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ABSTRACT: 

 

The management of riverine areas is fundamental due to their great environmental importance. The fast changes that occur in these 

areas due to river mechanics and human pressure makes it necessary to obtain data with high temporal and spatial resolution. This 

study proposes a workflow to map riverine species using Unmanned Aerial Vehicle (UAV) imagery. Based on RGB point clouds, our 

work derived simple geometric and spectral metrics to classify an area of the public hydraulic domain of the river Palancia (Spain) in 

five different classes: Tamarix gallica L. (French tamarisk), Pinus halepensis Miller (Aleppo pine), Arundo donax L. (giant reed), 

other riverine species and ground.  A total of six Machine Learning (ML) methods were evaluated: Decision Trees, Extra Trees, 

Multilayer Perceptron, K-Nearest Neighbors, Random Forest and Ridge. The method chosen to carry out the classification was Random 

Forest, which obtained a mean score cross-validation close to 0.8. Subsequently, an object-based reclassification was done to improve 

this result, obtaining an overall accuracy of 83.6%, and individually a producer’s accuracy of 73.8% for giant reed, 87.7% for Aleppo 

pine, 82.8% for French tamarisk, 93.5% for ground and 80.1% for other riverine species. Results were promising, proving the feasibility 

of using this cost-effective method for periodic monitoring of riverine species. In addition, the proposed workflow is easily transferable 

to other tasks beyond riverine species classification (e.g., green areas detection, land cover classification) opening new opportunities 

in the use of UAVs equipped with consumer cameras for environmental applications. 

 

1. INTRODUCTION 

Riverine areas play one of the most important functions of 

watersheds, influencing the transfer of energy, nutrients and 

sediments between aquatic and terrestrial systems, as well as 

being the habitat of a wide variety of animal and plant species, 

having a great landscape and educational interest (Gutiérrez and 

Alonso, 2013). In relation to water quality, the riverine areas act 

as buffers between the upper and lower reaches of rivers, helping 

to filter out pollutants, as well as nutrients and sediments (Elmore 

and Beschta, 1987). Riverine vegetation plays a key role here, 

reducing erosion of stream banks by reducing the linear velocity 

of water, preventing soil erosion and keeping the geomorphology 

of the channels stable, while also fixing CO2 (Naiman et al., 

1999).  

 

Nevertheless, riverine zones are endangered by human activity 

such as land use changes, modification of riverbeds, use of dams, 

wastewater or introduction of invasive species (Michez et al., 

2016b). The strong anthropic pressure makes these ecosystems 

very fragile, making it necessary to implement management 

plans, which allows for the compatibility of their ecological and 

economic functions, improving sustainability for future 

generations (Muñoz et al., 2004; National Research Council, 

2002). Riverine management plans need a baseline data on 

existing conditions, with the objective of achieving a balance in 

the river course (National Research Council, 2002). Knowing the 

structure of the riverine landscape and how it affects landscape 

processes is essential for making planning and management 

decisions (e.g., removal of invasive species, planting of species 

for riverbank stabilization, removal of species that block 

watercourses, etc.) (Apan et al., 2002). In this regard, one of the 

most important points to avoid during periods of intense rainfall 
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is the excessive accumulation of riverine species in the riverbed, 

which on certain occasions can cause flooding out of the 

riverbeds.  

 

In this aspect, the management plans of the riverine areas of the 

Spanish Mediterranean basin are conditioned by the periods of 

heavy rains, considering a fundamental factor which is the risk of 

flooding (Arizpe et al., 2008). In order to reduce this risk, it is 

necessary to have species distribution maps to plan the selective 

or periodic clearing of the river basin in accordance with 

environmental, risk and landscape criteria (Apan et al., 2002). 

Management planning for riverine species is affected by the rapid 

changes that river dynamics cause in their structure, as well as by 

the need to have accurate three-dimensional information for the 

study of river mechanics (Stella et al., 2013).  

 

Some successful studies have been done using aerial and 

terrestrial laser scanning point clouds to classify forest species 

composition (Torralba et al., 2018). However, the frequency of 

application of these techniques is limited by their cost. Recently, 

advances in UAV allow an alternative acquisition of high-

resolution images with high temporal frequency and at low cost. 

With that purpose, it is only necessary to equip these systems 

with a consumer camera to be able to obtain point clouds using 

photogrammetric methods. Most methodologies for obtaining 

three-dimensional data from UAV-derived images use structure 

from motion algorithms (SfM). Products such as point clouds, 3D 

objects or orthophotos can be obtained from these algorithms 

(Fernández-Sarría et al., 2017). Usually, maps of species 

classifications obtained from SfM algorithms are based on the 

classification of the orthophotos, losing the three-dimensional 

information and making necessary to triangulate the point cloud, 

being this process the most demanding from a computational 
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point of view (Michez et al., 2016a). In this regard, a direct 

classification based on the point cloud would preserve their 

spatial information, avoiding the meshing process, and saving 

computing and labour resources. 

 

In recent years, some studies have applied ML techniques in the 

classification of photogrammetric point clouds (Nevalainen et al., 

2017), mainly supervised classifications, but these classifications 

have not been focused on the classification of species in forest 

areas, where the complexity of the classification is greater (Zou 

et al., 2017). In addition, recent studies have shown how point 

clouds obtained from UAV-derived images allow the estimation 

of dendrometic variables in riverine species (Carbonell-Rivera et 

al., 2019). Thus, a direct classification of the point cloud will 

allow the delimitation of the riverbank species, allowing to obtain 

additional structural information of each individual. This 

information would improve the current species distribution maps, 

providing three-dimensional information to determine when 

silvicultural action is necessary according to the management 

plan of the riverine area. 

 

Consequently, the main objective of this study is the development 

of a new methodology for the classification of riverine species 

applying ML algorithms for the supervised classification of RGB 

point clouds obtained from UAV images. 

 

2. MATERIAL 

2.1 Study area 

The selected study area was the public hydraulic domain of the 

river Palancia, as it passes through the town of Estivella, located 

in the eastern part of the Iberian Peninsula (Figure 1). This area 

of the Mediterranean basin is formed by fluvial terraces from the 

Upper Pleistocene. The climate is transitional between the coastal 

Mediterranean and the inland Mediterranean climate, with cool 

winters and hot summers. Rainfall in summer is low, contrasting 

with autumn and spring, where most of the annual rainfall is 

accumulated (500 mm), usually with torrential rains. This part of 

the Palancia basin has suffered important changes in water flows, 

due to an important anthropic impact (over-exploitation of 

aquifers), river damming and related flow manipulation and the 

endorheic characteristics of the basin that make the riverbed 

practically dry. This over-exploitation is caused by the existence 

of 5,010 hectares of irrigated land (Confederación Hidrográfica 

del Júcar, 1999). 

 

 

Figure 1. Location of the study area, representing the polygon 

that encloses the area (white) and the Palancia’s thalweg (blue) 

These factors, as well as the introduction of invasive species, 

have led to modifications of the type, conditions and species 

composition of the riverine forest in this river course. 

The most dominant species in the area are Tamarix gallica 

(French tamarisk) and Pinus halepensis (Aleppo pine), along 

with the invasive species Arundo donax (giant reed) which 

dominates almost the entire riverbed. Individuals of other 

allochthonous species are occasionally present, such as: Opuntia 

maxima Mill. (prickly pear), Acacia karroo Hayne 

(Karroothorn), Agave Americana L. (American aloe), Ricinus 

communis L. (castor bean) and Nicotiana glauca Graham (tree 

tobacco). With respect to the native species, the following bush 

species can be mostly found in the area of study: Tamarix 

africana Poir. (African tamarisk), Nerium oleander L. (Nerium), 

Pistacia lentiscus L. (lentisk) and Rhamnus lycioides L. 

(Mediterranean buckthorn), as well as tree species such as 

Populus nigra L. (black poplar), Celtis australis L. 

(Mediterranean hackberry) and Populus alba L. (silver poplar) in 

a lesser extent. 

 

2.2 Data collection 

Fieldwork was carried out in October 2018, consisting of seven 

flights using an ATyges FV8 UAV, capturing 1253 zenithal 

images, covering an area of 43.11 ha. The flight was carried out 

at an altitude of 120 m. with an average speed of 25.2 km/h, being 

the normal operating speed recommended by the manufacturer in 

favourable weather conditions. The Atyges FV8 is a multirotor 

weighting 3.5 kg, with a maximum payload of 1.5 kg. Its eight 

brushless motors are powered by two Li-ion batteries of 8,200 

mAh, allowing for flights of up to 25 minutes, depending on the 

payload and meteorological conditions. This UAV is made up of 

an ATmega 1284P flight controller, which integrates the control 

electronics and navigation sensors and an Atmel ARM9 

microcontroller in charge of the navigation control, as well as a 

u-blox LEA-6S GPS antenna module, providing metric accuracy. 

The ATyges FV8 was equipped with a consumer camera, model 

Sony A5000. This camera is composed of a CMOS sensor 

Exmor™ APS HD (23.2 × 15.4 mm) of 20.1 MP of resolution. 

The focal length was set at 16 mm, giving a sensor pixel size of 

4 µm for a larger field of view. In-flight, the shutter speed was 

set to 1/800 seconds and the sensor sensitivity was ISO-100, in 

order to avoid inconsistency between photographs. The capture 

of the photographic data was done following the basic data 

recommendations for the application of SfM algorithms, namely: 

maximum available resolution, data capture in RAW format to 

avoid compression of the photograph, and constant focal length 

and f-number. 

 

Two differential GPS models, Leica Viva GS16 and Topcon GR-

5, were used to take 262 Ground Control Points (GCPs), 

randomly distributed throughout the study area. 

 

3. METHODS 

3.1 Photogrammetric processing 

The first part of the methods consists of the photogrammetric 

processing of the photographs to obtain a georeferenced point 

cloud. The photogrammetric process was carried out using 

Pix4D© software version 4.3.31, which is commonly used in 

photogrammetric surveys with proven efficiency (Niederheiser et 

al., 2016). The photogrammetric process uses the information 

captured by the inertial measurement unit (IMU) and the GPS 

position of the UAV, together with the GCPs to extract tie points, 

and features present in multiple photographs. In this phase, 

Pix4D© applies a colour alignment algorithm, accounting for 

both exposure mismatches between images (global offset and 

gain per image) and camera-related defects such as vignetting. 

Tie points are used to calculate the relative positions of the 

cameras to create a sparse point cloud. The geo-referencing 

process of the sparse point cloud is performed using the GCPs 
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collected in field, in order to transform the resulting point cloud 

to the ETRS89/UTM zone 30 coordinate system (EPSG:25830). 

Once the low-density point cloud is computed and geo-

referenced, a high-density point cloud based on the relative 

positions of the sparse points and the locations of the cameras is 

generated (step 1 on Figure 2). After the densification process, a 

point cloud of 85,409,557 points was obtained. The geometric 

error of the point cloud was calculated by obtaining the Root 

Mean Square Error (RMSE) between the GCPs and the position 

of the computed 3D point. The RMSE for a given direction (x, y, 

z) is defined as: 

𝑅𝑀𝑆𝐸 = √
∑ 𝑒𝑖

2

𝑁
 (1) 

 

Where ei is the error of each point for the given direction, and N 

the number of GCPs.  

 

The RMSE obtained for the directions x, y and z were 0.015m, 

0.013m and 0.021m, respectively. 

 
Figure 2. General overview of the workflow 

3.2 Normalization of heights 

In order to introduce the height variable in the point 

classification, a height normalization of the point cloud was 

performed (step 2 of the Figure 2) using the LASTools© software 

(Isenburg, 2018). This process was divided into two steps. In the 

first step, it is calculated a Digital Terrain Model (DTM), which 

starts with the construction of an initial Triangulated Irregular 

Network (TIN) from the lowest point within the local area. From 

this TIN, a progressive densification is done in an iterative 

process, adding more points from the unclassified points to the 

DTM based on criteria of distance and angle between points. In 

the second step, once the DTM is created, the normalization of 

heights is carried out, computing the height of each point above 

the ground. The ground points were removed from the point 

cloud, with the aim of classifying only plant species, obtaining a 

point cloud of 29,347,272 points. 

 

3.3 Point cloud classification 

In this step, a UAV point cloud classification was applied using 

ML algorithms. Five different classes were defined for riverine 

species classification: three classes of plant species (Arundo 

donax, Tamarix Africana and Pinus pinaster), which are the most 

representative of the river section studied; the class other 

riverine, which contains species of small size or with a low 

representativeness in the area; and the class ground to detect 

those points that were not identified as ground in the generation 

of the DTM (e.g., bridges). A Python-based code was created to 

allow the users to take point cloud training samples of the species 

(Figure 3). In order to homogenise the data collection, the 

samples were taken in a rectangular shape, obtaining prisms of 

the selected data. 

 

  

Figure 3. Selection process of training samples for the Arundo 

donax class (selected points coloured in yellow) 

In this process, a total of 5,054,408 random points were taken 

throughout the study area from the different classes analysed 

(Table 1).  

Class Number of points 

Arundo donax 721,555 

Tamarix africana 270,017 

Pinus pinaster 492,729 

Other riverine 92,659 

Ground 232,082 

Table 1. Number of points per class 

3.3.1 Feature extraction: The features used as input in the 

machine learning classifiers, contained normalised height and 

spectral information provided by the point clouds obtained (Table 

2).  
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Abbreviation Feature 

Z Normalised height 

R 8-bit red digital number 

G 8-bit green digital number 

B 8-bit blue digital number 

NGRDI Normalised Green-Red Difference Index 

NGBDI Normalised Green-Blue Difference Index 

NBRDI Normalised Red-Blue Difference Index 

Table 2. Set of geometric and spectral features used in the point 

classification 

In this work no radiometric correction was applied to the Digital 

Number (DN) values, due to the high relationship they have with 

their DN values in indices such as NGRDI, being close enough 

to use the digital values without further radiometric calibration 

(Hunt et al., 2005; Jannoura et al., 2015). In addition, the colour 

alignment algorithm applied by Pix4D© implies that there are no 

differences in the RGB values of the same cover for different 

shots. 

 

The spectral information chosen were the DN values for the R, 

G, and B bands, in addition to their normalised difference 

indexes, which are defined as: 

 

𝑁𝐺𝑅𝐷𝐼 =
𝐺𝑟𝑒𝑒𝑛 𝐷𝑁 − 𝑅𝑒𝑑 𝐷𝑁

𝐺𝑟𝑒𝑒𝑛 𝐷𝑁 + 𝑅𝑒𝑑 𝐷𝑁
 

𝑁𝐺𝐵𝐷𝐼 =
𝐺𝑟𝑒𝑒𝑛 𝐷𝑁 − 𝐵𝑙𝑢𝑒 𝐷𝑁

𝐺𝑟𝑒𝑒𝑛 𝐷𝑁 + 𝐵𝑙𝑢𝑒 𝐷𝑁
 

𝑁𝐵𝑅𝐷𝐼 =
𝑅𝑒𝑑 𝐷𝑁 − 𝐵𝑙𝑢𝑒 𝐷𝑁

𝑅𝑒𝑑 𝐷𝑁 + 𝐵𝑙𝑢𝑒 𝐷𝑁
 

 

 

 

 

 

 

(2) 

3.3.2 Supervised classification methods: Different ML 

methods for supervised classification were tested using a Python-

based code: Decision Trees, Extra Trees, Multilayer Perceptron 

(MLP), K-Nearest Neighbours (KNN), Random Forest, and 

Ridge. These methods were extracted from the Scikit-learn 

library (Pedregosa et al., 2011) for Python.  

 

The accuracy of these methods was assessed by mean score 

cross-validation. Validation by cross-validation was realised to 

ensure the independence between training and test data. To 

perform this analysis, K iterations or K-fold cross-validation 

were used, dividing the sample data into K subsets. For this 

analysis the K number was set at ten. This value was not 

increased in order not to increase the processing time, suffering 

neither an excessively high bias nor a very high variance in the 

error rate of the test (Casella et al., 2013). One of the subsets is 

used as test data and the rest (K-1) is used as training data. This 

is repeated during k iterations with each of the possible subsets 

of test data. Finally, the arithmetic mean of the results from each 

iteration is performed to obtain a single result.  

 

Decision Trees is a non-parametric supervised learning method. 

This method is a series of conditions organised hierarchically as 

a tree (Hernández Orallo et al., 2004). The classification of 

objects is based on questions about the values of their attributes, 

starting from the root node and following the path, which is 

determined by the answers of the internal nodes until reaching a 

sheet node. The class assigned to this sheet is assigned to the 

objects that have fulfilled the conditions leading to it. In this 

study, the algorithm on which the Decision Trees were based was 

Classification and Regression Trees, also known as CART 

(Breiman et al., 1984). CART constructs binary trees using the 

feature and threshold that yield the largest information gain at 

each node. For the execution of this algorithm there were set up 

different parameters with respect to the default parameters of the 

library. Gini impurity was applied to measure the quality of a 

split, choosing the best split. Gini impurity is the probability of 

incorrectly classifying a randomly chosen element in the dataset. 

The minimum number of samples required to split an internal 

node was set up to two, and the minimum number of samples 

required to be at a leaf node was one. 

 

A Multilayer Perceptron (Rosenblatt, 1961) is a deep neural 

network classifier. It is based in the existence of an input layer 

which receives a signal, and an output layer which makes a 

prediction about the input. Between them, there are an arbitrary 

number of hidden layers. Except for the input nodes, each node 

is a neuron using a non-linear activation function. This method 

uses backpropagation as supervised learning technique for 

training. The following parameters were used for its execution: 

the number of neurons in the ith hidden layer was 100, being 

activated using the rectified linear unit function. 

 

The classification using K-Nearest Neighbours is calculated from 

most of the features for the nearest neighbours of each point. 

Each point is assigned the data class with the highest number of 

values represented within the nearest neighbours. For the 

execution, the number of neighbours to use was set up to five, 

and the leaf size to 30. 

 

Random Forest (Ho, 1995) consists of a large number of 

individual decision trees that function as a whole. Each individual 

tree makes a class prediction. The prediction that is most often 

repeated among all the trees becomes the model's prediction.  

The parameters of execution were the following: the number of 

trees in the forest was ten and the minimum number of samples 

required to be at a leaf node was one. To obtain a value of the 

feature importance in Random Forest, Gini impurity was used.  

 

Extra Trees classifier, otherwise known as “Extremely 

randomised trees” classifier (Geurts et al., 2006), is a variant of 

the Random Forest classifier. There are two differences between 

the two classifiers: Extra trees do not apply the bagging 

procedure (use repeated sampling -bootstrapping- in order to 

reduce the variance) to build a set of the training samples for each 

tree, and also choose a node split very extremely, while Random 

Forest finds the best split. The parameters used when executing 

the classifier were: the number of trees in the forest (10), and Gini 

impurity was applied to measure the quality of a split. 

 

Ridge regression, also known as Tikhonov regularization 

(Tikhonov et al., 2013), is often used as a method of 

regularization of problems.  Ridge is similar to linear least-

squares regression but reducing parameter estimations in order to 

improve prediction accuracy, reduce variance, and assist in 

interpretation. To use this regression method as a classifier, the 

target values are converted into {-1, 1} and then treats the 

problem as a regression task. 

 

3.4 Segmentation 

After applying the machine learning classification methods, and 

in order to reduce the high spatial irregularity of the point 

classification, a geometric segmentation of the point cloud was 

carried out, with the aim of obtaining clusters of points 

representing different individuals (step 4 of the Figure 2). 

 

The geometric segmentation of the point cloud was performed to 

segment individual objects in a sequence, taking advantage of the 

relative spacing between objects. This segmentation method is 

contained in the li2012 (Li et al., 2012) algorithm of the lastrees 
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function of lidR (Roussel et al., 2018) package. To achieve the 

objective of obtaining a single class per segment, the algorithm 

was parameterised to perform an over-segmentation. This 

algorithm is based on the use of different parameters to determine 

whether a point is near or far from existing trees, see page 79 in 

Li et al. (2012). The parameters used were the following: 

threshold number 1 of 1.5 m, threshold number 2 of 2 m, a 

minimum height of a detected plant of 1.5 m, and a maximum 

radius of a crown of 5 m. 

 

3.5 Object-based reclassification 

Finally, a reclassification of points was done (step 5 of the Figure 

2), based on the mode of the points contained in each segment, 

thus assigning to each segment the most repeated class of the 

points within it. In this way, the initial classification derived from 

a machine learning classifier is considered, and a statistical 

context model is used to increase the spatial regularity. Thereby, 

the classification of a given point not only takes into account the 

feature values of this point, but also the classes (and features) of 

its neighbouring points, moving from a classification by point to 

a classification by segment or object. 

 

3.6 Evaluation  

Evaluation was performed by providing accuracy indices per 

class and overall, by comparing the class obtained from each 

segment with the actual class of the object obtained by 

photointerpretation. In the case where the segmentation was 

erroneous, the classification of the object was assigned to the 

majority class within the object. 

 

𝐴 = [

𝑎1,1 𝑎1,2 . . . 𝑎1,𝑗

𝑎2,1 𝑎2,2 . . . 𝑎2,𝑗

. . . . . . . . . . . .
𝑎𝑖,1 𝑎𝑖,2 . . . 𝑎𝑖,𝑗

]     𝑇𝑃𝑖 = 𝑎𝑖𝑖 

 

𝐹𝑃𝑖 = ∑ 𝑎𝑗,𝑖 − 𝑇𝑃𝑖

𝑖

1

           𝐹𝑁𝑖 = ∑ 𝑎𝑖,𝑗 − 𝑇𝑃𝑖

𝑖

1

 

 

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
           Re =

TP

TP + FN
 

 

𝐹𝑚 = 2 ·
Pr · Re

Pr + Re
 

(3) 

 

where A = confussion matrix, TP = True Positives, FP = False 

Positives, FN = False Negatives, Pr = precision, Re = recall and 

Fm = F-measure. 

 

In this process, 10% of the segmented objects was used for 

testing, i.e., 1,625 objects, evaluating 325 objects per class. These 

objects were randomly sampled from each class. 

 

3.7 Area and volume 

In order to obtain the representativeness of each analysed class in 

the study area, the areas and volumes of each class were 

calculated. To carry out this process, the study area was divided 

into grid squares of 15 cm side. If a single point of the analysed 

class was within the grid, the total area of the grid (225 cm2) was 

added up. To calculate the volume, the area was multiplied by the 

average height of the points inside.  

 

4. RESULTS AND DISCUSSION 

In order to analyse the proposed methodology, intermediate 

results were obtained after carrying out the classification by 

points using the different machine learning methods. On the other 

hand, after the  reclassification based on segments, the objects 

obtained and their class were analysed as final results. 

 

4.1 Results of ML classification 

The choice of the ML method used in the supervised 

classification was based on the mean score cross-validation and 

the overall accuracy obtained by each of the methods.  Figure 4.  

shows the results obtained, most of the methods obtained around 

0.80 in the mean score cross-validation, except Ridge which 

remained around 0.35. In this study, the methods with the best 

mean score cross-validation were MLP, K-Nearest Neighbours 

and Random Forest, obtaining results similar to Nevalainen et al., 

2017. The low performance of the Ridge method is explained 

because originally this method is used for regressions. This 

classifier works quite well for text classifications, but it is not 

properly adapted to the case studied.  

 

After analysing these results, it was decided to choose the 

Random Forest method to perform the point cloud classification, 

due to the high scores and low dispersion obtained. 

 

 

Figure 4. Box and whiskers plot with the means and standard 

deviations obtained using 10-folds cross-validation for the 

different ML methods analysed 

 

The search of ideal predictors is an important step in a 

classification. In this work the features were obtained directly 

from the points, but we can also obtain features based on the 

values of the neighbours in the 3D context, and they can even be 

obtained from segment-based features.  

 

In this regard, the features used, listed in Table 2, have provided 

meaningful information to differentiate the required classes. The 

importance of each variable by Gini impurity (Figure 5), gives an 

idea of the capacity that each feature has to separate the classes. 

In this figure the most important variable to discern between 

classes was the normalised height. Next, the most important 

features were the normalised difference indexes, mainly NGBDI 

and NGRDI, with the NBRDI index and the R, G and B having a 

very similar importance. These results seem to be in line with the 

literature where indexes NGBDI and NGRDI are usually applied 

to describe vegetation (Chen et al., 2018), but there are not so 

many studies that apply the NBRDI index in classifications. 
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Figure 5. Feature importance for RF 

 

4.2 Results of the object-based reclassification 

Once the workflow was completed, 16,231 classified segments 

were obtained. In order to evaluate the process, the 10% of 

segments were randomly selected to validate the results. On this 

sample, a geometric validation of the segmentation was carried 

out, checking that in each segment there was only one class 

analysed. The geometric validation was carried out on 1,625 

objects, showing that 113 of them (6.95%) contained two or more 

classes inside. In this aspect, a good percentage of success has 

been obtained, mostly due to the over-segmentation carried out, 

which had as an objective that the same segment did not contain 

more than one class. 

 

Table 3 shows the evaluation matrix. Analysing the results, the 

highest values for user’s accuracy (precision), producer’s 

accuracy (recall) and F-measure were obtained in the class 

ground, achieving values of 0.97, 0.94 and 0.95, respectively.  

These results are attributed to its very specific spectral response. 

The next highest ranked class was Aleppo pine, obtaining good 

results in precision (0.91), recall (0.88) and F-measure (0.89). 

This class is characterised by being the highest species within the 

study area, as well as having a different spectral response from 

the rest of the species analysed, which is the reason for the results 

obtained. In the case of French tamarisk, the results are also 

remarkable, obtaining a percentage of 83% for the three accuracy 

indices. In the giant reed species, we found that the lowest 

statistic was the recall (74%), which explains the existence of 

false negatives, but on the opposite, the precision got a high hit 

rate (93%), obtaining a very low number of false positives. The 

combination of a very low number of false positives, and a 

slightly higher number of false negatives, indicates that the 

number of true individuals is greater than the number of predicted 

individuals. Finally, the class other riverine obtained more 

discreet statistics, which was expected, due to the mix of species 

that were introduced as training samples. 

An overall accuracy of 83.6% was achieved in the classification, 

where one of the most important steps was the reclassification, 

eliminating isolated and misclassified points, scattered in the 

point cloud, and also enforcing the homogeneity of closely 

connected sets of points. This step substantially improved the 

classification as the previous labelling was mostly correct. In 

addition, the over-segmentation realised, did not affect the final 

classification, since even having a smaller group of points, these 

contain enough information to explain the class to which they 

belong. In this aspect, segmentation, introducing context 

information, and the subsequent reclassification of the point 

cloud become fundamental in order to unify neighbouring points 

that have homogeneous characteristics.  
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0 260 9 5 10 41 325 

1 55 240 4 11 15 325 

2 17 2 304 2 0 325 

3 39 0 0 285 1 325 

4 44 6 0 6 269 325 

Total 416 257 313 314 326 1,625 

 Pr 0.63 0.93 0.97 0.91 0.83  

 Re 0.80 0.74 0.94 0.88 0.83  

 Fm 0.70 0.82 0.95 0.89 0.83  

Table 3. Confusion matrix with precision (Pr), recall (Re) and 

F-measure (Fm) for the different classes analysed. Column 

headers are class labels, row names are respective class indices 

The overall accuracy obtained is comparable with similar studies 

applied in riverine areas. Adrien et al. (2016) obtained an overall 

accuracy of 84%, performing a species classification based on 

RGB and NIR orthophotos obtained from UAV-based 

photogrammetry. Nevalainen et al., 2017, carried out a 

classification of UAV-based photogrammetric point clouds and 

hyperspectral imagery, obtaining with Random Forest and MLP 

global accuracies close to 95%. In both cases they used the 

geometric information provided by the point cloud, showing that 

its use is key to obtain good results in the classification of species. 

Therefore, under optimal conditions, no additional spectral 

information would be needed, beyond the information that a 

consumer camera can provide. In the case of classifying similar 

species in geometry and spectrum, it would be necessary to add 

additional geometric (neighbourhoods, object-based features...) 

and spectral (multispectral or hyperspectral) information to 

obtain good results. 

 

Analysing the results of areas and volumes occupied by the 

different classes (Table 4), the predominant vegetation species is 

the invasive plant giant reed, followed by the French tamarisk. 

The surface covered by the tamarisk is over 2.5 times that of the 

pine, but its volume is not, this is due to the difference in width 

and height between both species. Curiously, the volume for class 

ground was almost 22,500 m3. This class is mostly represented 

by bridges that were not detected as ground when the height 

normalization was done, being in these objects where the volume 

has been overestimated.  

 

Class Area (m2) Volume (m3) 

Aleppo pine 19,627 123,847 

French tamarisk 50,936 76,557 

Giant reed 111,958 238,989 

Ground 5,757 22,494 

Other riverine 27,439 17,136 

Table 4. Area and volume occupied by class 

 

Figure 6 shows the intermediate results obtained after the height 

normalisation and the segmentation, as well as the final classified 

point cloud. The latter shows how almost the entire riverbed is 

invaded by giant reed, as well as some small areas of pine trees, 

and bridges, which stand out in the initial and final part of the 

riverbed. The large presence of Arundo donax in this section of 

the river proves the need of ecological restorations to remove 

invasive species as harmful as the giant reed, which not only 

causes environmental damage by displacing native species, but 
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also increases the risk of flooding in the rainy season by 

accumulation of canes in the riverbeds that block the spans of 

bridges. This study shows how the areas that are invaded by this 

species can be delimited with great accuracy, allowing the 

possibility of carrying out multi-temporal studies that analyse the 

expansion of Arundo donax in Mediterranean basin areas. 

 

5. CONCLUSIONS 

This study shows that supervised classification of RGB point 

clouds obtained from UAV-derived images can be used to 

classify riverine areas. Attending to the results, we can confirm 

that the classification of point clouds allows obtaining maps of 

distribution of species with high accuracy. The proposed 

methodology could help in the management of riverine 

ecosystems providing additional data to complement, or 

potentially substitute, traditional riverbank planning, improving 

the temporal and spatial resolution of the current inventories and 

reducing their cost. Results were promising, indicating that when 

conditions are optimal, there is no need to board high-cost 

sensors on UAVs to classify forest areas. In this aspect, one of 

the most important aspects to carry out in a classification by 

points is the subsequent homogenisation of the classified points 

based on context information to improve the final results. 

 

The proposed workflow is easily transferable to other tasks 

beyond riverine species which are targeting different classes 

(e.g., green areas detection, land cover classification, 

identification of marginal lands). Since the methodology, and the 

code produced, could be applied to classify any RGB point cloud, 

being only necessary the training samples as input data. 

 

Furthermore, for future studies new features from objects, and 

not only from points, can be extracted to enrich the classification 

input in order to increase its overall accuracy.

 

 

Figure 6. Top: RGB point cloud after normalization. Middle: segmented point cloud. Bottom: classified point cloud with the classes 

giant reed (aquamarine), Aleppo pine (blue), French tamarisk (orange), Ground (green), Aleppo pine (blue), and other riverine 

(yellow) 
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