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2 Universidad Politécnica de Madrid, Madrid, Spain
r.gutierrez@upm.es

Abstract. Maude-NPA is an analysis tool for cryptographic security
protocols that takes into account the algebraic properties of the cryp-
tosystem. Maude-NPA can reason about a wide range of cryptographic
properties. However, some algebraic properties, and protocols using them,
have been beyond Maude-NPA capabilities, either because the crypto-
graphic properties cannot be expressed using its equational unification
features or because the state space is unmanageable. In this paper, we
provide a protocol transformation that can safely get rid of cryptographic
properties under some conditions. The time and space difference between
verifying the protocol with all the crypto properties and verifying the
protocol with a minimal set of the crypto properties is remarkable. We
also provide, for the first time, an encoding of the theory of bilinear pair-
ing into Maude-NPA that goes beyond the encoding of bilinear pairing
available in the Tamarin tool.

Keywords: crypto protocol analysis, Diffie-Hellman, exponentiation,
bilinear pairing, protocol transformation

1 Introduction

Maude-NPA [13] is an analysis tool for cryptographic security protocols that
takes into account the algebraic properties of the cryptosystem. Sometimes al-
gebraic properties can uncover weaknesses of cryptosystems and, in other cases,
they are part of the protocol security assumptions. Maude-NPA uses an approach
similar to its predecessor, the NRL Protocol Analyzer (NPA) [24], i.e., it is based
on unification and performs backwards search from an attack state pattern to
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determine whether or not it is reachable. However, unlike the original NPA, it
has a theoretical basis on rewriting logic [12] and narrowing [7], and while NPA
could only be used to reason about equational theories involving a fixed set of
rewrite rules, Maude-NPA can be used to reason about a wide range of crypto-
graphic properties [1, 14], including cancellation of encryption and decryption,
Diffie-Hellman exponentiation [11], exclusive-or [30], and some approximations
of homomorphic encryption [15, 34].

However, some algebraic properties and protocols using them have been be-
yond Maude-NPA capabilities, either because the cryptographic properties can-
not be expressed using its equational unification features or because the state
space is unmanageable. We provide a protocol transformation that can sub-
stantially reduce the search space, i.e., given some cryptographic properties,
expressed using the equational unification features of Maude-NPA, and a proto-
col, we are able to transform the protocol in such a way that some cryptographic
properties are no longer necessary, and thus can be safely removed. The time and
space difference between verifying the protocol with all the crypto properties and
verifying the protocol with a minimal set of the crypto properties is remarkable.
We also provide, for the first time, an encoding of the theory of bilinear pairing
into Maude-NPA that goes beyond the encoding of bilinear pairing available in
Tamarin [2], the only crypto tool with such an equational theory.

Our protocol transformation relies on a program transformation from [28]
for rewrite theories in Maude that we have improved by relaxing some of its
applicability conditions. Such program transformation relies on constructor term
variants [27], which is an extension of term variants [8, 17]. Nowadays, several
crypto analysis tools rely on the variant-based equational unification capabilities
of Maude, such as Maude-NPA but also Tamarin [10] and AKISS [5]. These
tools may be benefited from our protocol transformation and, furthermore, from
our encoding of the theory of bilinear pairing. Our contributions may even be
useful for other tools with more limited crypto properties such as ProVerif [6],
Scyther [9] or Scyther-proof [25].

The main contributions of this work are: (i) we provide a non-trivial protocol
transformation based on [28]; (ii) since the protocols of Section 5 do not satisfy
the conditions of [28], we provide a more powerful protocol transformation that
we implemented, made available online, and pays off in practice; (iii) we provide
an encoding of bilinear pairing that can handle all the protocols of Section 5
that Tamarin cannot handle; (iv) we implemented the algorithm of [32] for the
computation of constructor variants [27] from scratch; and (v) there was no
implementation of the program transformation of [28] and we implemented it.

After some preliminaries on Section 2, we present how Maude-NPA works
in Section 3. We introduce our protocol transformation in Section 4. Section 5
presents several increasingly complex case studies: Diffie-Hellman protocol in
Section 5.1, STR protocol in Section 5.2, Joux protocol in Section 5.3, and TAK
protocols in Section 5.4. Our experiments are presented in Section 6 and we
conclude in Section 7.
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2 Preliminaries

We follow the classical notation and terminology for term rewriting [33], and
for rewriting logic and order-sorted notions [26]. We assume an order-sorted
signature Σ with a poset of sorts (S,≤). We also assume an S-sorted family
X = {Xs}s∈S of disjoint variable sets with each Xs countably infinite. TΣ(X )s is
the set of terms of sort s, and TΣ,s is the set of ground terms of sort s. We write
TΣ(X ) and TΣ for the corresponding order-sorted term algebras. For a term t,
Var(t) denotes the set of variables in t. Throughout this paper, Σ is assumed to
be preregular, so each term t has a least sort, denoted ls(t).

A substitution σ ∈ Subst(Σ,X ) is a sorted mapping from a finite subset of
X to TΣ(X ). Substitutions are written as σ = {X1 7→ t1, . . . , Xn 7→ tn}, where
the domain of σ is Dom(σ) = {X1, . . . , Xn} and the set of variables introduced
by terms t1, . . . , tn is written Ran(σ). The identity substitution is denoted id.
Substitutions are homomorphically extended to TΣ(X ). The application of a
substitution σ to a term t is denoted by tσ or σ(t). The restriction of σ to a set
of variables V is σ|V . Composition of two substitutions σ and σ′ is written σσ′.

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X )s for some sort
s ∈ S. Given Σ and a set E of Σ-equations, order-sorted equational logic induces
a congruence relation =E on terms t, t′ ∈ TΣ(X ). The E-equivalence class of
a term t is denoted by [t]E and TΣ/E(X ) and TΣ/E denote the corresponding
order-sorted term algebras modulo E. Throughout this paper we assume that
TΣ,s 6= ∅ for every sort s, because this affords a simpler deduction system. An
equational theory (Σ,E) is a pair with Σ an order-sorted signature and E a set
of Σ-equations.

An E-unifier for a Σ-equation t = t′ is a substitution σ such that tσ =E t′σ.
A set of substitutions CSUE(t = t′) is said to be a complete set of unifiers for the
equality t = t′ modulo E iff: (i) each σ ∈ CSUE(t = t′) is an E-unifier of t = t′;
(ii) for any E-unifier ρ of t = t′ there is σ ∈ CSUE(t = t′) and τ s.t. στ =E ρ;
(iii) for all σ ∈ CSUE(t = t′), Dom(σ) ⊆ (Var(t) ∪ Var(t′)). An E-unification
algorithm is complete if for any equation t = t′ it generates a complete set of
E-unifiers. A unification algorithm is said to be finitary and complete if it always
terminates after generating a finite and complete set of solutions.

A rewrite rule is an oriented pair l → r, where l 6∈ X and l, r ∈ TΣ(X )s
for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
(Σ,E,R) with Σ an order-sorted signature, E a set of Σ-equations, and R a set
of rewrite rules. The relation →R,E on TΣ(X ) is defined as: t→p,R,E t′ (or just
t →R,E t′) iff there exist p ∈ PosΣ(t), a rule l → r in R, and a substitution σ
such that t|p =E lσ and t′ = t[rσ]p. The transitive (resp. transitive and reflexive)
closure of→R,E is denoted by→+

R,E (resp.→∗R,E). A term t is (R,E)-irreducible
if there is no t′ s.t. t→R,E t′. The R,E-narrowing relation on TΣ(X ) is defined
as t  p,σ,R,E t′ (  σ if R,E are understood, and  if σ is also understood)
if there is a non-variable position p ∈ PosΣ(t), a rule l → r ∈ R standardized
apart (i.e., contains no variable previously met during any previous computation)
and a unifier σ ∈ CSUE(t|p = l), such that t′ = (t[r]p)σ. The transitive (resp.
transitive and reflexive) closure of  is denoted by  + (resp.  ∗).
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3 The Maude-NPA

Given a protocol P to be specified, protocol states are modeled as elements of
an initial algebra TΣP/EP , i.e., each state is an equivalence class [t]EP ∈ TΣP/EP
where ΣP is the set of symbols defining the protocol P, and EP specifies the alge-
braic properties of the cryptographic functions ΣP . The cryptographic properties
EP may vary depending on different protocols.

The signature ΣP incorporates some predefined symbols for protocol infras-
tructure. A state is a term of the form {S1 & · · · &Sn & {IK}} where & is an
associative-commutative union operator with identity symbol ∅.

The intruder knowledge IK of a state {S1 & · · · &Sn & {IK}} is defined as a
set of facts using the comma as an associative-commutative union operator with
identity element ∅. There are two kinds of intruder facts: positive knowledge facts
(the intruder knows m, i.e., m ∈ I), and negative knowledge facts (the intruder
does not yet know m but will know it in a future state, i.e., m /∈ I), where m is
a message expression.

Each Si of a state {S1 & · · · &Sn & {IK}} is called a strand and specifies the
sequence of messages sent and received by a principal executing the protocol.
Strands [18] are represented as a sequence of messages [msg±1 ,msg±2 ,msg±3 , . . . ,
msg±k−1,msg±k ] with msg±i either msg−i (also written −msgi) representing an

input message, or msg+i (also written +msgi) representing an output message.
Note that each msgi is a term of a special sort Msg; this sort is extended by the
user to allow any user-definable protocol syntax. Variables of a special sort Fresh
are used to represent pseudo-random values (nonces) and Maude-NPA ensures
that two distinct fresh variables will never be merged. Strands are extended with
all the fresh variables created by that strand, i.e., :: f1, . . . , fk :: [msg±1 ,msg±2 , . . . ,
msg±k ]. Section 5 includes several examples of honest and Dolev-Yao strands.

Strands are used to represent both the actions of honest principals (with a
strand specified for each protocol role) and the actions of an intruder (with a
strand for each action an intruder is able to perform on messages). In Maude-
NPA strands evolve over time; the symbol | is used to divide past and future.
That is, given a strand [ msg±1 , . . . , msg±i | msg±i+1, . . . , msg±k ], messages msg±1 ,

. . . ,msg±i are the past messages, and messages msg±i+1, . . . ,msg±k are the future

messages (msg±i+1 is the immediate future message). A strand [msg±1 , . . . ,msg±k ]

is shorthand for [nil | msg±1 , . . . ,msg±k , nil]. An initial state is a state where the
bar is at the beginning for all strands in the state, and the intruder knowledge
has no fact of the form m ∈ I. A final state is a state where the bar is at the
end for all strands in the state and there is no intruder fact of the form m /∈ I.

Since the number of states TΣP/EP is in general infinite, rather than explor-
ing concrete protocol states [t]EP ∈ TΣP/EP Maude-NPA explores state patterns
[t(x1, . . . , xn)]EP ∈ TΣP/EP (X ) on the free (ΣP , EP)-algebra over a set of vari-
ables X . In this way, a state pattern [t(x1, . . . , xn)]EP represents not a single
concrete state but a possibly infinite set of such states, namely all the instances
of the pattern [t(x1, . . . , xn)]EP where the variables x1, . . . , xn have been instan-
tiated by concrete ground terms.
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The semantics of Maude-NPA is expressed in terms of a Maude rewrite the-
ory, including rewrite rules that describe how a protocol moves from one state
to another via the intruder’s interaction with it [14]. One uses Maude-NPA to
find an attack by specifying an insecure state pattern called an attack pattern.
Maude-NPA attempts to find a path from an initial state to the attack pattern
via backwards narrowing (using the narrowing capabilities of Maude [7] but with
the reversed orientation of the rewrite rules). That is, a sequence from an initial
state to an attack state is searched in reverse as a backwards path from an attack
state pattern to an initial state. Maude-NPA attempts to find paths until it can
no longer form any backwards narrowing steps, at which point it terminates.
If at that point it has not found an initial state, the attack pattern is judged
unreachable; providing a proof of security rather than finding attacks. However,
note that Maude-NPA places no bound on the number of sessions, so reachabil-
ity is undecidable in general. Maude-NPA does not achieve termination by any
data abstraction, e.g. a bounded number of nonces. Instead, the tool makes use
of a number of sound and complete state space reduction techniques that help
to identify unreachable and redundant states [16], and thus make termination
more likely.

4 Protocol Transformation

Maude-NPA relies on equational unification to perform each backwards nar-
rowing step. Some cryptographic properties often involve the development of
dedicated algorithms (see [4]). Maude-NPA provides built-in support for theo-
ries involving symbols with any combination of associativity (A), commutativity
(C), and identity (U) axioms. Furthermore, by relying on the variant-based equa-
tional unification [7, 17], Maude-NPA allows users to augment the basic set of
equational axioms supported with rewrite rules such as cancellation of encryp-
tion and decryption, Diffie-Hellman exponentiation [11], exclusive-or [30], and
some approximations of homomorphic encryption [15, 34].

4.1 Finite Variant Theories

An equational theory (Σ, E) is often decomposed into a disjoint union E = E]B,
where B is a set of algebraic axioms (which are implicitly expressed in Maude as
operator attributes assoc, comm, and id: keywords) and E consists of variant

equations that are implicitly oriented from left to right as a set ~E of rewrite
rules (and operationally used as simplification rules modulo B).

Definition 1 (Decomposition [17]). Let (Σ, E) be an order-sorted equational

theory. We call (Σ,B, ~E) a decomposition of (Σ, E) if E = E ]B and (Σ,B, ~E)
is an order-sorted rewrite theory satisfying the following properties:

1. B is regular, i.e., for each t = t′ in B, we have Var(t) = Var(t′), and linear,
i.e., for each t = t′ in B, each variable occurs only once in t and in t′.
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2. B is sort-preserving, i.e., for each t = t′ in B and substitution σ, we have
tσ ∈ TΣ(X )s iff t′σ ∈ TΣ(X )s. Furthermore, for each equation t = t′ in B,
all variables in Var(t) and Var(t′) have a common top sort.

3. B has a finitary and complete unification algorithm.
4. The rewrite rules in ~E are convergent, i.e., confluent, terminating, and co-

herent modulo B, and sort-decreasing.

In a decomposition, for each term t ∈ TΣ(X ), there is a unique (up to B-

equivalence) ( ~E,B)-irreducible term that can be obtained by rewriting t to its
normal form, which is denoted by t↓~E,B . We often abuse notation and say that

(Σ,B, ~E) is a decomposition of an order-sorted equational theory (Σ, E) even if
E 6= E ]B but E is instead the explicitly extended B-coherent completion of a
set E′ such that E = E′ ]B (see [17]).

Example 1. The property associated to Diffie-Hellman exponentiation is de-
scribed using the following equational theory in Maude, including an auxiliary
associative-commutative symbol ∗ for exponents so that (zx)y = (zy)x = zx∗y.

fmod DH-FVP is

sorts Exp Nonce NeNonceSet Gen .

subsort Nonce < NeNonceSet . subsort Gen < Exp .

op exp : Exp NeNonceSet -> Exp .

op _*_ : NeNonceSet NeNonceSet -> NeNonceSet [assoc comm] .

var X : Exp . vars Y Z : NeNonceSet .

eq exp(exp(X,Y),Z) = exp(X,Y * Z) [variant] .

endfm

Note that X admits any exponentiation and Y and Z are restricted to non-empty
multisets of nonces. For an arbitrary term g of sort Gen and three arbitrary
terms nA, nB , nC of sort Nonce, t = exp(exp(exp(g, nA), nB), nC) is simplified
into t↓~E,B= exp(g, nA ∗ nB ∗ nC).

In order to provide a finitary and complete unification algorithm for a de-
composition (Σ,B, ~E), the folding variant narrowing strategy is defined in [17].

Intuitively, an ( ~E,B)-variant of a term t is the ( ~E,B)-irreducible form of an in-

stance tσ of t. That is, the variants of t are all of the possible ( ~E,B)-irreducible
terms to which instances of t evaluate.

Definition 2 (Term Variant [8, 17]). Given a term t and a decomposition

(Σ,B, ~E), we say that (t′, θ) is a variant of t if t′ =B (tθ)↓~E,B, where Dom(θ) ⊆
Var(t) and Ran(θ) ∩Var(t) = ∅.

Example 2. Following Example 1, the set of variants for the term exp(X,Y ) is
infinite, since we have (exp(X ′, Y ∗ Y ′), {X 7→ exp(X ′, Y ′)}), (exp(X ′′, Y ∗ Y ′ ∗
Y ′′), {X 7→ exp(exp(X ′′, Y ′′), Y ′)}), . . ..

It is possible to compute a complete and finite set of variants for some equa-
tional theories.
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Definition 3 (Complete set of Variants [17]). Given a decomposition (Σ,B, ~E)
and a term t, we write [[t]]~E,B for a complete set of variants of t, i.e., for any vari-

ant (t2, θ2) of t, there is a variant (t1, θ1) ∈ [[t]]~E,B such that (t1, θ1) ≤~E,B (t2, θ2),

where (t1, θ1) ≤~E,B (t2, θ2) iff there is a substitution ρ such that (θ1ρ)|Var(t) =B

(θ2↓~E,B)|Var(t) and t1ρ =B t2. An equational theory has the finite variant prop-

erty (FVP) (also called finite variant theory) iff for all t ∈ TΣ(X ), [[t]]~E,B is a
finite set.

Example 3. Following Example 2, there exists a complete and finite set of vari-
ants for the term exp(X,Y ): the variant (exp(X,Y ), id) and the variant (exp(X ′,
Y ∗ Y ′), {X 7→ exp(X ′, Y ′)}). Any other variant includes a substitution not in
irreducible form.

4.2 Constructor Finite Variant Theories

Quite often, the signature Σ of a decomposition (Σ,B, ~E), on which TΣ/B is
defined, has a natural subsignature of constructor symbols Ω. The elements
of the canonical algebra CΣ/~E,B = {[t↓~E,B ]B | t ∈ TΣ}, i.e., the B-equivalence

classes computed by ~E,B-simplification, are Ω-terms, whereas the other symbols
are viewed as functions which are simplified into constructor symbols.

Proverif [6] already incorporated this distinction between what they called
destructor and constructor symbols time ago in contrast to other crypto tools
such as AKISS [5], Maude-NPA [1], OFMC [29], Scyther [9], Scyther-proof [25],
and Tamarin [2]. In the rest of the paper, we exploit this distinction in Maude-
NPA without altering the tool.

A decomposition (Σ,B, ~E) protects a constructor decomposition (Ω,BΩ , ~EΩ)

iff Ω ⊆ Σ, BΩ ⊆ B, and ~EΩ ⊆ ~E, and for all t, t′ ∈ TΩ(X ) we have: (i)
t =BΩ t′ ⇐⇒ t =B t′, (ii) t = t ↓~EΩ ,BΩ ⇐⇒ t = t ↓~E,B , and (iii)

CΩ/~EΩ ,BΩ = CΣ/~E,B |Ω . A constructor decomposition (Ω,BΩ , ∅) is called free.

A decomposition (Σ,B, ~E) is called sufficiently complete with respect to a free
constructor decomposition (Ω,BΩ , ∅) iff for each t ∈ TΣ we have: (i) t↓~E,B∈ TΩ ,

and (ii) if u ∈ TΩ and u =B v, then v ∈ TΩ . This ensures that if any ele-
ment in an equivalent class is a constructor term, all the other elements are also
constructor.

Example 4. We can extend the equational theory of Example 1 to protect a
constructor subsignature3 by overloading symbol exp to use the former4 sorts
Exp and Gen.

fmod DH-CFVP is

sorts Exp Nonce NeNonceSet Gen .

3 Operator declarations labeled ctor, their associated sorts, and no equation.
4 This equational theory, as well as all the ones in Section 5, should be parametric

on sorts Gen, GenP and Nonce but we omit such more general-purpose definitions for
simplicity (see [7] for details on parametric equational theories).
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subsort Nonce < NeNonceSet .

op exp : Gen NeNonceSet -> Exp [ctor] .

op exp : Exp NeNonceSet -> Exp .

op _*_ : NeNonceSet NeNonceSet -> NeNonceSet [assoc comm ctor] .

var X : Gen . vars Y Z : NeNonceSet .

eq exp(exp(X,Y),Z) = exp(X,Y * Z) [variant] .

endfm

For an arbitrary term g of sort Gen and three arbitrary terms nA, nB , nC of sort
Nonce, t = exp(exp(exp(g, nA), nB), nC) is simplified into the constructor term
t↓~E,B= exp(g, nA ∗ nB ∗ nC).

The notion of a constructor variant, rather than a variant, is defined in [27].

Definition 4 (Constructor Variant [27]). Given a decomposition (Σ,B, ~E)

protecting a constructor decomposition (Ω,BΩ , ~EΩ) and a Σ-term t, we say that
a variant (t′, θ) of t is a constructor variant if t′ ∈ TΩ(X ).

Example 5. Following Example 4, the set of constructor variants for the term
exp(X,Y ) is infinite, as in Example 2, since we have (exp(X ′, Y ∗ Y ′), {X 7→
exp(X ′, Y ′)}), (exp(X ′′, Y ∗ Y ′ ∗ Y ′′), {X 7→ exp(exp(X ′′, Y ′′), Y ′)}), . . ..

Definition 5 (Complete set of Constructor Variants [27]). Given a de-

composition (Σ,B, ~E) protecting a constructor decomposition (Ω,BΩ , ~EΩ) and
a Σ-term t, we write [[t]]Ω~E,B for a complete set of constructor variants of t,

i.e., for any constructor variant (t2, θ2) of t, there is a constructor variant

(t1, θ1) ∈ [[t]]Ω~E,B such that (t1, θ1) ≤~E,B (t2, θ2). A decomposition (Σ,B, ~E) has

the constructor finite variant property (CFVP) (or it is called a constructor
finite variant theory) iff for all t ∈ TΣ(X ), [[t]]Ω~E,B is a finite set.

Example 6. Following Example 5, there exists a finite and complete set of con-
structor variants for the term exp(X,Y ) where X is of sort Exp, since we have
(exp(XG, Y ∗ Y ′), {X 7→ exp(XG,Y ′)}) where XG is a new variable of sort Gen
instead of sort Exp.

An algorithm for computing [[t]]Ω~E,B is provided in [32] for equational theories

that are FVP. This algorithm assumes an extra condition called preregular below,
i.e., a term cannot have a constructor typing above a non-constructor typing.

Definition 6 (Preregular below [27]). Given a decomposition (Σ,B, ~E) pro-

tecting a constructor decomposition (Ω,BΩ , ~EΩ), the (preregular) order-sorted
signature (Σ,<) is called preregular below iff ∀t ∈ TΣ(X ), lsΩ(t) = lsΣ(t).

Example 7. Consider the following equational theory

fmod DH-NoPreregularBelow is

sorts Nonce NeNonceSet GenSub Gen ExpSub Exp .

subsort GenSub < Gen . subsort ExpSub < Exp .
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subsort Nonce < NeNonceSet .

op gSub : -> GenSub [ctor] .

op g : -> Gen [ctor] .

op exp : GenSub NeNonceSet -> ExpSub .

op exp : Gen NeNonceSet -> Exp [ctor] .

op exp : Exp NeNonceSet -> Exp .

endfm

The signature is not preregular below since, given an arbitrary term nA of sort
Nonce, the least sort of the term exp(gSub, nA) is ExpSub in the original signature
but Exp in the constructor subsignature.

The set of constructor variants of the form [[〈l, r〉]]Ω~E,B , where l and r are,

respectively, the lefthand and righthand sides of a rewrite rule in a rewrite theory,
play a crucial role in the following theory transformation R 7→ RΩl,r from [28].

Definition 7 (R 7→ RΩl,r [28]). Given a rewrite theory (Σ,B ] E,R) such that

(Σ,B, ~E) is CFVP and preregular below, the rewrite theory (Σ,B ] E,RΩl,r) is

defined as RΩl,r = {l′ → r′ | l→ r ∈ R ∧ (〈l′, r′〉, σ) ∈ [[〈l, r〉]]Ω~E,B}.

Section 5 shows how several protocols are transformed using a protocol trans-
formation that relies on this program transformation.

Example 8. Any expression of the form exp(X,Y ), where X is of sort Exp and
Y is of sort NeNonceSet, occurring in any lefthand or righthand side of a rule in
a rewrite theory will be replaced by the constructor variant shown in Example 6.

Theorem 1 ([28, Theo. 7]). Given a rewrite theory (Σ,B ] E,R) such that

(Σ,B, ~E) is a decomposition protecting a free constructor decomposition (Ω,BΩ , ∅),
it is CFVP, it is sufficiently complete with respect to (Ω,BΩ , ∅), and Σ is pre-
regular below, then the rewrite theory (Σ,BΩ , R

Ω
l,r) is ground semantically equiv-

alent to (Σ,B ] E,R).

The equational theory for Diffie-Hellman of Example 4 is sufficiently complete
w.r.t. its constructor subsignature, since any ground term rooted by symbol
exp is either already using the constructor typing or can be simplified into the
constructor typing of exp. However, some other theories of interest are not.

Example 9. Consider the cancellation of encryption and decryption.

fmod DE is

sorts Msg Key .

op enc : Key Msg -> Msg [ctor] .

op dec : Key Msg -> Msg .

var K : Key . vars X : Msg .

eq dec(K,enc(K,X)) = X [variant] .

endfm

Given arbitrary keys k1, k2 and an arbitrary term a, the term dec(k1, enc(k2, a))
cannot be reduced.
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Terms that cannot be simplified into a constructor term are understood as an
erroneous expression and discarded. This is the behaviour of destructor symbols
in Proverif [6], i.e., functions that may fail. In the rest of the paper, we relax
the condition on sufficiently completeness of Theorem 1 and follow the spirit
of Proverif’s approach5: a NF rewrite theory below ensures that erroneous ex-
pressions cannot occur in the righthand sides of rewrite rules or in equations,
preventing any function to capture that any of its arguments fails. Typical se-
curity protocols do however not satisfy the conditions of [28], and in particular
all protocols studied in Section 5 did not.

Definition 8 (NF Rewrite Theory). Given a rewrite theory (Σ,B ] E,R)

such that (Σ,B, ~E) is a decomposition protecting a free constructor decompo-
sition (Ω,BΩ , ∅), erroneous terms are defined as Err⊥ = {t ∈ TΣ(X ) | @σ :
(tσ)↓~E,B∈ TΩ(X )} whereas possibly erroneous terms are defined as Err> = {t ∈
TΣ(X ) | ∃σ : (tσ)↓~E,B 6∈ TΩ(X )}. We say the rewrite theory is NF if, for each

l = r ∈ E, l, r /∈ Err⊥ and, for each l→ r ∈ R, r|p ∈ Err> =⇒ ∃q : l|q =B r|p.

Theorem 2. Given a NF rewrite theory (Σ,B ] E,R) such that (Σ,B, ~E) is
a decomposition protecting a free constructor decomposition (Ω,BΩ , ∅) and it is
CFVP, then any term reachable from a constructor term is also constructor.

Proof. By induction on the length of the narrowing sequence t0  n tn. If n = 0,
then tn = t0 and t0 is constructor. If n > 0, then t0  σ t1  n−1 tn s.t.
σ ∈ CSUE]B(t0|p = l) and t1 = (t0[r]p)σ. Since t0 is a constructor term, there
is no equation applicable to t0, i.e., (t0|p)σ =B (lσ)↓~E,B . Since t0 is a constructor

term, the bindings in σ|Var(t0) contain only constructor terms. Since erroneous
expressions do not appear in the equations E, σ|Var(l) contains also constructor
terms. Since r does not contain any extra possible erroneous expression, t1 is
constructor. The conclusion follows by the induction hypothesis. ut

Corollary 1. Given a NF rewrite theory (Σ,B ] E,R) such that (Σ,B, ~E)
is a decomposition protecting a free constructor decomposition (Ω,BΩ , ∅), it is
CFVP, and Σ is preregular below, then the rewrite theory (Σ,BΩ , R

Ω
l,r) is ground

semantically equivalent to (Σ,B ] E,R).

We have implemented both the algorithm for computing [[t]]Ω~E,B provided

in [32] for equational theories that are FVP and the rewrite theory transfor-
mation R 7→ RΩl,r from [28]. As far as we know, there was no implementation

available of the rewrite theory transformation R 7→ RΩl,r of [28]. We have used

[[t]]Ω~E,B and R 7→ RΩl,r to create a protocol transformation available online at

http://safe-tools.dsic.upv.es/cvtool. This web page accepts a protocol
specification, using the Maude-NPA syntax, and returns the transformed ver-
sion, including strands and attack patterns. The proof of soundness and com-
pleteness of the protocol transformation is omitted but relies on Theorem 1 and

5 A detailed comparison is outside the scope of this paper.
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Corollary 1. Informally speaking, Maude-NPA internally transforms a proto-
col specification into a rewrite theory (see Section 3). This transformed rewrite
theory is then transformed using the program transformation R 7→ RΩl,r. And,
finally, this resulting rewrite theory is mapped back into a protocol specification.
Note that the web page assumes that the conditions of Corollary 1 are satisfied
without enforcing them. All the protocols presented in the next section need
the relaxed conditions of application of Corollary 1 to safely apply the protocol
transformation. These relaxed conditions allow us to deal with more complex
protocol specifications efficiently.

A −→ B : gNa

B −→ A : gNb

KA = (gNb)Na

KB = (gNa)Nb

KAB = gNa∗Nb

Fig. 1. DH

A −→ B : gNa

B −→ A : gNb

B −→ C : g((g
Nb )Na )

C −→ A,B : gNc

KA = (gNc)(g
((gNb )Na ))

KB = (gNc)(g
((gNa )Nb ))

KC = (g((g
Nb )Na ))Nc

KABC = gg
Na∗Nb∗Nc

Fig. 2. STR

A −→ B,C : aP
B −→ A,C : bP
C −→ A,B : cP

KA = ê(bP, cP )a

KB = ê(aP, cP )b

KC = ê(aP, bP )c

KABC = ê(P, P )a∗b∗c

Fig. 3. Joux

A −→ B,C : aP ; {xP}A
B −→ A,C : bP ; {yP}B
C −→ A,B : cP ; {zP}C

KA = h(ê(bP, cP )a; ê(yP, zP )x)

KB = h(ê(aP, cP )b; ê(xP, zP )y)
KC = h(ê(aP, bP )c; ê(xP, yP )z)

KABC = h(ê(P, P )a∗b∗c; ê(P, P )x∗y∗z)

Fig. 4. TAK1

KA = ê(bP, zP )a · ê(yP, cP )a · ê(bP, cP )x

KB = ê(aP, zP )b · ê(xP, cP )b · ê(aP, cP )y

KC = ê(aP, yP )c · ê(xP, bP )c · ê(aP, bP )z

KABC = ê(P, P )a∗y∗c · ê(P, P )x∗b∗c · ê(P, P )a∗b∗z

Fig. 5. TAK2

KA = ê(yP, cP )x · ê(bP, zP )x · ê(yP, zP )a

KB = ê(aP, zP )y · ê(xP, cP )y · ê(xP, zP )b

KC = ê(aP, yP )z · ê(xP, bP )z · ê(xP, yP )c

KABC = ê(P, P )x∗y∗c · ê(P, P )x∗b∗z · ê(P, P )a∗y∗z

Fig. 6. TAK3

KA = ê(bP + h(bP ; yP )yP, cP + h(cP ; zP )zP )a+(h(aP ;xP )∗x)

KB = ê(aP + h(aP ;xP )xP, cP + h(cP ; zP )zP )b+(h(bP ;yP )∗y)

KC = ê(aP + h(bP ; yP )yP, bP + h(bP ; yP )yP )a+(h(cP ;cP )∗c)

KABC = ê(P, P )(a+(h(aP ;xP )∗x))∗(b+(h(bP ;yP )∗y))∗(c+(h(cP ;zP )∗z))

Fig. 7. TAK4
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5 Case studies

This section presents several increasingly complex case studies: Diffie-Hellman
protocol in Section 5.1, STR protocol in Section 5.2, Joux protocol in Section 5.3,
and TAK protocols in Section 5.4. The Joux and TAK protocols use bilinear
pairing but TAK4 requires properties beyond the encoding of bilinear pairings
available in Tamarin, the only crypto tool with such an equational theory.

5.1 The Diffie-Hellman Protocol

In this section, we describe the analysis performed on the Diffie-Hellman (DH)
protocol. This protocol was already analysed using Maude-NPA in [11]. DH uses
exponentiation to share a secret between two parties. The description of the
protocol using an Alice & Bob notation is given in Figure 1.

Alice and Bob agree on a common generator g. Alice sends the generator g
raised to the power of a new nonce generated by her. Bob sends the generator
g raised to the power of a new nonce generated by him. Both Alice and Bob
take the received nonce and raised it to the power of their own respective nonce.
The cryptographic property here allows (gNA)NB = (gNB )NA = gNA∗NB . This
cryptographic property is represented using the equational theory of Example 4.

The informal description of Figure 1 is specified using strands as follows. We
represent an exponentiation xy as exp(x, y). We represent a nonce NA as n(A, f)
where f is a Fresh variable. We have added the identifiers of the participants in
the message exchange for clarity. And we have appended a final encryption of
some random secret using the generated key to make explicit the different keys
used by the honest participants before and after the transformation.

(Alice) :: fa, f ::[+(A;B; exp(g, n(A, fa))),−(B;A;X),

+ (enc(exp(X,n(A, fa)), sec(A, f)))]

(Bob) :: fb ::[−(A;B;Y ),+(B;A; exp(g, n(B, fb))),

− (enc(exp(Y, n(B, fb)), Sr))]

After applying the protocol transformation, we obtain

(Alice) :: fa, f ::[+(A;B; exp(g, n(A, fa))),−(B;A; exp(G,N)),

+ (enc(exp(G,n(A, fa) ∗N), sec(A, f)))]

(Bob) :: fb ::[−(A;B; exp(G,N)),+(B;A; exp(g, n(B, fb))),

− (enc(exp(G,N ∗ n(B, fb)), Sr))]

As explained in Example 6, the expression exp(X:Exp, n(A, fa)) has only one
constructor variant using substitution X:Exp 7→ exp(G:Gen,N :NeNonceSet).
Similarly for exp(Y :Exp, n(B, fb)). The duplication of symbols in one defined
and one constructor, the coincidence that each defined symbol has only one
equation, and the use of associativity and commutativity, makes each strand
of the protocols of this paper is replaced by just one strand. This may not
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always be the case and a strand may be replaced by several new strands (see
[28, Example 7]). The Dolev-Yao capabilities for exponentiation are as follows.

(DY exp ctor)[−(G:Gen),−(N :NeNonceSet),+(exp(G:Gen, N :NeNonceSet)]

(DY exp func)[−(E:Exp),−(N :NeNonceSet),+(exp(E:Exp, N :NeNonceSet)]

The second one is transformed as follows

(DY exp cvar)[−(exp(G:Gen, X:NeNonceSet)),−(N :NeNonceSet),

+ (exp(G:Gen, X:NeNonceSet ∗N :NeNonceSet))]

5.2 The STR protocol

One extension of the Diffie-Hellman protocol is to consider that every time a
new member is joined the exchange key is repeated, allowing for an unbounded
number of participants a priori. We consider the tree-party group key agreement
protocol STR from [21], where STR is a short name for Skinny TRee. The
description of the protocol using an informal Alice & Bob notation is given in
Figure 2. The only difference between the cryptographic properties of STR and
DH is that we can have an exponentiation as an exponent, where DH could not.
Therefore, the only difference to the equational theory of Example 4 is “subsort
Nonce Exp < NeNonceSet”. The equational theory still satisfies all the condi-
tions of Corollary 1. The informal description of Figure 2 is specified using
strands as follows, we remove the identifiers of the participants for simplicity.

(Alice) :: fa, f ::[+(exp(g, n(A, fa))),−(XB),−(XC),

+ (enc(exp(XC, exp(XB, n(A, fa))), sec(A, f)))]

(Bob) :: fb ::[−(XA),+(exp(g, n(B, fb))),+(exp(g, exp(XA, n(B, fb)))),

− (XC),−(enc(exp(XC, exp(XA, n(B, fb))), Sr))]

(Carol) :: fc ::[−(XAB),+(exp(g, n(C, fc))),−(enc(exp(XAB, n(C, fc)), Sr))]

After applying the protocol transformation, we obtain

(Alice) :: fa, f ::[+(exp(g, n(A, fa))),−(exp(G1,NB)),−(exp(G2,NC)),

+ (enc(exp(G2, exp(G1, n(A, fa) ∗NB) ∗NC), sec(A, f)))]

(Bob) :: fb ::[−(exp(G,NA)),+(exp(g, n(B, fb))),

+ (exp(g, exp(G,n(B, fb) ∗NA))),−(exp(G,NC)),

− (enc(exp(G, exp(G,n(B, fb) ∗NA) ∗NC), Sr))]

(Carol) :: fc ::[−(exp(G,NAB)),+(exp(g, n(C, fc))),

− (enc(exp(G,NAB ∗ n(C, fc)), Sr))]

5.3 The Joux Protocol

When you want to keep the spirit of the Diffie-Hellman protocol, where no extra
sharing is necessary apart of the initial broadcast information, an interesting
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alternative for three participants is the Joux protocol [20], which relies on bilinear
pairing. The description of the protocol using an informal Alice & Bob notation
is given in Figure 3.

Pairing-based cryptography makes use of a pairing function ê : G1 × G2 →
GT of two cryptographic groups G1 and G2 into a third group GT . Typically,
G1 = G2 and it will be a subgroup of the group of points on an elliptic curve over
a finite field, and GT will be a subgroup of the multiplicative group of a related
finite field and the map ê will be derived from either the Weil or Tate pairing
on the elliptic curve. When G = G1 = G2, the pairing is called symmetric
and the pairing function ê is commutative, i.e., if the participants agree on a
generator g ∈ G, for any P,Q in G there exist integers i, j s.t. P = gi, Q = gj ,
ê(P,Q) = ê(gi, gj) = ê(g, g)i∗j = ê(gj , gi) = ê(Q,P ). In Figure 3, we follow the
syntax of [20] and use letter P as the agreed generator. We write aP instead of
P a for P added to itself a times, also called scalar multiplication of P by a. Note
that we write [a]P in the equational theory below for clarification. The bilinear
pairing is specified as follows.

fmod BP-CFVP is

sorts Nonce NeNonceSet Gen GenP Exp ExpP .

subsort Nonce < NeNonceSet .

op exp : Gen NeNonceSet -> Exp [ctor] .

op exp : Exp NeNonceSet -> Exp .

op _*_ : NeNonceSet NeNonceSet -> NeNonceSet [assoc comm ctor] .

op p : -> GenP [ctor] .

op em : GenP GenP -> Gen [ctor comm] .

op em : ExpP ExpP -> Exp [comm] .

op [_]_ : NeNonceSet GenP -> ExpP [ctor] .

op [_]_ : NeNonceSet ExpP -> ExpP .

var X : Gen . vars Y Z : NeNonceSet . vars P Q : GenP .

eq exp(exp(X,Y),Z) = exp(X,Y * Z) [variant] .

eq [Z]([Y]P) = [Z * Y]P [variant] .

eq em([Y]P, [Z]Q) = exp(em(P,Q),Y * Z) [variant] .

endfm

We adapted the built-in theory of bilinear pairing of Tamarin [2, 31] to satisfy6

the conditions of Corollary 1. The informal description of Figure 3 is specified
using strands as follows.

6 Confluence is proved by the absence of critical pairs between the lefthand sides
of the three equations. Termination and FVP are proved by strongly right-
irreducibility [17], i.e., righthand sides do not unify with any lefthand side. CFVP
is proved because it is preregular below.
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(Alice) :: fa, f ::[+([n(A, fa)]p),−(XB),−(XC),

+ (enc(exp(em(XB,XC), n(A, fa)), sec(A, f))]

(Bob) :: fb ::[−(XA),+([n(B, fb)]p),−(XC),

− (enc(exp(em(XA,XC), n(B, fb)), Sr)]

(Carol) :: fc ::[−(XA),−(XB),+([n(C, fc)]p),

− (enc(exp(em(XA,XB), n(C, fc)), Sr)]

After applying the protocol transformation, we obtain

(Alice) :: fa, f ::[+([n(A, fa)]p),−([NB]PB),−([NC]PC),

+ (enc(exp(em(PB,PC), n(A, fa) ∗NB ∗NC), sec(A, f))]

(Bob) :: fb ::[−([NA]PA),+([n(B, fb)]p),−([NC]PC),

+ (enc(exp(em(PA,PC), n(B, fb) ∗NA ∗NC), Sr)]

(Carol) :: fc ::[−([NA]PA),−([NB]PB),+([n(C, fc)]p),

+ (enc(exp(em(PA,PB), n(C, fc) ∗NA ∗NB), Sr)]

5.4 The TAK Group Protocols

The Tripartite Authenticated Key group protocols [3] is a set of authenticated
key agreement protocols that still require only one round of communication. It
is an improvement of the Joux protocol. The four versions of TAK share the
same exchanged message but the computation key is different for each version.
The description of the TAK protocol using an informal Alice & Bob notation is
given in Figure 4. However, the four different ways of computing the keys are
given in Figures 4, 5, 6, and 7. These four protocols use the bilinear pairing
cryptographic properties explained in Section 5.3 plus a hash function h and the
following additive property (and its symmetric version, since ê is commutative)

ê(Q,W + Z) = ê(Q,W ) · ê(Q,Z) (1)

where + is the additive symbol for the group G and · is the additive symbol for
the group GT given ê : G×G→ GT . These properties are specified7 as follows.

fmod BPAdd-CFVP is

sorts Nonce NeNonceSet Gen GenP Exp ExpP ExpT .

subsort Nonce < NeNonceSet . subsort Exp < ExpT .

op exp : Gen NeNonceSet -> Exp [ctor] .

op exp : Exp NeNonceSet -> Exp .

op _*_ : NeNonceSet NeNonceSet -> NeNonceSet [ctor assoc comm] .

op p : -> GenP [ctor] .

op em : GenP GenP -> Gen [ctor comm] .

op em : ExpP ExpP -> Exp [comm] .

op [_]_ : NeNonceSet GenP -> ExpP [ctor] .

7 The additive property (1) is not supported by the bilinear pairing of Tamarin [2, 31].
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op [_]_ : NeNonceSet ExpP -> ExpP .

op _+_ : NeNonceSet NeNonceSet -> NeNonceSet [ctor assoc comm] .

op _+_ : ExpP ExpP -> ExpP .

op _·_ : ExpT ExpT -> ExpT [ctor assoc comm] .

var X : Gen . vars Y Z : NeNonceSet . vars P Q : GenP .

eq exp(exp(X,Y),Z) = exp(X,Y * Z) [variant] .

eq [Z]([Y]P) = [Z * Y]P [variant] .

eq em([Y]P, [Z]Q) = exp(em(P,Q),Y * Z) [variant] .

eq ([Y]P) + ([Z]P) = [Y + Z]P [variant] .

endfm

Note that Property 1 does not appear explicitly in the equational theory above
and it is transformed as follows. The addition symbol + is split into two versions,
one of them being an associative-commutative constructor and the other one
being a defined symbol. A new equation relating these two versions of + is added.
And symbol · is simply represented as an associative-commutative constructor.
The last, new equation denotes a homomorphic addition and it is easily handled
by variant-based unification because it is defined on disconnected sorts ExpP and
NeNonceSet (see [34] for approximations of homomorphism following the same
idea). For example, the key generated by Alice in TAK4

KA = exp(em([b]p+ [h([b]p; [y]p) ∗ y]p, [c]p+ [h([c]p; [z]p) ∗ z]p),
a+ (h([a]p; [x]p) ∗ x))

is transformed into the common key

KABC = exp(em(p, p),(a+ (h([a]p; [x]p) ∗ x))∗
(b+ (h([b]p; [y]p) ∗ y)) ∗ (c+ (h([c]p; [z]p) ∗ z)))

by applying the last equation two times, followed by the third and the first
equations (we underline the replaced subterm)

exp(em([b]p+ [h([b]p; [y]p) ∗ y]p, [c]p+ [h([c]p; [z]p) ∗ z]p),
a+ (h([a]p; [x]p) ∗ x)) =

exp(em([b+ (h([b]p; [y]p) ∗ y)]p, [c+ (h([c]p; [z]p) ∗ z)]p),
a+ (h([a]p; [x]p) ∗ x))) =

exp(exp(em(p, p), a+ (h([a]p; [x]p) ∗ x),

(b+ h([b]p; [y]p) ∗ y) ∗ (c+ h([c]p; [z]p) ∗ z)) =

exp(em(p, p),(a+ (h([a]p; [x]p) ∗ x))∗
(b+ (h([b]p; [y]p) ∗ y)) ∗ (c+ (h([c]p; [z]p) ∗ z)))

If the non-constructor version of + becomes associative-commutative, then
the theory is not FVP. This equational theory works for all the TAK protocols
even if it is not the most general possible; it is left for future work whether
Property 1 can be encoded directly. This equational theory satisfies the condi-
tions of Corollary 1. The original and transformed versions of TAK1, TAK2,
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and TAK3 are omitted but are available online. The informal description of the
TAK4 protocol given in Figure 7 is specified using strands as follows.

(Alice) :: fa, fx, f :: [+([n(A, fa)]p),+([n(A, fx)]p),−(BP),−(YP),−(CP),−(ZP),

+ (enc(exp(ê(BP + [h(BP;YP)]YP,CP + [h(CP;ZP)]ZP),

fa + h([n(A, fa)]p; [n(A, fx)]p ∗ fx)), sec(A, f)))]

(Bob) :: fb, fy :: [−(AP),−(XP),+([n(B, fb)]p),+([n(B, fy)]p),−(CP),−(ZP),

− (enc(exp(ê(AP + [h(AP;XP)]XP,CP + [h(CP;ZP)]ZP),

fb + h([n(B, fb)]p; [n(B, fy)]p ∗ fy)), Sr))]

(Carol) :: fc, fz :: [−(AP),−(XP),−(BP),−(YP),+([n(C, fc)]p),+([n(C, fz)]p),

− (enc(exp(ê(AP + [h(AP;XP)]XP,BP + [h(BP;YP)]YP),

fc + h([n(C, fc)]p; [n(C, fc)]p ∗ fc)), Sr))]

After applying the protocol transformation, we obtain

(Alice) :: fa, fx, f :: [+([n(A, fa)]p),+([n(A, fx)]p),

−([NB]PB),−([NY]PB),−([NC]PC),−([NZ]PC),

+(enc(exp(ê(PB,PC), (NB + (h([NB]PB; [NY]PB) ∗NY))

∗ (NC + (h([NC]PC; [NZ]PC) ∗NZ))

∗ (fa + h([n(A, fa)]p; [n(A, fx)]p ∗ fx))), sec(A, f)))]

(Bob) :: fb, fy :: [− ([NA]PA),−([NX]PA),+([n(B, fb)]p),+([n(B, fb)]p),

− ([NC]PC),−([NZ]PC),

− (enc(exp(ê(PA,PC), (NA + (h([NA]PA; [NX]PA) ∗NX))

∗ (NC + (h([NC]PC; [NZ]PC) ∗NZ))

∗ (fb + h([n(B, fb)]p; [n(B, fy)]p ∗ fy))), Sr))]

(Carol) :: fc, fz :: [− ([NA]PA),−([NX]PA),−([NB]PB),−([NB]PB),

+ ([n(C, fc)]p),+([n(C, fc)]p),

− (enc(exp(ê(PA,PB), (NA + (h([NA]PA; [NX]PA) ∗NX))

∗ (NB + (h([NB]PB; [NY]PB) ∗NY))

∗ (fc + h([n(C, fc)]p; [n(C, fz)]p ∗ fz))), Sr))]

6 Experiments

We have evaluated all the protocols of Section 5, both before and after the
transformation. For DH, STR and Joux, we consider two general attack patterns,
one for authentication and another for secrecy of the session key. For TAKs
we consider only a secrecy attack pattern. Both properties of DH are insecure,
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Before Transformation After Transformation

Protocol Property States Time (ms) States Time (ms) States (%) Speedup

DH
auth 137 308,066 111 132,756 81.02 2.32

secrecy 138 322,731 104 142,015 75.36 2.27

STR
auth 34 43,144 31 16,010 91.18 2.69

secrecy 250 1,016,469 117 408,960 46.80 2.49

Joux
auth 38 85,579 37 30,012 97.37 2.85

secrecy 55 247,712 58 78,384 105.45 3.16

TAK1 secrecy 25 259,619 20 126,998 80.00 2.04

TAK2 secrecy 67 365,797 46 152,842 68.66 2.39

TAK3 secrecy 117 670,775 67 216,350 57.26 3.10

TAK4 secrecy 57 371,770 48 181,850 84.21 2.04

Table 1. Experimental results for the transformed protocols.

authentication of STR is insecure but secrecy is secure [21], both properties of
Joux are insecure [20], and TAK1, TAK2, TAK3, and TAK4 are secure [3].

In Table 1, we report both the number of states and the generation time
of the search space associated to each attack pattern. The transformation it-
self is almost immediate, since the equational theories in these examples are
not so complex. The time and space difference is shown in columns States (%)
and Speedup. These columns demonstrate that the difference between verifying
the protocol with all the crypto properties and verifying the protocol with a
minimal set of the crypto properties is remarkable in three different aspects.
First, for the STR protocol, the transformed protocol produces only 46.80% of
the total number of states of the untransformed version. Second, for the TAK3
protocol, the execution time of the transformed protocol is three times faster
than the untransformed version. Third, for the Joux protocol, even if the anal-
ysis of the transformed protocol produces more states than the analysis of the
untransformed protocol, the execution time is three times faster.

All the experiments were conducted on a PC with a 3.3GHz Intel Xeon E5-
1660 and 64GB RAM. We used Maude v3.0 [7] and Maude-NPA v3.1.4 [1]. The
protocol specifications of both before and after the transformation and the out-
put of each analysis are available at http://safe-tools.dsic.upv.es/cvtool.

7 Conclusions

Our first contribution is a protocol transformation that can safely get rid of cryp-
tographic properties under some mild conditions. We have demonstrated with
experiments that the time and space difference between verifying the protocol
with all the crypto properties and verifying the protocol with a minimal set of
the crypto properties is remarkable (an average speedup of 2.54). A similar idea
is presented in [23] for XOR and in [22] for DH. These works are however not
comparable to ours, since they are not protocol transformations but classes of
protocols were the analysis using Proverif is sound. In [19], protocol transforma-
tions are studied. However the goal it not to optimize the verification, but to
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ensure that a transformed protocol satisfies some security goals, when the source
protocol did, focusing on incremental protocol construction. Our second contri-
bution is an encoding of the theory of bilinear pairing into Maude-NPA. This
encoding goes beyond the encoding of bilinear pairing available in the Tamarin
tool, the only crypto tool with such an equational theory. Since Tamarin [10]
and AKISS [5] use term variants, they could be adapted to use both our pro-
tocol transformation and our encoding of the theory of bilinear pairing. They
may even be useful for other crypto tools with more limited crypto properties
such as ProVerif [6], OFMC [29], Scyther [9] or Scyther-proof [25]. Specially, since
Proverif [6] already incorporated the notion of destructors and constructors time
ago. As future work, we plan to study how the protocol transformation applies
to other families of protocols and crypto properties such as homomorphisms [34].
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