of ergot bodies in it. Then, the correlation between 

the reference and predict values for ergot bodies (mg/kg) was calculated determining the ratio 

between the number of pixels detected as ergot bodies and the sum of the pixels detected as 

wheat and ergot together. The results were satisfactory in both cases, with R²P of 0.99 and 0.87, 

respectively. In addition, the results showed that, even with false positives and false negatives, 

ergot bodies were detected in all the contaminated samples and no ergot bodies were detected 

in pure wheat flour samples. However, although these promising results, the PLS-DA models 

did not discriminate samples with a low concentration of ergot bodies. 

The contamination by insect fragments was also studied by Bhuvaneswari et al. 

(2011). In this study, the authors used near-infrared (NIR) hyperspectral imaging to develop 

models for the prediction of insect fragments in semolina. Samples were prepared in a ratio of 

0, 50, 75, 150, 300 insect fragments per 50 g of semolina. The PLSR model developed achieved 

a coefficient of determination of 0.99, showing the effectiveness of NIR hyperspectral imaging 

to detect inset fragments in semolina compared to the traditional method (R² = 0.639-0.767). 

With the same objective, Mishra et al. (2018) used FT-NIR to determine insect infestation in 

wheat grain by analysing the change in uric acid, protein, final moisture content, thousand 

kernel weight, and hardness. The insects affect the grain quality by producing holes over the 

surface, consuming nutrients; therefore, lowering the kernel weight, and producing uric acid. 

For the experiment, two types of insects infested the wheat grain in the following ratios: 0, 5, 

10, and 15 insects per 100 g; the containers with wheat grain had as initial moisture content 10, 

12, 14, and 16% (wb). The containers were also maintained in an incubator set for 45, 90, 135, 

and 180 days. The spectral data were analysed using PLSR. The developed models for the five 

quality parameters had R²P varying from 0.895 to 0.938 and RPD from 3.034 to 3.971, showing 

a good performance for each parameter. Additionally, the author declared that the model 
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predicted the infestation duration efficiently with no significant difference between the 

reference analysis and the FT-NIR data (P > 0.05); however, the protein content had a 

significant difference (P < 0.05), but, since the Pearson’s correlation coefficient was 0.993, the 

model is accurate to predict the protein content. 

 



 
 

 

 

Table 1.2. Literature related to the adulteration, contamination, and addition of ingredients in wheat flour and wheat-based products 

Categor

y 

Sampl

e 

Techniq

ue 

Spectral 

Range 

Type of 

equipmen

t 

Objective 
Statistica

l Method 
Performance Reference 

A
d
u
lt

e
ra

ti
o
n
 

Flour/ 

Bread 

VIS/SW-

NIR-HSI 

400–1000 

nm 

Bench 

top 

Detection of adulterations in wheat flour and 

bread with cheap grains, and comparison of 

hyperspectral information with 

physicochemical alterations in the properties of 

products 

ANOVA

, 

MSPC 

α = 0.01 
(Verdú et al., 

2016) 

Flour NIR-HSI 
900–1700 

nm 

Bench 

top 

Determination of the fidelity of organic spelt 

flour from three categories of adulterants 

including rye flour, organic wheat flour and 

spelt flour 

PLSDA, 

PLSR, 

MLR 

Accuracy: 100%, 

R²P: 0.928-0.998; 

RMSEP< 0.116 

(Su & Sun, 

2016) 

Flour NIR-HSI 
900–1700 

nm 

Bench 

top 

Detection of Irish organic wheat flour (OWF) 

adulterated with common wheat flour (WF), 

cassava flour (CaF) and corn flour (CoF) 

PLSR, 

PCR 

Full spectra: 
(WF): R²P: 0.948-0.976 

RMSEP: 0.035-0.050; 

(CoF): R²P: 0.968-0.986, 

RMSEP: 0.026-0.039, 

(CaF): R²P:0.951-0.988, RMSEP: 

0.051-0.144; 

Optimum wavelengths: 
(WF): R²P=0.971, RMSEP=0.038; 

(CoF): R²P=0.973, 

RMSEP=0.036; 

(CaF): R²P=0.986, RMSEP=0.026 

(Su & Sun, 

2017) 

Flour NIR 
1000-2500 

nm 

Bench 

top 

Identification and authentication of taro flour 

from wheat (WF) and sago flour (SF). 

PCA, 

DA 

Accuracy: 

(WF): 90.48% 

(SF): 85% 

(Rachmawati et 

al., 2017) 

Flour VIS/NIR 
400-2500 

nm 

Bench 

top 

Prediction of predict Azodicarbonamide 

concentrate in wheat flour 

PLSR, 

Back 

Propagat

ion 

Neural 

Network 

(BP), 

Radial 

Basis 

(RBF) 

(PLS): R²P=0.99621, 

RMSEP=5.5411 

(BP): R²P=0.99937, 

RMSEP=2.3965 

(RFB): R²P=0.99996, 

RMSEP=0.5467 

(Che et al., 

2017) 
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Table 1.2. (continued)  

Catego

ry 

Sampl

e 

Techniq

ue 

Spectral 

Range 

Type of 

equipment 
Objective 

Statistic

al 

Method 

Performance Reference 

C
o
n
ta

m
in

a
ti

o
n
 

Flour NIR-HSI 
1000-2500 

nm 
Bench top 

Detection and quantification 

of peanut traces in whole 

wheat flour 

PCA R²P=0.946 
(Mishra et 

al., 2015) 

Flour NIR-HSI 
936–1720 

nm 
Bench top 

Detection and prediction of 

peanut and walnut powders in 

whole wheat flour 

PLSR 

Full spectra: 
(Peanut): R²P: 0.985-0.994, RMSEP: 0.251-0.398; 

(Walnut): R²P: 0.996-0.998, RMSEP: 0.153-0.198; 

Optimum wavelengths: 
(Peanut): R²P: 0.981-0.988, RMSEP: 0.348-0.465; 

(Walnut): R²P: 0.990-0.997, RMSEP: 0.170-0.324; 

(Peanut+Walnut): R²P: 0.960-0.987, RMSEP: 0.373-

0.645 

(Zhao et al., 

2018) 

Flour NIR-HSI 
1118–2425 

nm 
Bench top 

Detection and quantification 

of particles of ergot bodies in 

cereal flour 

PLSDA R²P: 0.99 and R²P: 0.87 
(Vermeulen 

et al., 2017) 

Grain FT-NIR 
1100–2500 

nm 
Bench top 

Determination of insect 

infestation analysing the 

change in uric acid, protein, 

final moisture content, 

thousand kernel weight, and 

hardness 

PLSR 

(Moisture): R²P=0.901 

RMSECV=0.485 

RPD=3.108 

(Protein): R²P=0.938 

RMSECV=0.248 

RPD=3.971 

(Uric acid): R²P=0.895 

RMSECV=2.58 

RPD=3.034 

(1000 kernel weight): R²P=0.907 

RMSECV=0.576 

RPD=3.170 

(Hardness): R²P=0.912 

RMSECV=0.762 

RPD=3.290 

(Mishra et 

al., 2018) 
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Table 1.2. (continued)  

Categor

y 
Sample 

Techniq

ue 

Spectral 

Range 

Type of 

equipme

nt 

Objective 
Statistical 

Method 
Performance Reference 

A
d
d
it

io
n
 o

f 
in

g
re

d
ie

n
ts

 

Bread NIR 
1000–2500 

nm 

Bench 

top 

Quantification of potato flour 

added to Chinese steamed 

bread formulation 

PLSR R²P=0.8865, RPD=3.07 (Wang et al., 2018) 

Flour 
NIR/ 

NIR-HSI 

900–1700 nm/ 

900–2500 nm 

Portable/ 

Bench 

top 

Classification, quantification 

and distribution of different 

types of fiber added to semolina 

SIMCA, 

PLSR 

Sensitivity: 0.6-1.0, 

Specificity: 0.9-1.0, 

R²P: 0.85-0.98, 

RMSEP: 0.5-1.0 

(Badaró et al., 2019) 

Pasta NIR-HSI 
928 – 2524 

nm 

Bench 

top 

Evaluation and quantification 

of fibre in enriched pasta 
MCR-ALS 

R²P: 0.28 – 0.90 

%LOF < 6% 

Similarity (pure spectra and 

recovered): 96% – 98% 

(Badaró et al., 2021) 

Flour NIR 850–1100 nm 
Bench 

top 

Determination of or the potato 

flour content in potato-wheat 

blended powders 

PLSR 

R²P=0.9995, 

SEP=0.69, 

SDr= 0.264, 

CVr=0.967 

(Huang et al., 2018) 
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1.4.2. Determination of quality parameters  

 

Spectral techniques have also shown their applicability in the determination of 

wheat flour and products quality parameters, which include protein, moisture, wet and dry 

gluten, sedimentation, enzyme activity, farinograph, and alveograph (Table 1.3) (Başlar & 

Ertugay, 2011; Miralbés, 2003). These parameters are directly connected to the final product. 

Therefore, to develop a high-quality product, it is imperative to determine these parameters to 

properly select the appropriate flour for each product (Chen et al., 2017). In this context, Başlar 

and Ertugay (2011) used a NIR spectrometer to analyse protein, wet and dry gluten contents 

and Zeleny sedimentation of wheat flours. The authors developed PLS and MLR models with 

NIR spectra of 120 varieties of bread wheat from different regions of Turkey. The models 

resulted in a very satisfactory prediction, with coefficients of determination of 0.985, 0.976, 

0.953, and 0.924 for protein, wet gluten, dry gluten, and Zeleny sedimentation. The authors 

concluded that NIR spectroscopy was able to well predict quality parameters and associated the 

good performance of wet and dry gluten models to the protein content, which was well predicted 

by the models. 

In a recent work, Chen et al. (2017) also applied NIR spectroscopy in the rapid 

determination of total protein and wet gluten in commercial wheat flour. In addition, the authors 

tested a synergy interval algorithm trying to improve the obtained models. Data pre-treatment 

was also evaluated to determine the best models. The models with better performance in 

determining total protein in wheat flour were Support Vector Regression (SVR) with data pre-

treated with SNV+2nd derivative (R²P = 0.888 and RMSEP = 0.512) and PLS with data pre-

treated with SNV (R²P = 0.834 and RMSEP = 0.520). In case of wet gluten determination, the 

best models were SVR with data pre-treated with SNV+1st derivative (R²P = 0.781 and RMSEP 

= 1.303) and PLS with raw data (R²P = 0.673 and SEP = 1.503). After variable selection, the 

model’s performance improved for both SVR and PLS in both parameters’ determination. 

However, SVR showed the best performance, with R²P of 0.906 and 0.862 and RMSEP of 0.425 

and 1.122 % for total protein and wet gluten prediction, respectively. The authors concluded 

that using the full spectra or a selected interval, the protein content was better predicted than 

wet gluten. However, the synergy intervals were able to improve both predictions, indicating 

good applicability of NIR spectroscopy and chemometrics to rapidly predict these quality 

parameters in wheat flour. 
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Aiming to compare the performance of a hyperspectral imaging instrument with 

traditional NIR instruments for the prediction of food composition, Morales-Sillero et al. (2018) 

determined the protein content of wheat flour as an example to evaluate the accuracy of both 

techniques. This work includes the use of two NIR instruments, one NIR System DS2500 (NIR-

DS) and one 5000 Autocup DVP6BX NIR instrument (NIR-Perstop), and one NIR 

hyperspectral line-scan camera (NIR-HSI). In addition, the authors tested two strategies to 

select calibration and validation sets. The first strategy split randomly 75% and 25% of samples 

in calibration and validation sets, respectively. The second strategy built the calibration model 

with the first 60 samples analysed, and the 19 remaining samples were used as the external 

validation set to check stability of the instruments over time. Moreover, the analysis of all the 

samples were carried out with over three consecutive days for all the three instruments. PCA 

was performed to have an overview of the datasets, and PLS models were developed with full 

spectra range and, also, with the common range among them (1120 – 2424 nm). The Hotelling’s 

T² resulted in average values of 7.62, 6.87, and 15.38 for NIR-DS, NIR-Perstop, and NIR-HSI, 

respectively. In other words, the two NIR instruments were closer to the multivariate mean than 

HSI, indicating more variability between HSI than NIR data, probably due to the larger amount 

of information obtained by the HSI instrument. PLS models based on full wavelengths showed 

that NIR-DS had the best performance (R²P=0.99, RMSEP=0.14, and RPD=8.55), followed by 

NIR-Pestop (R²P=0.99, RMSEP=0.16 %, and RPD=7.56) and NIR-HSI (R²P=0.99, 

RMSEP=0.17 %, and RPD=7.07 %). By selecting the common wavelength range, the first 

strategy had the best performance, with the best prediction of NIR-DS (R²P=0.99, RMSEP=0.15 

%, and RPD=8.08), followed by NIR-HSI (R²P=0.99, RMSEP=0.15 %, and RPD=7.92) and 

NIR-Pestop (R²P=0.99, RMSEP=0.16 %, and RPD=7.56). Although with the second strategy 

was still possible to obtain reliable models (R²P over 0.94, RMSEP above 0.23 %, and RPD 

above 5.15), prediction decreased compared to the other two procedures. This is an interesting 

approach in this work because it is associated with the instrument's stability over time. 

Therefore, it can be inferred that these instruments must be calibrated more than once if used 

for routine analysis. Moreover, this rises an important point insight about the external 

validation, which must be performed to test the robustness of the models. Overall, hyperspectral 

imaging proved the ability to quantify chemical parameters in wheat flour, with good potential 

to be applied in the industry. 

The comparison between equipment was also made by Cecchini et al. (2021). A 

sensor with short-wavelength NIR (SW-NIR) range between 700 and 1100 nm and a handheld 

NIR spectrometer (1600-2400 nm) were compared as their performance to evaluate durum 
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wheat semolina quality. The quality parameters used for this analysis were protein content, 

gluten content, gluten index, sedimentation value, alveograph parameters (W and P/L), and 

GlutoPeak parameters (maximum consistency and total energy). As chemometric techniques, 

PLS Regression was used to predict the quality parameters using the data obtained by the two 

equipment and SIMCA was applied to divide the semolina samples into quality classes (best, 

good, and sufficient). The protein content was satisfactory predicted using SW-NIR (RP = 

0.9561; RMSEC = 0.2903; SEP = 0.4899) and NIR (RP = 0.9788; RMSEC = 0.2028; SEP = 

0.3263) data but NIR had a better performance. The other quality parameters did not have a 

good performance: SW-NIR alveograph P/L parameter had RP equal to 0.6672, and NIR 

alveograph W parameter had RP equal to 0.7249 as the worst results. The authors stated that a 

not large data set could be the reason for the bad robustness of the models. The SIMCA had a 

classification performance worst in the NIR data (sensitivity = 60%) than in the SW-NIR data 

(sensitivity = 70%). 

All quality parameters are fundamental to process control, developing equipment 

and products, determining operation efficiency, and so on. Other fundamental parameters of 

food powder, as particle size and bulk density, have also been evaluated by spectral techniques. 

Zhu et al. (2017) compared VIS/SW-NIR spectroscopy and hyperspectral scattering for the 

quantitative determination of bulk density and qualitative analysis of particle size in wheat flour 

samples. A total of 474 samples, including different varieties and size fractions, were analysed, 

and PLSR and PLS-DA models were developed to determine bulk density and classify particle 

size, respectively. PLSR results for NIR and HSI presented R²P of 0.55 and 0.87 and RMSEP 

of 57.80 and 30.18 mg mL-¹, respectively. Moreover, RPD values for NIR and HSI were 1.47 

and 2.79, respectively. Based on these results, the authors concluded hyperspectral scattering 

was better than NIR for predicting bulk density of wheat flour. PLS-DA results showed good 

accuracy in classifying wheat flour samples, with 96.8 and 98.2% for NIR and HSI, 

respectively. Additionally, based on the confusion matrix of wheat flour classification of both 

techniques, the authors noticed that NIR spectroscopy performed better than hyperspectral 

scattering for samples with bigger particle size and vice versa. In general, the work showed that 

hyperspectral scattering technique is able to determine bulk density and particle size, which are 

two important parameters in the characterization of wheat flour samples. 

The determination of fatty acids is also an important quality parameter during the 

storage of wheat flour. During storage, some chemical reactions as oxidation of lipids and 

production of carbonyl compounds happen, increasing the fatty acids values. Then, their 

increase led to acidity and bitterness of the final product. In a study, Jiang et al. (2020) 
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developed a portable NIR spectrometer for this determination. The storage of wheat flour was 

made at a temperature of 25 ºC; each month occurred a sampling of the wheat flour bag (samples 

with 20 g) maintained in storage and the spectra acquisition of the samples. Firstly, relevant 

wavelength variables with high correlation with fatty acid values were optimized by variable 

combination population analysis (VCPA), as this technique randomly combine different 

variable sets; extreme learning machine (ELM) used these different combinations to develop a 

quantitative model to predict the fatty acid value in wheat flour at different storage duration. 

Considering four cases with different relevant wavelengths, R²P was above 0.96 in all models 

and RMSEP between 0.9375 and 1.0677 mg KOH/100g. The authors highlighted the 

importance of using VCPA for the elimination of useless information from NIR spectra and 

declared this capacity reduces the quantitative model complexity. 

Other parameter in flour and its products composition is also an important factor in 

food quality that directly affects the final characteristic of the final product. The moisture 

content in the process of pasta-making, for instance, varies considerably from the beginning to 

the end of the process and, consequently, has a great influence on product stability. Therefore, 

it is important to know the product parameters to have more rigorous process control and a 

quality product. In this context, Czaja et al. (2018) measured and compared the moisture content 

in dough and pasta samples by different techniques, including FT-IR, FT-NIR, and FT-Raman. 

Samples were analysed at different stages of production: dough (30% of moisture), after pasta 

production (22% of moisture), and after pasta drying (9% of moisture), and PLSR models were 

developed for each dataset. FT-IR had the best performance for moisture determination 

(R²P=0.998, RSEPtest=2.50), followed by FT-NIR (R²P=0.997, RSEPtest=3.41) and FT-Raman 

(R²P=0.991, RSEPtest=5.18). All three techniques showed potential for moisture quantification 

in pasta at different stages of production. Moreover, the work suggested that the lower quality 

of Raman compared to the other two techniques may be associated with the radiation absorption 

by water, which is weaker in Raman spectrum than in NIR or IR.  

 

 

 

 

 
 



 
 

 

 

Table 1.3. Literature related to the determination of quality parameters in wheat flour and wheat-based products. 

Sample 
Techniqu

e 
Spectral Range 

Type of 

equipme

nt 

Objective 

Statistic

al 

Method 

Performance Reference 

Flour NIR 1100–2500 nm 
Bench 

top 

Determination of protein, wet and dry 

gluten contents and Zeleny 

sedimentation of flours 

PLS, 

MLR 

(Protein–PLS): R²P=0.985, SEP=0.377 

(Wet gluten–PLS): R²P=0.976, 

SEP=1.36 

(Dry gluten–PLS): R²P=0.953, 

SEP=0.635 

(Zeleny sed–MLR): R²P=0.924, 

SEP=3.74 

(Başlar & 

Ertugay, 

2011)  

Flour NIR 800–3030 nm 
Bench 

top 

Rapid determination of total protein and 

wet gluten in commercial wheat flour 

SVR, 

PLS 

Full spectra: 
(Protein): 

(SVR): R²P=0.888, RMSEP=0.512; 

(PLS): R²P=0.834, RMSEP=0.520; 

(Wet gluten): 

(SVR): R²P=0.781, RMSEP=1.303; 

(PLS): R²P=0.673, RMSEP=1.503 

Optimum wavelengths: 
(Protein): 

(SVR): R²P=0.906, RMSEP=0.425; 

(PLS): R²P=0.887, RMSEP=0.445; 

(Wet gluten): 

(SVR): R²P=0.862, RMSEP=1.233; 

(PLS): R²P=0.779, RMSEP=1.283 

(Chen et al., 

2017) 

Flour 
NIR/ 

NIR-HSI 

400–2498 nm/ 

1100–2498 

nm/ 

1128–2425 nm 

Bench 

top 

Quantification of protein in wheat using 

near infrared hyperspectral imaging in 

comparison with conventional near 

infrared spectroscopy 

PLS 

(NIR1): R²P=0.98-0.99, RMSEP=0.14-

0.16% 

(NIR2): R²P=0.98-0.99, RMSEP=0.14-

0.16% 

(HSI): R²P=0.94-0.99, RMSEP=0.15-

0.23% 

(Morales-

Sillero et al., 

2018)  

Flour NIR 
899.22–1724 

nm 
Portable 

Determination of fatty acids in wheat 

flour at different storage periods using 

NIR 

VCPA, 

ELM 

R²P=0.9627-0.9675 

RMSEP=0.9375-1.0677 mg KOH/100g 

(Jiang et al., 

2020) 
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Table 1.3. (continued) 

Sample Technique Spectral Range 

Type of 

equipme

nt 

Objective 
Statistica

l Method 
Performance Reference 

Semolina 
SW-NIR/ 

NIR 

700 – 1100 nm/ 

1600 – 2400 nm 
Portable 

Comparison of a SW-NIR sensor and a 

NIR portable spectrometer to predict 

quality parameters of durum wheat 

semolina and to classify according to 

quality classes 

PLSR,  

SIMCA 

(Protein):  

SW-NIR R²P=0.9462, 

NIR R²P=0.9692; 

(Sedimentation value): SW-NIR 

R²P=0.7268, 

NIR R²P=0.6599; 

(W): SW-NIR R²P=0.6555, 

NIR R²P=0.6712; 

(P/L): SW-NIR R²P=0.6178, 

NIR R²P=0.7070; 

(BEM): SW-NIR R²P=0.8062, 

NIR R²P=0.6392; 

(Total energy): SW-NIR R²P=0.6552 

(Cecchini et 

al., 2021) 

Flour 

VIS/SW-

NIR/ 

NIR-HSI 

400–1000 nm/ 

500–1000 nm/ 

Portable/ 

Bench 

top 

Bulk density determination and particle 

size classification of wheat flour 

PLS,PLS

DA 

(NIR): R²P=0.55, RMSEP=57.13 mg.mL-

1, 

RPD=1.47, 

Accuracy: 96.8% 

(HSI): R²P=0.87, RMSEP=30.02 mg.mL-

1, 

RPD=2.79, 

Accuracy: 98.2% 

(Zhu et al., 

2017) 

Pasta 

FT-IR/ 

FT-NIR/ 

FT-

Raman 

2500–25000 

nm/ 

1100–2500 nm/ 

2700–100000 

nm 

Bench 

top 
Determination of moisture content in pasta PLS 

(FT-IR): R²P=0.998, 

RSEPcalibration=2.54, 

RSEPvalidation=2.15, 

RSEPtest=2.50; 

(FT-NIR): R²P=0.997, 

RSEPcalibration=3.16, 

RSEPvalidation=3.32, 

RSEPtest=3.41; 

 (FT-Raman): R²P=0.991,  

RSEPcalibration=5.56, 

RSEPvalidation=5.67, 

RSEPtest=5.18. 

(Czaja et al., 

2018)  
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1.4.3. Other applications 

 

Spectral techniques have also been used for discrimination of different flours, 

products, or process types (Table 1.4). The thermal treatment used in pasta, for example, is 

performed to reduce mould spores and spoilage microorganisms; however, it has effects on the 

product quality due to interactions between proteins and starch. Aiming to evaluate heat 

treatment in flour by a VIS/SW-NIR hyperspectral imaging technique, Verdú et al. (2016) 

combined different temperatures and times to treat flour samples for cake production to 

characterize the heat treatment process by the imaging technique. In addition, cakes produced 

with these treated flours were analysed in terms of final height, mass loss during the baking 

process, texture profile analysis, and average area of bubble in crumb. The relationship between 

these cake parameters and hyperspectral data of flour, was evaluated using SVM. PCA was 

carried out on VIS/SW-NIR data, and results gave an overview of samples behaviour based on 

time and temperature of the heat treatment in flour. Moreover, a PCA was recalculated with 

important wavelengths, and a correlation between the PC1 scores and time and temperature 

were constructed, enabling to evaluate how the PC1 evolved regarding these two factors. 

According to these results, a non-linear regression model was developed based on the SVM 

technique, using the cake properties data as the independent variables and the PCA scores as 

the dependent variables. The coefficient of determination in the cross-validation (R²CV=0.985) 

suggested a dependency between the spectral information of flour treated by different heat 

treatments and cake properties. Thus, hyperspectral information can be an excellent alternative 

control and improve heat treatments of flour in the processing line.  

These authors also evaluated the effect of wheat flour substitution and heat 

treatments of oat flour on bread properties by the same spectral technique. The spectral 

information of treated oat flour also showed a pattern regarding the temperature used for heat 

treatment. Non-linear regression models based on SVM were built according to the PC1 and 

PC2 scores and the two level of flour substitution (10 and 20%). The models had very 

satisfactory performance, with R²CV of 0.95 and 0.91, for PC1 and PC2, respectively, in a 10% 

level of flour substitution, and R²CV of 0.98 and 0.97, for PC1 and PC2, respectively, in a 20% 

level of flour substitution. Additionally, the spectral information of treated oat flour was tested 

regarding the bread properties. The R²CV ranged from 0.81 to 0.97 for a 10% of substitution and 

from 0.63 to 0.98 for a 20% of substitution. Therefore, hyperspectral imaging demonstrated the 
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applicability also for a non-destructive control tool to monitor heat treatment in oat flour to be 

replaced in bread formulation (Verdú et al., 2017). 

Ziegler et al. (2016) studied dispersive and FT near-infrared reflectance 

spectroscopy for the rapid discrimination of kernels and flours of different wheat species, 

including bread wheat, spelt, durum, emmer, and einkorn. Due to the better performance of the 

industrial NIR spectrometer (dispersive spectroscopy) for kernel samples, spectra of flour 

samples were recorded with this instrument, and data were also analysed by PLS-DA. The 

model specificity and sensitivity ranged from 0.91-1.00 and 0.50-1.00, respectively, 

considering all five classes. In order to improve the discrimination power of the models, two 

classes (bread wheat and spelt) were considered, and the model recalculated, resulting in 

specificity values of 0.90 and 0.94, and sensitivity values of 0.94 and 0.90, for bread wheat and 

spelt, respectively. Moreover, the authors also investigated the adulteration of these flours, by 

mixing them in different ratios. A PLSR model was developed with the NIR spectral data, but 

the RMSECV was 22.6%, probably due to the small number of samples. Therefore, this work 

showed good discrimination of flour using NIR spectroscopy, with a small limitation on the 

number of classes. Additionally, it suggests an alternative technique for flour adulteration, 

corroborating with other works mentioned in this review. 

Recently, Wadood et al. (2019) analysed wheat kernels and flour with NIR 

reflectance spectroscopy to better classify wheat according to the origin, production year, and 

genotypes. Samples of three distinct genotypes across 4 years from three different geographical 

areas of China were evaluated and PCA was carried out prior to multivariate ANOVA and 

LDA. ANOVA showed that all the factors affected the NIR spectra of kernel and flour samples 

and a significant difference among them was observed. LDA aimed to classify samples 

according to production year, genotypes, and geographical origin in each year. The accuracy of 

the model was 69% for production year, 69% for genotypes, and ranged from 72.2 to 100% for 

geographical origin for flour samples. This work showed that NIR spectroscopy could be a 

successful tool to determine geographical origin, production year, and genotype of flour 

samples, which is a valuable contribution to flour traceability. 

Firmani et al. (2020) applied NIR spectroscopy to authenticate Gragnano Pasta, a 

P.G.I. product that is the eponym of the town in southern Italy where it is produced. In this 

study, 949 samples were used and two classes were considered: Gragnano and non-Gragnano. 

The proposed chemometric methods were PLS-DA and SIMCA. The models' performance was 

very satisfactory: PLS-DA was able to classify correctly 100% of Gragnano samples and 

98.10% of the non-Gragnano samples using mean centring and 1st derivative as pre-treatments, 
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whereas SIMCA had sensitivity equal to 96.57% and specificity equal to 100% using mean 

centring and SNV as pre-treatments. Considering this performance, NIR spectroscopic coupled 

with PLS-DA and SIMCA can be a useful tool for the authentication of Gragnano pasta. 

Shelf life is also an important factor to be considered in the food industry, since 

some problems may occur during this period, as spoilage or changes in texture or taste, concern 

both the industry and the consumers. Therefore, the use of technologies to improve quality 

control and, consequently, extended the shelf life of the product, are very important. In this 

context, NIR Spectroscopy was studied by Cevoli et al. (2015) as a fast and non-destructive 

tool to discriminate samples of Piadina, which is an Italian bread, with different formulations, 

and to estimate the storage time. PCA was carried out with three out of five formulations and 

the scores plot showed a clear separation between the clusters. Moreover, PLSR showed a good 

prediction of storage time (R²P ranging from 0.959 to 0.969 and RMSEP from 1.87 to 1.98), 

suggesting NIR spectroscopy as a good alternative for prediction of storage time of Piadina and 

the possibility of using such technique for other types of bread.  

The use of edible coatings in food products has gained much interest as an 

alternative for protection regarding external factors, and for preventing or reducing microbial 

or oxidant activity. One of the important steps in applying an edible coating is the drying time. 

Therefore, studies were carried out to rapidly monitor the drying process of edible coating on 

bread surfaces (Chakravartula et al., 2019). Samples were tested with one layer, two layers and 

two different drying temperatures (25 and 60 °C). A FT-NIR spectrometer was used to provide 

spectral information of samples and PCA and PLSR were carried out to evaluate data. PCA was 

carried out as an exploratory analysis to identify and discriminate samples submitted to different 

drying times. In general, a clear separation was observed among samples regarding the drying 

time, and the loadings plot suggested that this separation may be due to moisture and protein 

content. Therefore, PLSR was performed to predict the moisture content in the coated bread. 

The results showed a successful performance of the model, with R²P ranging from 0.902 to 

0.963 and RMSEP from 2.51 to 3.15%. Based on these results, this work suggests the 

applicability of NIR spectroscopy in moisture prediction and as a potential technique for drying 

time determination. 

In a different approach, Neves et al. (2019) investigated the applicability of a 

handheld NIR spectrometer for rapid determination of nutritional parameters of pasta/sauce 

blends. The authors combined five different kinds of pasta and five different sauces in five 

blend ratios, totalling 125 samples. The nutritional value of each mixture was determined 

according to the information provided in the package. Spectral data were then, recorded and 
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PLSR models were developed for each nutritional parameter. The prediction showed reliable 

values for all the parameters, with R²P of 0.86, 0.85, 0.89, 0.90, 0.86 and 0.88, RMSEP of 10.64, 

3.59, 0.95, 1.11, 1.39 and 0.61, and RPD of 2.02, 2.54. 2.77, 2.45, 2.26, 2.19, for energy, 

carbohydrate, fat, fibre, protein, and sugar, respectively. As many other works mentioned, this 

work shows that NIR spectroscopy can be a very powerful tool for quality control, even using 

a handheld instrument to predict parameters established in the package.  

 

 
 

 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 



 
 

 

Table 1.4. Literature related to other applications of NIR, FT-NIR, and NIR-HSI in wheat flour and wheat-based products. 

Sample Technique Spectral Range Type of 
equipment Objective Statistical 

Method Performance Reference 

Flour/ 
Cake 

VIS/SW-
NIR-HSI 400–1000 nm Bench top Characterization of heat treatment 

process of cake wheat flour  PCA, SVM R²CV=0.985 (Verdú et 
al., 2016)  

Flour/ 
Bread 

VIS/SW-
NIR-HSI 400–1000 nm Bench top 

Characterization of heat treatment in 
oat flour and evaluation of 

hyperspectral data and bread  
PCA, PLS 

10% of substitution: 
R²CV: 0.81-0.97 

RMSECV: 0.00-4.03 
20% of substitution: 

R²CV: 0.63-0.98 
RMSECV: 0.00-6.00 

(Verdú et 
al., 2017) 

Kernel/ 
Flour 

NIR/ 
FT-NIR 

1200–2400 nm/ 
650–2500 nm Bench top Rapid discrimination of kernels and 

flours of different wheat species 

PCA, 
PLSDA, 

PLS 

Five classes: 
FT-NIR spectroscopy: 

(Kernel): 
Sensitivity: 0.35-0.95, 
Specificity: 0.86-0.94, 
Accuracy: 81.0-94.0%; 

Dispersive spectroscopy: 
(Kernel): 

Sensitivity: 0.65-0.95, 
Specificity: 0.90-1.00, 
Accuracy: 88.0-99.0%; 

(Flour): 
Sensitivity: 0.50-1.00, 
Specificity: 0.88-1.00, 
Accuracy: 85.1-100%; 

Two classes: 
(Bread wheat flour): 

Sensitivity: 0.94, 
Specificity: 0.90, 
Accuracy: 92.1%; 

(Spelt flour): 
Sensitivity: 0.90, 
Specificity: 0.94, 
Accuracy: 92.1%; 

 
(PLSR): R²C=0.966, 

RMSEC=5.2% 
RMSEC=22.6% 

(Ziegler et 
al., 2016) 
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Table 1.4. (continued). 

Sample Technique Spectral Range Type of 
equipment Objective Statistical 

Method Performance Reference 

Kernel/ 
Flour NIR 950–1650 nm  Bench top 

Evaluation of wheat according to 
the origin, production year and 

genotypes 
PCA, LDA 

Flour: 
(Origin):  

Accuracy: 72.2-100% 
(Year):  

Accuracy: 69% 
Accuracy: 69% 

Kernel: 
(Origin):  

Accuracy: 61.1-88.9% 
(Year):  

Accuracy: 55.17% 
(Genotypes):  

Accuracy: 75.86% 

(Wadood 
et al., 
2019)  

Pasta FT-NIR 1000-2500 nm Bench top 
Differentiation between P.G.I. 

Gragnano pasta and non-
Gragnano pasta 

PLS-DA, 
SIMCA 

(PLS-DA): 
Sensitivity=100%, 

Specificity=98.10% 
(SIMCA): 

Sensitivity=96.57%, 
Specificity=100% 

(Firmani et 
al., 2020) 

Bread NIR 800–2500 nm Bench top 

Discrimination of Italian bread 
samples as a function of 

formulation and prediction of 
storage time 

PCA, PLS R²P: 0.959-0.969, 
RMSEP: 1.87-1.98 

(Cevoli et 
al., 2015) 

Bread FT-NIR 800–2500 nm Bench top Monitoring the drying process of 
edible coating on bread surfaces. PCA, PLS R²P: 0.902-0.963, 

RMSEP: 2.51-3.15 

(Chakravart
ula et al., 

2019) 
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Table 1.4. (continued). 

Sample Technique Spectral Range 
Type of 

equipment 
Objective 

Statistical 

Method 
Performance Reference 

Pasta NIR 908–1676 nm Handheld 
Determination of nutritional 

parameters of pasta/sauce blends 
PLS 

(Energy): R²P=0.86, 

RMSEP=10.64, 

RPD=2.02; 

(Carbohydrate): R²P=0.85, 

RMSEP=3.59, 

RPD=2.54; 

(Fat): R²P=0.89, 

RMSEP=0.95, 

RPD=2.77; 

(Fibre): R²P=0.90, 

RMSEP=1.11, 

RPD=2.45; 

(Protein): R²P=0.86, 

RMSEP=1.39, 

RPD=2.26; 

(Energy): R²P=0.88, 

RMSEP=0.61, 

RPD=2.19 

(Neves et 

al., 2019) 
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1.4.4. Data fusion 

 

The individual study of spectral techniques sometimes is not enough to achieve the 

desired results. In this point of view, there are advantages in using data fusion combined with 

chemometrics, which enable the use of more accurate information about samples and, 

consequently, provides more solid results. This method integrates the information from 

different techniques using three strategies: low-, mid-, and high-level data fusion (Chen et al., 

2017). 

In low-level data fusion, the data is concatenated before multivariate pre-processing 

and analysis. In other words, the data is fused in its raw form (Mishra et al., 2019). The most 

relevant information is selected in mid-level data fusion and extracted for later fusion and 

analysis (Chen et al., 2017). On the other hand, in high-level data fusion, the outputs obtained 

by the models developed for each data set individually are fused to improve the final result 

(Mishra et al., 2019). Only a few studies were found using data fusion in wheat flour and its 

products determinations. Chen et al. (2017) carried out studies on the rapid determination of 

farinograph parameters of wheat flour combining NIR and MIR spectral regions. First, the 

spectra of each technique were analysed individually by PLSR models but did not achieve good 

results. To solve this issue, both data were low and mid-level fused. In low-level data fusion, 

NIR and MIR data were combined and, then, analysed. In mid-level data fusion, an algorithm 

called forward interval data fusion PLS (fi-DF-PLS) was implemented in the study to select 

representative variables in the MIR and NIR regions and improve the performance of the model. 

Low-level data fusion performed worse than each method individually, probably due to the high 

amount of irrelevant information added to the model. On the other hand, mid-level data fusion 

improved the performance of the models. The models parameters with better prediction power 

for water absorption, dough development time, dough stability, and degree of softening were R 

(correlation coefficient) =0.96, 0.94, 0.95 and 0.94, RMSEP=0.521 %, 0.514 (min), 0.640 (BU) 

and 15.014 (BU), and RPD=3.812, 2.814, 2.566 and 2.647. This study shows the potential of 

data fusion and spectral techniques as NIR and MIR for prediction of flour parameters.  

In another approach, Ringsted et al. (2017) developed two-dimensional correlation 

spectroscopy on near and mid-infrared spectra of wheat bread crumb during aging. First, 

important regions in MIR and NIR infrared were identified and correlated according to bread 

hardness. An important absorption band at 1047 cm-¹ was observed in the MIR region regarding 

amylopectin retrogradation, positively correlated to bread hardness. This band had a very 
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satisfactory correlation with three bands in the NIR region, including a band at 910 nm (R²=0.88 

to hardness), at 1688 nm (R²=0.97 to hardness), and at 2288 nm (R²=0.97 to hardness). Another 

important band in the MIR region was found at 1022 cm-¹ that presented a high negative 

correlation to bread crumb hardness. This band seemed to be related to different levels of 

hydrogen bonds, and it was correlated with NIR absorbance bands at 974 nm (R²=0.96 to 

hardness), 1412 nm (R²=0.94 to hardness), and 2258 nm (R²=0.92 to hardness). Moreover, PCA 

was performed on NIR and MIR data individually, and the first principal components from both 

techniques were correlated, with an R²=0.98. The results showed that bread staling processes 

could be evaluated by near and mid-infrared spectroscopy and high-level data fusion. The works 

found in the literature regarding the use of data fusion on the wheat flour and wheat-flour 

products were summarised on Table 1.5. 

 

 

 

 

 

 



 
 

 

 

Table 1.5. Literature related to use of data fusion in the analysis of wheat flour and wheat-based products with NIR and MIR. 

Sample Technique Spectral Range Type of 
equipment Objective Statistical 

Method Performance Reference 

Flour MIR/ 
NIR 

2500–20000 nm/ 
800–3000 nm Bench top 

Investigation of the 
potential of combining NIR 

and mid-infrared (MIR) 
spectral regions to predict 
wheat flour farinograph 
quality properties: water 
absorption (WA), dough 

development time (DDT), 
dough stability (DS), and 

degree of softening (DOS) 

PLSR 

(WA): RP=0.96; 
RMSEP=0.521; RPD=3.812 

(DDT): RP=0.94; 
RMSEP=0.514; RPD =2.814 

(DS): RP=0.95; 
RMSEP=0.640; RPD =2.566 

(DOS): RP=0.94; 
RMSEP=15.014; RPD =2.647 

(Chen et al., 
2017) 

Bread NIR/MIR 400–2500 nm/ 
2500–20000 nm Bench top 

Development of a two-
dimensional correlation 

spectroscopy on near- and 
mid-infrared spectra of 

wheat bread crumb during 
aging 

PCA R²: 0.98 
(Ringsted et 

al., 2017) 
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1.5. Conclusions and future trends 

 

This review summarized spectral techniques for wheat flour and wheat-based 

products, more specifically near-infrared, Fourier-transform near-infrared and hyperspectral 

imaging. Overall, the techniques have been used in different range within the near infrared 

spectrum, with different instruments. The number of samples, acquisition mode and statistical 

methods performed varied according to the study aim. Another important detail is the condition 

of analysis, which was performed in the laboratory in most of the studies, and there is not a lot 

of information about the application in the industry.  

These techniques showed to be more related to determine composition, 

authentication, and quality parameters. However, future works could explore other important 

parameters in the cereal and bakery industry as to defects of pasta or bread. In addition, 

assuming good performance of quantitative and qualitative models for parameters in wheat 

flour and wheat-based product, studies can be carried out to determine other parameters based 

on these easily detected. An example of this methodology is the work of Mishra et al. (2018) 

here reviewed that used quality parameters of wheat grain to determine insect infestation. 

Only a few works have applied the spectral technique in-line, suggesting a deep 

study in order to apply these techniques in the process line so that the industry would have a 

more controlled process. The combination of off-line and in-line measurements could be a first 

step on the use of NIR in in-line analysis. Also, handheld spectrometers could be used in the 

process line; therefore, the literature comparing the application of benchtop and handheld 

equipment in different situations is needed for the application of these equipment to develop 

new equipment.  

The application of the techniques here approached for the determination of wheat 

based products geographical origin and production process was demonstrated by Wadood et al. 

(2019) and Firmani et al. (2020). The adulteration of these products can occur and are not easily 

noticed; for consumer protection, these techniques can be more studied. Additionally, the use 

of data fusion for the determination of quality parameters in wheat flour and wheat-based 

products is still scarce. One of the biggest challenges of using near infrared is the development 

of models to quantify parameters at a low level. Therefore, data fusion could allow the 

association of techniques that, together, could be more sensitive to small concentrations, 

enabling the development of more reliable and accurate models for quantitative determinations. 
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Abstract 

Pasta is a very important and popular food. The addition of fibre to pasta can affect its structure, 

since it modifies the protein-matrix. Among the most important pasta attributes, optimal 

cooking time, cooking and overcooking tolerance, can be named. Some of these assessments 

can be very subjective, so this study investigates the use VIS/NIR-HSI in the transmission mode 

for the study of changes in pasta during cooking and the determination of optimal cooking time 

of pasta as an alternative to automate the determination of pasta attributes. Fettuccine samples 

were produced with seven types of fibre in two percentages (3.5 % and 7 %). A total of 140 

experiments (7 types of fibre x 2 percentages x 10 repetitions) were carried out and, for each 

one, two units of pasta were removed from cooking water each 90 seconds.  The cooking 

process was carried out for 18 minutes, totalling 13 times. VIS/NIR hyperspectral images were 

acquired and the two spectral range were separately evaluated, but VIS data did not show any 

relationship among samples. Therefore, further multivariate data analysis was carried out only 

on NIR data. PCA was performed and the PCA scores that better grouped the samples were 

used as variables to perform a Linear Discriminant Analysis (LDA). In comparison, Partial 

Least Square Discriminant Analysis (PLSDA) was performed. LDA had values of sensitivity 

and specificity between 0.14 – 1.00 and 0.51 – 1.00, respectively, and non-error rate (NER) 

over 0.62. PLSDA had values of sensitivity and specificity between 0.67 – 1.00 and 0.10 – 1.00, 

respectively, and NER over 0.80. This study suggested that hyperspectral image in the 

transmission mode have good potential as an objective method to optimum cooking time 

determination, meeting this industry need. 

 

Keywords: Cooking time, Enriched-pasta, Fibre, Multivariate data analysis. 
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 4.1.Introduction 

 

Pasta is a very important and popular food due to its ease of preparation, 

transportation and cooking, relatively low price, and nutritional value. It is traditionally 

obtained from the extrusion of durum wheat semolina and water, followed by drying.  From the 

nutrition point of view, pasta has a low fat and salt content and a high content of carbohydrates, 

making it a suitable energy source (Majzoobi et al., 2011). Beyond these many pasta quality 

parameters, its long shelf life and stability, when compared to others flour products, make pasta 

a potential food for addition of alternative ingredients, as fibres. The incorporation of dietary 

fibres in pasta can considerably contribute to reducing its glycaemic index, for instance, which 

would result in a product with a higher nutritional value to the consumer, in comparison to 

conventional pasta (Bustos et al., 2011). 

However, the incorporation of nutrients in traditional foods can affect their sensory 

and technological properties in a negative way.  By adding functional ingredients, desirable 

properties of pasta, such as textural and cooking qualities, can change (Rakhesh et al., 2015).  

The addition of fibre, for instance, can affect pasta structure, since it modifies the protein-

matrix. Soluble fibres bind with protein, difficult the interactions between starch and protein 

difficult (Bustos et al., 2015).  Consequently, the amount and type of ingredient used in pasta 

enrichment must be controlled in a way that the new product has satisfactory taste and 

nutritional value, but without many quality parameters changes. Among the most important 

pasta attributes, optimal cooking time, cooking and overcooking tolerance, colour and cooking 

losses can be named.  However, for most of these attributes, the traditional methods of analysis 

can be time-consuming, expensive, and invasive, besides not allowing a control of how added 

nutrients can influence the food matrix.  Moreover, some of these analyses used to estimate 

pasta-cooking quality can be very subjective, as sensory analysis, which is a challenge when 

many samples must be evaluated. In addition, optimal cooking time of pasta is determined by 

observing the time that the core of the pasta sample stays between two transparent glass slides 

when squeezing them (Del Nobile et al., 2005). 

Therefore, many researchers have searched for more objective methods to evaluate 

pasta cooking quality parameters. Thus, techniques such as Near Infrared Hyperspectral 

Imaging (NIR-HSI) can be used to evaluate cooking time of fibre-enriched pasta. NIR-HSI 

combines spectral and spatial information of a sample, being able to provide both physical and 
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chemical characteristics at the same time.  This technique has been widely used, including for 

the inspection of adulterants in organic wheat flour (Su and Sun, 2017) and for the 

differentiation between industrial and traditional pasta production (Menesatti et al., 2014).  

However, NIR-HSI systems measure the surface of the sample, entering only few millimetres 

in the sample, which is not always representative for tick and very heterogeneous samples. In 

this case, a transmission measurement is an option (Wold et al., 2016).  

Thus, the aim of this study is to use VIS/NIR-HSI in the transmission mode for the 

study of changes in pasta during cooking and the determination of optimal cooking time of 

pasta as an alternative to automate the determination of pasta attributes. 

 

4.2.Materials and methods 

 

4.2.1. Sample preparation 

Samples of dry fettuccine-type pasta were produced in the Department of Food 

Technology at University of Campinas (Brazil) according to the methodology proposed by 

Ferreira (2018).  The fettuccine samples were produced replacing flour by seven types of fibre 

in two percentages (3.5 % and 7 % (w/w)). Fibres differed on source, particle size and solubility 

(Table 4.1). 

Table 4.1. Properties of fibres used in pasta formulation. 

Pasta sample Fibre source Average particle size 
(µm) 

Pasta 1 Mix of 20 % soluble psyllium and 80 % 
insoluble bamboo 160 

Pasta 2 Insoluble bamboo 60 

Pasta 3 Insoluble bamboo 145 

Pasta 4 Mix of 80 % soluble psyllium and 20 % 
insoluble cellulose 

160 

Pasta 5 Mix of 50 % soluble psyllium and 50 % 
insoluble cellulose 160 

Pasta 6 Insoluble wheat 60 

Pasta 7 Insoluble wheat 145 
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 4.2.2. Cooking process 

 

Pasta samples (approximately 1 cm wide x 0.2 cm tick) were cut into pieces 

approximately 5 cm long.  The cooking process was carried out following the AACCI (2010) 

protocol with some modifications.  For each type and percentage of fibre, ten portions of 25 

grams of pasta were weighted, totalling 140 experiments (7 types of fibre x 2 percentages x 10 

repetitions). The cooking process was carried out for 18 minutes, when two units of pasta were 

removed from cooking water each 90 seconds, totalling 13 times (0, 1.5, 3, 4.5, 6, 7.5, 9, 10.5, 

12, 13.5, 15, 16.5 and 18 minutes). In total, there were 1820 samples analysed (140 experiments 

x 13 times). 

 

4.2.3. Acquisition hardware 

 

The pasta VIS/NIR-HSI images were acquired in a Hyperspectral Imaging System 

consisting of a monochrome camera (CoolSNAP ES, Photometrics, AZ, USA) with a high level 

of sensitivity between 320 nm and 1100 nm, coupled to two liquid-crystal tuneable filters 

(LCTF), one sensitive to the visible (Varispec VIS07, CRI Inc) and one sensitive to NIR 

(Varispec NIR07, CRI Inc). The samples were placed on a holder that fit in a hemispherical 

dome as shown in Figure 4.1 and illuminated by a halogen lamp (20W) from below, so that the 

VIS/NIR-HSI images were acquired in transmission mode. However, due to the thin thickness 

of pasta samples, a lot of light crossed the samples and the images appeared saturated, being 

necessary the correction of the time of the light exposition in each wavelength. Therefore, a 

calibration was carried out so that the integration time was decreased/increased as much as 

possible while ensuring that the maximum intensity (saturation) was not reached for any 

wavelength in any region of the image. The calibration was defined using uncooked pasta 

samples without fibre as the target reference, considering that this was the case that the 

maximum light would cross. As an alternative to ensure that any other sample would have 

saturated pixels, a percentage of 80% of maximum intensity (saturation) was considered to 

establish the integration time. Moreover, to avoid the low sensitivity of the sensors close to the 

edges of this range, the images were captured at every 10 nm in the working spectral range of 

450–1020 nm. Samples were removed from water, and the excess of water was removed by 
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using paper towel. The two units of cooked pasta samples were placed manually on the holder 

in a way that only the light that was transmitted through the pasta reached the camera.  

 

Figure 4.1. Scheme of the apparatus used for acquiring the images, the zoomed image shows 

the surface used to place the cooked pasta samples. 

 

4.2.4. Data processing 

 

The hyperspectral images were pre-processed for segmentation of the regions of 

interest (ROI). The ROIs were manually selected with help of a Matlab routine. After removing 

the background from the images and creating a final image containing only the region of interest 

(ROI), a mean spectrum that represent each sample was extracted (the mean spectrum of the 

two pasta units).  In order to extract the actual response of the samples at each wavelength, 

while avoiding light-dependent intensities, a correction was performed using the image of a 

standard pasta reference, the same used to build the calibration of the system. The influence of 

the minimum dark current of the camera was also captured by switching off the lamps and 

placing a cap in the lens to prevent the light from getting inside the camera. After that, a mean 

spectrum of white and dark references were extracted. Then, the correction was performed 

using the Equation (1): 

! = 	 !!"	!"#$%&
!'()*+"	!"#$%&

 (1) 
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 where I0 is the mean spectrum of the raw image of the pasta, Iwhite is the mean spectrum of the 

image of the standard pasta reference, and Iblack is the mean spectrum of the image acquired 

while avoiding any light source. Image segmentation and spectrum extraction were executed 

using Matlab R2019b software (The Mathworks Inc., Natick, MA, USA). It is important to 

highlight that VIS and NIR spectral information were extracted separately.  

 

4.2.5. Multivariate data analysis 

 

Principal Component Analysis (PCA) was applied on VIS/NIR-HSI data, as 

exploratory data analysis, to obtain an overview of variation among the samples. PCA  is  an  

unsupervised  method  which  combines  linearly  the  variables  into components known as 

principal components (PCs), which explain the greatest variance in the dataset and keep only 

the relevant information of the spectra (Rachmawati et al., 2017). Spectral pre-processing 

techniques were applied to investigate the effect of light scattering and other effects non-related 

to the sample composition in the spectral data.  Hence, Standard Normal Variate (SNV), 

Multiplicative Scatter Correction (MSC), 1st and 2nd derivatives (order: 2, window: 7 points) 

were applied and compared to the PCA for raw data.  

Linear discriminant analysis (LDA) is a very popular method for authentication, 

characterization and adulteration detection in foodstuffs (Esteki et al., 2018).  In this study, 

LDA was applied in cooked pasta samples to verify the occurrence of a linear relationship in 

between the variables and to separate them into different classes. According to the literature, 

classification models based on small groups of classes perform better than multi-classes 

(Ziegler et al., 2016). Therefore, samples were split in 3 groups: 1 – Low cooking time (time 0 

to 4.5 minutes); 2 – Intermediate cooking time (6.0 to 10.5 minutes); and 3 – High cooking time 

(12 to 18 minutes). These groups were established based on optimum cooking time of these 

type of pasta and the information found by Ferreira (2018).    

Samples were also evaluated on PCA plots according to these groups. Then, PCA 

scores that better grouped the samples were used as variables to perform a Linear Discriminant 

Analysis (LDA). In comparison, Partial Least Square Discriminant Analysis (PLSDA) was 

performed to test the ability of the technique to predict optimum cooking time of pasta samples. 

The PLSDA assigned pasta samples into one of the three groups based on its spectral 

fingerprint. This technique is based on PLS regression technique and involves reduction of 
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dimensionality by projecting the data onto latent variables (LVs) subspace. Therefore, we chose 

an optimal number of LVs to constructed models based on the lowest prediction error in 

calibration and cross-validation (Erkinbaev et al., 2017). As both methods are supervised, and 

to test the model in an independent dataset Kennard-stone algorithm was used to split the data. 

Therefore, 70% of the samples were assigned to the calibration set and the remaining 30% 

constituted the validation set. The calibration models were developed based on cross-validation 

(random subsets with 10 splits and 5 iterations), and the classification model performance in 

both techniques was evaluated by calculating sensitivity, specificity and non-error rate (NER) 

in the validation. PCA and PLSDA were executed using Matlab R2019b software (The 

Mathworks Inc., Natick, MA, USA) and PLS Toolbox (Eigenvector Research, Inc., Manson, 

Washington, USA). LDA was executed using Classification toolbox for MATLAB - version 

5.4 free available at www.michem.unimib.it (last accessed July 2021) (Ballabio & Consonni, 

2013). 

 

4.3.Results and discussion 

 

4.3.1.  Raw spectra of samples 

 

The average VIS and NIR-HSI raw spectra of cooked pasta are shown in Figure 

4.2. Samples were plotted according to the cooking time (0 - 18 minutes). Overall, NIR spectra 

had very similar shape, regardless the cooking time, but differed in the intensity of transmittance 

across the spectral region. Pasta samples 1, 2, 4, 5 and 7 (Figures 4.2H, 4.2I, 4.2K, 4.2L and 

4.2N) had similar shape, with a slight valley around 710 nm corresponding to C-H stretching 

vibration in the fourth overtone and one around 960 nm, which correspond to stretching 

vibration of O-H in the second overtone. Except for Pasta 2 (Figure 4.2I), all other samples 

showed a slight peak around 850 nm related to C-H or C-C stretching vibration. Pasta 3 and 6 

(Figures 4.2J and 4.2M) showed a peak around 950 nm followed by a valley at 960 nm. 

Differences on baseline between samples can be observed on all spectra. Samples removed 

from cooking at the beginning of the process had higher transmittance, confirming the 

assumption taken when performing the calibration that uncooked pasta samples had maximum 

light crossing them.  
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Figure 4.2. Average raw spectra of pastas samples in the NIR range (A to G) and in the VIS 
range (H to N). 
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On the other hand, VIS spectra did not show similar behaviour across the spectral 

region. The visible spectral range (400–720 nm) is related to the transition of electrons, which 

are associated to the determination of samples colour (Xiao et al., 2018). Figure 4.3 shows the 

visual changes in two types of pasta during cooking. A slight change in colour can be identified, 

at the beginning of cooking process, samples colour had dark yellow colour, and at the end light 

yellowish colour could be observed. The same was noticed in the other types of pasta (data not 

shown). A peak around 450 – 500 nm can be observed, associated to the yellow light (Xiao et 

al., 2018). Undercooked samples are more translucent, allowing that more light crosses the 

samples and is detected by the camera. This corroborates with what can be observed on Figure 

4.2. Samples at time 0 had the highest transmittance values, while overcooked samples had 

lower transmittance values. However, it was expected a sequence of transmittance values from 

the highest to the lowest, from time 0 to time 18, respectively, as observed in the NIR spectra, 

but this did not happen. It is important to highlight that some of the fibre added to the pasta 

formulation were very insoluble and can be visually identified in the images displayed on Figure 

4.3. These fibres may have blocked that transmission of light in the visible range, and as they 

are not equally distributed across the samples, this may have affected the transmittance detected 

by the camera. In fact, this was also observed in a previously work (Badaró et al., 2021) and 

emphasizes the importance of this work, since the distribution of fibre within the sample is 

heterogeneous and it may affect the properties of the final products, including the behaviour of 

samples during cooking. In order to reduce scattering effects, SNV, MSC, 1st and 2nd derivatives 

were applied to NIR and VIS spectra prior multivariate analysis. Data were also mean centred 

prior analysis.  However, as expected, VIS spectra did not show any relationship among 

samples, so PCA, LDA and PLSDA analyses were carried out only with NIR data. 
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Figure 4.3. Images of pasta samples in each cooking time. 
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4.3.2. Principal Component Analysis (PCA) 

Principal component analysis was performed on NIR spectra of all pasta samples, 

in order to visualize any variation among samples. In order to obtain a better sample separation, 

all pre-processes aforementioned were applied. All types of pasta showed better separation 

when 1st and 2nd derivatives (Savitsky–Golay smoothing, 7 points window, 2 order polynomial) 

were applied. Moreover, variable selection was manually performed by selecting the peaks in 

the loadings plot to improve the separation among samples. PCA scores of Pasta 1 and their 

correspondent loadings (after variable selection) are illustrated in Figure 4.4. 

 

Figure 4.4. Score plots (PC1 vs PC2) of PCA performed on NIR spectra of Pasta 1 after 
Savitzky–Golay 1st derivative and the correspondent loadings plot. 
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 The first two principal components explained around 78% of the total variance of 

the samples. This variability observed on the scores might be due to chemical changes that 

happen during cooking. Considering that the factors that can affect the characteristics of cooked 

pasta as quality and quantity of semolina protein, drying conditions, and the composition of 

cooking (Cunin et al., 1995) water were kept constant, the variation observed among pasta 

samples might be due to composition of fibre and cooking time. Commonly, at the beginning 

of cooking process starch granules are deeply in a protein matrix. However, the replacement of 

semolina for fibre during pasta production produces a less homogeneous product, which can 

affect gluten development (Aravind et al., 2012; Cunin et al., 1995). Figure 4.4 shows that 

samples at time 0 formed a cluster in the positive side of PC1. A high variance is observed 

among these samples and samples from next group (at time 1.5), suggesting a high chemical 

variation among these samples. Cunin et al. (1995) observed that starch granules were strongly 

swollen after immersing the pasta samples (spaghetti type) for 1 second in boiling water, but 

after 45 seconds, the surface became smoother, and some regions contained a filamentous 

network with rests of swollen granules. The time interval between these groups of samples were 

90 seconds, which can explain the high lap between them in the score plot. Samples at 1.5 

minutes were followed by samples at 3.0 minutes, and so on, until samples at 18 minutes, which 

formed a cluster in the negative side of PC1. However, visually analysing the PCA scores, we 

can state that samples around 12 – 13.5 minutes of cooking did not show a clear separation, 

suggesting that there was not a lot of chemical changes after this cooking time. Cunin et al. 

(1995) also reported that after 13 minutes of cooking process, it was not possible to distinguish 

between protein and starch, and, after 5 minutes in boiling water, the starch granules were 

swollen and had lost their shape. 

The same behaviour was observed in the score plots of other pasta samples (data 

not shown). Taking this interpretation into account and considering the importance of 

identifying the cooking time, PCA was performed considering the three groups of samples 

previously established (low, intermediate and high cooking time). PCA score plots and their 

respective loadings plot, considering these three classes, are shown in Figure 4.5. 
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Figure 4.5. Score plots (PC1 vs PC2) of PCA performed on NIR spectra of all samples after 
Savitzky–Golay 1st and 2nd derivative and the correspondent loadings plot. 
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 Overall, both pre-treatments showed good separation among the groups of samples. 

The variance among samples regarding cooking time is most explained by PC1. After pre-

treated with 1st derivative, samples of low cooking time were displayed in the positive side of 

PC1 and samples of high cooking time were displayed in the negative side. Samples of 

intermediate cooking time is displayed in between the other two groups. For some of the pasta 

samples, there is no clear separation among the groups, with some overlapping of samples. 

Second derivative showed similar results, but samples of low cooking time displayed in the 

negative side of PC1, while samples of high cooking time were displayed in the positive side. 

In order to test the ability of classifying cooked pasta samples according to the cooking time, 

the PCA scores were used as input variables to developed discriminant classification models. 

 

4.3.3.  Classification of pasta samples - Linear Discriminant Analysis (LDA) 

 

Linear discriminant analysis (LDA) is a classification method used to discriminate 

samples into classes, i.e., low, intermediate and high cooking time. PCA scores were used as 

predictors for LDA models, and, as in PCA, samples were grouped into three classes defined 

as “Low cooking time” (0 – 6.0 minutes), “Intermediate cooking time” (7.5 – 10.5) and “High 

cooking time” (12 – 18 minutes). These classes were used to develop the classification models. 

Table 4.2 shows the models performance of LDA for qualitative analysis of cooking time of 

pasta. Data pre-treated with 1st and 2nd derivatives provided the calibration models with the best 

accuracies, and highest values of sensitivity, specificity and non-error rate (NER). However, 

Pastas 3 and 4 did not show good results for class 2, which is the intermediate cooking time. 

By observing the PCA scores of these two pasta samples, we can identify some overlapping. 

On the other hand, non-error rate (NER), or balanced accuracy, had satisfactory results, 

demonstrating good capacity of the models to discriminate pasta samples according to the 

cooking time. However, as an alternative to improve the discrimination of pasta samples, 

PLSDA models were constructed.  
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Table 4.2. Results of LDA models. 

Sample Pre-
treatment 

Number 
of PCs 

Sensitivity Specificity 
Accuracy NER 

C1 C2 C3 C1 C2 C3 

Pasta 1 
1st derivative 3 0.58 0.40 0.89 1.00 0.81 0.71 72% 0.62 
2nd derivative 4 0.62 0.65 0.98 1.00 0.90 0.79 83% 0.75 

Pasta 2 
1st derivative 3 0.93 0.38 0.98 1.00 0.96 0.62 79% 0.76 
2nd derivative 3 0.86 0.46 0.98 1.00 0.95 0.66 80% 0.76 

Pasta 3 
1st derivative 2 0.93 0.15 0.89 0.94 0.90 0.63 72% 0.66 
2nd derivative 3 0.92 0.17 0.98 0.87 0.96 0.70 72% 0.69 

Pasta 4 
1st derivative 3 0.88 0.57 0.83 0.98 0.84 0.83 79% 0.76 
2nd derivative 4 0.85 0.18 1.00 0.98 0.96 0.51 74% 0.68 

Pasta 5 
1st derivative 3 0.95 0.14 1.00 0.98 1.00 0.55 74% 0.70 
2nd derivative 3 0.76 0.24 0.95 1.00 0.90 0.62 75% 0.65 

Pasta 6 
1st derivative 5 0.70 0.80 0.88 0.99 0.85 0.92 84% 0.79 
2nd derivative 4 0.69 0.67 1.00 1.00 0.93 0.81 87% 0.79 

Pasta 7 
1st derivative 3 0.84 0.29 1.00 0.98 0.95 0.65 78% 0.71 
2nd derivative 4 0.74 0.79 0.85 1.00 0.82 0.91 81% 0.79 

C1 = Low cooking time 
C2 = Intermediate cooking time 
C3 = High cooking time 
 

4.3.4. Classification of pasta samples - Partial Least Squares Discriminant Analysis 

(PLSDA) 

 

In order to further explore the dataset and try to improve the classification ability, 

a supervised PLSDA model was built. Table 4.3 shows the results of PLSDA model for the 

validation set. As in PCA and LDA, 1st and 2nd derivatives had the best classification metrics. 

For most of the models two Latent Variables (LVs) were selected. It is important to highlight 

that PLSDA models showed better classification ability after variable selection, which was 

manually performed by selecting the peaks in the regression vectors created by the models. 

Although PLSDA involves reduction of dimensionality similarly to the principles of PCA, the 

models were not very accurate against false positives of class 2. The sensitivity and balanced 

accuracy were very satisfactory for all classes, though. Therefore, this suggests a good 

alternative in discriminating pasta samples according to the cooking time, regardless of content 

and source of the fibre added to the formulation, showing that the technique is suitable for 

different types of pasta. 
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 Table 4.3. Results of PLSDA models. 

Sample Pre-
treatment 

Number of 
LVs 

Sensitivity Specificity NER C1 C2 C3 C1 C2 C3 

Pasta 1 1st derivative 3 0.82 0.95 0.96 0.97 0.16 0.65 0.91 
2nd derivative 2 0.91 0.95 1.00 0.99 0.17 0.61 0.95 

Pasta 2 1st derivative 2 0.67 0.94 1.00 0.97 0.10 0.88 0.87 
2nd derivative 2 0.73 0.89 0.96 0.99 0.11 0.82 0.86 

Pasta 3 1st derivative 2 0.71 0.95 1.00 0.98 0.18 0.73 0.89 
2nd derivative 2 0.76 1.00 1.00 1.00 0.25 0.78 0.92 

Pasta 4 1st derivative 3 0.82 0.95 0.96 0.97 0.16 0.77 0.91 
2nd derivative 2 0.91 0.95 1.00 0.97 0.17 0.58 0.95 

Pasta 5 1st derivative 4 1.00 0.91 1.00 0.99 0.18 0.55 0.97 
2nd derivative 2 1.00 1.00 1.00 0.97 0.15 0.55 1.00 

Pasta 6 1st derivative 2 0.73 0.90 0.83 0.92 0.14 0.77 0.82 
2nd derivative 2 0.73 0.90 0.98 0.92 0.16 0.77 0.87 

Pasta 7 1st derivative 2 0.88 0.76 0.91 0.89 0.23 0.67 0.85 
2nd derivative 4 0.71 0.79 0.91 0.95 0.17 0.61 0.80 

C1 = Low cooking time 
C2 = Intermediate cooking time 
C3 = High cooking time 
 

4.4.Conclusion 

In conclusion, this work showed that NIR-HSI in the transmission mode is a 

suitable technique as an objective alternative for the determination of cooking time of pasta as 

way of automating the determination of pasta attributes. Although some low values were found 

for one of the classes, in general, the models showed good ability in classifying pasta samples 

according to the cooking time. LDA models constructed based on PCA scores showed to be a 

good way of classifying samples with reduced dimensionality.  

This work suggests hyperspectral image to have good potential as an objective 

method to cooking time determination, meeting this industry need. Although the spectrum 

range used in this work was small, it showed a great possibility to optimize food quality 

evaluation. Future studies should involve the use of such technique in a range that comprises 

more information about chemical changes that may occur during cooking.  
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The need of fast, non-destructive and chemical-free techniques are in increasing 

demand in many fields of the industry. Near-infrared spectroscopy and hyperspectral imaging 

techniques have showed to have great potential in determining food quality parameters, 

authenticating food products, detecting food fraud, among many other applications. Because of 

this, in the recent years, many studies have emerged in the application of these techniques as an 

alternative for fast and automated determinations in the food industry. In the cereal field, 

spectroscopy techniques have been used for various applications, such as determination of 

grains quality parameters, assessment of mycotoxins in cereals, authentication of pure flour, 

determination of quality parameter in flour, among others. These applications were reported 

and discussed in Chapter 1. 

Although many applications can be found in the literature for spectral techniques 

applied to cereals, the field is very wide and there is still a lack of some applications. In this 

context, this thesis was developed aiming to study the potential of NIR and NIR-HSI for 

identification, classification and quantification of different types of fibre samples added to the 

semolina and pasta produced by semolina-fibre formulations, and to monitor the cooking 

process to this fibre-enriched pasta by spectral techniques. The knowledge of these techniques 

allowed us to expand the initial objective of the thesis and applied NIR-HSI to quantify pectin 

content in orange peels as a faster and non-invasive method to justify investments in the waste 

processing and extraction methods. 

Therefore, we started this thesis by investigating the potential of a near-infrared 

spectrometer and a hyperspectral imaging system in the assessment of five different types of 

fibre added in two different percentages to semolina (Chapter 2). In this part of the thesis, we 

dealt with many challenges, such as the heterogeneity of the samples, which showed us to be a 

barrier when working with single point’s measurements. Soft Independent Modelling of Class 

Analogy (SIMCA) was performed on NIR data to discriminate pure and fibre-added semolina 

but presented sensitivity and specificity close or equal to zero, showing very low efficiency on 

discriminating and classifying the samples. The heterogeneity of the samples may be the cause 

of the poor performance of NIR. However, imaging techniques, such as NIR-HSI demonstrated 

to have a great potential in quantifying the amount of fibre in semolina as well as allowing the 

spatial distribution of fibre on the surface of semolina samples. SIMCA models applied on raw 

and pre-processed NIR-HSI data generally obtained high values of sensitivity and specificity 

for calibration and validation. Partial Least Square Regression (PLSR) was performed to test 

the ability of NIR-HSI to quantify the different percentages of fibre added to semolina. The 
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 developed calibration models were representative and could be used to develop chemical maps, 

which allowed to visualize the content of fibre in the spatial dimension of hyperspectral images. 

As aforementioned, these techniques have been investigated for the determination 

of many parameters in the cereal field. However, the use of such techniques for fibre 

determination in semolina and pasta was not found. Taking it into account, we followed the 

study by applying hyperspectral imaging in pasta samples in order to quantify fibre in pasta 

samples and identify its distribution (Chapter 3). In this part of the thesis, we applied 

Multivariate Curve Resolution with Alternating Least Squares (MCR-ALS) on the 

hyperspectral images to decompose them in the spectral profiles and relative distributions for 

each component in the sample. This algorithm showed its ability, together with NIR-HSI, for 

the evaluation, resolution, and quantification of fibre in enriched pasta. This part of the thesis 

allowed the study of the signal contributions and spatial distributions of fibre in the sample 

surface. Moreover, we were able to test different strategies to evaluate the feasibility of MCR-

ALS in obtaining information in the pasta samples by using images of the raw ingredients (fibre 

and flour). The concentration maps constructed with the MCR-ALS results revealed how fibres 

behaved in each sample. Issues regarding the heterogeneity of the samples were also faced in 

this study. Some fibres showed to be better distributed, while some of them agglomerated in 

some parts of the sample. The results found by the MCR models as lack of fit (LOF), variance 

explained and similarity between the pure spectra and the spectra recovered by the augmented 

models were very satisfactory, suggesting a good performance of the models. Moreover, the 

concentration models provided us the necessary information to establish a threshold and use the 

obtained value to make a regression model (with OLS) to ascertain the validity of the approach. 

Half of the models showed good correlation with the real content, unlike the others. However, 

this may not indicate a bad performance of the models, but, as mentioned before, a problem 

with the homogeneity of the sample. Also, a great dispersion regarding the predicted fibre 

content among samples with the same percentage of fibre, which may have decreased the 

performance of the models. 

At this point of the thesis, we saw the opportunity to enrich the content of this work. 

Therefore, we developed a study using hyperspectral images in the transmission mode for the 

determination of cooking time in pasta (Chapter 4). Optimal cooking time is a very subjective 

method, performed by manually pressing pasta samples between two glass slides. Then, this 

part of the thesis showed the good potential of HSI as an objective method to cooking time 

determination, as a first step to determine the optimum cooking time of pasta, meeting this 
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industry need. Linear Discriminant Analysis (LDA) models were built using the PCA scores 

and showed good ability in discriminating pasta samples in different times of cooking. Partial 

Least Squares Discriminant Analysis (PLSDA) models were also suitable to discriminate pasta 

samples. Moreover, the results demonstrate the possibility of developing qualitative models 

based on NIR-HSI transmission data. 

Chapter 5 also presents good findings regarding hyperspectral imaging technique. 

In this part of the thesis, this technique was tested for the identification of pectin content in 

orange peels, in order to justify investments in the waste processing and extraction methods. 

Samples were separated in three groups that we named “Low content”, “Intermediate content” 

and “High content”, based on the average pectin content in orange peels reported by other 

authors. LDA models were developed in order to distinguish samples into one of these three 

classes, but, differently from previously chapter, the models were built with optimum 

wavelengths selected based on PCA loadings. The results for sensitivity and specificity were 

very satisfactory, demonstrating good capacity of the models to discriminate samples of 

residues of orange peel with different pectin content. Partial Least Squares Regression (PLSR) 

models for pectin content quantification showed excellent precision based on full or reduced 

spectra, providing high coefficients of determination. 
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The review developed in Chapter 1 provided an overview on the application of 

spectral techniques for wheat flour and wheat-based products, more specifically near-infrared, 

Fourier-transform near-infrared and hyperspectral imaging. Moreover, this chapter provided 

information about the common wavelength ranges used for determination of this types of 

product, number of samples, acquisition mode and statistical methods performed used 

according to the study aim. In addition, we could identify the techniques more suitable to 

determine composition, authentication, and quality parameters. From that, we could link the 

initial idea of the project with the gaps found in the literature. 

Chapter 2 revealed the potential of NIR-HSI for the identification and quantification 

of different types of fibre added to semolina. The results found in this chapter also showed the 

possibility of visualization of different percentage of fibre in the spatial dimension based on 

spectral characteristics. Moreover, this study showed that near infrared spectroscopy, although 

is widely used in the food field, did not provide good results in identifying and discriminating 

the different fibres added to semolina. Pure samples scanned with the portable near infrared 

spectrometer were easily identified by observing the PCA scores; however, when the fibre 

samples were added to semolina and generated a heterogeneous sample, the spectrum of a single 

point was not representative of the whole sample. Based on the results of this work, I 

methodology based on HSI could be developed and implemented in the wheat flour industry, 

to authenticate fibre enriched flour. 

Chapter 3 showed that NIR-HSI, coupled to MCR-ALS, can identify and quantify 

fibre added to pasta samples. In this work, the homogeneity of pasta samples also showed to be 

a barrier, in the quantification of the expected fibre content in the sample. However, the results 

showed low LOF, high total variance, and great similarity between pure and recovered spectral 

profiles, denoting good replicability of the models and ability to quantify the amount of fibre 

in the region of the sample analysed. Although there is a high similarity of fibre and 

flour/control sample spectra, the outputs showed that even using the raw ingredient spectral 

information as in pure fibre and flour, it is possible to develop reliable models to identify fibre 

in pasta. In addition, the concentration maps can be very useful in monitoring the homogeneity 

of the samples. The performance of the models also showed that it is possible to have a 

qualitative overview of the fibre distribution in pasta samples, and, in some cases, it is possible 

to quantify the amount of fibre in the sample surface. Thus, this chapter presented a great 

possibility to apply such technique as a qualitative and quantitative method for authentication 

of fibre-enriched pasta. 
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 Chapter 4 demonstrated that NIR-HSI in the transmission mode is a suitable 

technique as an objective alternative for the determination of optimal cooking time of pasta as 

way of automating the determination of pasta attributes. Although some low values were found 

for one of the classes, in general, the models showed good ability in classifying pasta samples 

according to the cooking time. LDA models constructed based on PCA scores showed to be a 

good way of classifying samples with reduced dimensionality. Therefore, this work suggested 

that hyperspectral imaging have good potential as an objective method to cooking time 

determination, meeting this industry need. Although the spectrum range used in this work was 

small, it showed a great possibility to optimize food quality evaluation. Based on the results of 

this work, we could develop a methodology to determine the optimum cooking time of pasta 

and other pasta attributes that are very difficult to measure with good precision. The 

determination of these parameters would contribute to determine these parameters in the pasta 

industry. 

Finally, chapter 5 confirmed the potential of hyperspectral imaging technique to 

classify orange peel samples according to the pectin content. LDA models were able to separate 

the groups of samples containing different percentages of pectin into the same three classes 

(low, intermediate and high pectin content). Additionally, PLSR models for pectin content 

quantification based on full and reduced spectra showed excellent precision, providing high 

coefficients of determination. The results showed that this technique holds potential as an 

alternative to the carbazole colorimetry method to quantify pectin in orange peels, and to 

categorize orange peel samples into groups of different pectin concentration and can be used to 

justify investments in the waste processing and extraction methods. Although this work was 

tested by using the orange peels in the powder form, the results were very satisfactory and 

showed the possibility to apply this technique for pectin determination. Thus, future works 

could include the determination of pectin in orange peels in the fresh form. 
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 Final Considerations 

First of all, I would like to thank Douglas and Nuria for the supervision in this 

thesis. Secondly, I would like to thank the evaluators for taking the time to correct the thesis 

and give their suggestions so I could improve my work and acquire more knowledge. I corrected 

most of the comments, which I strongly agreed on. I am writing these final considerations to 

explain some points raised during the correction of the thesis.  

I will start explaining the broader title of the thesis. My supervisors and I decided 

to go for a broader title because the thesis includes more than one topic. At first, I was going to 

work with NIRS and HSI to study flour and pasta, but during these five years of PhD we dealt 

with many drawbacks, which lead me to participate in other works. Then, we saw that my thesis 

was more about the techniques than the product. So, when I was doing my internship in Spain, 

Douglas and I had the opportunity to work with a group of researchers from Universidad de 

Sevilla, which was working with the application of HSI to quantify the amount of pectin orange 

peels. As I had worked with the technique in other powdered product, we decided that it would 

be suitable for me to work with them. Oranges are abundant in Spain, so it would be a great 

alternative to quantify the pectin in oranges peel prior extraction. That is why I also included a 

chapter about the pectin in orange peels.  

Moreover, the initial idea of working with flour and pasta was not so applicable so 

we tried to fill the gaps we found in the literature. Some of the comments in this thesis was 

regarding the applicability of the work. The industry of pasta needs more objective and fast 

techniques to improve their assessments. In this context, we wanted to develop alternative 

techniques to authenticate enriched flour/pasta products and investigate the cooking process to, 

in the future, be able to determine the optimum cooking time by pressing pasta samples. 

The fact that some errors were found to be higher than expected raised a question 

about either the work was applicably or not. In fact, there is a large gap for the application of 

these techniques in the food industry, and only a few works have applied spectral techniques 

in-line. Therefore, there is the need for further studies in order to apply these techniques in the 

process line so that the industry would have a more controlled process. The combination of off-

line and in-line measurements could be a first step on the use of NIR in in-line analysis. Also, 

handheld spectrometers could be used in the process line. 

In addition, another problem we faced during the development of the work was the 

heterogeneity of the samples. The fibre and flour did not mix well, so, by comparing a low cost 

and not so sensitive spectrometer with a robust hyperspectral camera, the results were quite 
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 discrepant. Although HSI overcomes the problem with spatial information, some points 

regarding the heterogeneity in the depth of the samples were questioned. With flour samples, I 

believe that this could be solved by using a thin layer all the surface analysed. In contrast, pasta 

samples were approximately 2 mm tick, so we considered that all the information in the depth 

was acquired. 

Finally, the reviewers raised some points regarding the theory of chemometrics, 

which, in fact, were not fully described in some specific parts. Hence, all changes were properly 

addressed when feasible. 
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