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Abstract: Service quality and efficiency of urban systems have been dramatically boosted by various
high technologies for real-time monitoring and remote control, and have also gained privileged space
in water distribution. Monitored hydraulic and quality parameters are crucial data for developing
planning, operation and security analyses in water networks, which makes them increasingly reliable.
However, devices for monitoring and remote control also increase the possibilities for failure and
cyber-attacks in the systems, which can severely impair the system operation and, in extreme
cases, collapse the service. This paper proposes an automatic two-step methodology for cyber-
attack detection in water distribution systems. The first step is based on signal-processing theory,
and applies a fast Independent Component Analysis (fastICA) algorithm to hydraulic time series
(e.g., pressure, flow, and tank level), which separates them into independent components. These
components are then processed by a statistical control algorithm for automatic detection of abrupt
changes, from which attacks may be disclosed. The methodology is applied to the case study
provided by the Battle of Attack Detection Algorithms (BATADAL) and the results are compared
with seven other approaches, showing excellent results, which makes this methodology a reliable
early-warning cyber-attack detection approach.

Keywords: water distribution systems; cyber-attack detection; blind sources separation; FastICA

1. Introduction

In recent decades, urban areas all over the world have not stopped growing and
becoming increasingly dense. Consequently, virtually all urban services are in dire need to
become more efficient and accessible to all citizens. Water distribution systems (WDSs),
which are obviously among the main urban components, have undergone many changes.
In this paper, we focus on the connection between WDS physical and cyber layers, thus
turning WDSs into cyber-physical systems. The physical layer of a WDS (pipes, valves,
pumps, reservoirs, etc.) can be remotely controlled and monitored by the cyber layer, which
allows the implementation of predictive control, and early-warning systems in case of
anomalies. As a result, the efficiency of urban water systems is improved.

Cyber-physical systems may considerably improve the operation of water companies,
but they will also increase the possibilities for system failure. This is chiefly because cyber
layers can include gates that may be easily violated during various kinds of attacks (e.g.,
information access for damaging the entire water distribution process) [1]. Attackers can
access programmable logic controllers and change pump and valve schedules, operational
points, and/or corrupt data in SCADA systems. This could threaten the creation and
expansion of smart cities that depend on the reliability of cyber systems [2].
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Scenarios of cyber-physical attacks in water systems have already become a reality.
According to the United States Department of Homeland Security, in 2015, 25 cyber-
attacks were disclosed in various water systems [3]. In Israel, three attacks happened
between 2019 and 2020. The first attack in 2019 managed to change the free chlorine level
and, consequently, harmed the water quality of the system. In 2020 the attacks changed
pumping operational points, bringing high pressure to the system and associated increasing
leakage [4]. In their Systematic Review of the State of Cyber-Security in Water Systems,
Tuptuk et al. [5] compile a set of cyber-physical attacks occurred between 2000 and 2020
that have been made public. Most of them were remotely performed and even a recent one
used cryptocurrency mining for the attack. The examples of cyber-attacks in the USA and
Israel show that despite a system may be highly protected, attackers manage to find their
ways to enter the system and eventually produce chaos. Consequently, even virtually fully
secure SCADA systems need additional mechanisms to try to close any access gate to the
system and minimize the impact of any security breach.

With the aim of improving the reliability of cyber-physical systems, special attention
has been given by researchers to the topic, as shown by the promotion of dedicated
events. One milestone on cyber-physical system analysis applied to water systems was
the International Workshop on Cyber-Physical Systems for Smart Water Networks, in
2015 [6]. The works in that conference mainly focused on data acquisition via SCADA
system and the security of the system. Nevertheless, no cyber-physical failure detection
methodologies were proposed. However, recently, the detection of malicious attacks in
WDSs has become a problem highly faced by researchers and managers, and has been
the subject of recommendations from various protection agencies (e.g., Environmental
Protection Agency—EPA, from USA). The main objective of this kind of developments
is the reduction of the system vulnerability, thus narrowing the potential damage to the
physical layer.

Considering the importance of the problem, the Battle of the Attack Detection Algo-
rithms (BATADAL) [7] was organized in a special session of the World Environmental and
Water Resources Congress, in Sacramento, California on May 21–25, 2017. The challenge
was proposed for comparing possible approaches in detection attacks. Several solutions,
concisely described in the next section, were presented.

According to the above-mentioned systematic literature review [5], the vast majority
of works in cyber-attack detection, including the ones presented in BATADAL, are based
on machine learning, developing classifiers or auto-encoder algorithms. However, the
authors of [5] pinpoint the need for targeting at other fields of study for building increased
confidence on the algorithms. An alternative, exploited in other research fields, is the
use of signal-detection models. These kinds of models handle a mixture of true signal
and noisy data. When applied for cyber-attack detection, the main objective of a signal-
detection model is to separate attack from normal data, which helps detect abnormal
situations accurately and efficiently. One example of signal-processing data applied to
detect anomalies in cyber-physical systems is the application of Independent Component
Analysis (ICA) [8]. This algorithm separates original signals into components or sources
by suitably demixing them. The demixing and consequent separation of signals can help
highlight anomalies, thus easing their identification.

Moreover, for automatic identification, the application of statistical control processes
such as cumulative sum (CUSUM) and abrupt change point detection (ACPD) have shown
to be very useful tools.

Considering the substantial number of applications of ICA for anomaly detection
problems in various research fields, and the simultaneous lack of applications in water
distribution, this paper proposes a two-stage algorithm for cyber-attack detection in water
distribution systems. In the first stage, hydraulic time series acquired by a SCADA system
are processed by the ICA algorithm. The resulted signals, so-called sources, are highly
affected by cyber-attacks, as shown in the results. This feature is used for automatic
detection in the second stage, using an ACPD algorithm. The methodology is applied
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to the BATADAL case study, and the results are compared, under the same framework,
including case study, objectives and metrics, with other approaches presented in the
Battle. All seven attacks hidden on the test data sets used in the event are detected by this
methodology, thus resulting in a reliable early-warning cyber-attack detection algorithm.
Regarding the limitations of this approach, we must mention that some attack scenarios
have been detected too late, which is a limitation, otherwise, typical of any detection
evaluation methodology. However, overall, the methodology can be considered a novel
non-machine-learning-based approach in the field of cyber-attack detection in WDSs.

2. Related Work

The recent literature presents several data analysis and computational modelling
techniques aimed at developing early-warning systems for cyber-attack detection in water
systems. For example, in [9] a classification algorithm is developed using Support Vector
Machines for identifying cyber-attacks in water systems. The authors propose a simple one-
class classification approach based on a truncated Mahalanobis distance. The algorithm is
tested on a real dataset from a water distribution system in France. Hidden Markov chains
are used in [10] for analyzing and detecting anomalies in the SCADA system of a water
supply system. Normal behavior was first modelled and then modified with generated
abnormal data to simulate potential attack detection. Not only water distribution systems,
but also water treatment plants have been used for investigating cyber-attacks. Attacks in
Programmable Logic Controllers (PLC) are designed by [11] for better comprehension of
the impacts in the produced water.

In BATADAL, seven solutions, coming from research groups from all over the world,
were presented, which were ranked based on time-detection and classification accuracy of
the events. As our approach in this paper is directly competing with those seven solutions,
to make it clear its novelty, we concisely describe the methodologies used in the other
solutions. Those contributions together with several papers derived from the event, which
we also mention later, can be considered a state-of-the-art literature on the subject, which
can be enlarged with [5].

A two-stage method based on feature vector extraction and classification was proposed
in [12]: vector extraction was applied to multidimensional hydraulic data, and safety
classification was performed by random forests, the machine-learning algorithm developed
by [13]. In [14] recurrent neural networks (RNNs) were used for hydraulic state estimation
of network district metered areas and, based on the RNN output, a statistical control
process was applied for detecting abrupt changes in the residual time series.

The authors in [15] use first operational variables to check whether physical and/or
operating rules have been violated, and the generated set of flagged events feeds a deep
learning method based on a convolutional variational auto-encoder to calculate the proba-
bility for measured data being anomalous.

In [16] also two detection methods were proposed: one evaluates consistency of the
SCADA data and verifies the relation between actuator rules (e.g., pump/valve operation)
and the measured data; then, the second method uses principal component analysis (PCA)
for separating the hydraulic time series into normal and abnormal data.

A three-stage detection method was presented in [17]: the first step detects outliers
in the data, focusing on single sensor analysis; the second stage employs a multilayer
perceptron to detect SCADA data nonconformity to normal operation; and the third stage
finds anomalies affecting multiple sensors.

Another three-module method was presented in [18]: the first module evaluates the
consistency of the data against the set of control rules; the second applies statistical analysis
to identify anomalous behaviors; then, the anomalies are confirmed by the third module,
which finds correlations between hydraulic variables.

Finally, a model-based approach using EPANET for hydraulic simulations was devel-
oped in [19]; analyses of the residual time series between simulated and measured data
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from SCADA system detected the anomalies, and a multilevel classification algorithm was
implemented to classify the residual time series into normal and abnormal events.

BATADAL opened a fruitful discussion among various research groups around the
world. Following the cyber-attack detection paradigm, new approaches have been pre-
sented in the literature after that Battle. For example, work [1] points to multisite detection
approaches based on simultaneous analysis for an efficient warning system. In this work
the authors present a joint data-model-based approach for cyber-attack detection: the
model of the water network is used for inference from the observational data. Explor-
ing the capacity of machine-learning techniques, in [20] a model for detecting anomalies
in a water system controlled by SCADA using various machine-learning techniques is
presented. The model classifies events including physical failures and cyber-attacks. As
another example, research [21] has tested a set of machine-learning algorithms, highlighting
the performance of extreme learning machine for classifying normal and abnormal data
from multisite sensors.

Despite many devoted efforts to detect cyber-attacks on WDSs in recent years, the
primary focus, as observed in the literature, has been mainly on machine learning and
optimization techniques. The techniques of signal-processing for cyber-physical attack
detection is still not well explored in the literature, especially in water distribution.

Work [22] investigates the application of Independent Component Analysis (ICA) for
stealthy false data attack detection without prior knowledge of any power grid topology.
The separated signal by ICA is used for detecting virtually unobservable attacks. The
authors in [23] apply ICA for obtaining the fundamental traffic components and, in a
second stage, the components are classified by machine-learning-inferred decision trees.
Still on ICA applications, work [24] develops an algorithm to characterize hidden structures
in fused residuals. Suppression of possible noisy content in residuals—to decrease the
likelihood of false alarms—is achieved by performing the residual analysis solely on the
dominant parts of a so-called demixing matrix.

In the water resources field, ICA has been applied to drought analysis, exploring
hydrological data [25]. Also, in [26] the application of ICA to assess and estimate leakage
in water distribution networks is proposed. The algorithm is tested on data acquired in a
leakage experimental platform. Water demand is forecasted using a principal component
model, and ICA is applied for developing climate predictors in [27].

Once demixed by ICA, source signals can be treated for automatically detecting
anomalies, and this inspired us to apply ICA and then ACPD to the automatic detection
of cyber-physical attacks. In this line, still within urban hydraulics, but with a different
purpose, automatic identification of pipe bursts has been developed using statistic control
processes applied to hydraulic parameters (e.g., pressure nodal pressure and flow in
pipes) [28] or jointly to water demand forecasting [29]. Also, to improve the capacity
of burst and leakage detection, work [30] proposes ACPD applied to filtered signals of
consumption data.

After the Introduction, the structure of the paper is the following. The Materials and
methods are presented in the next section. Then a section is devoted to the case study, and
includes the obtained results and a discussion. The paper closes with the Conclusions section.

3. Materials and Methods

The methodology for cyber-attack detection proposed in this paper is based on two
separate techniques. The first one comes from the signal-processing field and applies a
Blind Source Separation (BSS) algorithm, which makes use of Independent Component
Analysis. This technique produces the segregation of the original measured signals, affected
by the attacks, into independent components. These components can be detected using a
statistical control method, which corresponds with the other technique in this work: an
abrupt change point detection algorithm is applied to the separate signals to accurately
detect the start and the end times of the attacks, which helps characterize the attacks. Let
us first concisely describe these techniques.
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3.1. Independent Component Analysis-ICA

ICA is a methodology for multivariate signal-processing based on the statistical inde-
pendence property. ICA techniques seek to uncover the independent source signals from a
set of observations that are composed of linear mixtures of the underlying sources. The
sources are the data projected onto some new axes that must be discovered. Accordingly,
this process is known as blind source separation, a category of algorithms that try to
decompose mixed signals into their original sources. A classical example of separation of
a mixed signal is the cocktail party in which a band is playing [31]. Invited people to the
cocktail are not listening each instrument of the band separately, but the combination of
all the instruments, voices and noises of the environment. Is it possible to separate each
sound’s source captured by the microphones? To answer the question, BSS algorithms are
proposed that try to isolate each source.

Let us consider N time series each consisting of M samples (measured points). The
aim is to find a transformation of these time series into a new representation in which
independent components are identified and separated.

Formally, we represent the N measured time series

Xi = (xi1, xi2, · · · , xiM)T , i = 1, · · · , N (1)

compactly by a matrix X whose rows are the transposed time series

X =

 x11 x12 · · · x1M
...

...
. . .

...
xN1 aN2 · · · xNM

. (2)

This N × M matrix is supposed to be a linear combination of the original signals,
which can also be represented by another N × M matrix S with similar structure to X, i.e.,
the rows of S are the transposed of the original time series Si = (si1, si2, · · · , siM)T . The
linear combination may be expressed by

X = AS, (3)

where A, so-called mixing matrix, is the matrix representing the linear transformation.
Keeping the analogy of the cocktail party, X corresponds to the sounds listened by the
guests and S to the original sounds. The main objective of ICA is to determine the mixing
matrix A and the original sources S. This task is formulated as an inverse and dual problem.
First, a demixing matrix W must be found and then, based on this matrix, the source vector
is calculated by

S = WX. (4)

Since the problem is highly underdetermined, the direct calculation of W or A is not
possible. An estimate Y ≈ Ŝ of the sources is made instead by calculating a demixing
matrix W, which acts on X such that

Y = WX = Ŝ. (5)

and W ≈ A−1.
To perform this approximation, the process in the ICA algorithm uses some factoriza-

tion of the observed data (mainly singular value decomposition), and high order statistics
(such as the fourth moment, kurtosis) to measure signal-noise separation. From a statistical
point of view, the separated signals must be independent, and the independent compo-
nents must have a non-Gaussian distribution [32]. Based on this non-Gaussian nature,
to calculate W, most ICA methods estimate the inverse of A, allowing the calculation of
the source vector. The trick behind this process is to find that A−1 that maximizes the
non-Gaussian nature of the independent components. Usually, this process is done based



Water 2021, 13, 795 6 of 16

on maximum-likelihood estimation, maximization of the output entropy or minimization
of mutual information in the output [33].

In this paper, the non-Gaussian nature is measured based on the the concept of
negentropy, as presented and discussed by [32] in the algorithm called fastICA. The idea
behind negentropy comes from the Information Theory. Gaussian-distributed data has
entropy H equal to zero, while non-Gaussian-distributed data has non-negative entropy.
Negentropy J is calculated as:

J(x) = H(xgauss)− H(x)), (6)

where xgauss is a Gaussian random variable with the same covariance as x.
The fastICA algorithm is based on a fixed-point scheme for finding W ≈ A−1 through

maximization of the negentropy. In addition, based on that matrix, it is possible to approxi-
mately rebuild the source vector as written in (5).

3.2. Abrupt Change Point Detection-ACPD

After sources separation by fastICA, it is expected that one of the sources will be
affected by the cyber-attack. For detecting this change, an algorithm of abrupt change point
detection (ACPD) is applied. ACPD is performed by evaluating one or more statistical
parameters of the time series, so-called control variables.

For a formal definition, following the ACPD algorithm proposed by [34], let us first
identify, among the separate signals provided by fastICA, that one that best represents
the kind of signal we are interested in. In our case, we must identify that series mainly
representing non-periodic behavior. Let Y(1) = (y11, y12, ..., y1M)T , one of the signals
obtained by (5), be our series of interest, where M is the size of the time series. The
algorithm tries to identify the various, say m, change points in this time series, which are
positioned at indexes τ1, ..., τm. Each position τi corresponds to an integer value between 1
and M − 1 and splits the time series into intervals [τi, τi+1].

A common approach to estimating τ = (τ1, ..., τm) is by minimizing the objective
function:

m+1

∑
i=1

f (τi, τi+1) + βp(m), (7)

where f (τi, τi+1) is a cost function related to the time series in the interval [τi, τi+1]. Several
cost functions have been proposed in the literature, such as log-likelihood [35], quadratic
loss or cumulative sums [36]. Moreover, βp(m) is a penalty function to avoid overfitting.
The most common choice, according to [34], is a linear variation p = βm. This constraint
allows the method to estimate a vector τ corresponding to a trade-off between the mini-
mization of the cost function (found by a large-size τ) and the minimization of the penalty
function (found by a small-size τ) [37].

The entire process can be summarized as follows:

• A point is chosen and the time series is divided into two intervals.
• For each interval, a control variable (mean, standard deviation, root-mean-square,

etc.) is computed.
• For each point within the interval, deviations of control variables are computed.
• The deviations are summed for all the intervals to calculate the total residual error,

and the objective function (7) is evaluated.
• Vary the division point to minimize the total residual error.

The result of this process is exactly the set of components of τ. For this work, each
component of the source’s signal Y found by fastICA obtained by (5) is evaluated by the
ACPD algorithm, and the vector τ corresponds to the start and the end times of an attack.
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3.3. Automatic Detection of Cyber-Attacks in WDSs

Following the formalization given for fastICA and ACPD algorithms, this section
presents the application of both methods for disclosing cyber-attacks in WDSs. First,
based on the available data set, the input time series for fastICA are selected. Hydraulic
measurements (e.g., pressure, flow and tank level) are considered in this work as input
data, which are combined to get the best input arrangement. After a trial-and-error process,
we have identified that decomposing the signal into two components will be enough
to suitably identify the effects of the attacks. Indeed, the results presented for the case
study confirm this assumption. From the software development point of view, the data is
processed in Python language and makes use of the package SKLEARN.

The non-periodic component of the demixed signal is then used as the input for the
ACPD algorithm. This second process is responsible for automatically identifying the start
and end time of the anomalies, thus allowing the disclosure of the attack. The output of this
process is the exact interval of time where the water network was subjected to an attack.
With this outcome, it is possible to apply the performance evaluation metrics considered
in BATADAL, and then, to compare the ability of the proposed algorithm with other
approaches. In this stage, the demixed data is processed in the MATLAB programming
environment, and makes use of several tools in the toolbox of Signal-processing. For a
better understanding, Figure 1 presents the flowchart of the complete methodology.

Figure 1. Flowchart of the complete methodology for disclosing cyber-attacks applying fastICA and
ACPD algorithms.

3.4. Performance Evaluation

In addition to the BATADAL data sets, the performance evaluation also follows the cri-
teria and metrics presented in [7], namely time-to-detection (TTD) and single classification
rate (SCR).

TTD is the time required by the algorithm to find an attack and can be calculated as:

TTD = t0 − td, (8)

where t0 is the time when an attack is detected, and td is the time when the attack really
started. When an attack is detected, TTD varies in the interval [0, ∆t], where ∆t is the total
attack duration. For calculating the total TTD under several attack scenarios, work [7]
presents a score for the specific attack detection calculated by (9):

STTD = 1 − 1
na

na

∑
i

TTDi
∆ti

, (9)
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where na is the number of attack scenarios.
An ideal algorithm for cyber-attack detection must be able not only to quickly disclose

the attacks, but also to not produce false positive warnings. For evaluating the accuracy of the
algorithm, the true positive rate, TPR (10), and the true negative rate TNR (11), are calculated
based on a confusion matrix. Both rates are combined for calculating the SCR (12):

TPR =
TP

TP + FN
, (10)

TNR =
TN

TN + FP
, (11)

SCR =
TPR + TNR

2
, (12)

where TP and TN are the numbers of true positive and true negative time stamps, respec-
tively. FP and FN are the numbers of false positive and false negative time stamps.

Criteria (9) and (12) are considered by [7] and the final score S is calculated as a
weighted sum of STTD and SCR (13)

S = γSTTD + (1 − γ)SCR, (13)

the real number γ being used to build a suitable convex combination. For equally weighted
criteria γ = 0.5.

4. Case Study

The methodology presented in this paper is applied to the case study posed in
BATADAL [7], which uses the water network D-town (Figure 2) and considers poten-
tial attacks to pump stations and pressure and tank level sensors, as indicated in the figure.
The network is composed of 429 pipes, 388 junction nodes, 7 tanks, 1 reservoir, 11 pumps
and 5 valves.

Three data sets are provided by BATADAL generated via epanetCPA [38], a MATLAB
toolbox for cyber-attack design and hydraulic simulation. Please note that due to obvious
security reasons, studies of cyber-physical attacks are usually conducted using simulated
data that reproduce real-world conditions [5]. In the case of BATADAL, hourly pressure,
flow, tank level and control device status are provided in the data sets. The first data set
corresponds to one year of data without cyber-attacks. The second data set is based on
a set of 492 h. This data set unfolds an entire, well-labeled cyber-attack, and other six
cyber-attacks partially or completely hidden. Finally, the third data set has 7 new attacks
distributed along 407 h of data.

The application of the methodology starts by selecting the combination of data to be
used as input for fastICA from the available data. Since the water network is naturally
divided into small district metered areas according to its topology, eight combinations of
data are used as input for the ICA algorithm. These combinations consider the hydraulic
connections of the system and are summarized in Table 1.

Table 1. Description of control and measuring devices for fastICA application

Combination Measured Element Type of Data

A J300, J289 Pressure
B J307, J302 Pressure
C V2, T2, J422 Flow, Tank Level and Pressure
D T1, PU1, PU2, PU3 Tank Level and Flow
E J256, T3, PU4, PU5 Pressure, Tank Level and Flow
F J415, T4, PU6, PU7 Pressure, Tank Level and Flow
G J306, T5, PU8, PU9 Pressure, Tank Level and Flow
H J317, T6, T7, PU10, PU11 Pressure, Tank Level and Flow



Water 2021, 13, 795 9 of 16

Figure 2. D-town water network topology highlighting potential attack locations.

Using the combinations presented in Table 1, the algorithm fastICA is applied, which
separates each combination into 2 (approximate) sources. To illustrate the signal separation,
Figure 3a presents the original data for combination B, and Figure 3b presents the separated
signals, split into two sources. In the separated sources (Figure 3b), an abnormal trend of
the time series is discovered in the test data set.

This behavior is repeated for other combinations. One source has a periodic trend, as
a typical behavior of a WDS, while the second source is similar to a random noise. This
second one is, usually, highly affected by the attacks and is considered by the detection
algorithm to identify abrupt changes.

For automatic detection of the changes in the separated signals, ACDP is applied.
The algorithm evaluates the second source, highly affected by the attacks, and allows a
more accurate detection of the anomalies. Applying ACDP to the sources obtained from all
combinations (Table 1), the start and end time indexes of the attacks are obtained.

The entire process may be summarized as follows. First, a combination of hydraulic
time series is selected and is processed by fastICA (Figure 4a); this algorithm splits the time
series and produces two sources that are processed by ACDP (Figure 4b). Finally, ACDP
is launched to locate the time interval when the attack occurred (Figure 4c), allowing the
water company to start actions for mitigating the impacts of the attack. Figure4c shows
in detail the attack corresponding to combination F. It is possible to observe the delay in
detecting the attack (interval between the first black and the green lines). As described
in [7], this attack is related to changes of tank T4 signal. Even though these changes are not
easily identified in the original data, as shown in figure 4a, after fastICA processing, source
signal 1 clearly reveals the change in data, allowing ACDP to disclose the attack.
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(a) Original measured pressure at nodes J307 and J302

0 2000 4000 6000 10,0008000 12,000 14,000 16,000
Time step

0 2000 4000 6000 10,0008000 12,000 14,000 16,000
Time step

-0.1

0

0.1

0.2

-0.2

[ ]

-0.1

-0.05

0

[ ]

(b) Separated signals from J307 and J302

Figure 3. Comparison between mixed and separated pressure signal—combination B.

Still for illustrating the joint capability of fastICA and ACDP, Figure 5a shows original
measured data of pumps PU8 and PU9, node J306 and tank level T5. The joint process by
fastICA and ACDP applied to the corresponding test data set reveals that no attacks are
found in the sources. This fact corroborates the accuracy of the algorithm, mainly in terms
of false positives minimization, since according to [7], there were no attacks occurring in
the test data set.

The ACDP applied to all sources and combinations for the test data set resulted in
the identification of 7 cyber-attacks, i.e., all the attacks were disclosed by the proposed
methodology. Figure 6 presents the confusion matrix with the numbers of TP, TN, FP and
FN.

Based on the confusion matrix, it is possible to calculate TPR = 0.966 and TNR =
0.980, resulting in a SCP = 0.973. Compared to the seven teams that presented solutions
for BATADAL, the value of SCP is the second higher, the first team having obtained
SCP = 0.975, virtually identical. Comparing the TPR, the methodology of the present
work gets the highest scores, showing its efficiency to find abnormal scenarios.
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Figure 6. Confusion matrix for the test data set presenting the number of true positives and negatives
on the main diagonal and the false negatives and false positives on the counterdiagonal

The results in terms of TTD, are summarized in Table 2. Four out of the seven
attacks are detected immediately or in a maximum of 1 h later. The rest is detected in a
maximum of 10 h later, as shown in the table. Based on these values, the score for the other
metric proposed in BATADAL, namely STTD, is calculated, resulting in 0.913. Compared
to the other teams, this value is the lowest and shows that despite the accuracy of the
methodology, for some abnormal scenarios, early warnings cannot be suitably obtained.
Based on both metrics SCR and STTD the final score is calculated, resulting in 0.973. This
final score is the second highest, when compared with the seven teams that presented
solutions in BATADAL.

Table 2. Summarized results for the test data sets presenting start and end time date for each attack

Attack Label Start Date Start Time End Date End Time

8 16 January 2017 10 19 January 2017 4
9 30 January 2017 8 2 February 2017 2
10 9 February 2017 3 10 February 2017 9
11 12 February 2017 11 13 February 2017 17
12 24 February 2017 9 28 February 2017 3
13 10 March 2017 13 13 March 2017 16
14 26 March 2017 3 27 March 2017 1

5. Conclusions

The security of water distribution systems has become increasingly complex due to the
rapid rise of telemetry and remote controls. The growing number of reported cyber-attacks
in WDSs has also created an important need for new, fast and efficient methodologies for
early-warning systems that help guarantee WDS security.

Most efforts devoted to detecting cyber-attacks in WDSs have primary focused on
machine-learning and optimization techniques. Statistical analysis of measured data can
provide valuable results for quick detection of anomalies. However, as attested in [5],
studies from other fields are necessary to build confidence in the models. In this paper, we
focus on signal-processing. Among the signal-processing techniques based on statistical
analysis, fastICA is explored in this work. FastICA has shown to be a powerful tool for
hydraulic data analysis, mainly under abnormal conditions. The signal separation follows
a trend, where one signal is more related to a typical periodical oscillation of the system,
and the second one is more related to a random process. The latter is highly affected by
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abnormal conditions and, consequently, it is a possible input for detection algorithms. The
application of fastICA to hydraulic time series (e.g., tank level) allowed to clearly highlight
the attacks against the studied water system. These attacks cannot be easily disclosed in
the original time series; however, this task becomes easier after processing the data by a
BSS algorithm.

Change point detection algorithms are useful for automatic statistical changes in time
series, and can be used for early-warning systems. In this work, the ACPD algorithm is
applied to the separate signals resulted from fastICA for automatically defining changes
in data, which are seen to correspond to cyber-attacks. The methodology applied to the
BATADAL case study resulted in the detection of the seven attacks with high accuracy and
few false positives. We claim that the methodology can be perfectly applied to any real
system, as long as the water utility can measure at least one of the hydraulic parameters,
namely flow, pressure and tank level.

Nevertheless, some attack scenarios have been detected too late, which is a limitation,
otherwise typical of most risk evaluation methodologies. Special attention to this kind of
attacks should be paid, requiring more investigation for developing ultimate conclusions
about the global efficiency of the methodology. Future works, more than ratifying the
efficiency of detection algorithms, should go deeper into the cyber-physical problem,
investigating the causes of the attacks, optimally placing grids of dedicated sensors, and
timely responding to prevent the occurrence of damage. Optimal sensor placement is still
an only recently and partially formed subject. Accordingly, efforts should be devoted to
expanding and enriching this field by producing novel and efficient methodologies to help
fully develop this field of research.
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