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Abstract

American options prices under jump-diffusion models are determined by a

free boundary partial integro-differential equation (PIDE) problem. In this pa-

per, we propose a front-fixing exponential time differencing (FF-ETD) method

composed of several steps. First, the free boundary is included into equation

by applying the front-fixing transformation. Second, the resulting nonlinear

PIDE is semi-discretized, that leads to a system of ordinary differential equa-

tions (ODEs). Third, a numerical solution of the system is constructed by using

exponential time differencing (ETD) method and matrix quadrature rules. Fi-

nally, numerical analysis is provided to establish empirical stability conditions

on step sizes. Numerical results show the efficiency and competitiveness of the

FF-ETD method.

Keywords: American option pricing, front-fixing method, exponential time

differencing, finite difference methods, experimental numerical analysis, Gauss

quadrature
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1. Introduction

It is generally accepted today that jump-diffusion models are one of the

appropriate ways to capture the empirical market data not reproduced by the
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Black-Scholes model of option pricing [1, 2].

In jump-diffusion models, in both cases of finite or infinite activity, the option

price function can be expressed as the solution of a partial integro-differential

problems (PIDEs) [3]. Among the most important models of finite activity

we mention the Merton model whose jump amplitudes are represented by log-

normally distributed processes [4], and the Kou model where the jump ampli-

tudes follow log-double-exponential distributed processes [5].

For the sake of interest in the applications of jump-diffusion models, it is

more interesting the more complex American option case. Such model has two

main approaches, the linear complementarity problem (LCP) formulation and

the front-fixing method [6]. Probably the most used approaches are the LCP

with the penalty term [7, 8, 9], and the operator splitting method [10, 11].

Dealing with jump-diffusion models, the front-fixing method has the advan-

tage that allows the computation of the optimal exercise boundary and the

challenge of consider a nonlinear PIDE with an additional variable [12, 13].

Broadie and Kaya [14], and D’Ippoliti et al. [15] use Monte-Carlo techniques

to deal with jump-diffusion models with stochastic volatility. A finite-element

method combined with a front-fixing approach is proposed in [13]. Ballestra

and Sgarra use a finite element method with an operator splitting approach in

[16]. A pseudo-spectral method is proposed in [17].

Finite-difference (FD) methods and the method of lines are proposed by

Chiarella et al. in [18]. FD schemes using implicit iterative methods are pro-

posed in [19]. Implicit-explicit (IMEX) finite difference methods are suggested

in [20].

Mesh-less methods of radial basis functions (RBF) type have been employed

in [12] after applying the front-fixing technique and in [21] combining the RBF

with IMEX operator splitting method. FD scheme for RBF method is proposed

in [22] for Merton and Kou’s models. Penalty approach together with RBF

method is used in [9], where for the full discretization a fitted finite volume

method is employed.

In the present paper, we consider two of the most used jump-diffusion mod-
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els: Merton model based on lognormal distribution [4], and Kou’s model repre-

sented by a log-double-exponential (log-Laplace) distribution [5]. Nevertheless,

the proposed method can be applied to any jump-diffusion model described by

some other distribution for both, finite and infinite activity. In the case of infi-

nite activity, the integral term should be treated carefully by using, for instance,

methods proposed in [23, 24].

We firstly immobilize the boundary using a front-fixing transformation be-

cause we are interested in the numerical solution not only of the price but also

of the optimal exercise boundary separating the continuation region from the

exercise zone.

Then the application of the method of lines, by using spatial semi-discretization

of both the differential and integral parts transforms the PIDE problem into a

system of nonlinear ordinary differential equations (ODEs) in time. For the

spatial discretization of the differential part we use a centered FD scheme and

for the discretization of the non-local integral part we use Gaussian quadrature

rules instead of truncation plus trapezoidal rules or linear interpolation [23, 19].

Instead of a further direct full discretization, we use an exponential time

differencing (ETD) method to approximate the solution of the integral equation

equivalent to the system of ODEs [25, 26].

Tangman et al. in [27] use ETD scheme for solving European jump-diffusion

models and the American option case is treated in [28] using the RBF method.

This paper is organized as follows. The problem is established in the follow-

ing Section 2. Section 3 deals with the application of the front-fixing technique

to transform the problem into a fixed-boundary PIDE problem where the op-

timal boundary becomes a new variable of the problem. Next Section 4 deals

with the discretization of the problem in two steps. First, using spatial semi-

discretization and then, an ETD technique to achieve the full discretization

providing the approximations not only of the price, but also of the optimal

exercise boundary. Due to the non-linearity and complexity of the problem,

the analytical study of the qualitative properties of the proposed method be-

comes extremely difficult and tedious. Only few studies have performed Fourier

3



stability analysis (see [20]) for the LCP formulation, which doses not include

free boundary function to the PIDE. Thus, the empirical numerical stability

and convergence are studied in Section 5. Conclusions are achieved through-

out numerical experiments. The implementation of the proposed method has

been done by using MatLab R2019b for Windows 10 home (64-bit) Intel(R)

Core(TM) i5- 8265u CPU, 1.60 GHz.

2. Problem Statement: Jump-Diffusion Model

The most widely model used in the field of computational finance is the

Black-Scholes model, which provides a simple computable pricing formula for

European options in an ideal market. The model assumes that the underlying

asset follows a geometric Brownian motion [29]. In its turn, American options

offer to the holder the opportunity of early exercise, that makes the problem of

American option pricing a challenging task and a question of great interest in

the field.

Nevertheless, Black–Scholes model does not capture stock price fluctuations

and market risks. These features can be taken into account by considering the

following jump-diffusion model [4].

Let us consider the asset price S, that in the case of jumps satisfies the

following stochastic differential equation (SDE)

dS

S
= rdt+ σdWt + (η − 1)dq, (1)

where r is the risk free interest rate, σ is a volatility of the asset, dWt is an

increment of standard Wiener process W under the risk-neutral measure Q, dq

is a Poisson process with intensity λ with

dq =

0, with probability 1− λdt,

1, with probability λdt.

(2)

An impulse function producing jump from S to Sη is defined as η−1 with the

expected relative jump size κ = E(η − 1). Note that the jump rate λ = 0, SDE
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(1) reduces to the geometric Brownian motion, that is a fundamental assumption

of the Black-Scholes theory.

Then, the price P (S, τ) of the American put option under jump-diffusion

model satisfies the following free-boundary partial integro-differential equation

(PIDE) for S > B(τ), 0 < τ ≤ T :

∂P

∂τ
=

1

2
σ2S2 ∂

2P

∂S2
+ (r − λκ)S

∂P

∂S
− (r + λ)P + λ

∫ ∞

0

P (Sη, τ)g(η)dη, (3)

where τ = T − t denotes the time to maturity T , and g(η) is probability density

function (PDF) of the jump with amplitude η, such that

g(η) ≥ 0 ∀η,
∫ ∞

0

g(η)dη = 1. (4)

Initial condition (at τ = 0) is defined by the type of option, and for a put is

given by the following payoff function

P (S, 0) = max(E − S, 0), S ≥ 0, (5)

where E is the strike price.

Due to the early exercise privilege, the governing equation (3) is considered

only in the holding region, i.e., for S > B(τ), where B(τ) is the early exercise

boundary, not known a-priori. If the asset price S ≤ B(τ) the optimal strategy

is to exercise the option, i.e. the price of the option is defined by (5).

From the mathematical point of view, American option pricing problem is

the free boundary PDE [30]. Thus, additional conditions are established:

B(0) = E, P (S, 0) = max(E − S, 0), S ≥ 0, (6)

∂P

∂S
(B(τ), τ) = −1, (7)

P (B(τ), τ) = E −B(τ), (8)

lim
S→∞

P (S, τ) = 0, (9)

In present paper, the two most widely used jump-diffusion models are con-

sidered: Merton’s model based on lognormal distribution, and Kou’s model
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represented by a log-double-exponential (log-Laplace) distribution. Neverthe-

less, the proposed method can be applied to any jump-diffusion model described

by equations (3)–(4).

3. Front-Fixing Transformation

There are several useful techniques to treat the free boundary, including

penalty method or formulation of linear complementarity problem. In present

paper, we follow the front-fixing approach based on appropriate logarithmic

transformation of PIDE resulting in new nonlinear equation with additional

time-dependent unknown function. This approach demonstrates good results in

accuracy and efficiency, moreover, it allows to describe the change of the domain

in time, since the free boundary is explicitly found as a part of the solution.

In following we apply the front-fixing transformation to PIDE problem (3).

Note that if λ = 0 and κ = 0, PIDE (3) reduces to Black-Scholes PDE. Thus,

the American option pricing problem can be considered as a particular case of

more general American jump-diffusion model.

Previous researches (see [31] and references therein) have suggested to apply

the following dimensionless front-fixing transformation to treat the free bound-

ary

x = ln
S

B(τ)
, p(x, τ) =

P (S, τ)

E
, Sf(τ) =

B(τ)

E
. (10)

In the case of jump-diffusion model (3), proposed front-fixing transformation

(10) results in the following PIDE for x > 0, 0 < τ ≤ T :

∂p

∂τ
=

1

2
σ2 ∂

2p

∂x2
+

(
r − λκ− σ2

2

)
∂p

∂x
+

S′
f

Sf

∂p

∂x
− (r + λ)p+ λI(x, τ), (11)

where I(x, τ) is the following integral derived by introducing new variable ξ =

x+ ln η,

I(x, τ) =

∫ +∞

−∞
p(ξ)g(exp(ξ − x)) exp(ξ − x)dξ. (12)
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Initial and boundary conditions take the form

Sf(0) = 1, p(x, 0) = 0, x ≥ 0, (13)

∂p

∂x
(0, τ) = −Sf(τ), (14)

p(0, τ) = 1− Sf(τ), (15)

lim
x→∞

p(x, τ) = 0. (16)

Such formulation of the jump-diffusion model of the option pricing has two

important advantages: the PIDE problem can be solved numerically by employ-

ing any existing method, and the optimal stopping boundary can be calculated

during the time looping of the numerical scheme. However, there are several

computational difficulties related to the integral part approximation and the

optimal stopping boundary calculation. Moreover, the solution of the problem

should be found on the semi-infinite computational domain. In the following

section we proposed numerical algorithm based on the ETD method paying

special attention to the stated above challenges.

4. Exponential Time Differencing Method

In this section, we apply semi-discretization technique to transform the non-

linear PIDE to a system of ordinary differential equations, that is then solved

by using ETD and matrix quadrature rules.

We consider the problem of American option pricing only in holding region.

Thus, the problem (11)–(16) is defined on semi-infinite spatial interval [0,+∞).

We truncate the domain by choosing xmax sufficiently large to guarantee the

boundary condition (16). As it is shown in [32], in original variables, the choice

of Smax = 3E is appropriate. However, option price could increase due to

the jump-diffusion, leading to higher Smax. Thus, in order to guarantee (16),

we chose xmax = 3. Hence, the numerical solution will be constructed in a

computational domain Ω = [0, xmax] with uniformly distributed spatial nodes

xj :

xj = jh, h =
xmax

M
, 0 ≤ j ≤ M. (17)
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Then, denoting an approximate solution at the point xj by pj(τ), the semi-

discretization of the equation (11) is obtained by applying the second order

central difference approximation for the spatial derivatives, resulting in the sys-

tem of ODEs (for interior nodes, 1 ≤ j ≤ M − 1)

p′j =
σ2

2

pj+1 − 2pj + pj−1

h2
+

(
r − λκ− σ2

2

)
pj+1 − pj−1

2h

− (r + λ)pj +
S′
f

Sf

pj+1 − pj−1

2h
+ λI(xj , τ).

(18)

Approximation of the integral term is denoted by Ij ≈ I(xj , τ) and computed

by the Gauss–Hermite quadrature in the following form

Ij =

Nq∑
i=0

ωie
ξ2i p̂(ξi, τ)g(e

ξi−xj )eξi−xj , (19)

where Nq is the number of sample points, ξi are the roots of the physicists’

version of the Hermite polynomial HNq
(ξ) with the associated weights ωi, i =

1, 2, . . . , Nq. Values p̂(ξi, τ) can be found by using interpolation of the numerical

solution at the moment τ or from the boundary conditions, depending on ξi,

i = 1, 2, . . . , Nq:

1. ξi ≤ 0, then the transformed payoff function is used: p̂(ξi, τ) = 1−eξiSf(τ);

2. 0 < ξi < xmax, then the interpolation of the numerical solution is used;

3. ξi ≥ xmax, then, according to boundary conditions, the value is zero.

As a result, the integral term Ij can be written as a linear combination of

functions p(x, τ), including some free components.

Central finite difference of the second order is applied to the boundary con-

dition (14) resulting in the following FD equation

p1(τ)− p−1(τ)

2h
= −Sf(τ), (20)

where p−1(τ) = p(−h, τ) is the value at an auxiliary point out of the domain.

We assume that equation (11) holds at x = 0 and due to boundary conditions

(14)–(15) takes the following form
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σ2

2

∂2p

∂x2
(0, τ) +

(
σ2

2
+ λ(κ+ 1)

)
Sf(τ)− (r + λ) + λI(0, τ) = 0. (21)

We estimate the value at this point assuming that (21) holds for American

vanilla option[33, 34], i.e., FD equation (18) is fulfilled for j = 0, taking λ = 0.

Then, the following relation could be established

p1(τ) = α− βSf(τ), (22)

where

α = 1 +
rh2

σ2
, β = 1 + h+

h2

2
. (23)

Differentiating (22) with respect to τ , we obtain ODE:

p′1(τ) = −βS′
f(τ). (24)

From (22) and (15) one gets

p0(τ) =
1

β
(β − α+ p1(τ)) , τ > 0. (25)

The nonlinear system (18) contains M − 1 ODEs for M unknown functions

(pj(τ), j = 1, . . . ,M − 1, and Sf(τ)). To close up the system, equations (22)

and (24) can be considered in the following form

S′
f

Sf
= − p′1

α− p1
, (26)

that allows to exclude Sf(τ) from the system.

Hence, taking into account (25) and (26), system(18) finally takes the form

p′1 =
[

σ2

2h2 (p0 − 2p1 + p2) + γ p2−p0

2h − (r + λ)p1 + λI1

]
α−p1

α−p1+
p2−p0

2h

,

p′2 = σ2

2h2 (p1 − 2p2 + p3) + γ p3−p1

2h − (r + λ)p2 − p′
1

α−p1

p3−p1

2h + λI2,

. . .

p′j =
σ2

2h2 (pj−1 − 2pj + pj+1) + γ
pj+1−pj−1

2h − (r + λ)pj − p′
1

α−p1

pj+1−pj−1

2h λIj ,

. . .

p′M−1 = σ2

2h2 (pM−2 − 2pM−1)− γ−pM−2

2h − (r + λ)pM−1 +
p′
1

α−p1

pM−2

2h + λIM−1,

(27)
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where γ = r − λκ− σ2

2 , and

p0 =

0, τ = 0,

β−α+p1

β , τ > 0.

(28)

System (27) is written in the matrix form

p̄′ = Ap̄+Φ(p̄), (29)

where p̄ = [p1, . . . , pM−1]
T , where Φ(p̄) is the vector that contains nonlinear

part of the equations, A is the (M − 1) × (M − 1) matrix of coefficients. The

interpolation used in Gauss-Hermite quadrature lead to a linear combination of

terms pj and some free components. The coefficients of this linear combination

contribute to the matrix A, while the free component is included into the non-

linear part. Thus, matrix A can written as a sum of one tridiagonal matrix (of

the central FD scheme) AFD :

AFD =


0 0 0 . . . 0 0 0

a−1 a0 a+1 . . . 0 0 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0
. . . 0 a−1 a0

 (30)

of coefficients

a±1 =
σ2

2h2
±
(
r − λκ− σ2

2

)
1

2h
, a0 = −σ2

h2
− (r + λ), (31)

and one matrix of interpolation coefficients AInt, such that A = AFD +AInt.

The nonlinear part is written

Φ(p̄) =



ϕ(α− p1)

−ϕp3−p1

2h + λÎ2

. . .

−ϕ
pj+1−pj−1

2h + λÎj

. . .

ϕpM−2

2h + λÎM−1


, (32)
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denoting

ϕ =

[
σ2

2h2
(p0 − 2p1 + p2) + γ

p2 − p0
2h

− (r + λ)p1 + λÎ1

]
1

α− p1 +
p2−p0

2h

,

(33)

where Î stands for the free terms of the Gauss-Hermite quadrature.

Nonlinear system of ODEs (29) represents the behaviour in time of the trans-

formed price function and can be solved numerically by ETD method [26]. The

idea of the method is to use matrix exponential and exact integration of lin-

ear part of the equation. For the temporal discretization we fix the time step

k = T
N , so that τn = nk, n = 0, . . . , N .

Since A in (29) does not depend on p̄ and Φ(p̄) is a nonlinear term, we

multiply both parts of (29) by the integrating factor e−Aτ and integrate over

time τ from τn to τn+1:

e−Aτn+1

p̄(τn+1)− e−Aτn

p̄(τn) =

∫ τn+1

τn

e−AτΦ(p̄(τ))dτ. (34)

Taking into account k = τn+1 − τn and changing the variable in the integral

s = τn+1 − τ one gets

p̄(τn+1) = eAkp̄(τn) +

∫ k

0

eAsΦ(p̄(τn+1 − s))ds. (35)

Note that the integral equation (35) is equivalent to the system of ODE (29)

in some given interval s ∈ [τn, τn+1], see for details Section 2.1 of [26].

We propose a first explicit approximation of the integral in (35) by replacing

p̄(τn+1 − s) by the known value p̄(τn) that corresponds to s = k. The local

truncation error of such approximation is O(k2) [26]. Then (35) takes the form

p̄(τn+1) = eAkp̄(τn) +

(∫ k

0

eAsds

)
Φ(p̄(τn)). (36)

Matrix A is singular and does not have a matrix inverse. Thus, in order

to avoid the computation of A−1 in exact computation of the integral
∫ k

0
eAsds

[35], Simpson’s quadrature rule is used [36]:

∫ k

0

eAsds =
k

6

(
eAk + 4eA

k
2 + I

)
+O(k5), (37)

where I stands for the identical matrix of size M − 1.
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5. Numerical Analysis and Examples

This section deals with empirical numerical analysis of the proposed method

for various models including study of numerical stability as one of the most

important characteristics of a numerical scheme.

Based on previous studies [31, 37], we aim to estimate the stability condition

on step sizes. It is found that in the case of European option, i.e. without free

boundary, the FD Euler scheme contains positive coefficients, if

h <
σ2

|r − λκ− σ2/2|
, k <

h2

σ2 + (r + λ)h2
. (38)

In present paper, we consider (38) as reference conditions for the numerical

study of stability of the proposed method. The second condition of (38) can be

written as

k < Cref(h) · h2, Cref(h) =
1

σ2 + (r + λ)h2
. (39)

Further, we provide series of experiments varying time step k = C · h2 in

order to establish numerically the critical value Ccritical and compare it with the

theoretical Cref.

5.1. American Vanilla Option

First, let us check the stability condition (38) for the American option case,

i.e., for λ = 0 and κ = 0. If C = Ccritical + ε, (ε > 0) is chosen, small

perturbations are observed in the solution. However, starting from h = 0.003

the stability criterion becomes much stricter, and even small ε in C = Ccritical+ε

leads to huge oscillations and very unstable solution (compare Figures 1 and 2).

We estimate the impact of the parameters r and σ on stability of the pro-

posed method (in terms of Ccritical) by repeating the experiment described above

with one fixed parameter and varying an other. Critical values of C are found

numerically and presented in Table 1 and plotted in Figure 3 together with the

theoretical values Cref. Note that Cref are found to have slight dependence on r,

while computed values, especially for small h, varies. However, for h sufficiently
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Figure 1: Optimal stopping boundary for

the problem with parameters (40) by the

proposed method (ETD) with h = 0.01,

and k = Ch2, where C = 29 (that is found

to be critical) and C = 32.5.
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Figure 2: Optimal stopping boundary

for the problem with parameters (40) by

the proposed method (ETD) with h =

0.001, and k = Ch2, where C = 22.262

(Ccritical = 22.262) and C = 22.2623.

large, the range of computed critical values of C is fixed and the theoretical C

are less than the computed. Thus, in the case of American Vanilla option, (38)

can be considered as a stability condition.

Now, let us fix r = 0.1 and check the impact of the volatility on the stabil-

ity. Critical values Ccritical are collected in Table 2 and presented in Figure 4.

Observing the plots, we found that Ccritical depends on σ, but almost does not

change across h-axe. The theoretical values Cref plotted in red are found to be

less than computed values for h sufficiently large. With increasing σ both lines

are approximating to each other.

Example 5.1. The American option without jumps considered in [33] takes the

following parameters

r = 0.1; σ = 0.2; E = 100; T = 1. (40)

For the transformed problem (10)–(16) with parameters(40) we set xmax =

ln 3, that corresponds to the choice Smax = 3E at the initial moment. The

numerical solution is constructed with h = 10−2 and k = 10−4. The proposed

method is compared with the finite-difference method of [31] and with results
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h\r 0.01 0.025 0.05 0.1

0.003 15.0 18.0 22.0 22.0

0.005 17.0 22.0 22.0 24.0

0.007 18.0 22.0 23.0 30.0

0.009 18.0 22.0 23.0 30.0

0.01 18.0 22.0 24.0 30.0

0.02 22.0 24.0 30.0 31.0

0.03 22.0 30.0 31.0 31.0

0.04 23.0 30.0 31.0 30.0

0.05 24.0 30.0 31.0 30.0

0.06 30.0 31.0 30.0 30.0

0.07 30.0 31.0 30.0 29.0

0.08 30.0 31.0 30.0 29.0

0.09 31.0 30.0 30.0 28.0

0.1 31.0 30.0 30.0 28.0

Table 1: Empirical critical values of C depending on h for various r with fixed σ = 0.2.
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h\σ 0.1 0.2 0.3 0.4 0.5

0.003 123.0 22.0 9.0 4.0 2.0

0.005 126.0 24.0 10.0 5.0 2.0

0.007 125.0 30.0 10.0 5.0 3.0

0.009 124.0 30.0 10.0 5.0 3.0

0.01 124.0 30.0 10.0 5.0 3.0

0.02 119.0 31.0 13.0 6.0 3.0

0.03 115.0 31.0 13.0 7.0 3.0

0.04 111.0 30.0 13.0 7.0 4.0

0.05 108.0 30.0 13.0 7.0 4.0

0.06 104.0 30.0 13.0 7.0 4.0

0.07 101.0 29.0 13.0 7.0 4.0

0.08 299.0 29.0 13.0 7.0 4.0

0.09 299.0 28.0 13.0 7.0 4.0

0.1 299.0 28.0 13.0 7.0 4.0

Table 2: Empirical critical values of C depending on h for various σ = 0.1 and fixed r = 0.1.
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Method Sf(T )

FF-ETD (proposed) 0.8628

FF-FDM [31] 0.8628

FF-Expl [33] 0.8623

FF-Impl [33] 0.8619

Table 3: Optimal stopping boundary at the moment of signing the contract τ = T computed

by the proposed FF-ETD method and FD method proposed in [31, 33].

of [33] in Table 3.

The numerical solution of the problem is constructed as described above by

using the ETD method. Then the inverse transform is applied to the solution

in order to obtain the option price at the moment τ = T , i.e. at the moment of

signing the contract. The numerical solution (solid line) and the payoff (dashed

lined) are presented in Figure 5. It can be noticed that the numerical solution

is constructed not in the whole interval [0, Smax], but from the optimal stopping

boundary. The change of Sf(τ) in time is given in Figure 6 comparing with the

results of the proposed in [31] FDM with logarithmic front-fixing transformation.
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Figure 5: Prices of American option with

parameters (40) at initial moment (τ =

0) and numerical solution by the proposed

ETD method with h = 0.01, k = h2 at

moment τ = T .
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Figure 6: Optimal stopping boundary by

the proposed method (ETD) with h =

0.01, k = h2 and the FDM from [31] for

the problem with parameters (40).

5.2. Merton’s Model

Under Merton’s model g(η) is the PDF of the lognormal distribution with

parameters µJ and σJ :

gMerton(η) =
1√

2πσJη
exp

(
− (ln η − µJ)

2

2σ2
J

)
. (41)

In the case of lognormal distribution with the mean µJ and the variance σ2
J ,

the expected relative jump size takes the form

κMerton = E(η − 1) = exp

(
µJ +

σ2
J

2

)
− 1. (42)

In the case of Merton’s model, under the front-fixing transformation the

integral term (12) takes the form

IMerton(x, τ) =
1√
2πσJ

∫ +∞

−∞
p(ξ, τ) exp

(
− (ξ − (x+ µJ))

2

2σ2
J

)
dξ, (43)

that can be understood as an expectation of p(x, τ) for normally distributed x

with mean x+ µJ and the standard deviation σJ .

The integral term given in form (43) requires an additional change of vari-
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able. For every fixed j let us consider γi =
ξi−xj−µJ√

2πσJ
, then

(IMerton)
n
j =

1√
π

Nq∑
i=0

ωip̂(
√
2σJγi + (µJ + xj), τ

n). (44)

In present section we consider several numerical examples in order to study

the numerical stability of the solution, as well as to compare the proposed FDM

based on the front-fixing transformation with known methods in literature.

Example 5.2. American put option under the Merton model with parameters

[38]

σ = 0.15, r = 0.05, T = 0.25, E = 100,

λ = 0.1, σJ = 0.45, µJ = −0.9. (45)

This set of parameters is used for comparison by many authors [28]. In Table

4 the price of American option (45) at S = E is given. For numerical solution

we chose xmax = 3, Nq = 10. We compare the proposed method (FF-ETD) with

the cubic spline radial basis function method (RBF-CH) of Chan and Hubbert

[39]; proposed in [28] radial basis function with differential quadrature with

exponential time integration (RBF-ETI). In the case of the FF-ETD method,

more spatial nodes are necessary to reach the desired accuracy. Thus, for N =

1600, the option price is P (E, 0) = 3.2413. In [11], the operator splitting FDM

method (OS-FDM) is proposed, with the most accurate estimation of the option

price with parameters (45), equal to 3.2441229 obtained with N = 4096 spatial

nodes. As a reference value the results of the implicit method by d’Halluin et

al. [40] is chosen. As one can see from the results, in some cases RBF methods

may perform better than the proposed method. However, their efficiency and

robustness is very sensitive to the choice of shape parameter and the RBF

method does not provide a strategy to select the appropriate values of it.

To compare the convergence of the proposed method, the relative error is

considered. From the results presented in Figure 7 we can conclude that the

FF-ETD method shows almost quadratic convergence in space. To be more

precisely, we compute the convergence rate γ(n1, n2) by the following formula
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N FF-ETD (proposed) RBF-CH [39] RBF-ETI [28]

80 3.3133 3.9833 3.2873

160 3.2618 3.3803 3.2515

320 3.2463 3.2084 3.2437

640 3.2428 3.1658 3.2418

Reference value 3.241248

Table 4: Comparison of prices of American put option with parameters (45) at S = 100 using

the proposed method and RBF methods of [28] and [39] for various number of spatial grid

nodes N (temporal step size k is fixed).

γ(N1, N2) =
log(error1)− log(error2)

log(N2)− log(N1)
, (46)

where error stands for the relative error for the results in Table 4. For instance,

for N1 = 320 and N2 = 640, γ(320, 640) = 2.1394 , while γ(80, 160) = 1.8061

that gives the average value γ̄ = 1.9906.

In order to check condition (39), the following cases are simulated:

1. C ≪ Cref (C = 0.01Cref);

2. C < Cref (C = 0.9Cref);

3. C = Cref;

4. C > Cref (C = 1.28Cref).

The free boundary motion for these C are given in Figure 8. The number of

spatial nodes is 600, in that case for parameters (45), Cref(h) = 44.4370. Even

the perturbations in C are not significant, but if the condition (38) is broken

(case 3), the solution is not stable, that confirms condition 39.

5.3. Kou’s Model

Under Kou’s model g(η) is the PDF of the log-Laplace density:

gKou(η) =

qα2η
α2−1, 0 < η < 1,

(1− q)α1η
−(α1+1), η ≥ 1,

(47)
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Figure 7: The relative error depending on number of spatial nodes for various methods from

Table 4.
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N FF-ETD CPU-time (s)

100 2.841335 0.2656

200 2.812952 0.9062

400 2.810183 1.1406

800 2.808384 5.8280

1600 2.807821 105.4884

Reference value 2.807879

Table 5: Comparison of prices of American put option with parameters (49) at S = 100 using

the FF-ETD for various number of spatial grid nodes N with corresponding CPU-time.

where α1 > 1, α2 > 0 and 0 < q < 1 are parameters of the log double exponential

distribution. In that case, the expected relative jump size can be found as follows

κKou =
(1− q)α1

α1 − 1
+

qα2

α2 + 1
− 1. (48)

Example 5.3. The proposed method is applied to price American put option

under Kou’s model, the parameters are given in [19, 9]:

σ = 0.15, r = 0.05, T = 0.25, E = 100,

λ = 0.1, α1 = 3.0465, α2 = 3.0775, q = 0.6555. (49)

Table 5 reports the results for the proposed FF-ETD method reporting the

corresponding CPU-time. To obtain these results, the following parameters of

discretization are used: xmax = 3, Nq = 8. In order to guarantee the stability

of the method, temporal step size has to be chosen as k < Crefh
2, we set

C = 1 < Cref.

In order to establish the convergence rate of the FF-ETD method we set

k = 3.5·10−6 and repeat the simulations described above for N = 100, . . . , 1600.

Using formula (46), the mean value γ̄ = 2.0373.

The convergence of the proposed method is compared analogously to the

previous example. The results are given in Figure 9. The FF-ETD is compared
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Figure 9: The relative error depending on number of spatial nodes for the FF-ETD method

(with fixed time-step k = 3.5 · 10−6), finite volume method proposed by Gan et al. in [9], and

RBF-FD method proposed by Haghi et al. in [22].

with the penalty method treated by finite volume method proposed in [9], and

of the RBF-FD method of [22]. As a reference value the solution of [19] on the

refined grid is used. In the case of Kou’s model, the FF-ETD method shows the

second order of convergence.

Analogously to the previous example, we check stability condition (39) by

running the algorithm with various C. The free boundary motion for these

C are given in Figure 10. The number of spatial nodes is 600, in that case

for parameters (49), Cref(h) = 44.4370. Again, if the condition (39) is broken

(C = 1.1Cref), the solution is not stable, as it has been expected. However, it

is found that the FF-ETD method for the Kou’s model is more sensitive to the

stability condition (39), because in that case even small increment in Cref leads

to the instability.
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method with various C.

6. Conclusion

Numerical solution for the American option pricing problem under jump-

diffusion is challenging task due to the free boundary and additional integral

term. In this paper, the free boundary is treated by the front-fixing method,

while the integral part is accurately approximated by the Hermite-Gauss quadra-

ture. The PIDE has been then solved by ETD method.

The FF-ETD method can be applied to a PIDE. The front-fixing approach

allows to incorporate the free boundary as an additional unknown function.

The method shows the second order of convergence in space. Since matrix A

is constant-valued, the computation of the matrix exponential is needed just

once for all time steps. Moreover, the stability conditions for the proposed FF-

ETD are weaker than ones for the standard explicit FDM, which leads to the

smaller number of time iterations. Thus, the proposed method requires less

computational resources comparing to FD method.

Proposed method is applied to two widely used jump-diffusion models, Mer-
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ton’s model and Kou’s model. The method is analysed numerically. Established

stability condition is shown empirically for both cases, as well as for the Amer-

ican vanilla option, without integral term. The convergence rate is computed

and compared with relevant methods in the literature that shows its competi-

tiveness.
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