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Supports and extreme points
in Lipschitz-free spaces

Ramón J. Aliaga and Eva Pernecká

Abstract. For a complete metric space M , we prove that the finitely
supported extreme points of the unit ball of the Lipschitz-free space F(M)
are precisely the elementary molecules (δ(p)−δ(q))/d(p, q) defined by pairs
of points p, q inM such that the triangle inequality d(p, q) < d(p, r)+d(q, r)
is strict for any r ∈ M different from p and q. To this end, we show that
the class of Lipschitz-free spaces over closed subsets of M is closed under
arbitrary intersections when M has finite diameter, and that this allows a
natural definition of the support of elements of F(M).

1. Introduction

Let Lip0(M) denote the space of real-valued Lipschitz functions on a pointed metric
space (M,d) (i.e., one with a designated base point) that vanish at the base point,
endowed with the Lipschitz norm

‖f‖L = sup
{f(p)− f(q)

d(p, q)
: p �= q ∈M

}
.

Then Lip0(M) is a dual Banach space and the map δ that assigns to each x ∈M
its evaluation functional δ(x) : f �→ f(x) embeds M isometrically into Lip0(M)

∗
.

Moreover, these functionals span a space F(M) = span δ(M) that can be canoni-
cally identified with a predual of Lip0(M). The spaces F(M) were prominently fea-
tured as “Arens–Eells spaces” in the authoritative monograph [17] due to Weaver.
Later, the study of their applications in nonlinear geometry of Banach spaces
was initiated in [12] by Godefroy and Kalton, who also introduced the name
Lipschitz-free spaces based on their universal property. We refer to [17] for ba-
sic facts on Lipschitz and Lipschitz-free spaces, and to the survey [11] and the
references therein for more recent progress in understanding their Banach space
properties.
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The linear structure of Lipschitz-free spaces is not straightforward to analyze
and has been the subject of vigorous recent research efforts. In particular, the
extremal structure of their unit ball has not yet been completely described. The
first important step in this direction wasWeaver’s proof that any preserved extreme
point of BF(M) must be an elementary molecule [18], that is, an element of the
form

upq :=
δ(p)− δ(q)

d(p, q)

for some p �= q ∈ M ; note that ‖upq‖ = 1. This allows us to restate the problem
of characterizing certain types of extreme points as finding equivalent geometric
conditions on pairs of points p, q in M . It is easy to see that one such necessary
condition is that the metric segment

[p, q] := {x ∈M : d(p, q) = d(p, x) + d(q, x)}

consists only of the points p and q.

Progress in this direction was mostly stalled until very recently. In [10], Garćıa-
Lirola, Procházka and Rueda Zoca gave a complete geometric characterization
of the strongly exposed points of BF(M) (see Theorem 2.2(b)). In [1], the first
author and Guirao gave a similar geometric characterization of preserved extreme
points (see Theorem 2.2(a)), and asked whether extreme points could be described
analogously. In particular, they asked if it is true that upq is extreme if and only
if [p, q] = {p, q} (see Question 1 in [1]). The answer is positive when M is compact
by Theorem 4.2 in [1]. Concurrently, Garćıa-Lirola, Petitjean, Procházka and
Rueda Zoca proved in [9] that all preserved extreme points of BF(M) are denting
points, and gave a positive answer to Question 1 in [1] for bounded, uniformly
discrete M .

Our main result in this note is that the answer to Question 1 in [1] is positive
for any complete metric space M , that is:

Theorem 1.1. Let M be a complete pointed metric space and let μ ∈ F(M) be
finitely supported, i.e., μ ∈ span δ(M). Then μ is an extreme point of BF(M) if
and only if μ = upq for distinct points p, q in M such that [p, q] = {p, q}.

The proof relies on a refinement of the methods used in [1] for obtaining the
characterization of preserved extreme points, but an additional key observation
is required: the fact that the class of Lipschitz-free spaces over closed subsets
of M , considered as subspaces of F(M), is closed under intersections when M is
bounded (see Theorem 3.3). We prove this by considering the algebra structure
of Lip0(M) –we show that the w∗-closure of any ideal in Lip0(M) is also an ideal
and appeal to results in Chapter 4 of [17]. As another consequence of this fact we
show that, for a bounded M , the support of any element of F(M) can be defined
in a natural way.
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2. Preliminaries

We will now briefly describe the notation used throughout the text. M will be
a complete pointed metric space with metric d. We will write diam(M) for the
(possibly infinite) diameter of M , and denote

ε(x; p, q) := d(p, x) + d(q, x)− d(p, q)

for p, q, x ∈M . Note that ε(x; p, q) ≥ 0, and ε(x; p, q) = 0 if and only if x ∈ [p, q].
We will also consider the Stone–Čech compactification βM of M and the fact
that any real-valued continuous function on M may be extended continuously
and uniquely to a function on βM , possibly by adding ±∞ to its range. In par-
ticular, for ξ ∈ βM and p, q ∈ M , d(ξ, p) and ε(ξ; p, q) are well-defined values
in [0,∞]. Moreover, by an argument given in the proof of Proposition 2.1.6 in [17],
infp∈M d(ξ, p) > 0 for any ξ ∈ βM \M .

For any subset N of M , it is well known that any element of Lip0(N) may be
extended to an element of Lip0(M) without increasing its Lipschitz norm or its
supremum, and that therefore F(N) can be identified with a subspace of F(M).
Namely, there exists a linear isometric embedding ι̂ : F(N) → F(M), induced
by the identity mapping i : N → M , such that ι̂(δN (x)) = δM (i(x)) for every
x ∈ N ; here δN and δM are the embeddings of the respective metric spaces into
the corresponding Lipschitz-free spaces. Hence, F(N) is linearly isometric to the
closed subspace of F(M) spanned by the set δM (N) (see e.g. p. 91 in [11]), and
we shall frequently identify them.

We will also use the following known fact about representation of elements
of F(M). We include a proof for the sake of completeness.

Lemma 2.1. Let M be a pointed metric space and μ ∈ F(M). For every ε > 0,
there exist sequences (an) in R and (pn), (qn) in M , with pn �= qn for all n ∈ N,
such that μ =

∑∞
n=1 anupnqn and

∑∞
n=1 |an| < ‖μ‖+ ε.

Proof. Let μ ∈ F(M) and ε > 0. By Lemma 3.100 in [7], there exists a sequence
(μn) ⊂ span δ(M) such that μ =

∑∞
n=1 μn and

∞∑
n=1

‖μn‖ < ‖μ‖+ ε

2
·

Since the F(M)-norm on span δ(M) can be computed by the formula

‖ν‖ = inf
{ I∑

i=1

|ai| : ν =

I∑
i=1

ai
δ(pi)− δ(qi)

d(pi, qi)
, I ∈ N, ai ∈ R, pi, qi ∈M,pi �= qi

}
for each ν ∈ span δ(M) (see Section 2 in [2]), for each n ∈ N we can find a
representation

μn =

In∑
i=1

ani
δ(pni )− δ(qni )

d(pni , q
n
i )
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such that
In∑
i=1

|ani | < ‖μn‖+ ε

2n+1
·

We re-index the sequences (ani )n,i, (pni )n,i and (qni )n,i as (aj)
∞
j=1, (pj)

∞
j=1 and

(qj)
∞
j=1, respectively. Then

∞∑
j=1

|aj | =
∑
n,i

|ani | =
∞∑
n=1

In∑
i=1

|ani | ≤
∞∑

n=1

(
‖μn‖+ ε

2n+1

)
< ‖μ‖+ ε.

Hence (aj) ∈ �1 and the series
∑∞

j=1 aj
δ(pj)−δ(qj)
d(pj,qj)

converges absolutely in F(M).

Moreover,

μ =

∞∑
j=1

aj
δ(pj)− δ(qj)

d(pj , qj)
·

Indeed, for any ξ > 0 find N ∈ N such that for every m ≥ N we have that
max

{‖μ−∑m
j=1 μj

∥∥, ‖μm‖, ε/2m} < ξ. Then for every n >
∑N

k=1 Ik we also get

∥∥∥μ−
n∑

j=1

aj
δ(pj)− δ(qj)

d(pj , qj)

∥∥∥ ≤
∥∥∥μ−

m−1∑
j=1

μj

∥∥∥+

Im∑
i=1

|ami |

≤
∥∥∥μ−

m−1∑
j=1

μj

∥∥∥+ ‖μm‖+ ε

2m
< 3ξ,

where m ∈ N satisfies
∑m−1

k=1 Ik < n ≤ ∑m
k=1 Ik. �

Given a Banach space X , its closed unit ball will be denoted by BX , and the
evaluation of a functional x∗ ∈ X∗ at x ∈ X by 〈x, x∗〉. We will consider the
following types of extremal elements of BX : a point x ∈ BX is

(i) an extreme point of BX if there are no y, z ∈ BX \{x} such that x = 1
2 (y+z);

(ii) an exposed point of BX if there exists x∗ ∈ X∗ such that ‖x∗‖ = 1 and x is
the only element of BX such that 〈x, x∗〉 = 1;

(iii) a preserved extreme point (also called w∗-extreme point) of BX if it is an
extreme point of BX∗∗ ;

(iv) a denting point of BX if there are slices of BX (that is, sets of the form
{y ∈ BX : 〈y, x∗〉 > α} for some x∗ ∈ X∗ and α ∈ R) of arbitrarily small
diameter containing x;

(v) a strongly exposed point of BX if there exists x∗ ∈ X∗ such that 〈x, x∗〉 = 1
and that diam {y ∈ BX : 〈y, x∗〉 > 1− δ} → 0 when δ → 0.

All of these elements have norm 1, and the implications (v)⇒(iv)⇒(iii)⇒(i)
and (v)⇒(ii)⇒(i) hold. For further reference see e.g. [13]. We will denote the set
of extreme points of BX as extBX .
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Note also that the above concepts are invariant with respect to linear isometries
and that a change of the base point in M induces a linear isometry between the
corresponding Lipschitz and Lipschitz-free spaces which preserves the elementary
molecules. Therefore we may (and will) adapt the base point of M without loss of
generality.

The following statement describes the geometric characterizations of preserved
extreme, denting, and strongly exposed points of BF(M) in terms of the geometry
ofM . It summarizes Theorem 4.1 in [1], Theorem 2.4 in [9] and Theorem 5.4 in [10].

Theorem 2.2. LetM be a complete pointed metric space and p, q be distinct points
of M . Then

(a) upq is a preserved extreme point of BF(M) if and only if it is a denting point
of BF(M) if and only if ε(ξ; p, q) > 0 for all ξ ∈ βM \ {p, q},

(b) upq is a strongly exposed point of BF(M) if and only if there is a C > 0 such
that

(2.1) min {d(x, p), d(x, q)} ≤ C · ε(x; p, q) for all x ∈M .

There are several settings where one may apply the above criteria to show
that upq must be a preserved extreme point or even a strongly exposed point
whenever [p, q] = {p, q}, which are easy consequences or variations of known results
but are not stated explicitly anywhere to the best of our knowledge. We collect
them in Proposition 2.3. Recall that a metric spaceM has the Heine–Borel property
(we also say that M is proper) if the closed balls in M are compact, and that M
is ultrametric if d(x, y) ≤ max {d(x, z), d(y, z)} for any x, y, z ∈ M . Recall also
the following definition from [9]: a predual of F(M) is natural if it induces a
w∗-topology such that δ(M) ∩ nBF(M) is w

∗-closed for any n ∈ N.

Proposition 2.3. Let M be a complete pointed metric space, and let p, q be dis-
tinct points of M such that [p, q] = {p, q}. Then upq is a preserved extreme point
of BF(M) in these cases :

(a) M has the Heine–Borel property,

(b) F(M) has a natural predual,

and it is a strongly exposed point of BF(M) in the following cases :

(c) M is ultrametric,

(d) F(M) is linearly isometric to �1(Γ) for some Γ.

Proof. (a) This is an easy extension of the compact case that was proved in Theo-
rem 4.2 in [1]. Indeed, suppose that upq is not a preserved extreme point of BF(M),
then by Theorem 2.2(a) there is ξ ∈ βM \{p, q} such that d(p, ξ)+d(q, ξ) = d(p, q).
Let (xi) be a net in M that converges to ξ. Since d(p, xi) + d(q, xi) converges to
d(p, q), we may assume that (xi) is bounded. The Heine–Borel property then im-
plies that (xi) has a cluster point x ∈ M that is different from p, q and clearly
d(p, x) + d(q, x) = d(p, q).
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(b) As in case (a), if upq is not preserved extreme then there is a bounded
net (xi) in M that converges to ξ ∈ βM \ {p, q} and such that d(p, xi) + d(q, xi)
converges to d(p, q). Then (δ(xi)) is a bounded net in F(M) and so we may replace
it by a w∗-convergent subnet. Since F(M) has a natural predual, there is x ∈ M

such that δ(xi)
w∗
−→ δ(x). By w∗-lower semicontinuity of the norm of F(M) we get

d(p, x) = ‖δ(p)− δ(x)‖ ≤ lim inf
i

‖δ(p)− δ(xi)‖ = lim inf
i

d(p, xi) = d(p, ξ),

and similarly d(q, x) ≤ d(q, ξ). But then

d(p, q) ≤ d(p, x) + d(q, x) ≤ d(p, ξ) + d(q, ξ) = d(p, q),

so all inequalities are in fact equalities. In particular, d(p, x) = d(p, ξ) > 0 and
d(q, x) = d(q, ξ) > 0, thus x �= p, q and d(p, x) + d(q, x) = d(p, q).

(c) Let x ∈ M \ {p, q} and recall the following general property of ultrametric
spaces: if d(x, p) �= d(p, q), then d(x, q) = max {d(x, p), d(p, q)} (see Property 3.3
in [4]). Now distinguish three cases:

• If d(x, p) = d(p, q), then ε(x; p, q) = d(x, q).

• If d(x, p) < d(p, q), then d(x, q) = d(p, q) and ε(x; p, q) = d(x, p).

• If d(x, p) > d(p, q), then d(x, q) = d(x, p) and ε(x; p, q) = 2d(x, p) − d(p, q),
hence ε(x; p, q) > d(x, p).

In all cases (2.1) is satisfied with C = 1, so upq is a strongly exposed point of
BF(M) by Theorem 2.2(b).

We remark that in an ultrametric space, the condition [p, q] = {p, q} is true for
any pair of points p, q, so all elementary molecules are strongly exposed.

(d) By Theorem 5 in [5], M is a negligible subset of an R-tree T containing
all branching points of T . Let 0 denote the root of T and assign it as the base
point of M . Write p ≺ q if q is a successor of p, i.e., if p ∈ [0, q]. Let p, q ∈ M
be such that [p, q] ∩ M = {p, q}. If neither p ≺ q nor q ≺ p, then there is a
branching point r = p ∧ q, defined by [0, r] = [0, p] ∩ [0, q], such that r ≺ p, q and
d(p, q) = d(p, r) + d(r, q), hence r ∈ [p, q] ∩M , a contradiction. So assume that
p ≺ q and let x ∈M \ {p, q}. Distinguish three cases:

• If q ≺ x, then q ∈ [p, x] and so ε(x; p, q) = 2d(q, x).

• If x ≺ p, then p ∈ [x, q] and so ε(x; p, q) = 2d(p, x).

• Otherwise, let r = p ∧ x, then r ∈ [x, p] ∩M because it is a branching point,
and also r ∈ [x, q], hence ε(x; p, q) = 2d(p, x).

So (2.1) is satisfied with C = 1/2 and the conclusion follows by Theorem 2.2(b). �
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3. Intersections of free spaces

Recall that Lip0(M) is an algebra under pointwise multiplication if (and only if)
M is bounded. Indeed, for any f, g ∈ Lip0(M) we have

‖fg‖L ≤ ‖f‖L ‖g‖∞ + ‖g‖L ‖f‖∞
≤ ‖f‖L ‖g‖L diam(M) + ‖g‖L ‖f‖L diam(M) = 2 diam(M) ‖f‖L ‖g‖L(3.1)

and so fg ∈ Lip0(M). Lip0(M) is not in general a Banach algebra, as that would
require ‖fg‖L ≤ ‖f‖L ‖g‖L, but it can be equivalently renormed to become one
by dilating M by a constant factor so that its diameter is less than 1/2.

An ideal in Lip0(M) is a subspace Y (not necessarily closed) such that fg ∈ Y
for any f ∈ Y and g ∈ Lip0(M). Following Chapter 4 in [17], for any set K ⊂ M
that contains the base point let us define

I(K) = {f ∈ Lip0(M) : f(x) = 0 for all x ∈ K} ,
which is a w∗-closed ideal of Lip0(M). Note that we have F(K)⊥ = I(K) and
I(K)⊥ = F(K) (see e.g. [14], where I(K) is denoted LipK(M)). For any sub-
space Y of Lip0(M), let us also define the hull of Y as the closed set

H(Y ) = {x ∈M : f(x) = 0 for all f ∈ Y } .
Notice that H(I(K)) = K for any closed K ⊂ M , as witnessed by the Lipschitz
map x �→ d(x,K) := inf {d(x, y) : y ∈ K}.

We show next that an element of F(M) endowed with a weight is again an
element of F(M).

Lemma 3.1. Let M be a bounded pointed metric space, μ ∈ F(M) and let
g ∈ Lip0(M). Define the function μ ◦ g : Lip0(M) → R by

(μ ◦ g)(f) = 〈μ, fg〉
for all f ∈ Lip0(M). Then μ ◦ g ∈ F(M).

Proof. It is clear that μ ◦ g is a linear functional, and it follows immediately
from (3.1) that

‖μ ◦ g‖ ≤ 2 diam(M) ‖μ‖ ‖g‖L .
Hence μ ◦ g ∈ Lip0(M)∗. Now let (fi) be a bounded net w∗-converging to an f
in Lip0(M). Since w∗-convergence agrees with pointwise convergence in bounded
subsets of Lip0(M), it is easy to verify that then also (fig) w∗-converges to fg.
Therefore

lim
i
〈fi, μ ◦ g〉 = lim

i
〈μ, fig〉 = 〈μ, fg〉 = 〈f, μ ◦ g〉 .

So, by the Banach–Dieudonné theorem, μ ◦ g is w∗-continuous and it belongs to
F(M). �

Using these “weighted elements” of F(M), we can show that the w∗-closure of
any ideal in Lip0(M) is again an ideal. Specifically:
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Proposition 3.2. Let M be a bounded and complete pointed metric space and let

Y ⊂ Lip0(M) be an ideal. Then Y
w∗

= I(H(Y )).

Proof. Let f ∈ Y
w∗

, g ∈ Lip0(M) and h = fg, and let U ⊂ Lip0(M) be a
w∗-neighborhood of h. Then U contains a w∗-neighborhood V of the form

V = {ψ ∈ Lip0(M) : |〈μn, h− ψ〉| < ε for n = 1, . . . , N} ,
where μn ∈ F(M), ε > 0, and N ∈ N. Consider the set

W = {φ ∈ Lip0(M) : |〈μn ◦ g, f − φ〉| < ε for n = 1, . . . , N} ,
where μn ◦ g are as in Lemma 3.1. Then W is a w∗-neighborhood of f , so there
exists φ ∈ Y ∩W . Let ψ = φg. Then ψ ∈ Y since Y is an ideal, and for any
n = 1, . . . , N we have

|〈μn, h− ψ〉| = |〈μn, (f − φ)g〉| = |〈μn ◦ g, f − φ〉| < ε,

so ψ ∈ V . Therefore V ∩Y is nonempty, and it follows that h ∈ Y
w∗

. We have thus

proved that Y
w∗

is an ideal. By Corollary 4.2.6 in [17] we get Y
w∗

= I(H(Y
w∗

)),

where completeness of M is used. Clearly H(Y
w∗

) = H(Y ), which ends the proof.
�

We can now state the main results in this section. In what follows, the Lipschitz-
free spaces over subsets of M are identified with the corresponding subspaces
of F(M), as we have remarked before Lemma 2.1.

Theorem 3.3. Let M be a bounded and complete pointed metric space, and let
{Ki : i ∈ I} be a family of closed subsets of M containing the base point. Then⋂

i∈I

F(Ki) = F
(⋂

i∈I

Ki

)
.

Proof. We have⋂
i∈I

F(Ki) =
⋂
i∈I

(I(Ki)⊥) =
(⋃

i∈I

I(Ki)
)
⊥

= (span {I(Ki) : i ∈ I})⊥ =
(
spanw

∗ {I(Ki) : i ∈ I})⊥ .
Since span {I(Ki) : i ∈ I} is an ideal in Lip0(M), we may apply Proposition 3.2
to get ⋂

i∈I

F(Ki) = I(H)⊥ = F(H),

where H = H(span {I(Ki) : i ∈ I}). Now notice that
⋂

i∈I Ki ⊂ H , and for each
x /∈ ⋂

i∈I Ki there exists i ∈ I such that x /∈ Ki, so the function y �→ d(y,Ki)
shows that x /∈ H . Thus H =

⋂
i∈I Ki and this finishes the proof. �

Let us introduce now the notion of a support of an element of a free space
pertinent to our context.
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Definition 3.4. Consider a pointed metric space M with the base point 0. For a
μ ∈ F(M) let the support of μ, denoted supp(μ), be defined as the smallest closed
set K ⊂M such that μ ∈ F(K ∪ {0}), provided such a K exists. That is, for any
closed L ⊂M that contains the base point, μ ∈ F(L) if and only if K ⊂ L.

The conclusion of Theorem 3.3 can be equivalently restated in terms of supports
in the following sense.

Proposition 3.5. Let M be a pointed metric space. The following are equivalent :

(i) If {Ki : i ∈ I} is a family of closed subsets of M that contain the base point,
then

⋂
i∈I F(Ki) = F (⋂

i∈I Ki

)
.

(ii) The support of μ exists for every μ ∈ F(M).

Proof. Suppose that (i) holds and let μ ∈ F(M). Let S be the family of all
closed sets C ⊂ M such that μ ∈ F(C ∪ {0}), and let K =

⋂
C∈S C. Then

μ ∈ ⋂
C∈S F(C ∪ {0}) = F(K ∪ {0}) so K ∈ S, and K is clearly the smallest

element of S, so K = supp(μ).
Now assume (ii) and let {Ki : i ∈ I} be as in (i). Let μ ∈ ⋂

i∈I F(Ki), then
supp(μ) ⊂ Ki for all i, thus supp(μ) ⊂ ⋂

i∈I Ki and μ ∈ F(
⋂

i∈I Ki). Hence⋂
i∈I F(Ki) ⊂ F(

⋂
i∈I Ki); the reverse inclusion is trivial. �

We do not know whether supp(μ) exists in general, but Theorem 3.3 and Propo-
sition 3.5 give a class of metric spaces for which it does:

Corollary 3.6. IfM is a bounded, complete pointed metric space, then the support
of μ exists for every μ ∈ F(M).

Note that if μ ∈ span δ(M), that is, if μ =
∑n

i=1 aiδ(xi) for n ∈ N, xi ∈M \{0}
and ai ∈ R \ {0}, then the support of μ is exactly the set K = {x1, . . . , xn}.
Indeed, clearly μ ∈ F(K ∪ {0}), and if L is a closed subset of M containing the
base point and such that K \ L �= ∅, then we can choose p ∈ K \ L and take
f ∈ Lip0(M) that vanishes on L and K \ {p} but satisfies f(p) = 1 to show that
μ /∈ F(L) = I(L)⊥. On the other hand, if the support of μ ∈ F(M) is some finite
set K = {x1, . . . , xn}, where n ∈ N and xi ∈ M \ {0}, then μ =

∑n
i=1 aiδ(xi) and

all ai ∈ R \ {0} because K is the smallest such subset of M . Therefore, there shall
be no ambiguity when speaking about finitely supported elements of F(M).

4. Extreme molecules

We now proceed to our main result. Let M be a complete pointed metric space
and denote

M̃ :=
{
(p, q) ∈M2 : p �= q

}
with the subspace topology ofM2. The de Leeuw transform Φ assigns to a function
f : M → R the function Φf : M̃ → R defined by

Φf(p, q) :=
f(p)− f(q)

d(p, q)
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for all (p, q) ∈ M̃ . Note that if f ∈ Lip0(M), then Φf(p, q) = 〈upq, f〉 and

‖f‖L = ‖Φf‖∞, so Φ is a linear isometry from Lip0(M) into Cb(M̃) – the space

of bounded continuous functions on M̃ , which can be identified with C(βM̃ ), the

space of real-valued continuous functions on the Stone–Čech compactification βM̃

of M̃ . Its adjoint operator Φ∗ : C(βM̃ )
∗ → Lip0(M)∗ is thus surjective; recall that

C(βM̃ )
∗
is just the space of Radon measures on βM̃ .

Now fix two distinct points p, q inM and consider q to be the base point. Recall
the following definition from [1]:

Dpq :=
{
ζ ∈ βM̃ : |Φf(ζ)| = ‖f‖L whenever f ∈ Lip0(M) is such that

Φf(p, q) = ‖f‖L
}
.

Notice that Dpq is a compact subset of βM̃ and that it always contains the points
(p, q) and (q, p). In Proposition 3.5 in [1], the structure of the set Dpq was de-
termined in the particular case when there is no ξ ∈ βM such that ε(ξ; p, q) = 0
other than p and q. Here, we generalize this result and show that, informally,
Dpq lies inside S × S, where S = {ξ ∈ βM : ε(ξ; p, q) = 0} is the “segment in the
compactification”.

Lemma 4.1. For any ζ ∈ Dpq there is a net (xi, yi) in M̃ that converges to ζ

in βM̃ , such that ε(xi; p, q) and ε(yi; p, q) converge to 0.

Proof. Let ζ ∈ βM̃ , then there is a net (xi, yi), i ∈ I, in M̃ that converges to ζ

in βM̃ , and we may choose a subnet such that (xi) and (yi) converge to elements ξ
and η, respectively, in βM ; call this subnet (xi, yi) again. We want to show that
ζ ∈ Dpq implies that ε(ξ; p, q) = ε(η; p, q) = 0. To do so, we assume without
loss of generality that ε(η; p, q) > 0 and we will construct f ∈ BLip0(M) such that
Φf(p, q) = 1 and |Φf(ζ)| < 1, concluding thus that ζ /∈ Dpq. There are three
possibilities:

(i) ε(ξ; p, q) > 0.

(ii) ε(ξ; p, q) = 0 but ξ �= p, q.

(iii) ξ ∈ {p, q}.
Cases (i) and (iii) were dealt with in the proof of Proposition 3.5 in [1] so we

will only prove (ii), using a similar technique.

Suppose then that ε(η; p, q) > 0 and ε(ξ; p, q) = 0 but ξ �= p, q. Since p, q, ξ, η
are all distinct, we may replace (xi, yi) with a subnet such that the sets {xi : i ∈ I}
and {yi : i ∈ I} are disjoint and do not contain p or q. We now claim the following:

Claim. We may replace (xi, yi), i ∈ I, with a subnet such that

inf
i∈I

ε(yi; p, q)

d(yi, q)
> 0, inf

i,j∈I

ε(yi;xj , q)

d(yi, q)
> 0, inf

i∈I

d(yi, q)

d(yi, p)
> 0 and inf

i,j∈I

d(yi, q)

d(yi, xj)
> 0.
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Proof of the Claim. Since limi ε(xi; p, q) = 0, we may choose a subnet such that
d(xi, q) is bounded. We may also either choose a subnet such that d(yi, q) → ∞
or one such that d(yi, q) is bounded. We split the proof into these two cases.

Suppose first that we take a subnet such that d(yi, q) ≤ C1 for some C1 < ∞
and all i ∈ I. It is easy to check that the identity

ε(y;x, q) = ε(x; y, p) + ε(y; p, q)− ε(x; p, q)

holds for any p, q, x, y ∈M . In particular, it implies that

ε(yi;xj , q) ≥ ε(yi; p, q)− ε(xj ; p, q)

for any i, j ∈ I. Since limi ε(xi; p, q) = 0 and limi ε(yi; p, q) > 0, we may choose a
subnet such that ε(yi; p, q) ≥ δ and ε(xi; p, q) ≤ δ/2 for some δ > 0, so that

ε(yi;xj , q)

d(yi, q)
≥ δ

2C1
and

ε(yi; p, q)

d(yi, q)
≥ δ

C1

for all i, j ∈ I. Also yi → η �= q, hence we may take a subnet such that d(yi, q) ≥ C2

for some C2 > 0 and all i ∈ I. If C3 < ∞ is such that d(xi, q) ≤ C3 for all i ∈ I,
we obtain

d(yi, q)

d(yi, xj)
≥ d(yi, q)

d(yi, q) + d(xj , q)
≥ C2

C1 + C3

for all i, j ∈ I, and similarly d(yi, q)/d(yi, p) ≥ C2/(C1 + d(p, q)).
Now assume that we take a subnet such that d(yi, q) → ∞ instead. Then also

d(yi, p) ≥ d(yi, q)− d(p, q) → ∞ and

lim sup
i

d(yi, p)

d(yi, q)
≤ lim sup

i

d(yi, q) + d(q, p)

d(yi, q)
= 1 + lim sup

i

d(p, q)

d(yi, q)
= 1.

By symmetry in p and q we get limi d(yi, p)/d(yi, q) = 1. Hence

lim
i

ε(yi; p, q)

d(yi, q)
= 1 + lim

i

d(yi, p)− d(p, q)

d(yi, q)
= 2,

so we may take a subnet where ε(yi; p, q)/d(yi, q) and d(yi, q)/d(yi, p) are bounded
below by a positive constant. Also, since d(xi, q) is bounded, we may choose a
further subnet such that d(xj , q)/d(yi, q) ≤ 1/2 for all i, j, and then

ε(yi;xj , q)

d(yi, q)
= 1 +

d(yi, xj)− d(xj , q)

d(yi, q)
≥ 1

2
+
d(yi, xj)

d(yi, q)
≥ 1

2
.

Finally,
d(yi, xj)

d(yi, q)
≤ 1 +

d(xj , q)

d(yi, q)
≤ 3

2

and so d(yi, q)/d(yi, xj) ≥ 2/3 for all i, j. �
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Now we continue with the proof of Lemma 4.1. Using the Claim, replace (xi, yi)
with a subnet and choose c > 0 and δ > 0 such that

c < min
{
2, inf

i,j∈I

ε(yi;xj , q)

d(yi, q)
, inf
i∈I

ε(yi; p, q)

d(yi, q)

}
and

δ < min
{
1, inf

i,j∈I

d(yi, q)

d(yi, xj)
, inf
i∈I

d(yi, q)

d(yi, p)

}
.

Let X = {xi : i ∈ I}, Y = {yi : i ∈ I} and Z = {p, q}∪X∪Y . Define f : Z → R by

f(z) =

{
d(z, q) if z ∈ Z \ Y,
(1 − c/2) · d(z, q) if z ∈ Y .

It is clear that Φf(p, q) = 1, |Φf(x, y)| ≤ 1 for x, y ∈ Z \Y and |Φf(x, y)| ≤ 1−c/2
for x, y ∈ Y . Moreover, if y ∈ Y then Φf(y, q) = 1− c/2, and for any x ∈ X ∪ {p}
we have

1 + Φf(y, x) =
ε(y;x, q)− c/2 · d(y, q)

d(y, x)
≥ (c− c/2) · d(y, q)

d(y, x)
≥ cδ

2
,

1− Φf(y, x) =
ε(x; y, q) + c/2 · d(y, q)

d(y, x)
≥ c

2
· d(y, q)
d(y, x)

≥ cδ

2
,

so |Φf(y, x)| ≤ 1−cδ/2. We conclude that ‖f‖L = 1. Now extend f from Z toM .
Then f ∈ BLip0(M), Φf(p, q) = 1, and |Φf(ζ)| = limi |Φf(xi, yi)| ≤ 1 − cδ/2 < 1,
hence ζ /∈ Dpq. �

Let us now define the set Epq as

Epq :=
{
φ ∈ BLip0(M)∗ : 〈f, φ〉 = 1 for every f ∈ BLip0(M)(4.1)

such that Φf(p, q) = 1
}
.

Notice that Epq is a w∗-compact and convex subset of the ball of Lip0(M)
∗
and that

it contains upq. The importance of this set lies in the following observation, which
goes back to [6]: suppose that upq is a convex combination of somem,m′ ∈ BF(M),
i.e.,

upq = tm+ (1− t)m′

for some t ∈ (0, 1). If f ∈ BLip0(M) is such that Φf(p, q) = 1, the inequalities

1 = 〈upq, f〉 = t 〈m, f〉+ (1 − t) 〈m′, f〉
≤ t ‖m‖ ‖f‖L + (1 − t) ‖m′‖ ‖f‖L ≤ 1

hold and so 〈m, f〉 = 〈m′, f〉 = 1. It follows that m,m′ ∈ Epq. Hence, in or-
der to show that upq is an extreme point of BF(M), it suffices to show that
Epq ∩ F(M) = {upq}. To this end, we start with a generalization of Lemma 3.3
in [1]:
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Lemma 4.2. Let K be a closed subset of βM̃ such that Dpq ∩K = ∅. Then there
is a constant C, depending on K, such that

|μ| (K) ≤ C · (‖μ‖ − 1)

for any measure μ ∈ C(βM̃)
∗
such that Φ∗μ ∈ Epq.

Here, |μ| ∈ C(βM̃)
∗
denotes the total variation of μ, as usual.

Proof. Let ζ ∈ K. Then ζ /∈ Dpq so there is an f ∈ BLip0(M) such that Φf(p, q) = 1
and |Φf(ζ)| < 1 and, since Φf is continuous, there are cζ ∈ (0, 1) and an open
neighborhood Vζ of ζ such that |Φf(ζ′)| ≤ cζ for every ζ′ ∈ Vζ . Moreover, if

μ ∈ C(βM̃)
∗
is a measure such that Φ∗μ ∈ Epq, then we have

1 = 〈f,Φ∗μ〉 =
∫
β˜M

(Φf) dμ =

∫
Vζ

(Φf) dμ+

∫
β˜M\Vζ

(Φf) dμ

≤ cζ |μ| (Vζ) + |μ| (βM̃ \ Vζ) = ‖μ‖ − (1− cζ) |μ| (Vζ)

hence

|μ| (Vζ) ≤ ‖μ‖ − 1

1− cζ
·

Now, {Vζ : ζ ∈ K} is an open cover of the compact set K, so it admits a finite

subcover K ⊂ ⋃n
j=1 Vζj . Thus, for any μ ∈ C(βM̃)

∗
such that Φ∗μ ∈ Epq we have

|μ| (K) ≤
n∑

j=1

|μ| (Vζj ) ≤ C · (‖μ‖ − 1),

where C =
∑n

j=1(1− cζj )
−1 <∞. �

The following lemma shows that if upq is a convex combination of two elements
m,m′ of the unit ball, then m,m′ must be supported on the segment [p, q].

Lemma 4.3. For the set Epq defined as in (4.1), we have Epq ∩F(M) ⊂ F([p, q]).

Proof. Let π1, π2 : M̃ →M be the projection mappings given by π1(x, y) = x and

π2(x, y) = y. For a set A ⊂ M̃ , denote π(A) = π1(A) ∪ π2(A), i.e., π(A) is the set
of points of M appearing as either coordinate of an element of A.

Claim. If U is an open subset of βM̃ such that Dpq ⊂ U , then Epq ∩ F(M) is a

subset of F(π(U ∩ M̃)).

Proof of the Claim. Denote N = π(U ∩ M̃), and let m ∈ Epq ∩ F(M) and k ∈ N.

By Lemma 2.1, m admits a representationm =
∑∞

n=1 anupnqn where (pn, qn) ∈ M̃
for all n ∈ N and

∑∞
n=1 |an| ≤ 1 + 1/k. Let I = {n ∈ N : (pn, qn) ∈ U} and

mk =
∑

n∈I anupnqn . Notice that pn, qn ∈ N for each n ∈ I, hence mk ∈ F(N).
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It is not difficult to observe that Φ∗δ(x,y) = uxy for any (x, y) ∈ M̃ , where

δ(x,y) ∈ B
C(β˜M)

∗ is the evaluation functional at (x, y) ∈ M̃ . Hence, if we denote

μ =
∑∞

n=1 anδ(pn,qn), then μ ∈ C(βM̃ )
∗
as the series is absolutely convergent,

‖μ‖ ≤ ∑∞
n=1 |an| ≤ 1 + 1/k, and Φ∗μ = m.

Denote K = βM̃ \ U and let C be the constant assigned to K by Lemma 4.2.
For each f ∈ Lip0(M) we have

〈m−mk, f〉 =
∑
n/∈I

an Φf(pn, qn) =
∑

{n∈N:(pn,qn)∈K}
anΦf(pn, qn)

=

∫
β˜M

(Φf) · χK dμ =

∫
K

(Φf) dμ,

where χK is the characteristic function of K. So,

|〈m−mk, f〉| =
∣∣∣ ∫

K

(Φf) dμ
∣∣∣ ≤ ‖Φf‖∞ · |μ| (K) ≤ ‖f‖L · C/k

and ‖m−mk‖ ≤ C/k. Hence, if k → ∞ then mk → m and thus m is in the closed
subspace F(N) of F(M). �

Now, to proceed with the proof of Lemma 4.3, take the continuous function
ϕ : M̃ → [0,∞) defined by

ϕ(x, y) = max {ε(x; p, q), ε(y; p, q)}
and extend ϕ to a continuous function ϕ : βM̃ → [0,∞]. Consider the sets

Sn = {x ∈M : ε(x; p, q) ≤ 1/n} and Un = {ζ ∈ βM̃ : ϕ(ζ) < 1/n}
for n ∈ N. Notice that Un is open in βM̃ and that π(Un ∩ M̃) ⊂ Sn by definition.
For each n, Lemma 4.1 implies that Dpq ⊂ Un, and applying the Claim we get
Epq ∩ F(M) ⊂ F(Sn). Thus

Epq ∩ F(M) ⊂
∞⋂
n=1

F(Sn) .

Since all Sn are subsets of S1, we have also
⋂∞

n=1 F(Sn) ⊂ F(S1). We may therefore
apply Theorem 3.3 to the bounded metric space S1 and obtain

∞⋂
n=1

F(Sn) = F
( ∞⋂

n=1

Sn

)
= F([p, q]) . �

The main result is now an immediate consequence of Lemma 4.3:

Proof of Theorem 1.1. First, let μ be a finitely supported extreme point of BF(M)

and let K ⊂ M be its support. Then μ is also an extreme point of BF(K), hence
preserved extreme in BF(K), and therefore it must be an elementary molecule upq
by Corollary 2.5.4 in [17]. The fact that [p, q] = {p, q} is proven easily, e.g. in
Proposition 2.2 in [1].
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On the other hand, assume that [p, q] = {p, q} and suppose that we have
upq = 1

2 (m+m′) for some m,m′ ∈ BF(M). As we have already remarked before
Lemma 4.2, m,m′ must belong to Epq. Taking q as the base point ofM , Lemma 4.3
implies that m ∈ F([p, q]) = F({p, q}) = span δ(p). Since ‖m‖ = 1, it follows that
m = ±δ(p)/d(p, q) = ±upq. The casem = −upq is clearly impossible, thus m = upq
and upq ∈ extBF(M). �

Example 4.4. An application of Theorem 1.1 allows us to show that there exists a
complete metric spaceM such that all of its elementary molecules are extreme but
none of them are preserved. Indeed, let M be the space described in Example 2.4
in [15]. It is shown there to have the following properties:

(i) it is a closed subset of a strictly convex Banach space,

(ii) it contains no nontrivial linear segments,

(iii) it is “almost metrically convex”, i.e., a length space.

It follows from (i) and (ii) thatM contains no nontrivial metric segments, hence
Theorem 1.1 implies that all elementary molecules are extreme points of BF(M).
However, by (iii) and Proposition 5.9 in [10], BF(M) has no preserved extreme
point.

5. Open questions

The main question regarding extremal structure of Lipschitz-free spaces remains
open and reads as follows.

Question 1 ([1]). Is every extreme point of BF(M) an elementary molecule?

By the argument used in the proof of Theorem 1.1, this is equivalent to all
extreme points of BF(M) having finite support. This is known to be true in cer-
tain cases where M is bounded and F(M) is the dual of either the well-known
space lip0(M) of “little Lipschitz functions” (see Section 3.3 of [17]) or a subspace
thereof [9]. This holds, in particular, when M is compact and either countable [3]
or ultrametric [4]. However, it is not known whether the answer to Question 1
is positive under the assumption that M is compact, or that F(M) is a dual Ba-
nach space, or even both at the same time. Maybe the results of Section 3 of the
present note could be helpful for studying the supports of extreme points of BF(M)

for bounded M .
Recall that M is geodesic if every pair of points p, q ∈M may be joined by an

isometric copy of [0, d(p, q)] ⊂ R, and that for complete M this is equivalent to
[p, q] �= {p, q} for any pair of different points p, q ∈M (see Proposition 4.1 in [10]).
Thus, Theorem 1.1 implies that M is geodesic whenever BF(M) has no extreme
points. A positive answer to Question 1 would show that the opposite implication
is also true.

Other extremal objects in BF(M) which remain uncharacterized at the time of
this writing are exposed points. In particular, it is not known whether they must
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be elementary molecules. It is shown in [9] that all extreme points of BF(M) are
exposed under various circumstances, all of which involve F(M) being a dual space.
Extreme molecules are also automatically exposed (in fact, strongly exposed) in
the cases (c) and (d) listed in Proposition 2.3. In view of all these partial results,
it is natural to ask:

Question 2. Are all extreme points of BF(M) exposed?

Remark. After completion of the present manuscript, we have learned that Pe-
titjean and Procházka [16], and independently Garćıa-Lirola [8], have found proofs
by which from Theorem 3.3 it follows that every elementary molecule defined by
points forming a trivial metric segment is in fact exposed. Thus, a positive answer
to Question 1 would also imply a positive answer to Question 2.

Finally, we would like to know whether the existence of supports, or equivalently
the intersection property proved in Theorem 3.3, holds for a more general class than
bounded metric spaces. We are not aware of any counterexample.

Question 3. Do the properties from Proposition 3.5 hold for any complete metric
space M?
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[7] Fabian, M., Habala, P., Hájek, P., Montesinos, V. and Zizler, V.: Banach
space theory. The basis for linear and nonlinear analysis. CMS Books in Mathemat-
ics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2011.



Supports and extreme points in Lipschitz-free spaces 17

[8] Garćıa-Lirola, L.: Private communication, 2018.
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[14] Hájek, P. and Novotný, M.: Some remarks on the structure of Lipschitz-free
spaces. Bull. Belg. Math. Soc. Simon Stevin 24 (2017), no. 2, 283–304.

[15] Ivakhno, Y., Kadets, V. and Werner, D.: The Daugavet property for spaces of
Lipschitz functions. Math. Scand. 101 (2007), no. 2, 261–279.

[16] Petitjean, C. and Procházka, A.: On exposed points of Lipschitz-free spaces.
Preprint, arXiv: 1810.12031, 2018.

[17] Weaver, N.: Lipschitz algebras. World Scientific Publishing Co., River Edge, NJ,
1999.

[18] Weaver, N.: Isometries of noncompact Lipschitz spaces. Canad. Math. Bull. 38
(1995), no. 2, 242–249.

Received November 2, 2018; revised March 13, 2019. Published online March 18, 2020.

Ramón J. Aliaga: Instituto Universitario de Matemática Pura y Aplicada, Univer-
sitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.

E-mail: raalva@upvnet.upv.es
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