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Abstract: In this paper, we propose, to the best of our knowledge, the first iterative scheme with
memory for finding roots whose multiplicity is unknown existing in the literature. It improves the
efficiency of a similar procedure without memory due to Schröder and can be considered as a seed to
generate higher order methods with similar characteristics. Once its order of convergence is studied,
its stability is analyzed showing its good properties, and it is compared numerically in terms of their
basins of attraction with similar schemes without memory for finding multiple roots.

Keywords: nonlinear equations; iterative methods with memory; multiple roots; derivative-free;
efficiency; stability

1. Introduction

There exist in the literature (see, for example, Reference [1–8]) numerous iterative
methods without memory, involving or not derivatives, designed to estimate the multiple
roots of a nonlinear equation f (x) = 0, but most of them need the knowledge of the
multiplicity m of these roots.

It is well-known that Schröder method [9]:

xk+1 = xk −
f (xk) f ′(xk)

f ′(xk)2 − f (xk) f ′′(xk)
, k = 0, 1, . . .

is able to converge quadratically to the multiple solution of a nonlinear equation, that
is, a value α ∈ R such that f (α) = 0 and f (j)(α) = 0, j = 1, 2, . . . , m− 1, with m being
the multiplicity of the root. This scheme was originally deduced from Newton’s scheme

applied on the quotient g(x) =
f (x)
f ′(x)

, and it is denoted along this manuscript by SM1,

xk+1 = xk −
g(xk)

g′(xk)
, k = 0, 1, . . .

Notice that SM1 requires 3 function evaluations per step. Similarly, the derivative-free
Traub-Steffensen’s method for g ,

xk+1 = xk −
g(xk)

g[xk, xk + γg(xk)]
, k = 0, 1, . . .

with γ being a real parameter, requires 4 function evaluations per step and is no longer
derivative-free. This Traub-Steffensen method on g is too expensive and is not further
considered.
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The main advantage of Schröder scheme is its independence of the knowledge of the
multiplicity of the nonlinear function, in contrast with the modified Newton’s method for
multiple roots,

xk+1 = xk −m
f (xk)

f ′(xk)
, k = 0, 1, . . . ,

where m is the multiplicity of α, that must be known in this case. This scheme was also due
to Schröder (also see Reference [9]), and we denote it by SM2. This scheme is second-order
convergent and, therefore, optimal, in the sense of Kung-Traub conjecture, (as it uses
two new functional evaluations per iteration; see Reference [10]). However, it needs the
knowledge of the multiplicity, while SM1 does not use it; nevertheless, the main drawback
of SM1 scheme is its low efficiency, as it needs to evaluate three nonlinear functions ( f (x),
f ′(x) and f ′′(x)) per iteration.

Our aim in this manuscript is double: from one side, we would like to increase the
efficiency of SM1 scheme, holding its ability for finding multiple roots of multiplicity m
without knowing m and, from other side, to combine in the same algorithm the capability
to find multiple roots with the use of more than one previous iterate. So, we propose an
iterative scheme with memory for estimating multiple roots of unknown multiplicity. As
far as we know, there is in the literature no iterative procedure satisfying these properties.

In the analysis of the convergence of the proposed scheme, some aspects must be
taken into account, as it is an iterative method with memory, so that the error in several
previous iterations must be considered and the multiplicity of the root m should also be a
key element of the demonstration, although its specific value is not known. Regarding this
fact, it should be noticed that f (q)(α) = 0 for q = 1, 2, . . . , m− 1 and f (m)(α) 6= 0. So, the
Taylor expansions around α of f and f ′ appearing in the iterative expression should take
this information into account.

On the other hand, as our proposed scheme is an iterative procedure that uses three
previous iterates for calculating the next one, it is necessary to express the error equation in
terms of their corresponding errors and, from it, to deduce its order of convergence. This is
made by means of a classical result by Ortega and Rheinboldt [11], that is presented below.

Theorem 1. Let ψ be an iterative method with memory that generates a sequence {xk} of approxi-
mations to the root α, and let this sequence converges to α. If there exist a nonzero constant η and
positive numbers ti, i = 0, 1, . . . , m, such that the inequality

|ek+1| ≤ η
m

∏
i=0
|ek−i|ti

holds, then the R-order of convergence of the iterative method ψ satisfies the inequality

OR(ψ, α) ≥ p,

where p is the unique positive root of the equation

pm+1 −
m

∑
i=0

ti pm−i = 0.

In this manuscript, Section 2 is devoted to the design and convergence analysis of the
proposed derivative-free iterative method with memory to find multiple roots (without the
knowledge of its multiplicity). In Section 3, its stability is analyzed in order to deduce its
dependence on the initial estimations for both simple and multiple roots. In Section 4, the
numerical performance of the method is checked on several test functions, being analyzed,
as well as their corresponding basins of attraction, in comparison with existing Schröder
methods.
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2. Design and Convergence Analysis

Our starting point is the derivative-free scheme with memory due to Traub [12],

xk+1 = xk −
f (xk)

f [xk−2, xk]− f [xk−2, xk−1] + f [xk−1, xk]
, k = 0, 1, . . . , (1)

with x0, x−1 and x−2 being their initial estimations, with order of convergence p = 1.839.

To estimate the multiple roots of f (x) = 0, we define the auxiliary function g(x) =
f (x)
f ′(x)

,

and then we apply Traub’s method (1), on g(x) = 0, getting what we call gTM method,

xk+1 = xk −
g(xk)

g[xk−2, xk]− g[xk−2, xk−1] + g[xk−1, xk]
, k = 0, 1, . . . , (2)

an iterative scheme with memory that is proven to converge to any multiple roots of f with
the same order than original Traub’s scheme, without the knowledge of its multiplicity m
and using two new functional evaluations per iteration.

Theorem 2. Let f : C→ C be an analytic function in the neighborhood of the multiple zero α of f
with unknown multiplicity m ∈ N− {1}. Then, for an initial guess x0 sufficiently close to α, the itera-
tion function gTM defined in (2) has order of convergence 1

3

(
3
√

3
√

33 + 19 + 3
√

19− 3
√

33 + 1
)
≈

1.83929, with its error equation being

ek+1 = −
(m + 1)c2

1 − 2mc2

m2 ek−2ek−1ek + O3(ek−2, ek−1, ek),

where cj =
m!

(m+j)!
f (m+j)(α)

f (m)(α)
, j = 1, 2, 3, . . ., and O3(ek−2, ek−1, ek) denotes the terms of the error

equation with products of powers of ek−2, ek−1 and ek, whose exponents sum at least 3.

Proof. Let α be a multiple zero of f (x), and ek = xk − α be the error at kth-iterate. Expand-
ing f (xk) and f ′(xk) of x = α by using the Taylor’s series expansion, we have

f (xk) =
f (m)(α)

m!
em

k

[
1 + c1ek + c2e2

k + O(e3
k)
]
, (3)

and

f ′(xk) =
f (m)(α)

m!
em−1

k

[
1 + (m + 1)c1ek + (m + 2)c2e2

k + O(e3
n)
]
, (4)

where cj =
m!

(m+j)!
f (m+j)(α)

f (m)(α)
, j = 1, 2, 3, . . .

By using expressions (3) and (4), we have

g(xk) =
f (xk)

f ′(xk)
=

1
m

(
ek −

1
m

c1e2
k +

(m + 1)c2
1 − 2mc2

m2 e3
k

)
+ O(e4

k).

In a similar way,

g(xk−1) =
1
m

(
ek−1 −

1
m

c1e2
k−1 +

(m + 1)c2
1 − 2mc2

m2 e3
k−1

)
+ O(e3

k−1),

and

g(xk−2) =
1
m

(
ek−2 −

1
m

c1e2
k−2 +

(m + 1)c2
1 − 2mc2

m2 e3
k−2

)
+ O(e3

k−2).
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Then,

A =
g(xk−2)− g(xk)

xk−2 − xk

=
1
m

(
1− 1

m
c1(ek−2 + ek) +

(m + 1)c2
1 − 2mc2

m2

(
e2

k−2 + ek−2ek + e2
k

))
+ O3(ek−2, ek),

where O3(ek−2, ek) denotes that the neglected terms of the error equation have products of
powers of ek−2 and ek, whose exponents sum at least 3.

B =
g(xk−2)− g(xk−1)

xk−2 − xk−1

=
1
m

(
1− 1

m
c1(ek−2 + ek−1) +

(m + 1)c2
1 − 2mc2

m2

(
e2

k−2 + ek−2ek−1 + e2
k−1

))
+ O3(ek−2, ek−1),

and

C =
g(xk−1)− g(xk)

xk−1 − xk

=
1
m

(
1− 1

m
c1(ek−1 + ek) +

(m + 1)c2
1 − 2mc2

m2

(
e2

k−1 + ek−1ek + e2
k

))
+ O3(ek−1, ek).

Therefore, from expression (2),

ek+1 = ek −
g(xk)

A− B + C
=

(
ek − 1

m c1e2
k +

(m+1)c2
1−2mc2

m2 e3
k

)
+ O(e4

k)

1− 1
m 2c1ek +

(m+1)c2
1−2mc2

m2

(
ek−2ek − ek−2ek−1 + ek−1ek + 2e2

k
)

= −
(m + 1)c2

1 − 2mc2

m2 ek−2ek−1ek + O3(ek−2, ek−1, ek),

and then the order of convergence is the only real root of polynomial p3 − p2 − p− 1, that
is, 1

3

(
3
√

3
√

33 + 19 + 3
√

19− 3
√

33 + 1
)
≈ 1.83929, by applying Theorem 1. So, the proof

is finished.

The main advantage of this scheme is its ability for finding simple, as well as multiple,
roots of a nonlinear function without the knowledge of the multiplicity, with better effi-
ciency as SM1. Certainly, by using Ostrowski’s efficiency index [13], ISM1 = 2

1
3 ≈ 1.25992

is lower than IgTM = 1.84
1
2 ≈ 1.35647, where each index I is calculated as p

1
d , with p being

the order of convergence of the method, and d the amount of new functional evaluations
per iteration.

In the next section, a dynamical analysis is made on this scheme, in order to show its
qualitative performance on simple and multiple roots. As it is an iterative method with
memory, multidimensional real dynamics must be used.

3. Qualitative Study of the Proposed Iterative Methods with Memory for Multiple
Roots

Let us remark that our method uses three previous iterations in order to generate the
following one; therefore, it can be expressed in general as

xk+1 = Υ(xk−2, xk−1, xk), k ≥ 0,
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where x0, x−1 and x−2 are the initial estimations. By means of the procedure defined in
Reference [14], this method can be described as a discrete real multidimensional dynamical
system, and its qualitative behavior can be analyzed.

The qualitative performance of the dynamical system has a key element in the charac-
terization of their fixed points, in terms of stability. In order to calculate the fixed points of
Υ, an auxiliary vectorial function M : R3 −→ R3 can be defined, related to Υ by means of:

M(xk−2, xk−1, xk) = (xk−1, xk, Υ(xk−2, xk−1, xk)), k = 0, 1, 2, . . . .

Therefore, a fixed point of M is obtained if not only xk+1 = xk, but also xk−1 = xk and
xk−2 = xk−1.

Fixed points (w, z, x) of M satisfy w = z = x and x = Υ(w, z, x). So, w = xk−2,
z = xk−1 and x = xk. In the following, we define some basic dynamical concepts as direct
extension of those used in complex discrete dynamics analysis (see Reference [15]).

Let us consider M : R3 → R3 a vectorial rational function obtained by the application
of an iterative method on a scalar polynomial p(x). Then, if a fixed point (w, z, x) of
operator M is different from (r, r, r), where r is a zero of p(x), then the fixed point is called
strange. Moreover, the orbit of a point x∗ ∈ R3 is the set of successive images from x∗ by
the vector function, that is, O(x∗) = {x∗, M(x∗), . . . , Mn(x∗), . . .}. Indeed, a point x∗ ∈ R3

is called periodic with period p if Mp(x∗) = x∗ and Mq(x∗) 6= x∗, for q = 1, 2, . . . , p− 1.
We should notice that a fixed point is a 1-periodic point.

It is also known that the qualitative performance of a fixed point of M is classified in
terms of its asymptotical behavior. It can be analyzed by means of the Jacobian matrix M′,
as is stated in the next result (see, for instance, Reference [16]).

Theorem 3. Let M from Rm to Rm be of class C2. Let us also assume that x∗ is a k-periodic point.
Let λ1, λ2, . . . , λm be the eigenvalues of the Jacobian matrix M′(x∗) at periodic point x∗. Then, it
holds that:

(a) If all the eigenvalues λj verify |λj| < 1, then x∗ is attracting.
(b) If one eigenvalue λj0 verifies |λj0 | > 1, then x∗ is unstable, that is, repelling or saddle.
(c) If all the eigenvalues λj verify |λj| > 1, then x∗ is repelling.

Moreover, if there exist an eigenvalue λi of the Jacobian matrix M′ evaluated at a
fixed point x∗ satisfying |λi| < 1 and another one λj such that |λj| > 1, then, x∗ is called
saddle fixed point. As an extension of the concept in one-dimensional dynamics, if the
eigenvalues of M′(x∗) satisfy |λj| = 0 for all values of j = 1, 2, . . . , m, then, the fixed point
x∗ is not only attracting but also superattracting. Therefore, the method has quadratic
convergence, at least on the class of nonlinear functions that derive the rational function
(see Reference [12]).

By considering x∗ an attracting fixed point of M, its basin of attractionA(x∗) is defined
as the set of preimages of any order

A(x∗) =
{

x0 ∈ R3 : Mm(x0) = x∗, for some m ∈ N
}

.

The qualitative performance of different iterative schemes designed for solving nonlin-
ear equations with multiple roots has been studied by different authors (see, for example,
Reference [17–19]). It has been made by using discrete complex dynamics, as all these
schemes are without memory. In these studies, it has been obtained that, when an iterative
method (without memory) designed for finding multiple roots acts on a nonlinear function
with both simple and multiple roots, it is quite usual that the basins of attraction of simple
roots are narrower than those of multiple roots. Indeed, it may happen that those simple
roots define fixed points of the rational function that are repulsive. Therefore, the iterative
method should be able to find only multiple roots.
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The following qualitative analysis is made on p(x) = (x + 1)(x− 1)m, m ≥ 1, so that
the capability of the scheme to find both simple and multiple roots (with multiplicity m) is
tested.

Theorem 4. The multidimensional rational operator associated with method gTM, when it is
applied on polynomial p(x) = (x + 1)(x− 1)m, is

TM(w, z, x) =

(
z, x,

m2(x + 1)(z + 1)(w + 1) + 2m
(
−2x2 + x(z + w) + zw− 1

)
− (x− 1)(z− 1)(w− 1)

m2(x + 1)(z + 1)(w + 1) + 2m(x(zw− 3) + z + w) + (x− 1)(z− 1)(w− 1)

)
.

Indeed, the rational operator TM satisfies that there are one strange fixed point with equal com-
ponents to 1−m

1+m , that is saddle. Moreover, both fixed points corresponding to the roots of p(x) are
superattracting.

Proof. By definition of the multidimensional dynamical system,

TM(w, z, x) = (z, x, gTM(w, z, x)),

with gTM(w, z, x) = x + g(x)
g[w,x]−g[w,z]+g[z,x] , where g(x) =

p(x)
p′(x)

. Therefore,

TM(w, z, x) =

(
z, x,

m2(x + 1)(z + 1)(w + 1) + 2m
(
−2x2 + x(z + w) + zw− 1

)
− (x− 1)(z− 1)(w− 1)

m2(x + 1)(z + 1)(w + 1) + 2m(x(zw− 3) + z + w) + (x− 1)(z− 1)(w− 1)

)
is obtained. In order to calculate the fixed points of TM(w, z, x), equation TM(w, z, x) =
(w, z, x) must be solved. By means of algebraic manipulations, it is reduced to w = z = x
and

(−1 + m + x + mx)(−1 + x2)

(−1 + x)2 + m(1 + x)2 = 0.

So, the only fixed points are the roots of p(x) and the strange fixed point w = z = x =
1−m
1+m that depends on the multiplicity of the root. In order to analyze the stability of the
fixed points, we calculate the Jacobian matrix

TM′(w, z, x) =

 0 1 0
0 0 1

R1 R2 R3

,

where

R1 =
4m(m + 1)

(
x2 − 1

)
(mz + m + z− 1)(x− z)

(m2(x + 1)(z + 1)(w + 1) + 2m(x(zw− 3) + z + w) + (x− 1)(z− 1)(w− 1))2 ,

R2 =
4m(m + 1)

(
x2 − 1

)
(mw + m + w− 1)(x− w)

(m2(x + 1)(z + 1)(w + 1) + 2m(x(zw− 3) + z + w) + (x− 1)(z− 1)(w− 1))2 ,

and

R3 = −
4m
(
m2(z + 1)(w + 1)r(x, z, w) + 2mq(x, z, w) + (z− 1)(w− 1)s(x, z, w)

)
(m2(x + 1)(z + 1)(w + 1) + 2m(x(zw− 3) + z + w) + (x− 1)(z− 1)(w− 1))2 ,

where r(x, z, w) = (x(x + 2) + z(w− 1)− w− 2), q(x, z, w) = x2(zw− 3) + 2x(z + w) +(
z2 − 1

)
w2 − z2 − 3zw + 2, and s(x, z, w) = ((x− 2)x + zw + z + w− 2).

The eigenvalues of TM′(w, z, x), when (w, z, x) = (1, 1, 1) or (w, z, x) = (−1,−1,−1),
are all equal to zero. Then, these are superattracting fixed points.

Regarding the strange fixed point ( 1−m
1+m , 1−m

1+m , 1−m
1+m ), in order to avoid an indetermi-

nation, it is necessary to calculate a simplified rational operator, forcing to w = x = z;
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therefore, the reduced Jacobian matrix has two zero eigenvalues, and the third one is 2 > 0.
So, the strange fixed point is always a saddle point and, therefore, is in the boundary of the
basins of attraction.

A very useful tool to visualize the analytical results is the dynamical plane of the
system, composed by the set of the different basins of attraction. Here, the dynamical plane
of the proposed method gTM is built by calculating the orbit of a mesh of 800× 800 starting
points (z, x) for a fixed value of w in the starting grid. As the iterative schemes needs to be
started with three initial estimations, we generate a mesh of dynamical planes, each one
of them with a fixed value of w in the interval [−1.75, 1.75]. In these phase portraits, each
point of the mesh is painted in different colors (orange and green in this case), depending
on the attractor they converge to (marked as a white star), with a tolerance of 10−3. In
addition, they appear in black color if the orbit has not reached any attracting fixed point
in a maximum of 500 iterations. As the fixed value of w is changed in a vector of values
belonging to [−1.75, 1.75], it yields to a composition of figures for each multiplicity, giving
rise to a kind of contour plots.

In Figure 1, we show the performance of gTM scheme on p(x), that is, of rational
operator TM for simple roots. Observing the behavior for the different plots with the
three first iterations varying each in [−2, 2], the stable feasibility is noticed. The basins of
attraction of the roots are the only ones; they are wide, and the only different performance
(better than others in terms of the simplicity of the boundary among the basins) is the case
w = 0, where the rational function is simplified. In all cases, it is observed that the only
possible behavior of method gTM is the convergence to the roots.

(a) w = −1.75 (b) w = −1.25 (c) w = −0.75

(d) w = −0.25 (e) w = 0 (f) w = 0.25

Figure 1. Cont.
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(g) w = 0.75 (h) w = 1.25 (i) w = 1.75

Figure 1. Dynamical planes of TM rational operator on p(x), for m = 1.

On the other hand, in Figure 2, we show a very similar performance when one of the
roots is double, and the other one is simple. The basins of attraction are equally wide, and
this behavior is very similar when other multiplicities have been explored. In addition,
in this case can be seen that there is only convergence to the roots, as darker areas are
only slower convergence, due to the higher complexity of the boundary of the basins of
attraction.

(a) w = −1.75 (b) w = −1.25 (c) w = −0.75

(d) w = −0.25 (e) w = 0 (f) w = 0.25

Figure 2. Cont.
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(g) w = 0.75 (h) w = 1.25 (i) w = 1.75

Figure 2. Dynamical planes of TM rational operator on p(x), for m = 2.

In the next section, the numerical and dynamical performance of our proposed scheme
is tested on several nonlinear functions of increasing complexity.

4. Numerical Performance and Dynamical Tests

In this section, we compare three methods, namely SM2 (requiring the knowledge of
the multiplicity), SM1, and gTM (derived from Traub’s method). The last two methods
do not require the knowledge of the multiplicity, but they do require extra functional
evaluations per iteration step (three in case of SM1, two in gTM case).

The methods are compared both qualitatively via the basins of attraction figures and
quantitatively via several measures. These measures are: the CPU run-time to run the
method on points in a 6 by 6 square centered in the origin. We divided the square by
uniformly distributed horizontal and vertical lines and took all points of intersection as
initial points for the iterative process. For gTM, a method with memory, we had to take
two additional starting points x−1 = x0 + d and x−2 = x0 + 2d, where d is the spacing of
the lines. Another criterion collected by the code is the average number of iterations per
point (AIPP), but, since the methods require different number of functional evaluations per
step, we took the average number of functions per point (AFPP). The third criterion is the
number of divergent points (DP), which is the number of points for which the method did
not converge in 40 iterations using a tolerance of 10−7.

The functions used for our comparative study are:

• f1(x) = (z2 − 1)3,
• f2(x) = (z3 − 1)4,
• f3(x) = (z4 − 1)2,
• f4(x) = (z5 − 1)3,
• f5(x) = (z− i)3(ez+i − 1)3,
• f6(x) = (z7 − 1)4.

Notice that all but one are polynomials of various degrees and various multiplicities.
In Figures 3–8, we have plotted the basins of attraction for the 3 methods for each test

function. Each figure has 3 sub-figures, with the left-most being the Schröder method using
the multiplicity (SM2), the middle one Schröder method not requiring the knowledge of
multiplicity (SM1), and the right-most Traub’s method for multiple roots (gTM).
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(a) SM2 (b) SM1 (c) gTM

Figure 3. Dynamical planes of Schröder methods and gTM on f1(x).

(a) SM2 (b) SM1 (c) gTM

Figure 4. Dynamical planes of Schröder methods and gTM on f2(x).

(a) SM2 (b) SM1 (c) gTM

Figure 5. Dynamical planes of Schröder methods and gTM on f3(x).
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(a) SM2 (b) SM1 (c) gTM

Figure 6. Dynamical planes of Schröder methods and gTM on f4(x).

(a) SM2 (b) SM1 (c) gTM

Figure 7. Dynamical planes of Schröder methods and gTM on f5(x).

(a) SM2 (b) SM1 (c) gTM

Figure 8. Dynamical planes of Schröder methods and gTM on f6(x).
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Based on Figure 3, it is clear that SM1 and SM2 have similar basins, and gTM has
more lobes on the boundary between the two basins. From Figure 4, we notice that gTM
is better than SM1. In the next 3 figures, gTM is best, with wider basins of attraction and
narrower black areas of no convergence to the roots. This performance is held even for
non-polynomial function f5. Moreover, in Figure 8, it can be noticed that the basins of
attraction of method SM2 are wider than our gTM method.

We now refer to the data in Tables 1–3. The CPU run-time in seconds is given in
Table 2. It is clear that SM2 is consistently faster than the others. If the multiplicity is not
known, then gTM is faster than SM1, except for the first example. On average, gTM is
faster than SM1.

Table 1. CPU run-time (sec) for each method on the test functions.

Methods f1 f2 f3 f4 f5 f6 Average

SM2 126.93 224.61 288.52 406.23 313.50 674.53 339.05
SM1 194.09 431.38 529.08 1013.37 632.83 2183.55 830.72
gTM 267.12 408.12 424.59 515.34 582.81 709.32 484.55

Table 2. Average number of function-evaluations per point (AFPP) for each method on the test
functions.

Methods f1 f2 f3 f4 f5 f6 Average

SM2 11.65 15.21 20.37 22.22 13.69 28.30 18.574
SM1 17.48 24.72 35.46 48.56 25.11 81.92 38.87
gTM 13.72 17.68 18.48 18.40 18.20 40.34 21.13

Table 3. Number of divergent points (DP) for each method on the test functions.

Methods f1 f2 f3 f4 f5 f6 Average

SM2 601 8 2449 5158 1529 20299 5007.33
SM1 601 19 2529 8522 21253 79139 18677.17
gTM 9 20 41 241 11483 127078 23145.33

The average number of function evaluations per point (see Table 2) is the highest
for SM1 for all examples. Note that the last example is the hardest for all methods. The
number of divergent points is the lowest for gTM for examples 1, 3, and 4. SM1 has the
most divergent points for the first 6 examples, but, on the last example, gTM performed
poorly and became third place overall. The method SM2 was best, on average, for the 3
categories followed by gTM for 2 categories.

5. Conclusions

A new iterative scheme with memory with ability for finding both simple and multiple
roots (without the need of knowing its multiplicity) have been constructed. It is, as far as
we know, the first method with these properties in the literature. Its order of convergence
have been proven to be approximately 1.84 with two new functional evaluations per
iteration; this yields the scheme to improve the efficiency of the Schröder scheme without
memory SM1, that has similar properties. Using multidimensional real discrete dynamics
and low-degree polynomials with simple and multiple roots, the stability of the proposed
scheme has been analyzed, showing wide areas of convergence to both kind of roots.

In the last section, Schröder and gTM methods running on several examples have
allowed us to conclude that, if the multiplicity is known in advance, then, SM1 and gTM
cannot compete, even though gTM is better than SM1. However, when the multiplicity is
not known, proposed method gTM shows a very good performance and better efficiency
than SM1 methods, in terms of execution time, computational cost, and wideness of the
basins of attraction.
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