

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/179338

Galindo-Jiménez, CS.; Pérez-Rubio, S.; Silva, J. (2020). Data Dependence for Object-
Oriented Programs. ACM. 1-7. http://hdl.handle.net/10251/179338

https://dl.acm.org/doi/proceedings/10.1145/3427764

ACM

Data Dependence for Object-Oriented Programs
Carlos Galindo

cargaji@vrain.upv.es
VRAIN

Universitat Politècnica de València
Valencia, Spain

Sergio Pérez
serperu@dsic.upv.es

VRAIN
Universitat Politècnica de València

Valencia, Spain

Josep Silva
jsilva@dsic.upv.es

VRAIN
Universitat Politècnica de València

Valencia, Spain

Abstract
The System Dependence Graph (SDG) is a program repre-
sentation used in several static analyses. In particular, it is
the basis of program slicing, a technique that extracts the
part of the program that may directly or indirectly affect the
values computed at a given program point (known as the slic-
ing criterion). Several approaches have enhanced the SDG
representation to deal with object-oriented situations like
inheritance, polymorphism, or dynamic bindings. Currently,
the most advanced approach is the Java System Dependence
Graph (JSysDG), which subsumes previous approaches and
that is able to represent all those situations. In this paper, we
show that even the JSysDG does not produce complete slices
in all cases when some object variables are selected as the
slicing criterion. To solve this limitation, we first identify the
source of the problem: the representation of dependences
between partial definitions of objects is insufficient in the
JSysDG, leading to a loss of completeness in many cases.
Then, we extend the JSysDG with the addition of a specific
flow dependence for object type variables called object-flow
dependence. This extension provides a more accurate flow
representation between object variables and its data mem-
bers and allows us to obtain complete slices when an object
variable is considered as slicing criterion.

Keywords: Program slicing, JSysDG, flow dependence, object-
flow dependence

1 Introduction
Program representation is an important field in the program
analysis research area, and it is at the base of most program
analysis and transformation techniques. An accurate repre-
sentation of the internal program dependences is strongly
associated with the quality, precision, and performance of
many program analysis techniques. In this paper, we intro-
duce a program representation that enhances the so-called
System Dependence Graph (SDG) [7] with a specific treatment
for object-oriented programs.

The SDG is in the core of program slicing [15, 16], a tech-
nique for program analysis and transformation whose main
objective is to extract from a program the set of statements,
the program slice [18], that affect the value of a variable 𝑣 at a
program point 𝑝 (⟨𝑝, 𝑣⟩), which is known as the slicing crite-
rion [14]. Program slicing is applied in many disciplines such
as software maintenance [5], debugging [3], and program
specialization [12], among others. The SDG allows us to com-
pute slices in linear time as a graph reachability problem.
Example 1.1 shows a slice of a simple Java program.

Example 1.1. Consider the code snippet in Figure 1, which
contains a program with two classes: class A and class Main
with a main method that instantiates a type A object.

The code inside the boxes is the slice with respect to ⟨14, i⟩
(variable i in line 14, represented with bold underlined code).
Method f of class A internally uses its data member y to
compute its result, but not the data member x. Hence, as
the slicing criterion is the result of a call to method f, the
slice contains the definition of method f and tracks down
where the value of y comes from. In this example, the value
of y comes from the call to the A’s constructor in line 13.
Although object a is included in the slice, we can exclude
data member x from it, since its value does not affect the
slicing criterion ⟨14,i⟩.

1.1 A little bit of history
The first program representation used to define program
dependences for program slicing was the Program Depen-
dence Graph (PDG), defined by Ferrante et al. in [4]. The
PDG defines each program method as an individual graph,
where nodes represent statements, and edges connect two
statements that are related by control or flow dependences.
This model, was augmented by Horwitz et al. in [7], creat-
ing the System Dependence Graph (SDG), that incorporates

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 class A{

2 public int x, y;

3 public A (int a, int b) {

4 x = a;

5 y = b;

6 }

7 public void setX(int a) { x = a; }

8 public int f(int a) { return a * y; }

9 }

10
11 class Main{

12 public static void main(String[] args){

13 A a = new A(1, 2);

14 int i = a.f(10);

15 a.setX(3);

16 A a2 = a;

17 }

18 }

Figure 1. Java code and its slice w.r.t. variable i in line 14.

an interprocedural representation of programs by linking
method calls with method definitions. The resulting graph,
the SDG, connects the PDGs of all methods.

The SDG has been enhanced with many approaches to rep-
resent object-oriented (OO) programs (see the survey [11])
by adding an accurate representation for their main features:
polymorphism, dynamic binding, and inheritance. Larsen
and Harrold extended the SDG generating a new graph, the
Class Dependence Graph (ClDG), with a representation for
all the aforementioned features in the C++ programming
language [9]. Unfortunately, the representation was not ac-
curate enough and presented some limitations. For example,
it was not possible to differentiate data members of different
objects in method calls. Liang and Harrold [10] improved this
representation allowing them to distinguish data members
in parameter objects and upgrading the accuracy of graph-
based operations as a result. As some features differ between
OO languages, the ClDG was not able to represent some
features of the Java programming language. Hence, other
approaches focused on Java were proposed. The approach
proposed by Kovács et al. in [8] or the one proposed by Zhao
in [19] enabled the representation of Java particular features
such as interfaces, packages, and single inheritance.
Some years later, Walkinshaw et al. [17] proposed the

JSysDG, a Java-based graph that encapsulates the benefits
offered by the two mentioned Java approaches. The JSysDG
is the composition of different graphs for methods, classes,
interfaces, and packages, obtaining a more accurate program
representation. Moreover, the JSysDG allows the representa-
tion of abstract classes which are not necessarily interfaces,
and it distinguishes data members in parameter objects. To

the best of our knowledge, the JSysDG is the latest and most
accurate representation for Java programs.

1.2 The problem
Although the JSysDG provides accurate slices and allows
us to differentiate whether data members of different ob-
jects are required or not in a slice, we show in this paper
that some scenarios exist where the produced slices are not
complete. Therefore, it is not a problem related to precision
(the slices contain more code than they need), but a problem
related to completeness (the slices contain less code than
they need), which means that some code that can affect the
slicing criterion is not included in the slice. In particular,
when an object variable is selected as the slicing criterion,
under certain circumstances, only some of its required data
members (not all of them) are included as part of the slice.
The cause of this lack of completeness is the current defini-
tion of flow dependence. The classic flow dependence was
designed for variables that are atomically defined or used
in a single statement, but has never been reconsidered to
deal with object variables, which can be partially defined
or used (by defining or using one of its data members) in a
statement.

Example 1.2 (JSysDG counterexample). In Figure 2, if we
define variable a in line 15 as the slicing criterion ⟨15, a⟩,
then we are interested in the whole object a after executing
statement 15. This means that the slice should include all the
data members of a, and the code needed to define them. The
code inside boxes in Figure 2 is the result obtained by slicing
the JSysDG. The JSysDG includes the definition of a.x in
the slice because function call a.setX(3) is also included
as part of the slice, but it ignores all the data members not
being defined there. As a result, data member a.y in line 2
and its definition in line 5 are not included in the slice. The
result is an incomplete slice for ⟨15, 𝑎⟩, which provides no
value for data member a.y. The complete slice is the union
of the code inside the boxes and the underlined code.

This paper presents an approach to solve the problem
described in Example 1.2 by extending the JSysDG. We aug-
ment the JSysDG by replacing the current definition of flow
dependence with two more accurate definitions: a definition
of flow dependence for primitive type variables, and another
special definition for object variables that we call object-flow
dependence. To allow for this specialization, the definition
and use sets of each statement are also reconsidered when
data members are used or defined in method calls.

The rest of the paper is structured as follows. Section 2 re-
calls some key concepts about the construction of the JSysDG.
Section 3 redefines definition and use sets when object vari-
ables or its data members are involved. Section 4 formally
introduces the object-flow dependence and justifies its ne-
cessity in OO programs. Section 5 presents some restrictions

1 class A{

2 public int x ,y ;

3 public A (int a, int b) {

4 x = a;

5 y = b;

6 }

7 public void setX(int a) { x = a; }

8 public int f(int a) { return a * y; }

9 }

10
11 class Main{

12 public static void main(String[] args){

13 A a = new A(1,2);

14 int i = a.f(10);

15 a.setX(3);

16 A a2 = a;

17 }

18 }

Figure 2. JSysDG and expected slices of the code in Figure 1
w.r.t. ⟨15, a⟩.

that need to be added to the slicing algorithm due to object-
flow dependences. Section 6 presents the related work and,
Section 7 concludes.

2 Background: The Java System
Dependence Graph (JSysDG)

In this section, we explain the JSysDG enhancements intro-
duced to the original SDG in order to correctly represent the
OO features of inheritance, dynamic binding, and polymor-
phism. We explain it through its incremental evolution:
CFG→ PDG→ SDG→ ClDG→ JSysDG.

CFG. The starting graph to build a JSysDG is the Control
Flow Graph (CFG) [1]. It is a graph that represents all possible
execution paths of a method. In the CFG, each statement is
represented with a node, and two nodes are connected if
they may be executed sequentially . Additionally, two nodes,
Enter and Exit, are added as the initial and final nodes of the
method execution respectively.

PDG. From the CFG we can calculate two different depen-
dences that are used to construct a Program Dependence
Graph (PDG) [4]. These dependences are the control depen-
dence and the flow dependence, defined hereunder.

Definition 2.1 (Control dependence). Let𝐺 be a CFG. Let 𝑛
and𝑚 be nodes in𝐺 . A node𝑚 post-dominates a node 𝑛 in G
if every directed path from 𝑛 to the Exit node passes through
𝑚. Node𝑚 is control dependent on node 𝑛 if and only if𝑚
post-dominates one but not all of 𝑛’s CFG successors.

Definition 2.2 (Flow Dependence). A node𝑚 is flow depen-
dent on a previous CFG node 𝑛 if:
(i) 𝑛 defines a variable 𝑣 ,

(ii) 𝑚 uses 𝑣 , and
(iii) there exists a control-flow path from 𝑛 to𝑚 where 𝑣 is

not defined.

The PDG of a procedure is a graph 𝐺 = (𝑁,𝐴) where 𝑁
is the set of nodes of the CFG minus the 𝐸𝑥𝑖𝑡 node, and 𝐴 is
a set of arcs that represent control and flow dependences.

SDG. A program usually contains a set of procedures con-
nected by procedure calls. For this reason, in order to connect
the graphs of all the procedures of a program (PDGs) and
simulate parameter passing between calls and definitions,
Horwitz et al. defined the System Dependence Graph (SDG)
[7]. A SDG represents each parameter of a procedure with a
formal-in node, and a formal-out node represents a parame-
ter that may be modified inside the procedure. Analogously,
each procedure call is augmented with an actual-in node for
each argument of the call, and an actual-out node for each
argument that may be modified by the procedure. The SDG
connects procedure calls with their definitions representing
parameter passing with parameter arcs. Additionally, a call
arc is generated to connect the call node to the procedure
Enter node.

Finally, a new kind of arc called summary arc is added to
the SDG to describe the relation between defined and used
arguments in method calls. A summary edge connects an
actual-in node and an actual-out node if the value related to
the actual-in node is needed to calculate the value defined
in the actual-out node.

ClDG.With an SDG as its base, the Class Dependence Graph
(ClDG) [9] augments its representation to consider OO pro-
grams. The ClDG defines a class entry node for each class,
connected to the procedure Enter nodes of all its procedures
by class membership edges, and to all its data members by
data membership edges. In the ClDG graph, inheritance is
represented with a class dependence edge from the base class
to the derived classes.

JSysDG. The ClDG is augmented by the Java System Depen-
dence Graph (JSysDG) with a process to represent polymor-
phic calls and dynamic binding. In this enhancement, there
are two specific scenarios that are worth mentioning:

1. A polymorphic object is the caller of a method,
and the calledmethodneeds to be selected at run-
time. In this scenario, the JSysDG represents the caller
and its defined and used data members as a tree. There
is a node for each possible dynamic type connected to
the corresponding method definition.

2. A method call contains a polymorphic object as
a parameter. In this scenario the JSysDG represen-
tation follows the proposal introduced by Liang and
Harrold in [10], where the object parameter is repre-
sented in the graph as a tree structure, with a subtree
for each possible dynamic class, unfolding all its data
members in both method call and definition.

Apart from the ClDG, the JSysDG also uses two other
graphs for interfaces and packages. The first graph is the
Interface Dependence Graph (InDG), which represents each
interface and its defined abstract methods. Each abstract
method contains in turn a set of parameter nodes repre-
senting its input parameters. Then, every abstract method
and its parameters are connected to every instance of the
method and the interface nodes are connected to all class
nodes that implements the interface. The second graph is
the Package Dependence Graph (PaDG). In this graph, a new
node is defined for each package of the program. This node
is connected to every class and interface of the package. This
graph represents the program as a set of connected packages.

3 Definitions and uses of object variables
In this section we provide a more accurate description for
definition and use sets of object variables. This is necessary
in order to extend the notion of flow dependence (see Defi-
nition 2.2) for objects.
In Java, program variables can be of two different types.

On the one hand, we have primitive type variables, which are
atomic (e.g., int i = 42). These variables are always defined
and used atomically, i.e., every time a primitive variable is
defined in the program, the new value of the variable replaces
the previous one, and the previous value cannot be further
accessed. On the other hand, there are object type variables,
which are compositionally formed by a collection of data
members. Each data member, in turn, can be a primitive type
variable, or another object type variable. Unlike primitive
variables, object variables are not completely replaced every
time they are defined. Since they are formed from a collection
of data members, a statement may modify just some of them.
As a result, the definition of all the data members of an object
variable may be split into different statements. Hence, object
variables can be defined in two different ways:

Definition 3.1 (Total definition). An object variable 𝑣 that
points to a memory location𝑚1 is totally defined in a pro-
gram statement 𝑠 if the execution of 𝑠 makes 𝑣 to point to
𝑚2, and𝑚1 ≠𝑚2 (𝑣 points to a different object).

Definition 3.2 (Partial definition). An object variable 𝑣 is
partially defined in a program statement 𝑠 if 𝑣 points to the
same object𝑜 before and after the execution of 𝑠 , and 𝑠 defines
at least one data member of 𝑜 .

The flow dependence definition is strictly related to the
so-called definition and use sets (DEF and USE) of each state-
ment in the program. To obtain accurate DEF and USE sets
we need to reconsider the situations where object variables
and its data members are defined and used considering the
different kinds of possible definitions. After splitting object
definitions into total and partial definitions, the possible
definition situations can be classified into three different
scenarios:

1. Total definition by assignment of object variables
and constructor calls (e.g., a = new A(42)). Con-
structor methods always define1 all the data members
of the variable and never use them. Hence, the DEF
set includes the object variable itself and all its data
members, and the USE set is the empty set.

2. Total definition by alias assignment between two
object variables that point to different objects (e.g.,
a = b, being a and b objects). Although alias assign-
ments are not composed of a set of explicit data mem-
ber definitions, they are also total definitions, so the
DEF set contains a definition for the object variable
itself and for all its data members. In contrast to total
definition (i), their USE set contains the object variable
of the right-hand side of the assignment.

3. Partial definition. A method call that defines a
datamember of the caller (e.g., a.setX(42)). Meth-
od calls may partially define object variables. They can
either define or use some or all the data members of
the object itself. In order to differentiate the value of
an object variable before and after a method call, we
need to identify whether the caller object is defined or
not during the method call. We consider that an object
variable is being defined inside a method call (it is in
the DEF set) if any of its data members may be defined
during its execution. This allows us to establish the
corresponding flow relationship between the previous
object value and the later object value. In this case, the
DEF set includes all the data members defined inside
the method together with the object variable itself. For
the DEF set, the order of the definitions is relevant. All
data members are defined before the object variable
itself. On the other hand, the USE set includes all the
data members used inside the method together with
the caller object itself, whose reference is always used
in method calls.

Table 1 provides an example of DEF and USE sets for the
main method of the program in Figure 1. In this table there
are examples of all the described scenarios.

Scn. Statement DEF USE
1 A a = new A(1,2); a.x, a.y, a ∅
3 int i = a.f(10); i a, a.y
3 a.setX(3); a.x, a a
2 A a2 = a; a2.x, a2.y, a2 a

Table 1. DEF and USE sets for the main method of Figure 1.

This newmethod to annotate definitions and uses of object
variables in program statements is of great importance to the
1This definition can be explicit or implicit, because Java initializes all data
members by default.

redefinition of flow dependence. It allows us to differentiate
the specific moment in which a data member and an object
is defined and allows us to establish a relationship between
previous datamember definitions and later partial definitions
and uses of object variables.

4 Object-flow dependence
In Java, as it happens in most programming languages, a
variable cannot be used without being previously defined.
The rationale why Definition 2.2 does not work with object
type variables is because they can be partially defined, while
primitive variables are always totally defined. This is also
the problem of the JSysDG: it uses the standard definition of
flow dependence (Definition 2.2) with object type variables.
The solution is to extend the definition of flow dependence
to account for objects.

We redefine this definition for object variables (it does not
apply to primitive type variables, that continue using the
classic definition (Definition 2.2)). We call this new depen-
dence object-flow dependence. Formally,

Definition 4.1 (Object-Flow Dependence). Let 𝐺 be a CFG.
Let 𝑛 and𝑚 be nodes in𝐺 .𝑚 is object-flow dependent on the
preceding node 𝑛 if:
(i)#1 𝑛 defines an object 𝑜 ,
(ii) 𝑚 uses the object 𝑜 , and
(iii) there exists a control-flow path from 𝑛 to𝑚 where ob-

ject 𝑜 is not defined.
or

(i)#2 𝑛 defines a data member 𝑥 of an object 𝑜 ,
(ii) 𝑚 defines 𝑜 , and
(iii) there exists a control-flow path from 𝑛 to𝑚 where data

member 𝑥 of 𝑜 is not defined.

The first situation corresponds to the classic definition of
flow dependence, the use-definition dependency, which also
applies to object variables, even if the definition is partial.
The second one considers a definition-definition dependency,
produced by partial definitions. This flow dependence con-
siders the case when the slicing criterion is an object variable,
and it depends on all the complementary partial definitions
that, together, produce the complete value of that variable.
When an object variable is used as a caller, we may be

interested in the value before or the value after the call exe-
cution. To disambiguate this selection, we can select different
nodes depending on the value we are interested in. The slic-
ing criterion for the value before the call is the call node
itself, while the one for the object after the call is the root
node of the object tree representation.

Example 4.2. Consider again the code in Figure 1. We have
augmented the JSysDG in Figure 3 with the object-flow de-
pendences labeled with #1 and #2. Additionally we have
augmented the information in the graph to easily identify
which nodes define and use object variables and their data

A	a2	=	a

function
main

#2#2

call new	
A()

1 2
a

yx

call a.setX()

A.setX

x_out

3
a

call a.f()

A.f

y_in

10a
i

#2

#1

#1

Control	Arc
Flow Arc Object-Flow Arc

Summary Arc

#1

#2

#1
USE{a}

USE{a}

USE{a.y}

DEF{a}

DEF{a.x}

DEF{a}

DEF	
{a.x}

DEF	
{a.y}

USE{a}
USE{a}

DEF{a2.x,	a2.y,	a2}

Figure 3. Object-flow dependences for the code in Figure 1.

members with DEF and USE label sets inside some nodes.
These object-flow dependences are the ones generated by
the first and the second sets of conditions in Definition 4.1,
respectively. The figure shows how object-flow dependences
are also defined over the tree structure of method calls. Al-
though object-flow dependences add arcs between object
variables, the original definition of flow dependence is still
applied to primitive type variables. This happens in the call
a.f(10), where data member y of the constructor call is
linked to the argument-in node y_in. After the addition of
object-flow dependences, the obtained slice with ⟨15, a⟩ as
the slicing criterion in Figure 1 would be the expected slice,
i.e., the code inside the boxes together with the underlined
fragments of code in Figure 2.

5 The slicing algorithm
When Horwitz et al. ([7]) proposed the SDG, it was accompa-
nied by a new slicing algorithm. This algorithm is the current
method used by the program slicing community due to its
accuracy and linear-time complexity. If we use Horwitz et
al.’s algorithm with our graph, we would achieve the same
precision. However, we would face these two problems:
a) We would include in the slice all the data members of an

object variable even if we are only interested in one of
them. For instance, in Figure 3, if we consider the node 𝑦
inside the method call 𝑛𝑒𝑤 𝐴(1, 2), the algorithm would
unnecessarily include data member 𝑥 and its value 1 in
the slice.

b) We would include in the slice the value of a caller object
variable before a method call when we are only interested
in the value after performing the call. For example, in
Figure 3, if we consider the value of the object variable 𝑎
after the call 𝑎.𝑠𝑒𝑡𝑋 (3), Horwitz et al.’s algorithm would
include the value of the object variable 𝑎 before the call
in the slice.

These problems can be solved by limiting the traversal of
the object-flow edges in certain cases. When the traversal
reaches a node 𝑛, an incoming object-flow edge can only be
traversed if it fulfils one of the following three conditions:

1. 𝑛 is the slicing criterion
2. 𝑛 has been reached via an object-flow edge
3. 𝑛 is a predicate

Condition 2 enables the transitive traversal of object-flow
edges and condition 3 prevents situations𝑎 and𝑏, which arise
of the sub-structures associated to method calls (caller object
and arguments) and object variables (tree representation).
The restriction imposed to the traversal of object-flow edges
increases the precision of the algorithm in the presence of
object variables, while keeping its linear-time complexity.

6 Related Work
Although many papers present approaches to represent fea-
tures related to OO programs, there are few of them ad-
dressing the problem of data dependences explicitly. This is
the case of Chen and Xu [2], who augmented the PDG of
each method with tags, used to annotate data dependence
arcs with the program variables involved in the data de-
pendency. Hammer and Snelting [6] provided a specific def-
inition about data dependence in statements due to field
dependences. Their definition considered fields in an object
variable through an alias variable if the name and the type
of the field was the same. These two different perspectives
are interesting, but their purpose was different to ours. Un-
like their approaches, ours focuses on relating all the data
members definitions to any object variable that appear in the
program. The work by Orso et al. [13] exhaustively analyses
data dependency in the presence of pointers. Their work dif-
ferentiates 24 kinds of data dependency and enables slicing
with respect to only some of them. Unfortunately, their data
dependency is not related to the OO paradigm.
Our approach may seem similar to object slicing [10]but

there are some differences between their approaches and
ours. In object slicing, the slicing criterion is defined with a
tuple ⟨𝑣, 𝑝⟩ and an object variable𝑂 , where 𝑣 is a variable in
a program statement 𝑝 and𝑂 is an object of the program. Its
objective is essentially different: it determines which state-
ments of 𝑂 ’s class affect the slicing criterion through object
𝑂 , while we are directly interested in considering an object
variable 𝑂 as the slicing criterion.

7 Conclusions
Wehave presented a counterexample showing that the JSysDG
can be incomplete. Further, we have identified the sources
of imprecision and incompleteness, and we have explained
the rationale of these problems, which happen when an ob-
ject variable is selected as the slicing criterion. In order to
solve the problem, we have extended the definition of flow
dependence with a specific treatment for object variables
(object-flow dependence). This extension allows us to ex-
press the relationship between object variables and their
data members in a more accurate way. Moreover, we have
specified how DEF and USE variable sets must be for each

statement that involves objects, especially for caller variables
in method calls. Finally, the new changes in the JSysDG are
accompanied by a new slicing algorithm that solves the de-
scribed problems of that graph.

Acknowledgments
This work has been partially supported by the EU (FEDER)
and the Spanish MCI/AEI under grants TIN2016-76843-C4-1-
R and PID2019-104735RB-C41, by the Generalitat Valenciana
under grant Prometeo/2019/098 (DeepTrust), and by TAILOR,
a project funded by EUHorizon 2020 research and innovation
programme under GA No 952215. Sergio Pérez was partially
supported by Universitat Politècnica de València under FPI
grant PAID-01-18.

References
[1] Frances E. Allen. 1970. Control Flow Analysis. SIGPLAN Not. 5, 7

(1970), 1–19.
[2] Zhenqiang Chen and Baowen Xu. 2001. Slicing Concurrent Java Pro-

grams. SIGPLAN Not. 36, 4 (April 2001), 41–47. https://doi.org/10.
1145/375431.375420

[3] Richard A. DeMillo, Hsin Pan, and Eugene H. Spafford. 1996. Critical
Slicing for Software Fault Localization. SIGSOFT Softw. Eng. Notes 21,
3 (May 1996), 121–134. https://doi.org/10.1145/226295.226310

[4] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The
Program Dependence Graph and Its Use in Optimization. ACM Trans-
actions on Programming Languages and Systems 9, 3 (1987), 319–349.

[5] Ákos Hajnal and István Forgács. 2012. A Demand-Driven Approach
to Slicing Legacy COBOL Systems. Journal of Software Maintenance
24, 1 (2012), 67–82. http://dblp.uni-trier.de/db/journals/smr/smr24.
html#HajnalF12

[6] Christian Hammer and Gregor Snelting. 2004. An improved slicer for
Java. In Proceedings of the 5th ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering. 17–22.

[7] SusanHorwitz, Thomas Reps, andDavid Binkley. 1990. Interprocedural
Slicing Using Dependence Graphs. ACM Transactions Programming
Languages and Systems 12, 1 (1990), 26–60.

[8] Gyula Kovács, Ferenc Magyar, and Tibor Gyimóthy. 1996. Static Slic-
ing of JAVA Programs. Technical Report 96-108. RGAI, Hungarian
Academy of Sciences, Joesf Attila University, Hungary.

[9] Loren Larsen and Mary Jean Harrold. 1996. Slicing Object-Oriented
Software. In Proceedings of the 18th international conference on Soft-
ware engineering (Berlin, Germany) (ICSE ’96). IEEE Computer Society,
Washington, DC, USA, 495–505. http://dl.acm.org/citation.cfm?id=
227726.227837

[10] D. Liang and M. J. Harrold. 1998. Slicing Objects Using System De-
pendence Graphs. In Proceedings of the International Conference on
Software Maintenance (ICSM ’98). IEEE Computer Society, Washington,
DC, USA, 358–. http://dl.acm.org/citation.cfm?id=850947.853342

[11] Durga Prasad Mohapatra, Rajib Mall, and Rajeev Kumar. 2006. An
Overview of Slicing Techniques for Object-Oriented Programs. Infor-
matica 30, 2 (2006), 253–277.

[12] Claudio Ochoa, Josep Silva, and Germán Vidal. 2005. Lightweight
Program Specialization via Dynamic Slicing. In Proceedings of the 2005
ACM SIGPLAN Workshop on Curry and Functional Logic Programming
(Tallinn, Estonia) (WCFLP ’05). ACM, New York, NY, USA, 1–7. https:
//doi.org/10.1145/1085099.1085101

[13] Alessandro Orso, Saurabh Sinha, and Mary Jean Harrold. 2001. Ef-
fects of pointers on data dependences. In Proceedings 9th International
Workshop on Program Comprehension. IWPC 2001. IEEE, 39–49.

https://doi.org/10.1145/375431.375420
https://doi.org/10.1145/375431.375420
https://doi.org/10.1145/226295.226310
http://dblp.uni-trier.de/db/journals/smr/smr24.html#HajnalF12
http://dblp.uni-trier.de/db/journals/smr/smr24.html#HajnalF12
http://dl.acm.org/citation.cfm?id=227726.227837
http://dl.acm.org/citation.cfm?id=227726.227837
http://dl.acm.org/citation.cfm?id=850947.853342
https://doi.org/10.1145/1085099.1085101
https://doi.org/10.1145/1085099.1085101

[14] Karl J. Ottenstein and Linda M. Ottenstein. 1984. The Program De-
pendence Graph in a Software Development Environment. SIGSOFT
Software Engineering Notes 9, 3 (1984), 177–184. https://doi.org/10.
1145/390010.808263

[15] Josep Silva. 2012. A Vocabulary of Program Slicing-Based Techniques.
Comput. Surveys 44, 3 (June 2012).

[16] Frank Tip. 1995. A Survey of Program Slicing Techniques. Journal of
Programming Languages 3, 3 (1995), 121–189.

[17] N. Walkinshaw, M. Roper, and M. Wood. 2003. The Java system
dependence graph. In Proceedings Third IEEE International Workshop
on Source Code Analysis and Manipulation. 55–64.

[18] Mark Weiser. 1981. Program Slicing. In Proceedings of the 5th in-
ternational conference on Software engineering (ICSE ’81) (San Diego,
California, United States). IEEE Press, Piscataway, NJ, USA, 439–449.

[19] Jianjun Zhao. 1998. Applying Program Dependence Analysis To Java
Software. In Proceedings of Workshop on Software Engineering and
Database Systems. 162–169.

https://doi.org/10.1145/390010.808263
https://doi.org/10.1145/390010.808263

