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Abstract

In this work, physical properties of thermoelectric materials are investigated. For the perfor-

mance enhancement of these materials, state-of-the-art techniques are reviewed.

An accurate estimation of the properties of thin films is important for the correct material

selection for further applications. Methods such as Direct and Alternate Current applied to

the Hall bars and Van der Pauw geometries are investigated for measurements of electrical

conductivity and Hall coefficient. These methods were simulated with the finite element method

software FEAP . The analysis of the most common errors and the influence of the magnetic

field on thermoelectric properties are provided. Finally, an experiment from recent research

technique for Seebeck and Hall coefficients estimation was repeated with FEAP simulation. It

is important to mention that prior to the study of the material characterization, validation of

the galvanomagnetic effect is carried out by comparing the analytical and the FEAP results.

Throughout the work the graphical post-processing and figures are done with GNUPlot and

Adobe Illustrator®. All the calculations are done with Mathematica® and Matlab®.
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1
Introduction

1.1 Introduction

1.1.1 Motivation

Since the beginning of Second Industrial Revolution, the number of manufacturing industries,

the amount of transportation, etc. have increased and as a consequence, the consumption of

non-renewable energy has exploded. The power generation stations required to fulfill most of

the demand are the cause of long-term toxin’s emissions and environmental deterioration.

In view of the foregoing, renewable energy production seems to be a solution to curb the

uncontrolled expenditure of natural resources and ecosystem destruction. However, forms of

electricity generation from solar, wind or hydropower sources are not completely feasible because

of some adverse effects such as noise or energy losses.

Energy Loss 66%

Thermoelectrics Electrical Energy

RetrievalEnergy used 33%

Figure 1.1: The method to recapture waste energy [7].

Therefore, an alternative approach to curb the destruction of nature is directed to research

methods of improving the overall energy utilization rate and efficiency. It has been estimated

that only 33% of the primary energy is used effectively and 66% is wasted in form of exhaust

or residual heat (Figure 1.1). Therefore, an innovative technology of recovering waste heat

and transforming it into electricity using the thermoelectric (TE) phenomenon was proposed.

Until now, this is one of the most promising ways of saving energy and achieving environmental

1
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protection. For instance, it has been demonstrated that the implementation of TE Generators

(TEGs) in the automotive sector could reduce fuel consumption by 10% through recovering the

combustion energy released into the atmosphere as gas exhaust [8].

The TE effect has raised a high scientific interest as an alternative low–energy source. The

advantage of using TE devices is that electricity can be obtained directly from a heat gradient,

without any intermediate processes. Despite their low performance, these power systems are

maintenance-free and offer long service life, high stability and reliability. The latter makes

TEGs an interesting electric supply for systems located in remote areas with difficult access for

maintenance. For that reason, TE technology is extensively used in navigation beacons, weather

stations, offshore platforms, or pipelines.

Deep outer space is also considered an extreme environment, where conventional power sup-

ply is not feasible and the TE phenomenon is applied. The particular class of Radioisotope

Thermoelectric Generators (RTGs) especially developed for applications in the aerospace sec-

tor; RTGs are the source of power supply for spacecrafts during interstellar missions to Moon

and outer Solar System planets and are extensively implemented in NASA’s projects. The most

recent one is in the Perseverance rover sent to Mars and equipped with a modern Multi-Mission

Radioisotope Thermoelectric Generator (MMRTG, Figure 1.2a).

(a) (b)

Figure 1.2: Applications of the TE phenomenon: (a) NASA’s Mars 2020 Perseverance rover

[49]; (b) MEMS [48].

As previously mentioned, TE systems are limited by a low-efficiency rate. In the past twenty

years, many investigations have been focused on improving this parameter. Until now, two

different methods have been studied: crystal structure materials and nanomaterials. The latter

has attracted great attention as more than 10% of efficiency can be gained from changes in the

material dimension combined with the possibility of integration into nano or microdevices.
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Nowadays, nanomaterials are highly demanded in the area of micro-harvesting and micro-

cooling. The first technique is key for making sensors completely wireless or manufacturing power

autonomous Micro-Electro-Mechanical Systems (MEMS, Figure 1.2b). The second technique is

essential for medical laboratory equipment or electronic devices.

To sum up, the TE studies can make significant contributions to technological development.

As stated before, TE materials have been applied for cooling, heating or power generation

in many fields such as medicine, transport, the automotive and aviation industry, aerospace

and electronics. The ability of these materials to work in tandem with other technologies and

their application into reversible energy conversion, allows this technology to be one of the most

promising at the moment.

1.2 The historical background of thermoelectricity

Thermoelectricity is the phenomenon of direct conversion of a heat gradient into electricity

for solid or liquid semiconductors. This physical effect is based on three interrelated ones: the

Seebeck TE effect and, the Peltier plus the Thomson electrothermal effects.

T1

T2

Conductor A

Conductor B

∆V

Figure 1.3: The measurement of ∆V .

In 1821, T. Seebeck observed the existence of a voltage difference ∆V in an open circuit,

when two thermocouples (joints of dissimilar conductors A, B) were maintained at different

temperatures T1, T2 as seen in Figure 1.3. T. Seebeck initially believed that this was a purely

magnetic effect, but later it became clear that the appearance of the electric flux was caused by

the T gradient. Some years later, in the course of experimental studies of the conductivity of Sb

and Bi, J. Peltier noticed T changes in a thermocouple, with a prescribed electric flux. In the

case of a closed circuit with two thermocouples, heat is absorbed at one end of the thermocouple

3



Chapter 1. Introduction

and released at the other (Figure 1.4).

It is apparent that the Peltier effect is the opposite of the Seebeck effect. J. Peltier also made

additional research on the influence of a flux direction applied through the thermocouple. He

defended that the direction is the decisive parameter that determines if heating or the contrary

cooling effect can be obtained.

Cooling Heating

Conductor A

Conductor B
Accumulator

Figure 1.4: The Peltier’s effect of cooling and heating.

The next breakthrough was achieved by W. Thomson, who studied TE effects in an uniform

conductor. As illustrated in Figure 1.5, in the metal with dissimilar T at its extremes heat is

generated (positive Thomson effect) when the flux is directed from the heated to the cooled

extremes. For the opposite flux direction, heat is absorbed (negative Thomson effect).

T1

Uniform conductor

T2

Accumulator

Figure 1.5: A scheme of the Thomson’s experiment.

From the physical statements described above, emerged three TE parameters: the Seebeck,

4



Section 1.3. TE applications

the Peltier and the Thomson coefficients useful for TE materials characterization.

1.3 TE applications

The TE generation modules have become extensively demanded due to high reliability, resis-

tance to mechanical loads and to vibrations. The scope of TE applications is extremely diverse

and are discussed in the following subsections.

1.3.1 TE Generators (TEGs)

As stated before, TEGs are the simplest TE devices that convert a T gradient into a useful

power source. A TEG basic element (Figure 1.6) is a thermocouple, made up of p-type and n-

type semiconductors interconnected through a Cu conductor. In n-type semiconductors, charge

carriers are electrons, whereas in p-type charge carriers are holes. When extremes of the ther-

mocouple are exposed to different temperatures, charge carriers diffuse from the hot side and

accrue at the opposite. This disposition of charge carriers creates ∆V along the semiconductor.

Cu platesn-type p-type

Ceramic

plates

Figure 1.6: A scheme of the TE module.

To construct TEG’s, thermocouples are connected electrically in series and thermally in par-

allel. These thermocouples are placed between two ceramic plates, that provide an appropriate

structural rigidity and a flat surface for application in more complex devices. The structure

described in this subsection can be used for the Seebeck and the Peltier effects.
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1.3.2 Radioisotope TE Generators (RTGs)

The space explorations take place at large distances beyond the Earth’s atmosphere and

require safe and long-term power generation. In deep space, a conventional power supply with

burning fuels is impractical due to the heaviness of the fuel amount the probe needs to carry.

In that context, nuclear power systems such as RTGs have been popular since 1960 and

are a source of heat and onboard power supply for spacecraft and scientific instruments. The

working principle of these generators is to convert through thermocouples heat generated from

the natural decay of a radioisotope fuel Pu-238 into electricity; the selection of materials for

thermocouples depends on mission requirements. The first RTG used for space missions was

SNAP-3 (System for Nuclear Auxiliary Power), a 3 [W] generator mounted in the navigational

satellite (U.S. Navy Transit 4A) launched in 1961 (Figure 1.7), [3].

(a) (b)

Figure 1.7: The first space mission with the RTG power supply: (a) Navy’s Transit 4A naviga-

tional satellite [47]; (b) Installation of the SNAP-3B to the Navy’s navigational satellite [50].

Some years later, RTGs were used on Earth, Moon, and other solar system spacecrafts and

were capable to provide the total electrical power supply. World-known missions such as the

Pioneer, Voyager, Galileo, Ulysses and Cassini also utilized RTGs. The last three, consisted of

572 thermocouples wired in an electric circuit, capable to generate a total of 300 [W] with the

initial fuel loading [3], [9].

In view of the foregoing, RTGs are highly demanded in space explorations due to:

• Durability: capable to operate at extreme environmental conditions such as high radia-

tion or extreme temperatures making their application appropriate for deep space missions.
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• Autonomy: no special requirements to start working. Once the radioisotope fuel source

is loaded into a converter, electricity generation starts.

1.3.3 Aircraft-specific TE Generator modules

Commercial aircrafts are typically equipped with a large number of sensors for data pro-

cessing, measuring, and communication tasks. Today, the development of sensors with an au-

tonomous power supply, named Wireless Sensor Networks (WSN), allows to reduce weight,

cabling effort and maintenance costs, which normally represent the third-highest airline expense

[2], [10].

Energy supply with batteries was unsuccessful due to critical drawbacks such as replacement

and risk of ignition at high temperatures. Another alternative was the implementation of solar

cells, however, they were rapidly damaged due to structural vibrations during the journey. In

that context, TEGs were an attainable solution for the WSN energy supply.

In aircrafts, there are two main methods to obtain a T gradient required for TEGs functioning:

from passenger’s cabin inside/outside T difference, or from exterior T variations with altitude

during take-off and landing. The second method supposed a huge technical effort through

the TEG installation and it was considered more suitable to take advantage of the first [6].

With TEGs implementation, sensors such as those of Structural Health Monitoring (SHM) and

Autonomous low-power wireless Sensor Nodes (ASN) became fully self-powered.

The application of TEGs is not only restricted to the aeronautical sector. Automotive manu-

facturing companies also have been investigating their implementation in models such as BMW

X6, Ford Fusion and Chevy Suburban. This application can provide a nominal 5% improvement

in fuel economy as waste heat is converted into electricity [4].

1.4 Recent progress in TE materials

TE materials can be characterized by a quantity named figure of merit ZT , which defines the

conversion efficiency of the material. For enhancing ZT , three strongly correlated parameters

such as Seebeck coefficient α, electrical conductivity γ and thermal conductivity κ need to be

taken into account. The latter is subdivided into lattice thermal conductivity κl and electron

thermal conductivity κe:

ZT =
α2γ T

κ
; κ = κl + κe (1.1)
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where α2γ is the power factor and T the temperature of working.

Through the last 20 years, the TE properties α, γ, κ of metals, semiconductors and insulators

have been investigated. Efficient TE materials should have a high α2γ combined with a low κ.

It has been demonstrated that semiconductors are the most suitable for TE applications due to

their relatively low κ and optimal value of α2γ in comparison with metals and insulators as seen

in the graphics:
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Figure 1.8: Relationship between TE properties and free charge carrier concentration for different

materials [12].

Several mathematical models have been developed for a better understanding of the TE

parameters performance. According to the Wiedman-Franz Law, α2γ and κe are correlated by

the charge carrier concentration n. Consequently, changing n to obtain high α2γ and low κe is
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not possible as κe, γ, n are linearly dependent. In that way, κl is the unique parameter that can

contribute to enhance ZT since it is independent of n:

α =
8π2γ k2

b

3e h2
p

mi T

(
π

3n

)2/3

; γ = n e µ ;

κe = Γ T γ ; κl =
1

3
cp v2

g τp

(1.2)

where Γ is the Lorenz number, cp the heat capacity, e the carrier charge, hp the Plank constant,

kb the Boltzmann constant, mi the effective mass of the charge carrier, vg the phonon group

velocity, µ the charge carrier mobility and τp the phonon relaxation time.

The first TE materials presented ZT ≈ 1 and efficiencies of about 5%. Recent investigations

reported maximum improvements of ZT = 2.6, [13]. However, no material has yet achieved

ZT ≥ 3 required to make TE commercial devices competitive with conventional systems. Until

now, two approaches to improve ZT are used:

• TE materials with renewed crystal structure: also named Phonon Glass Electron

Crystal (PGEC), was introduced by Slack in 1995 and consisted in creating TE with

glass behavior regarding their thermal properties and crystal behavior regarding their

electrical properties. The purpose of this method is to reduce κl significantly; it is used in

skutterudites, zintl phases and clathrates with 1 ≤ ZT ≤ 2, [13].

• Nanostructured TE materials: size effect in TE materials and the later approach of

nanostructuring has efficiently enhanced TE properties and both are reviewed in Subsec-

tion 1.4.2 and 1.4.1.

1.4.1 Bulk nanostructured TE materials (Nanocomposites)

Nanocomposites are bulk TE materials embedded with nanoparticles. These materials play

an important role in commercial applications as they can be synthesized in large quantities and

are compatible with electronic devices [13]. The idea of nanostructured TE materials is focused

on the reduction of κl. According to Boltzmann law Eq. (1.2), a reduced κl can be achieved

with a short τp, a slow vg and a low cp. The last parameter is difficult to decrease since at the

high T at which TE materials work, cp is defined by the Dulong-Petit limit. Therefore vg and

τp reduction techniques play an important role in TE structure design. In this subsection, the

method of the τp diminution is detailed as is commonly used in nanocomposites [15].
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Lattice vibration is the oscillation experienced by atoms in solid materials about the equi-

librium position. This vibrational energy is quantized by particles named phonons, the propa-

gation of which originates κl and contributes to the heat transport phenomenon in TE besides

the charge carriers.

This vibrations also can be classified in harmonic and anharmonic. In harmonic lattice

vibrations, the restoring force (force to bring the particle to equilibrium) is a linear function of

atomic displacement from its equilibrium position. In this configuration, the phonon’s movement

does not cause any energy exchange. However, even in perfect crystals, the lattice vibrations

are anharmonic, characteristic that results in intrinsic scattering of phonons. This phenomenon

causes a τp reduction and therefore lowers κl. Moreover, any imperfection or defect strengthens

the lattice anharmonicity and intensifies the scattering rate of phonons creating an additional

thermal resistance (shortened τp and low κl). For that purpose nanocomposites are designed

with point defects, dislocations and interfaces.

(a) (b) (c)

Figure 1.9: Illustration of structure design of nanocomposites: (a) nanograined composite; (b)

nanoinclusion composite with an incoherent interface; (c) nanoinclusion composite with a co-

herent interface.

• Point defects: substitutions, interstitials and vacancies, are imperfections that intensify

the scattering of high-frequency phonons with short wavelengths.

• Dislocations: maximize the scattering of mid-frequency phonons, and can be introduced

into the material through clustering of vacancies and interstitials in single phased material

or through coherent/incoherent second-phase precipitations that originate boundary dis-

locations. The coherent dislocations (Figure 1.9(c)) leads to good lattice matching with

bulk material while incoherent ones (Figure 1.9(b)) define a boundary between matrix and

precipitation.

10
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• Interfaces: can be created by reducing the grain size or through precipitations (Fig-

ure 1.9(a)). As a consequence this interfaces lead to the scattering of low-frequency

phonons.

1.4.2 Low dimensional TE materials

Great ZT improvements were reported in 1993 with the first models of low dimensional

TE materials. The quantum confinement allowed to vary γ, α, κ independently, leading to the

possibility of reaching ZT = 2, [14]. The origin of improved TE properties comes from enhanced

electronic Density of States (DOS), the term that refers to the number of quantized energy levels

that electrons can occupy. The magnitude DOS can be expressed in mass terms as mi; a high

mi implies high α, Eq. (1.2). The quantum confinement also contributes to vg reduction and

increase of phonon interface scattering; both effects result in reduced κl.

(a) (b) (c)

Figure 1.10: Dimensional comparison of bulk TE (light blue) to quantum confinement structures

(grey): (a) Quantum dot; (b) Quantum wire; (c) Quantum well.

This method has been experimentally applied to quantum dots (0D structures, Figure 1.10(a)),

quantum wires (1D structures, Figure 1.10(b)) and quantum wells (2D structures, Figure 1.10(c)).

• Quantum wires

The high surface to volume ratio of 1D quantum wires results in reduced κl accompanied

by strong quantum confinement, both effects destined to large ZT improvement. However, in

experimental works, wires demonstrate a ZT lower than predicted theoretically, reaching only

ZT = 0.25. A reason for this drastic reduction is under investigation and probably it is caused

by impurities [11].
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• Quantum well superlattices

Superlattices are periodic structures of two or more quantum wells (thin-film layers) with

confined 2D electrons movement. In this kind of structure, α can increase three orders of

magnitude while κl is reduced in the perpendicular direction due to phonon scattering. For

fabrication of the thin film, techniques such as Pulsed Laser Deposition (PLD) and Molecular

Beam Epitaxy (MBE) were developed.

Nowadays, Bi2T e3 and Sb2T e3 superlattices can reach ZT = 2.4 [13]. Although with high

ZT , these structures do not have any practical application for large-area devices due to the

difficult fabrication process and lack of scientific investigations on stability.

1.5 Thesis organization

This academic work is subdivided into the following chapters:

• Chapter 2: Validation of simulation results

Stationary convection, thermoelectric and galvanomagnetic cases were analytically solved

and compared with the FEAP results. The purpose of this section is to validate the user’s

elements that are later used for experiments’ simulations.

• Chapter 3: Measurement techniques of the Hall effect in the thin-film semi-

conductors

Measurements are performed applying Direct (DC) and Alternate (AC) current techniques

on two types of geometries: Hall bar and Van der Pauw shapes. The influence of spin Hall

effect and erroneous voltage contribution due to contacts misalignment are discussed. Fi-

nally, two parametric studies are developed. The first one is focused on the magnitude

of the magnetic field from which thermoelectric properties become both magnetic and

temperature functions. The second one studies the influence of film’s thickness on mea-

surement results.

• Chapter 4: Lithography-free resistance thermometry

Recent research technique for Seebeck and Hall coefficients estimation is simulated with

FEAP . The laboratory results are compared with those of FEAP .

• Chapter 5: Conclusions

Concludes all the previous results, provides future directions and a total budget for this

work.
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2
Validation of simulation results

The Finite Element Method (FEM) is a numerical technique developed to solve Partial

Differential Equations (PDEs) by imposing Boundary Conditions (BCs). As most physical

phenomena are defined with PDEs, it is considered appropriate to model heat conduction, TE

or galvanomagnetic (GM) problems with FEM.

Among many FEM softwares, the FEAP code developed by Robert L. Taylor at the Univer-

sity of California (Berkeley) was chosen. FEAP contains a general element library for modeling

1D, 2D or 3D meshes to solve linear heat conduction, linear/non-linear structural and solid

mechanics problems. One of the benefits of the program is that offers the possibility to create

new elements that incorporate the formulation defined by the user [16]. In this chapter, two

elements previously developed are used:

(i) elmt11.f : a 3D solid element with coupled thermal and electrical conduction formulation.

(ii) elmt12.f : a 2D GM thin film layer coupled with an optional convection condition.

The main goal of the present chapter is to validate the elmt11.f and the elmt12.f by com-

paring FEAP modeling results with analytical solutions for stationary and transient problems.

Results will be displayed on 2D graphics and FEAP meshes. Once the accuracy of these ele-

ments has been validated, more complex simulations of cases without analytical solution can be

carried out.

2.1 Stationary validation of elmt11.f and elmt12.f

First, cases of heat conduction/convection are simulated for stationary problems. Once these

cases are validated, the subsequent simulations will be focused on the TE and the GM processes.

The simulations will be run with three different TE material.

For convection and Joule-Seebeck cases, the cuprous delafossite CuAlO2 is used, the TE

properties of which are assumed as constant with T . The subsequent Seebeck effect is run for

TE material with properties variable with T ; for this simulation the delafossite transition oxide,

in particular Cu0.99Pt0.01FeO2 is chosen. This material was selected as its TE properties can

be approximated with linear functions of T with low error. Finally, GM simulations will be run
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for indium antimonide InSb material.

2.1.1 Formulation of conduction/convection heat transfer in extended sur-

faces

In this subsection, various fin geometries with a variable cross-sectional area and different BCs

are simulated. For a better understanding of the T –evolution along fins, a general formulation

of heat transfer is introduced.

x

P dAs

qx qx +
∂qx

∂x
dx

dqc
dx

ds
dys

dx

y
Ac

Figure 2.1: Representation of conduction qx and convection dqc for selected dx slice of the fin.

The base of the fin is maintained at constant TL, while its lateral surface is exposed to a fluid

with known heat transfer coefficient h. T is removed along this surface due to convection and

conducted through the fin in axial direction (Figure 2.1).

Since the T –gradient in the y–direction can be considered negligible, it is assumed as a

function of x–direction. This simplification transforms a 2D heat transfer problem into 1D and

makes it possible to obtain an analytical solution for fins with non–regular cross-sections area.

To obtain the T –distribution, it is necessary to formulate the principle of energy conservation:

Ėin + Ėg − Ėout = Ė (2.1)

where Ėin is the rate of energy added to dx, Ėg the rate of energy generation per unit volume

of dx, Ėout the rate of energy removed and Ė the rate of energy change within dx.

It is assumed that the energy entering dx by conduction, leaves by both convection and conduc-
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tion. All the terms of the Eq. (2.1) can be expanded as:

Ėin = qx ; Ėg = Qg Ac dx ; Ėout = qx +
∂qx

∂x
+ dqc ;

Ė = d cpAc Ṫ dx ; qx = −κ Ac
∂T

∂x
; qc = h (T − T∞) dAs

(2.2)

where qx is the conductive heat flux, qc the convective heat flux, Qg the generated heat flux,

T = T (x) the variable temperature, T∞ the temperature and h the heat transfer coefficient (both

of the convective fluid), dAs the surface area of the fin where heat is exchanged by convection

and Ac = Ac (x) the cross-section area through which heat is conducted.

Substituting Eqs. (2.2) into Eq. (2.1), a general equation that describes the T –variation along

the fin is obtained:

∂2T

∂x2
+

1

Ac

dAc

dx

∂T

∂x
− h

κ Ac

dAs

dx
(T − T∞) +

Qg

κ
=

d cp

κ
Ṫ (2.3)

From the previous expression can be concluded that the T –distribution is mostly determined by

the fin geometry. In case of stationary problems without heat generation, the Eq. (2.3) can be

simplified to:

∂2T

∂x2
+

1

Ac

dAc

dx

∂T

∂x
− h

κ Ac

dAs

dx
(T − T∞) = 0 (2.4)

The dAs can be defined as:

dAs = P ds

ds =
√

dx2 + dys
2







→ dAs

dx
= P

[

1 +

(
dys

dx

)2
]1/2

(2.5)

where P ≡ P (x) is the circumference perimeter in contact with fluid, represented in the Fig-

ure 2.1.
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x
x T0T0

s

w

r0

TL

TL L
L

Figure 2.2: Representation of triangular and conical fins with dimensions and boundary condi-

tions.

To solve a differential equation of second derivative, two BCs are required. In general, the

first condition is imposed at the base and the second at the end of the fin. Two BCs used in

Subsection 2.1.2 for solving the Eq. (2.4) are:

(i) Specified T at the base:

T (x = 0) := T0

(ii) Specified T at the tip:

T (x = L) := TL

2.1.2 Steady-state conduction/convection in variable cross-section fins for

uncoupled problems

The cases represented in the Figure 2.2 are simulated. Air is chosen as a convective fluid.

The BCs taken into account are (i) and (ii) the values of which, besides the fins dimensions,

are summarized in the Table 2.1.

Parameter Value Units

L 0.4 [m]

w 0.6 [m]

s 0.2 [m]

r0 0.2 [m]

Parameter Value Units

T0 300 [K]

TL 600 [K]

T∞ 293 [K]

h 5 [W/K·m2]

Table 2.1: Dimensions and boundary conditions for cases represented in the Figure 2.2.

As stated before for convection and Joule-Seebeck cases CuAlO2 material is used, the values

of κm particularized for 400 [K] is taken from Table 2.2:
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Properties CuAlO2 Units

αm 3.20 × 10−4 [V/K]

γm 1.85 [1/Ω·m]

κm 2.64 [W/m·K]

Table 2.2: Physical properties of the cuprous delafossite CuAlO2 material at temperature Tm =

400 [K], [17].

• Triangular fin

For the fin with area of variable cross-section, the Eq. (2.4) cannot be simplified. The conductive

and the convective areas are:







Ac = w ys(x) ; ys(x) =
x s

2L
→ dAc

dx
=

w s

L

dAs

dx
= 2w

[

1 +

(
dys

dx

)2
]1/2

= 2w

[

1 +

(
s

2L

)2
]1/2 (2.6)

x2 ∂2T

∂x2
+ x

∂T

∂x
− x

2 h L

κm s

√

1 +

(
s

2 L

)2

(T − T∞) = 0 (2.7)

The Eq. (2.7) is a linear, second order, Ordinary Differential Equation (ODE). Its solution can

be obtained with Bessel functions, the general differential equation to solve the Eq. (2.7) is:

x2 d2f

dx2
+
[

(1−2A)x−2B x2
] df

dx
+
[

C2 D2 x2C +B2 x2 −B (1−2A)x+A2 −C2 n2
i

]

f = 0 (2.8)

In order to identify terms between the two previous equations, A = B = ni = 0 and D must be

an imaginary number and T ≡ f . The solution of the Eq. (2.8) is from [19]:

f(x) = xA eB x
[

C1Ini
(p xC) + C2Kni

(p xC)
]

where C1 and C2 are the constants of integration, Ini
(p xC) the modified Bessel function of

order ni of the first kind and Kni
(p xC) of the second kind; in addition p = D/i, where i is the

imaginary number.

It can be demonstrated that for this case the previous expression results in:
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T = T∞ + C1 I0







2
√

h
(

4 L2 + s2
)1/4√

x
√

κm s







+ 2 C2 K0







2
√

h
(

4 L2 + s2
)1/4√

x
√

κm s







(2.9)

where the expressions inside brackets represent the argument of the Bessel functions.

Applying the BCs, the solution of C1 and C2 can be obtained. Since K0(x = 0) = ∞ at the tip

of the fin we would obtain T0 = ∞, an impossible solution; then C2 = 0 must be assumed, see

[19]. The Eq. (2.9) solution for the T –distribution is obtained with Mathematica®:

T = T∞ +

(TL − T∞) I0







2
√

h
(

4L2 + s2
)1/4√

x
√

κm s







I0







2
√

h L
(

4L2 + s2
)1/4

√
κm s







(2.10)

The Eq. (2.10) and the FEAP simulation results are displayed graphically. The triangular

fin is discretized into 8 × 8 × 8 rectangular elements of elmt11.f , with a total of 729 nodes; in

addition convection is introduced with four thin layers of elmt12.f (one for each external side),

discretized into 8×8 elements. As the elmt11.f and the elmt12.f are defined only for rectangular

elements, the mesh of the triangular fin has a fictitious height of s0 = 10−4 [m] at the tip. The

FEAP and the analytical results fit perfectly in most of the length but diverge about 3.5% at

the tip due to the simplification C2 = 0 assumed in the Eq. (2.10); this simplification eliminates

the contribution of the modified Bessel function of the second kind K0 from the T –distribution.
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Figure 2.3: Analytical and numerical results of the T –distribution for the triangular fin with

specified temperatures T at the base and at the tip. Results compared along y = 0.
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• Conical fin

In this case, circular conductive Ac and conical convective As areas are defined and substi-

tuted into the Eq. (2.4):






Ac = π ys(x)2 ; ys(x) =
r0 x

L
→ dAc

dx
= 2π

(
r0

L

)2

x

dAs

dx
= P

[

1 +

(
dys

dx

)2
]1/2

= 2π
r0

L

[

1 +

(
r0

L

)2
]1/2

(2.11)

∂2T

∂x2
+

2

x

∂T

∂x
− h L

κm r0 x

[

1 +

(
r0

L

)2
]1/2

(T − T∞) = 0 (2.12)

The previous expression is approximated with a Bessel general differential equation as [19]:

x2 ∂2T

∂x2
+ 2 x

∂T

∂x
− η2 x (T − T∞) = 0 ; η2 :=

h L

κm r0

[

1 +

(
r0

L

)2
]1/2

(2.13)

Comparing Eq. (2.13) with Eq. (2.8), D must be taken imaginary and ni = 1. Then, the solution

for Eq. (2.13) is defined with modified Bessel functions of the first I1 and the second kind K1:

T = T∞ +
I1

(

2 η
√

x
)

C1

η
√

x
+

2K1

(

2 η
√

x
)

C2

η
√

x
(2.14)

The same simplification C2 = 0 as for the triangular fin is applied, since K1(x = 0) = ∞ and

at the tip T0 = ∞ is obtained [19]. After applying BCs, the solution of the Eq. (2.14) is again

obtained with Mathematica®:

T = T∞ −

√
L (T∞ − TL) I1

(

2 η
√

x
)

√
x I1

(

2 η
√

L
) (2.15)

Each 90◦ sector of the mesh is discretized into 8 × 8 × 8 parallelepiped elements of elmt11.f

and the external surfaces into 8 × 8 elements of convective thin layer of elmt12.f . The mesh

contains a total of 1458 nodes. The Eq. (2.15) and the FEAP results fit at most of the length

but diverge at the tip due to the removal of the modified Bessel function K1 in the Eq. (2.14).

The error introduced into the analytical solution near the tip is about of 16.7%, bigger than in

the previous case; this larger error is due to the order of K: K0(x) = ∞ already at x / 0.05,

while K1(x) = ∞ at x / 0.15. The x domain for ∞ in the first order is larger than that for the

zero order of K and as a consequence, the divergence at the conical tip is more pronounced.
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Figure 2.4: Analytical and numerical results of the T –distribution for the conical fin with spec-

ified temperatures T at the base and at the tip. Results compared along the cone height.

2.1.3 Steady-state conduction in variable cross-section for TE problems

In this subsection, simulations are performed for the fins represented in Figure 2.5. The

dimensions of the triangular fin are the same as those of the Figure 2.2. A new geometry

describing an annular fin is introduced, the dimensions of which, besides the prescribed BCs

are summarized in Table 2.3. The first BC represented by TL, VL at the base is common for

Joule-Seebeck and Seebeck effects. The second BC is T0, V0 for the Joule-Seebeck effect and

only T0 for the Seebeck effect. As mentioned before, simulations of Joule-Seebeck effect are run

with constant TE properties, particularized for 400 [K] as in the Table 2.2. Once the validity of

this mesh is checked, the Seebeck effect is studied with variable properties.

x

y

r

r0

rL

TL, VL TL, VLT0, V0

T0

t ts

z

Figure 2.5: Representation of triangular and annular fins with dimensions and boundary condi-

tions.

Since in the rest of this work only 2D TE parts will be studied, the fins of this subsection

will also be 2D; the thickness of the TE layers will be very thin as seen in the Table 2.3. The

current cases have electro-thermal coupling and therefore the governing equations have to be
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reestablished.

Parameter Value Units

rL 1 [m]

r0 0.2 [m]

s 0.2 [m]

t 10−5 [m]

Parameter Value Units

T0 300 [K]

TL 600 [K]

V0 3 [V]

VL 0 [V]

Table 2.3: Dimensions and boundary conditions for cases represented in the Figure 2.5.

2.1.4 Simulations of the Joule-Seebeck effect

To study the Joule-Seebeck effect, T and V gradients are applied along the x–direction. A

general formulation for the Joule-Seebeck effect is:







jx = −γm Ac
dV

dx
− αm Ac γm

dT

dx

qx = −κm Ac
dT

dx
+ αm Ac T jx

djx

dx
= 0

−dqx

dx
− jx

dV

dx
= 0

(2.16)

where the first two are the balance equations and define electric jx and heat qx fluxes along the

x–direction, and the last two are the equilibrium equations [18]. To be able to find an analytical

solution, the variable area Ac is not included in the third equation.

The Eqs. (2.16) are non-linear and non-homogeneous ODEs. Due to the complexity of this

type of equations, the V and T distributions are also solved using Mathematica®. The command

DSolve can find solutions for ODE, partial or algebraic differential equations. The program’s

algorithm firstly classifies type, order, degree and linearity of the differential equation introduced

by the user. Later, the solution is obtained applying a programmed method for the classified

equation or in case of complex systems, by reducing the equations to a simpler one [51].

• Seebeck effect in triangular fin with low jx

Since the fluxes are going to be independent of the z–coordinate (Figure 2.5 left), the tri-

angular fin is analyzed with the 2D element elmt12.f . To simplify the following equations we

consider that the tip is not located at x = 0 but at a very small x = L0 = 0.001 [m]. This
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approximation is chosen as the results of T , V distributions will be functions of logarithms, and

log(0) is undefined. In that way, the height s0 at the tip is not completely null. Then, the

variable area Ac is the thickness t multiplied by s(x) along L0 < x < L.

Ac = t s(x) = t
s x

L
→ dAc

dx
= t

s

L
(2.17)

As mentioned before, the BCs are:

V (x = 0) := V0 ; V (x = L) := VL ;

T (x = 0) := T0 ; T (x = L) := TL

(2.18)

First, to obtain the jx and V distributions, the first and the third equations from Eqs. (2.16)

are considered. Applying the four BCs and solving with Mathematica®, the distributions of jx

and V are:

jx =
γm s [ αm (T0 − TL) + V0 − VL ]

L [log(L) − log(L0)]

V =
(αmT0 + V0) log(L) − (αmTL + VL) log(L0)

log(L) − log(L0)
+

[ αm (TL − T0) + VL − V0 ] L log(x) + αm [ log(L0) − log(L) ] T

log(L) − log(L0)

(2.19)

Next, the second and the fourth equations from Eqs. (2.16) are solved. The solution is

difficult to obtain and therefore some simplifications are considered. Taking into account that

αm is four orders of magnitude lower than κm, and jx obtained in the Eqs. (2.19) is practically

null, the term αm AcT jx can be neglected from qx equation. In order to verify this hypothesis,

the orders of magnitude of κm dT/dx and αm T jx are compared. The T and jx values are taken

from FEAP , while dT/dx is obtained approximating T to the fifth order polynomial with the

command Matlab® polyfit and analytically deriving T with respect to x. In the same way,

jx dV/dx and κm d2T/dx2 are compared.

22



Section 2.1. Stationary validation of elmt11.f and elmt12.f

ξ = x / L ξ = 0 ξ = 0.25 ξ = 0.5 ξ = 0.75 ξ = 1

αm T jx -0.057 -0.042 -0.025 -0.017 -0.003

κm dT/dx 9.59 ×103 2.25 ×103 826.3 996.4 692.81

jx dV/dx -0.087 -0.065 -0.041 -0.029 -0.0051

κm d2T/dx2 -1.14 ×105 -0.38 ×105 -0.14 ×105 -0.14 ×105 -0.37 ×105

Table 2.4: Numerical comparison between Fourier, Peltier and Joule terms.

As verified, αm T jx and jx dV/dx can be neglected. In that way, the second and the fourth

expression from the Eqs. (2.16) are simplified to:

qx = −κm Ac
dT

dx
+ ✭✭✭✭✭✭αm Ac T jx
︸ ︷︷ ︸

P eltier

; κm
d2T

dx2
=

�
�
�

jx
dV

dx
︸ ︷︷ ︸

Joule

(2.20)

It should be noted that Peltier and Joule effects can be neglected from the T –distribution if jx

is low enough but not from the V –distribution.

Applying the temperature BCs expressed in the Eqs. (2.18) to the previous expression, the

final qx and T –distribution are obtained with Mathematica®:

qx =
κm s (T0 − TL)

L[log(L) − log(L0)]
; T =

T0 log(L) − TL log(L0) + (TL − T0) log(x)

log(L) − log(L0)
(2.21)

For the final V –distribution, the previous T –solution is substituted into the last expression from

Eqs. (2.19):

V =
V0 log(L) − VL log(L0) + (VL − V0) log(x)

log(L) − log(L0)
(2.22)

The triangular thin film is discretized into 8×8 rectangular elements of elmt12.f with a total

of 81 nodes. As quadrilateral elements must be used, an imaginary height s0 = 10−4 [m] coherent

with the value of L0 is again introduced at the tip. The analytical and the FEAP solutions

diverge only 10% at 0 < ξ < 0.5. This little incoherence can be caused by both simplifications

of the Joule and the Peltier effects. These simplifications can be only applied to the case of

Seebeck effect with low jx or if the dimensions of the mesh are large; both cases result in a very

low jx.
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Figure 2.6: Analytical and numerical results of temperature and voltage distributions besides

the electric and thermal fluxes for the triangular fin. Results compared along y = 0.

Analyzing jx and qx, it seems that analytical results give the arithmetic mean value of that

of FEAP . These mean values is reasonable, as the conductive area was not considered in the

equilibrium equations Eqs. (2.16) due to the complexity of solving the complete expressions.

• Joule-Seebeck effect in triangular fin

In order to observe Joule and Peltier effects in the T –distribution, the previous voltage BCs

are increased by more than ten times:

24



Section 2.1. Stationary validation of elmt11.f and elmt12.f

V (x = 0) := V0 ; V (x = L) := 13.3 × VL (2.23)

The same jx and V –distribution (although with different values) as in the Eqs. (2.19) is

obtained. The difference with the previous case appears when T and qx are analyzed. First, qx

is obtained by integrating the fourth expression from the Eqs. (2.16):

qx = C1 +

γm s
[
αm(T0 − TL) + V0 − VL

]{[
αm(T0 − TL) + V0 − VL

]
log(x) + αm

[
log(L) − log(L0)

]
T
}

L
[
log(L) − log(L0)

]2

(2.24)

The previous equation is substituted into the second one from the Eqs. (2.16); applying the

two temperature BCs the two constants are solved and qx and T –distribution are obtained. The

T –solution is expressed with incomplete Gamma functions, that are integrals of the factorial

extension to complex numbers with variable integration limits. Generalized hypergeometric

series also appear, that are power series with successive coefficients. Due to the complexity of

the T –solution the final formulae results for T and qx are not provided, but the numerical results

are displayed on graphics.
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Figure 2.7: Analytical and numerical results of temperature and voltage distributions and electric

and thermal fluxes for the triangular fin. Results compared along y = 0.

The FEAP mesh is equal to that of the previous case. It can be concluded that with

new voltage BCs the Joule effect can be perfectly observed, although the closed-form is too

cumbersome; the T –distribution is incremented 50 [K] above TL. These FEAP and analytical

results fit perfectly along all the length. In the same way, qx results also fits almost perfectly,

but at the tip a substantial difference is observed that can be caused by 2D interactions between

T and V . The analytical jx results are again the average of those of FEAP due to the fact that

the conductive area in the third Eqs. (2.16) has been considered constant.

2.1.5 Simulation of the Seebeck effect with variable TE properties

Usually, the TE properties of any material are variable with T , in particular κ(T ), γ(T ),

α(T ). As mentioned at the beginning of Section 2, the properties of Cu0.99Pt0.01FeO2 can be

approximated with low error to linear T functions.
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Figure 2.8: Evolution of thermoelectric properties with temperature for Cu0.99Pt0.01FeO2 [21].

Continuous line: real properties; dashed line: linear function approximation

As seen in Figure 2.8 for both types of polynomials, the error introduced by approximating

the TE properties from the quadratic to linear polynomial order is negligible in the range of

study:

κ(T ) = κ0 + κ1T +✟✟✟κ2T 2 ≡ 7.296 − 7.02 × 10−3 T +✭✭✭✭✭✭✭✭
4.11 × 10−6 T 2

α(T )= α0 + α1T +✟✟✟α2T 2 ≡ 2.23 × 10−4 + 1.04 × 10−7 T −✭✭✭✭✭✭✭✭
1.78 × 10−10 T 2

γ(T ) = γ0 + γ1T +✟✟✟γ2T 2 ≡ 114.30 + 1.13 T +✭✭✭✭✭✭✭✭
8.93 × 10−4 T 2

(2.25)

Simulations of the Seebeck effect are performed prescribing a T –gradient along the x–direction

and fixing only VL = 0. The main difference between this Seebeck and the previous Joule-

Seebeck effects is the electric current jx = 0 [18]. The balance and the equilibrium equations

particularized for this case are:







0 = −γ(T ) Ac
dV

dr
− α(T ) Ac γ(T )

dT

dr

qr = −κ(T ) Ac
dT

dr

dqr

dr
= 0

(2.26)

• Annular fin

For this case, the heat and electrical conductive area is defined as the thickness t multiplied
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by the circumference perimeter: Ac = 2πrt. The three BCs that need to be taken into account

are:

V (r = r0) := VL ; T (r = r0) := TL ; T (r = rL) := T0 (2.27)

Solving the first equation from the Eqs. (2.26) and prescribing the first and second BCs, the

V –distribution is obtained with Mathematica®:

V = C3 − 1

2
T (2α0 + α1T ) → V = α0TL +

α1TL
2

2
+ VL − 1

2
T (2α0 + α1T ) (2.28)

The thermal field is solved with a system composed of the second and third equations and the

second and third BCs including qr and T variables:

qr = C1 ; T =
−κ0

κ1

+
κ1

√

κ0
2 π + 2κ1 π C2 − κ1 C1 log(r)√

π
(2.29)

Applying the second and third temperature BCs, the T –distribution and qr is obtained with

Mathematica®:

qr =
π
[
2κ0(T0 − TL) + 2κ1

(
T 2

0 − T 2
L

)]

log(rL) − log(r0)

T =
−κ0

κ1

+ κ1

√

(κ0 − κ1T0)2 log(rL) − (κ0 − κ1TL)2 log(r0)

log(rL) − log(r0)
+

+ κ1

√

κ1(TL − T0)[2κ0 + κ1(T0 + TL)] log(r)

log(rL) − log(r0)

(2.30)

Due to the symmetry only 1/4 of the fin is analyzed and discretized into 16 × 16 rectangular

elements of elmt12.f ; this mesh contains a total of 289 nodes. The FEAP and the analytical

solutions fit perfectly. It should be noted that even if there is no electric current, a V –distribution

appears due to the Seebeck effect.
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Figure 2.9: Analytical and numerical results of temperature and voltage distributions for the

annular fin.

2.1.6 Formulation of thermo–galvano–magnetic phenomena

The presence of a magnetic field affects the coefficients κ, γ, α of semiconductors. As a

consequence, thermo–magnetic, galvano–magnetic and thermo–galvano–magnetic effects can be

observed. The four phenomena that are analyzed in this subsection are:

• Righi-Leduc (thermo–magnetic, also named thermal Hall effect): with the prescription

of ∇yT and also a perpendicular (to the plane) magnetic field Bz, see Figure 2.10a), not

only vertical heat flux qy appears but also ∇xT :

∇xT = MBzqy (2.31)

where M is the Righi-Leduc coefficient.

• Hall (galvano–magnetic effect): with the prescription of ∇yV and also a perpendicular (to

the plane) magnetic field Bz, see Figure 2.10b), not only vertical electrical flux jy appears
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but also ∇xV :

∇xV = RBzjy (2.32)

where R is the Hall coefficient.

• Ettinghausen (thermo–galvano–magnetic effect): with the prescription of ∇yV and also

a perpendicular (to the plane) magnetic field Bz, see Figure 2.10c), not only vertical

electrical flux qy appears but also ∇xT :

∇xT = NBzjy (2.33)

where N is the Nernst-Ettinghausen coefficient.

• Nernst (thermo–galvano–magnetic effect): with the prescription of ∇yT and also a per-

pendicular (to the plane) magnetic field Bz, see Figure 2.10d), not only vertical heat flux

qy appears but also ∇xV :

∇xV = NBzqy (2.34)

BzBz

BzBz

∇yT

∇yT

∇xT

∇xT ∇xV

∇xV

∇yV

∇yV

a) b)

c) d)

Figure 2.10: Representation of the four thermo–galvano–magnetic phenomena. Continuous

line: prescribed temperature or voltage gradient; dashed line: the consequence of a particular

phenomenon. a) Righi-Leduc; b) Hall; c) Ettinghausen; d) Nernst.

The balance equations for describing these phenomena are similar to those of the TE for-

mulation, with the difference that now electric j and thermal q fluxes are vectors and α, κ, γ

tensors, according to Landau formulation [22]:
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





j = −γ∇V − γα∇T

q = −κ∇T + αjT

(2.35)

α =

[

α −NBz

NBz α

]

; ρ =

[

ρ −RBz

RBz ρ

]

; κ =

[

κ −MBz

MBz κ

]

where ρ = 1/γ.

Expanding the Eqs. (2.35) all phenomena can be observed:

j = −
Ohm
︷ ︸︸ ︷

γ∇V −
Seebeck
︷ ︸︸ ︷

γα∇T +γ (

Nernst
︷ ︸︸ ︷

NBz × ∇T +

Hall
︷ ︸︸ ︷

RBz × j)

q = −κ∇T
︸ ︷︷ ︸

F ourier

− αjT
︸ ︷︷ ︸

P eltier

+ NBzT × ∇j
︸ ︷︷ ︸

Ettinghausen

+ MBz × ∇T
︸ ︷︷ ︸

Righi−Leduc

(2.36)

The equilibrium equations for steady-state and thermo–galvano–magnetic effects are:







∇ · j = 0

−∇ · q + jE = 0

(2.37)

Substituting the second of Eqs. (2.36) into the second equation of Eqs. (2.37):

∇(κ∇T )
︸ ︷︷ ︸

Conduction

+
j2

γ
︸︷︷︸

Joule

− T j
∂α

∂T
∇T

︸ ︷︷ ︸

T homson

+
1

γT

∂(γNT 2)

∂T
(j × Bz) ∇T

︸ ︷︷ ︸

T homson+Bz

= 0 (2.38)

From the previous expression it should be noted that the third term corresponds to the Thomson

effect and the fourth term to the changes in the Thomson effect resulting from the presence of

Bz; these two terms appear if α, γ or N are function of temperature. In this section these terms

will be null since the coefficients will be considered constants.

2.1.7 Simulations of steady-state thermo–galvano–magnetic phenomena

In this subsection Righi-Leduc, Hall and Ettinghausen-Nernst effects are studied for a square

thin film simulated with elmt12.f as seen in Figure 2.11.

31



Chapter 2. Validation of simulation results

l

l

Bz

x

y

z

Th, Vh

Tc, Vc

Figure 2.11: Dimensions and boundary conditions of the mesh used in steady-state thermo–

galvano–magnetic phenomena simulations.

The length of the square is l = 1.14 × 10−3 [m] and the BCs prescribed for each phenomena are

listed in Table 2.5. The Bz chosen for the Righi-Leduc effect is one order of magnitude greater

than for the rest since this phenomenon is difficult to appreciate at low Bz.

Interaction Th [◦C ] Tc [◦C ] Vh [ V ] Vc [ V ] Bz [T]

Righi-Leduc 50 25 - - 5

Hall - - 0 0.1 0.5

Ettinghausen-Nernst 50 0 0 0.1 0.5

Table 2.5: The boundary conditions for Righi-Leduc, Hall and Nernst effects.

All cases will be run for InSb material, the properties of which are considered invariable with

T . For simplicity and as for all further simulations in this subsection αm, γm, κm are taken at a

given temperature; these properties are from now denoted as α, γ, κ.

Parameter Value Units

α −2.825 × 10−4 [V/K]

γ 2.45 × 104 [1/Ω· m]

κ 10.81 [W/m·K]

Parameter Value Units

N −6.4 × 10−5 [m2/K·s]
R −2.465 × 10−4 [m3/A·s]
M 5 × 10−2 [m2/V·s]

Table 2.6: Properties of InSb material for constant temperature T = 37.5◦C.

• The Righi-Leduc effect

For this case, the second balance expression from the Eqs. (2.36) considering only the Fourier
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and Righi-Leduc effects, and the second equilibrium expression from the Eqs. (2.37) with j = 0

are taken into account:







qx

qy







=







κ −MBz

MBz κ













∇xT

∇yT







; κ
(

∇2
xT + ∇2

yT
)

= 0 (2.39)

The expression at the right can be classified as a Laplace equation, a second order PDE, that can

be numerically solved with the finite-difference-method (FDM). The idea of FDM is to replace

partial derivatives with finite differences and as a consequence the PDE is converted into a set of

linear equations. From this point, the further formulation described for this case is taken from

[24], [25].

A general Laplace equation and its solution have the form:

Kx∇2
xx + Ky∇2

yy = 0 →

Kx
1

∆x2
(ui−1,j − 2ui,j + ui+1,j) + Ky

1

∆y2
(ui−1,j − 2ui,j + ui+1,j) = 0

(2.40)

where Kx, Ky are constant numbers and u is the unknown quantity. The previous expression
can be expressed as follows:

ui,j =
Ky∆y2(ui+1,j + ui−1,j) + Kx∆x2(ui,j+1 + ui,j−1)

2(Kx∆x2 + Ky∆y2)
(2.41)

For a square finite-differences, it should be considered that ∆x = ∆y and since both deriva-

tives from the right expression of the Eqs. (2.39) are multiplied by the same constant, then

Kx = Ky.

In the Figure 2.12 left, the grid points considered in the Eq. (2.41) are represented. As it is

pointed out in the Figure 2.12 right, only the internal grid points of the mesh can be calculated

with the Eq. (2.41), while the top u1,m and the bottom u17,m quantities of the boundary grid

points (represented in blue color) are prescribed (Derichlet condition).
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(i, j)
(i, j − 1)

(i − 1, j)

(i, j + 1)

(i + 1, j)

∆y

∆x

u1,m

u17,m

qx = 0qx = 0

Figure 2.12: Representation of the finite-difference-method mesh. In blue color prescribed

boundary conditions; in purple color adiabatic boundary condition.

In this case, the square is discretized into a 17 × 17 matrix and as a consequence 289 nodal

T –values can be obtained. As said before ui,j are the unknowns quantities that for the right

expression of Eqs. (2.39) are T –values. The algorithm solved with Matlab® is:

u1,m = Th ; u17,m = Tc ; ui,j =
ui+1,j + ui−1,j + ui,j+1 + ui,j−1

4
(2.42)

where m = 1 : 17.

(i, j)(i, j)
(i, j − 1)(i, j − 1)

(i − 1, j)(i − 1, j)

(i, j + 1)(i, j + 1)

(i + 1, j)(i + 1, j)

Figure 2.13: Representation of the finite-difference-method for the Neumann conditions. In

purple the boundary grid points for x = 0 at the left and x = l at the right.

It should be noted that only BCs at the horizontal sides are prescribed. In order to com-

plete the missing BCs for the vertical sides, normal derivatives to these boundaries should be

introduced (Neumann condition).

In the Figure 2.13 left, the external side x = 0 is represented: the point ui,j−1 is outside
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of the mesh. In order to calculate the value of ui,j at the external side, the fictitious ui,j−1 is

obtained from the normal derivative to the boundary and substituted into the Eq. (2.41):

∇xu =
ui,j+1 − ui,j−1

2∆x
→ ui,j−1 = −2∆x ∇xu + ui,j+1 (2.43)

ui,j =
ui−1,j + ui+1,j + 2ui,j+1 − 2∆x ∇xu

4

The same procedure is followed for the x = l side; as seen in the Figure 2.13 right, ui,j+1 is

outside the mesh and it is defined with the normal derivative to the boundary:

∇xu =
ui,j+1 − ui,j−1

2∆x
→ ui,j+1 = 2∆x ∇xu + ui,j−1 (2.44)

ui,j =
ui−1,j + ui+1,j + 2ui,j−1 + 2∆x ∇xu

4

The real known BC is the absence of electric jx = 0 or thermal qx = 0 flux transfer through

the boundary represented in the Figure 2.12 right with purple color. From the second condition,

∇xT is obtained from the first row of the left Eqs. (2.39) equating qx = 0.

qx = 0 ; → ∇xT =
MBz

κ
∇yT (2.45)

Substituting the Eq. (2.45) into the final expression ui,j from Eqs. (2.43) and Eqs. (2.44), the

T –values for x = 0 and x = l are obtained.

(i − 1, j) (i − 1, j + 1)

(i, j)
(i, j + 1)

(i + 1, j + 1)(i + 1, j)

qx
qy

(i − 1, j − 1) (i − 1, j)

(i, j)

(i − 1, j + 1)

(i, j + 1)(i, j − 1)

Figure 2.14: Representation of the finite-difference-method mesh for obtaining thermal fluxes

for x and y directions.
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When all the values of ui,j are known, qx and qy can be calculated along the line segment

that connects two points: ui,j, ui,j+1 for qx as seen in Figure 2.14 right and ui,j, ui−1,j for qy as

seen in Figure 2.14 left. For qx, the potential derivatives can be approximated as:

∇xV =
−ui,j + ui,j+1

∆x
; ∇yV =

−ui−1,j−1 − ui−1,j+1 + ui+1,j−1 + ui+1,j+1

2∆y
(2.46)

For qy defined in the Eqs. (2.39), the potential derivatives are:

∇yV =
−ui,j + ui+1,j

∆y
; ∇xV =

−ui−1,j−1 − ui+1,j−1 + ui−1,j+1 + ui+1,j+1

2∆x
(2.47)

For the boundary grid points of the mesh at x = 0 and at x = l, as mentioned before qx = 0

and qy from the Eqs. (2.39) left is obtained substituting the right expression of the Eq. (2.45)

into the qy definition:

qx = 0 ; qy = ∇yT

[

(MBz)2

κ
+ κ

]

(2.48)

The FEAP mesh is discretized into the same number of nodes as that of the FDM matrix. qx,

qy obtained by both methods fit well along the x–coordinate as seen in the middle and bottom

of the Figures 2.15 (notice that the range in the bottom is very small); the T –distribution also

fits very well along the y–coordinate. This coherence of results is reached since Neumann and

Derichlet conditions are combined in the FDM method. Another aspect that can be taken into

account is that both FEM and FDM methods are an approximation to the real solution. In

fact, FDM is an approximation of derivative terms of a PDE to discrete algebraic relationship

(Taylor series), while FEM is an integral scheme over the element [52].
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Figure 2.15: Analytical, numerical results of temperature and thermal flux distributions for

square mesh under Righi-Leduc effect. Top figure along x = l/2, others along y = l/2.

It should be pointed out that if the simulation would be run without Bz, only the Fourier

effect would be observed. To make the contribution of the Righi-Leduc phenomenon visible,

in the Table 2.7 the Fourier and the Righi-Leduc thermal fluxes are compared. As seen, with

Righi-Leduc qx is not null and qy is slightly incremented; the appearance of qx is the basis of

the Righi-Leduc phenomenon.

ξ = x / l ξ = 0 ξ = 0.25 ξ = 0.5 ξ = 0.75 ξ = 1

qxF ourier
0 0 0 0 0

qx -281 -1.79 ×103 -2.73 ×103 -1.35 ×103 -288.9

qyF ourier
-2.3706 ×105 -2.3706 ×105 -2.3706 ×105 -2.3706 ×105 -2.3706 ×105

qy -2.368 ×105 -2.369 ×105 -2.373 ×105 -2.374 ×105 -2.374 ×105

Table 2.7: Numerical comparison between Fourier and Righi-Leduc thermal fluxes along y = l/2.
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• The Hall effect

For this effect, the first balance equation from the Eqs. (2.36) considering only Ohm and Hall

effects and the first equilibrium equation from the Eqs. (2.37) are:






jx

jy







=
1

ρ2 + (RBz)2







ρ RBz

−RBz ρ













∇xV

∇yV







;
ρ

ρ2 + (RBz)2

(

∇2
xV + ∇2

yV
)

= 0

(2.49)

The previous system contains three equations with three unknown quantities, but this system is

difficult to solve analytically. In order to obtain an approximate solution, some simplifications

will be assumed.

Firstly, from the Eq. (2.49) left it should be noted that the diagonal and off-diagonal terms

of γ are of the same order of magnitude; as a consequence ∂V/∂x has the same influence as

∂V/∂y on both electric fluxes and it cannot be neglected. The V –distribution in the Hall effect

is completely 2D and it cannot be simplified to 1D.

The Hall voltage Vhl along the x–direction is obtained from the balance of forces related to

moving electrons, formulation extracted from [26]. When an electric current jy is prescribed in

presence of Bz, a magnetic force fm appears; this force deflects the charge carriers to one of the

semiconductor sides. The accumulation of these charges results in a transversal Hall’s electric

field Eh and an opposite to fm named Hall’s force fh appears. Equilibrium is reached when fm

is offset with fh.

fm = −e Eh

fh = eR(jy × Bz)






fm = fh → Eh = −R(jy × Bz) (2.50)

where e is the charge of electrons.

From the Eh at which the equilibrium occurs and the Eq. (2.49), the voltage perpendicular to

jy and to Bz can be obtained.

Vhl

l
= Eh = −RBz

ρ

ρ2 + R2B2
z

Vc − Vh

l
(2.51)

Solving the previous expression, the V prescribed at the four sides of the square can be defined:

V (x = 0) = 0 ; V (x = l) = Vhl ; V (y = 0) = Vc ; V (y = l) = Vh (2.52)
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Next, to obtain the final V –evolution along the semiconductor the right equation from the

Eqs. (2.49) is considered. This expression is again a second-order PDE that can be solved with

FDM. For this situation Derichlet conditions are directly applied. The square is discretized into

289 nodes as previously and a 17×17 matrix of V –values is calculated. The algorithm expressed

in the Eq. (2.41) is introduced into Matlab® with four voltage BCs:

um,1 = 0 ; um,17 = Vhl ; u17,m = Vc ; u1,m = Vh (2.53)

where m = 1 : 17.

Now, jx and jy can be calculated along a line connecting two V points as for the Righi-Leduc’s

fluxes; jx is obtained substituting derivatives from Eqs. (2.46) into the first left expression of the

Eqs. (2.49) and jy substituting derivatives from the Eqs. (2.47) into the second left expression

of the Eqs. (2.49).

ξ = x / l ξ = 0 ξ = 0.25 ξ = 0.5 ξ = 0.75 ξ = 1

jxOhm
0 0 0 0 0

jx 9.93 ×104 -3.29 ×105 -4.39 ×105 -2.63 ×105 -1.16 ×105

jyOhm
2.14 ×106 2.14 ×106 2.14 ×106 2.14 ×106 2.14 ×106

jy 6.77 ×105 7.39 ×105 6.07 ×105 6.85 ×105 6.88 ×105

Table 2.8: Numerical comparison between Ohm and Hall electric fluxes along y = l/2.

The FEAP mesh is discretized into the same number of nodes as that of the FDM. The

analytical and the FEAP results fit with small error at most of the length and diverge at the

extremes as seen in the Figure 2.16. This incoherence appears as the V –value at x = l was

estimated with the force equilibrium equations and V at x = 0 was considered null.
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Figure 2.16: Analytical, numerical results of voltage and electric flux distributions for square

mesh under Hall effect. Top figure right, isoline map for V = 0.03 [V] (circles), V = 0.05 [V]

(triangles), V = 0.08 [V] (squares); middle, bottom figures results along y = l/2.

Once again, to make evidence of the magnetic phenomenon, the Hall effect is compared with

the Ohm effect when no Bz is applied. According to Ohm’s law, the V –distribution is linear,

jxOhm
is null and jyOhm

constant and equal to 2.149 × 106 [A/m2] as seen in the Table 2.8. The

appearance of the jx is the result of the Hall effect, while jy is diminished due to the negative

contribution of −RBzdV/dx, see the Eqs. (2.49).

• The Ettinghausen-Nernst effect

For this case, the described formulation is again extracted from [24], [25], although in these

articles only the final results are presented. From the Eqs. (2.36) all the terms should be

considered:
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





jx

jy







=
1

ρ2 + (RBz)2







−







ρ RBz

−RBz ρ













∇xV

∇yV







−







ρ RBz

−RBz ρ













α NBz

−NBz α













∇xT

∇yT



















qx

qy







= −







κ −MBz

MBz κ













∇xT

∇yT







+







α NBz

−NBz α













jx

jy







T

(2.54)

The Eqs. (2.54) is substituted into the Eqs. (2.37) without considering Joule and Thomson

effects. Calculating the divergence of q, j some terms are simplified and the T and V at internal

grid points will be calculated with the equations:

∇ · q = 0 ; →
(

κ − N2 T B2

ρ

)

∇2T = −ρ j2

∇ · j = 0 ; → ρ

ρ2 + (RBz)2
∇2V = − B2

z N R

ρ2 + (RBz)2
∇2T

(2.55)

It should be noted that both expressions at the Eqs. (2.55) right are not homogeneous like the

Eq. (2.40). In that way, the Laplace formulation changes from that of the Eq. (2.42) to:

ui,j =
ui+1,j + ui−1,j + ui,j+1 + ui,j−1

4
− h2

4
F (2.56)

where F := ∇2T when T values are calculated, and F = ∇2V when V values are calculated.

The term h2F/4 is now appended to the boundary of ui,j expressed in Eqs. (2.43) and (2.44).

Firstly, T –distributions for the vertical sides at x = 0 and x = l are calculated:

Ti,1 =
Ti−1,1 + Ti+1,1 + 2Ti,2 − 2∆x ∇xT

4
− h2

4
F

Ti,17 =
Ti−1,17 + Ti+1,17 + 2Ti,16 + 2∆x ∇xT

4
− h2

4
F

(2.57)

where ∇xT can be obtained from the Eqs. (2.54) and the known BCs qx = jx = 0:

∇xT =
−Bzjy N T − BzM∇yT

κ
(2.58)

As seen from the previous expression ∇xT , depends on jy of the vertical sides.
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The general jy defined in the Eqs. (2.54) is a linear function of ∇xT , ∇yT , ∇xV and ∇yV ;

in order to obtain jy along the vertical boundary sides, ∇xV is obtained again from the known

adiabatic BCs qx = jx = 0. In that way, ∇xV is obtained from jx = 0:

∇xV =
(−Bz N R − α ρ) ∇xT + (−α BzR + BzN ρ) ∇yT − BzR ∇yV

ρ
(2.59)

The expressions of ∇xV and ∇xT defined previously are substituted into jy from the Eqs. (2.54):

jy =
B2

z N (jyN T + M∇yT ) − κ (α∇yT + ∇yV )

κ ρ
; →

jy =
α κ ∇yT − B2

z M N ∇yT + κ ∇yV

−κ ρ + B2
z N2T

(2.60)

The last expression defines the jy for the vertical boundary and can be substituted into the

Eq. (2.58) and then the T –distribution along the vertical sides from the Eqs. (2.57) can be

calculated.

Secondly, to solve the V –distribution at the vertical sides, a different mathematical method

is applied. Once again taking the formulation of jx, jy from the Eqs. (2.54) and separating only

the Vi,j term:

jx
i,j =

ρ Vi,j

∆x (ρ2 + R2B2
z )

+ I ; jy
i,j =

ρ Vi,j

∆y (ρ2 + R2B2
z )

+ I (2.61)

where I represents terms independent of Vi,j, and both fluxes are drawn in the Figure 2.17.

(i, j − 1)

(i − 1, j)

(i, j + 1)

(i + 1, j)

jy
i,j

jx
i−1,j jx

i,j

jy
i−1,j

Figure 2.17: Representation of the electric flux for x and y directions according to finite-

difference-method.
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As seen in the figure, if the sum of in-going and out-going fluxes at ui,j is calculated, an expression

for Vi,j can be obtained:

jout
i,j = jx

i,j + jy
i,j − jx

i−1,j − jy
i,j−1 =

4 ρ Vi,j

∆x (ρ2 + R2B2)
;

Vi,j → Vi,j − jout
i,j

∆x
(

ρ2 + R2B2
z

)

4ρ

(2.62)

In the last expression the I–terms from the Eqs. (2.61) vanish, and then Vi,j is improved through

iterations (from initial zero values).

Finally, when all 17 × 17 values for T and V are obtained, as well as electric and thermal

fluxes. The same procedure as that of the previous cases is followed: the derivatives from

Eqs. (2.46) and Eqs. (2.47) are substituted into the flux definitions from the Eqs. (2.54).

The FEAP mesh is discretized into the same number of elements as that of the FDM. As

can be seen from the graphics, both fluxes have similar evolutions along the x–direction, but

their magnitudes are slightly different.
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Figure 2.18: Analytical, numerical results of temperature, voltage and their fluxes for square

mesh under Ettinghausen-Nernst effect. Top figure along x = l/2, others along y = l/2.

In order to understand the influence of the magnetic field, the present FEAP results for

Ettinghausen-Nernst are compared to results of a problem with the same BCs but with Bz = 0,

case that corresponds to the Joule-Seebeck effect, of Eqs. (2.16). This formulation is simplified

considering that the cross-section area Ac of the square is constant. Only the final results

obtained with Mathematica® are written:

jxJS
= −α γ(Th − Tc) + γ(Vh − Vc)

l
; V

JS
= α(Tc − T ) + Vc +

jx x

γ

T
JS

=
−γ [α (Tc − Th) + Vc − Vh]2 (l − x)x + 2 κ l [Tc l + (Th − Tc)x]

2 κ l2

qxJS
=

2 κ2l2(Th − Tc) + κ l2jx [α l(Tc + Th) − (Vc − Vh)(l − 2x)] − α γ lj3
x (l − x) x

2κl3

(2.63)

where the previous T , V , jx, qx have the JS subscript that corresponds to the Joule-Seebeck

effect.
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ξ = x / l ξ = 0 ξ = 0.25 ξ = 0.5 ξ = 0.75 ξ = 1

jxJS
0 0 0 0 0

jx 3.59 ×104 2.63 ×105 3.59 ×105 2.17 ×105 1.42 ×104

jyJS
-2.45 × 106 -2.45 × 106 -2.45 × 106 -2.45 × 106 -2.45 × 106

jy -7.31 ×105 -7.13 ×105 -6.41 ×105 -6.66 ×105 -6.96 ×105

Table 2.9: Numerical comparison between Joule-Seebeck and Ettinghausen-Nernst electric fluxes

along y = l/2.

As seen from the Table 2.9, with the Joule-Sebeck effect the electric flux distribution is purely

1D, but the presence of Bz affects this flux converting it into 2D. The Ettinghausen-Nernst effect

also reduces jy one order of magnitude.

The same conclusions can be obtained for the thermal fluxes seen in the Table 2.10; this

thermal flux for Ettinghausen-Nernst is once again 2D. The difference between the electric and

the thermal flux is that qyJS
, qy maintain the same order of magnitude.

ξ = x / L ξ = 0 ξ = 0.25 ξ = 0.5 ξ = 0.75 ξ = 1

qxJS
0 0 0 0 0

qx -2.1 ×103 -1.55 ×104 -2.79 ×104 -1.32 ×104 -1.2 ×103

qyJS
5.79 × 105 5.08 × 105 4.59 × 105 3.84 × 105 3.34 × 105

qy 5.28 ×105 5.26 ×105 5.25 ×105 5.36 ×105 5.39 ×105

Table 2.10: Numerical comparison between Joule-Seebeck and Ettinghausen-Nernst thermal

fluxes along y = l/2.

45



3
Measurement techniques of the Hall effect in

thin-film semiconductors

In this chapter, a brief theory on the Hall effect and the methods of measurement of its

coefficient for thin-film semiconductors are reviewed. The Hall coefficient is calculated from the

measured Hall voltage Vhl: that is why it is important to estimate Vhl as accurately as possible.

Vhl measurements are carried out by depositing a semiconductor thin-film on a substrate.

Commonly, two configurations are used: the Hall bar and circular or square Van der Pauw

(VdP) geometries. Each has advantages and drawbacks that are discussed in this chapter.

Besides the configuration, three techniques can be applied to measure Vhl. In the first,

Vhl is obtained with a single measurement, and the Hall coefficient R is calculated from the

classical equation of this effect. This technique is no longer used in laboratories due to intrinsic

and geometrical errors in Vhl. The other two techniques are the Direct Current (DC) and the

Alternating Current (AC) field methods, and were developed to remove undesirable errors [28].

The main objective of this chapter is to simulate methods to obtain R from the Vhl results

of the cases run with FEAP . This Vhl is estimated with the AC/DC methods in Hall bars

and VdP geometries. The analyses of these cases seek to better understand the process of the

measurement.

3.1 The simple theory of the Hall effect

Figure 3.1 presents a fundamental observation of the Hall effect. Considering a semiconductor

sample characterized by length L, width w, thickness t, the charge carrier of charge e, and the

number of density n.

If an electric field Ex is applied to a semiconductor in the x–direction, a current Ix is created,

and charge carriers are moved under the influence of Ex at velocity vx [27]. The created Ix can

be expressed in terms of electric flux jx or of velocity vx:

Ix = jx w t = n e vx w t ; → vx =
Ix

n e w t
(3.1)
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Section 3.2. Material and geometrical configuration

y

x

z
△Vhl

w

Ix

L

t

Figure 3.1: Representation of a simple Hall voltage sensor [27].

Now, if the semiconductor is placed under a magnetic field Bz, the charge carriers will experi-

ence a Lorentz force f
L
. This force deflects the charge carriers to one side of the semiconductor.

The accumulation of these charges creates a transverse electric field, known as the Hall field Ey,

that counteracts f
L

and can be expressed as:

f
L

= e vx × Bz ; Ey = vxBz (3.2)

In an experiment, the measured Vhl is related to the integral of Ey over the sample’s width:

Vhl =

∫ w

0

Eydy = −Eyw = − 1

n e

IxBz

t
; R =

1

n e
(3.3)

In that way, if Vhl is correctly measured and the values of applied Bz, Ix are known, R can easily

be calculated from the Eq. (3.3).

3.2 Material and geometrical configuration

3.2.1 Material

The study in this chapter is carried out with an InSb semiconductor as this material presents

high R; therefore, a high Vhl is created and a distortion in the V –distribution due to the applied

Bz is clearly visible. The properties of InSb are summarized in Table 2.6. Commonly, the

measurements are done prescribing Bz = 1 [T], as a higher value of Bz can affect to κ, α, γ and

hinder the measurement of R.

All the cases are run for thin-films of thickness t = 4×10−4 [m], deposited on a Mica substrate

of thickness ts = 1 × 10−2 [m] as seen in Figure 3.2(b). Mica is used since it presents low κ and

γ; thus, when the electric flux is applied through the InSb, only a little flow rate will go to the
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Chapter 3. Measurement techniques of the Hall effect in thin-film semiconductors

substrate and the error introduced into the measurements of the semiconductor’s properties is

minimal.

(a)

t

ts

Semiconductor thin-film

Substrate

(b)

Figure 3.2: Representation of: (a) laboratory sample of eight-contact Hall bar [53]; (b) configu-

ration of Hall voltage measurement sensor

3.2.2 Elements and the mesh discretization

To determine the number of elements in which the mesh is discretized, an analytical mesh

convergence study provided in [23] is taken into account. As this study concluded, the minimum

number of elements that allow reaching a compromise between calculation time and errors made

is between 1500 and 2000.

Through this approach, the semiconductor thin-film is discretized into (0.025×10−3)(0.025×
10−3) rectangular 2D elements of elmt12.f with coupled GM properties; although the elmt12.f

is 2D, the semiconductor thickness t is introduced as the material property. Whereas, the

substrate is discretized into (0.025 × 10−3)(0.025 × 10−3)(0.025 × 10−3) rectangular 3D elements

of elmt11.f with uncoupled thermal and electrical conduction properties.

3.2.3 Hall bars geometries

The Hall bar (see Figure 3.2(a)) is commonly used for measuring electric resistance ρ(Bz)

as a function of the magnetic field (also called magneto-resistance) and Hall mobility µ on

low resistance semiconductors, since about half of the voltage applied through the sample is

measured between the contacts.

The Hall bar geometry includes a minimum of six and a maximum of eight contacts, as

seen in Figure 3.3. The extended lateral arms increase the accuracy of the measurements. The

main disadvantage is that such a pattern is difficult to fabricate with fragile materials. It is
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Section 3.2. Material and geometrical configuration

also strenuous to measure the real width and distance between contacts, both necessary for the

ρ(Bz) calculations.

x

y

z

w

w

a

a
c1 c2

d1 d2

(a)

(b) (c)

Figure 3.3: Representation of (a) regular eight-contact; (b) regular six-contact; (c) irregular

six-contact Hall bar geometries.

The dimensions and shape of regular bars illustrated in Figure 3.3(a), (b) are taken from

standard test methods for measuring ρ(Bz) and R of the American Society for Testing and

Materials (ASTM) F76, which was re-approved in 2016 [29]. The irregular bar, see Figure 3.3(c),

was proposed by the advanced scientific research company Lake Shore Cryotronics® [28]. The

dimensions of these bars are summarized in the Table 3.1.

Parameter Value Units

w 0.2 × 10−2 [m]

a 0.05 × 10−2 [m]

c1 0.4 × 10−2 [m]

Parameter Value Units

c2 0.6 × 10−2 [m]

d1 0.3 × 10−2 [m]

d2 0.375 × 10−2 [m]

Table 3.1: Dimensions for Hall bars represented in Figure 3.3.

Two geometrical aspects need to be taken into account when Vhl measurements are done.

The first one is the symmetry along the x–direction: if symmetry is maintained ρ(Bz) can be

calculated and an additional study on the isotropy of the thin-film can be done (Figure 3.3(a),

(b)). The second one is the arms location: if measurements are taken from two symmetrical

arms positioned in the center of the sample as in Figure 3.3(a), (c), the R estimation is accurate.

Otherwise, the close proximity of the contact arms to the sample ends as in the Figure 3.3(b)

causes an underestimation of R.
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Chapter 3. Measurement techniques of the Hall effect in thin-film semiconductors

3.2.4 Van der Pauw geometries

Any arbitrary shape can be considered a VdP geometry if it meets four of the following

requirements [30]:

• All the contacts are located on the periphery of the sample.

• All the contacts are sufficiently small.

• The thin-film of the semiconductor is of uniform thickness.

• The sample does not contain holes.

With a VdP geometry, resistivity, carrier concentration, and mobility can be calculated.

Although any shape can be used, large errors in measurements arise from contact size and

placement. Another drawback is that two voltage measurements are required to calculate ρ(Bz)

and R, thus the estimation of VdP takes twice as long as that of the Hall bar approach, in which

only one measurement is taken. In this subsection, two shapes are considered: a circle of radius

r = 0.3 × 10−2 [m] and a square with a side length l = 0.3 × 10−2 [m].

3.3 Methods of measurement and errors in the Hall coefficient

estimation

The Vhl cannot be measured with a single reading VME as it contains spurious voltages [28]:

VME = Vs + Ve + Vn + Vm + Vr + Vhl (3.4)

The sources of these intrinsic errors are:

• Thermoelectric voltage Vs: this term is independent of Ix and Bz and it is the conse-

quence of a small T –gradient along the sample which generates the Seebeck effect.

• Ettinghausen voltage Ve: this voltage is proportional to Ix and Bz. It is caused by an

internally generated Seebeck effect even if a non T –gradient exists.

• Nernst voltage Vn: this voltage is proportional to Bz but not to Ix. Vn is created by

electrons diffusing from the hot end of the sample to the cold one, when a longitudinal

T –gradient exists. It is the only error that can not be eliminated from the measurement

with Ix or Bz reversals.

• Misalignment voltage Vm: it appears when voltage contacts V +, V − are misaligned
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Section 3.3. Methods of measurement and errors in the Hall coefficient estimation

with a distance △y and therefore a longitudinal V –gradient △Vy is created as seen in

Figure 3.4; misalignment of the contacts is one of the largest errors in VME .

Vhl

Vm △yL
V +

V −

V0

V =0

Figure 3.4: Representation of misalignment voltage Vm [33].

It should be noted that Vm varies with Ix but not with Bz [33]. If one measurement is

taken and only Vhl and Vm are considered, the VME can be defined as:

VME = V + − V − = Vhl + Vm ; Vm =
V0

L
△y (3.5)

• Righi-Leduc voltage Vr: it is proportional to Ix but not to Bz. It is created by a

different range of velocities at which electrons move generates again a T –gradient and as

a consequence, transverse Seebeck voltage.

To sum up, the described voltages can be classified as:

1. Ve independent of Ix, Bz.

2. Vn, Vr that depends on Bz.

3. Vm that depends on Ix.

4. Vhl, Ve that depend on Ix × Bz.

The main idea of AC/DC field methods is to eliminate the errors discussed above. This sup-

pression can be reached by changing the applied Ix and Bz directions, more exact explanation

is provided in the Subsection 3.3.1. It is important to emphasize that with Ix and Bz reversals

all the errors except Ve are eliminated [28].
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Chapter 3. Measurement techniques of the Hall effect in thin-film semiconductors

3.3.1 Direct Current (DC) field method

The theoretical approach of this method is related to the fact that real measurements always

present offset voltages and can be expressed as [28]:

VME = Vs + Ve + Vn + fd ρ Ix
︸ ︷︷ ︸

Vm

+Vr + R IxBz
︸ ︷︷ ︸

Vhl

= V + − V − (3.6)

where fd is a dimensional factor that depends on the geometry of the sample, V +, V − are

voltage measurements in contacts represented in the Figure 3.4.

Four measurements are required to separate Vhl from Vm and Ve. In each of them Ix can

be applied in positive I+
x or negative I−

x x–direction corresponding to electrical current reversal

technique. In the same way for magnetic field reversal, positive B+
z and negative B−

z z–directions

are considered:

Ix Bz Vs Ve Vn Vm Vr Vhl

VME1
I+

x B+
z + + + + + +

VME2
I−

x B+
z + − + − + −

VME3
I+

x B−

z + − − + − −
VME4

I−

x B−

z + + − − − +

Table 3.2: Elimination of intrinsic errors from the measured Hall voltage by combining readings

with different directions of a prescribed current and magnetic field [28].

After some mathematical operations, Vhl can be obtained:

VME1
− VME2

= 2 (R IxBz + fd ρ Ix)

VME4
− VME3

= 2 (R IxBz − fd ρ Ix)







→ Vhl = R IxBz =
VME1

− VME2
+ VME4

− VME3

4

(3.7)

• The general formulations for the Hall bars

The general formulations to measure R and ρ(Bz) with the Hall bar and DC method is also

provided by the ASTM standart F-76 [30]:
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Section 3.3. Methods of measurement and errors in the Hall coefficient estimation

ρa(Bz) =
V +

2,3(Bz) − V −

2,3(Bz) + V +
2,3(−Bz) − V −

2,3(−Bz)

I+
x (Bz) − I−

x (Bz) + I+
x (−Bz) − I−

x (−Bz)

wt

a

ρb(Bz) =
V +

1,4(Bz) − V −

1,4(Bz) + V +
1,4(−Bz) − V −

1,4(−Bz)

I+
x (Bz) − I−

x (Bz) + I+
x (−Bz) − I−

x (−Bz)

wt

a







→ ρ(Bz) =
ρa + ρb

2

Ra =
V +

3,4(Bz) − V −

3,4(Bz) + V +
3,4(−Bz) − V −

3,4(−Bz)

I+
x (Bz) − I−

x (Bz) + I+
x (−Bz) − I−

x (−Bz)

t

Bz

Rb =
V +

2,1(Bz) − V −

2,1(Bz) + V +
2,1(−Bz) − V −

2,1(−Bz)

I+
x (Bz) − I−

x (Bz) + I+
x (−Bz) − I−

x (−Bz)

t

Bz







→ R =
Ra + Rb

2

(3.8)

where the sub-indices of V are the contacts’ numbers for bars represented in the next subsections.

As seen from the previous expressions, to calculate ρ(Bz) and R, two equivalent measurements,

sub-indices a, b are done; in that way isotropy of the sample for these two properties can be

checked. If ρa(Bz) and ρb(Bz) are within 10%, ρ(Bz) is considered identical in all directions of

the sample; the same conclusion can be carried out with R. Nevertheless, an isotropy check can

be done only on symmetrical samples, such as a regular four-contact and six-contact bars.

The following cases are studied applying Bz = 1 [T]. The Ix is created prescribing V = 0 [V]

at 5 and V = 1 [V] at 6 for bars in the next subsections; with FEAP the value of Ix is taken

from the reaction output on side 6. The meshes are descretized into a total of 4817 nodes for

regular six-contact, 4959 nodes for eight-contact and 4783 nodes for irregular six-contact bars.

• Six-contact Hall bar

The V –distributions of cases with/without Bz can be observed in Figure 3.5.
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5 6

Figure 3.5: FEAP results of voltage distribution in a six-contact bar without (top) and with a

prescribed magnetic field (bottom).
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The small disturbance in the distributions at the right top and left bottom corners of the bottom

figure is caused by the spin Hall effect; this phenomena consists on the spin accumulation of

electrical current at the lateral sides due to Bz [34].

As stated before, the main disadvantage of this shape is the underestimation of R due to the

close location of contacts to the end of the sample [30]. To verify this statement, △V3,4 outputs

with Bz and Ix reversal are summarized in Table 3.3.

I+
x , B+

z I−

x , B+
z I−

x , B−

z I+
x , B−

z I+
x , B+

z - I−

x , B+
z

△V3,4 −0.4736 0.4562 −0.4562 0.4736 0.0174

△V2,1 −0.4710 0.4585 −0.4585 0.4710 0.0125

Ix 0.7735 −0.7515 −0.7515 0.7735

Table 3.3: Voltage difference between contacts and applied electric current in a six-contact Hall

bar.

Since all the contacts are considered perfectly aligned mathematical points, it is verified

|△V3,4 (I+
x , B+

z )| = |△V3,4 (I+
x , B−

z )| and then Vm = 0 [V]. But, with the electrical current

reversal at △V3,4 (I+
x , B+

z ) ✚✚= △V3,4 (I−

x , B+
z ) as a result of the error due to the proximity of

the arms to the ends of the sample; the 0.0174 [V] and 0.0125 [V] errors are purely geometric.

In order to verify if misalignment errors can be observed with the Bz reversal, contact 4 was

misaligned m = a/2 and m = a with contact 3. As can be seen in Table 3.4:

△V3,4 (I+
x , B+

z ) ✚✚= △V3,4 (I+
x , B−

z ), difference that corresponds to the Vm contribution.

Misalignment I+
x , B+

z I−

x , B+
z I−

x , B−

z I+
x , B−

z I−

x , B+
z - I−

x , B−

z

a/2 −0.4773 0.4597 −0.4616 0.4793 0.0019

a −0.4742 0.4567 −0.4551 0.4725 0.0016

Table 3.4: Voltage difference and applied electric current in a six-contact bar with misalignments

m = a/2, m = a.

The final results are displayed in the Table 3.5. The errors of 1% in R and 3.65% in γ(Bz)

verify that the contact placement near the end reduces both absolute values.

Data Calculated Error

R −2.465 × 10−4 −2.4381 × 10−4 1%

γ(Bz) 2.45 × 104 2.4135 × 104 3.65%

Table 3.5: Results of the Hall coefficient and the magneto-resistance in a six-contact bar.
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• Eight-contact Hall bar

This bar is considered a perfect shape for measurements and it is used to predict R with

minimum error. Contacts 3 and 4 are located in the middle of the bar, sufficiently far-off the

bar ends.
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Figure 3.6: FEAP results of voltage distribution in an eight-contact bar without (top) and with

an applied magnetic field (bottom).

As indicated in the table below |△V3,4 (I+
x , B+

z )| = |△V3,4 (I+
x , B−

z )|, then Vm = 0 [V]. Since

contacts 3, 4 are placed exactly in the middle of the bar, it is also verified |△V3,4 (I+
x , B+

z )| =

|△V3,4 (I−

x , B+
z )|.

I+
x , B+

z I−

x , B+
z I−

x , B−

z I+
x , B−

z

△V3,4 0.4958 −0.4958 0.4958 −0.4958

Ix 0.8103 −0.8103 −0.8103 0.8103

Table 3.6: Voltage difference between contacts and applied electric current in an eight-contact

Hall bar.

In this shape, the R and γ(Bz) estimations are done with one measurement and only the Ra

and γa(Bz) definitions from the Eqs. (3.8) are considered.

Data Calculated Error

Ra −2.465 × 10−4 −2.4473 × 10−4 0.71%

γa(Bz) 2.45 × 104 2.3841 × 104 2.68%

Table 3.7: Results of the Hall coefficient and the magneto-resistance in an eight-contact bar.
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The eight-contact bar provides a perfect measurement of Ra with an error of 0.71%, while

the error in γa(Bz) is also reduced compared to the previous bar.

• Irregular six-contact Hall bar

This shape was proposed to take advantage of the middle placement of contacts 3 and 4

and at the same time permit an easier fabrication. The only drawback is that ρ(Bz) cannot be

estimated with an irregular bar, since a symmetrical sample is required.
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Figure 3.7: FEAP results of voltage distribution in an irregular six-contact bar without (top)

and with an applied magnetic field (bottom).

The measurements are taken from perfectly aligned 3 and 4 contacts and as a result Vm = 0 [V]

is observed during the electric current reversal:

I+
x , B+

z I−

x , B+
z I−

x , B−

z I+
x , B−

z

△V3,4 0.4946 −0.4949 0.4947 −0.4949

Ix 0.8089 −0.8089 −0.8089 0.8089

Table 3.8: Voltage difference between contacts and applied electric current in an irregular six-

contact Hall bar.

As in the previous case, the parameters’ estimation is done with only one measurement and

considering the definitions of Ra and γb(Bz) from the Eqs. (3.8). The Ra result reflected in the

Table 3.9 reveals an error reduction compared to that of the regular six-contact bar, but it is

still not as accurate as that of the eight-contact bar. The error in the γb(Bz) estimation is about

38.8%, an improper result due to the sample’s asymmetry.
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Section 3.3. Methods of measurement and errors in the Hall coefficient estimation

Data Calculated Error

Ra −2.465 × 10−4 −2.4472 × 10−4 0.89%

γb(Bz) 2.45 × 104 4.76 × 104 38.3%

Table 3.9: Results of the Hall coefficient and the magneto-resistance in an irregular six-contact

bar.

• The general formulation for the Van der Pauw

With this method, R can be calculated again with two equivalent a, b measurements and addi-

tional the isotropy of the sample can be checked [30]:

Ra =
V +

4,2(Bz) − V −

4,2(Bz) + V +
4,2(−Bz) − V −

4,2(−Bz)

I+
x3,1(Bz) − I−

x3,1(Bz) + I+
x3,1(−Bz) − I−

x3,1(−Bz)

t

Bz

Rb =
V +

1,3(Bz) − V −

1,3(Bz) + V +
1,3(−Bz) − V −

1,3(−Bz)

I+
x4,2(Bz) − I−

x4,2(Bz) + I+
x4,2(−Bz) − I−

x4,2(−Bz)

t

Bz







→ R =
Ra + Rb

2
(3.9)

where the sub-indices of V and Ix are the contacts’ numbers for VdP shapes represented below.

The following cases are studied applying the magnetic field Bz = 1 [T]. The Ix3,1
is created

prescribing V = 0 [V] at the point 1 and V = 1 [V] at the point 3. With FEAP the value

of Ix3,1
is taken from the reaction output at 1 and the voltage difference V4,2 is directly taken

from the output of the second degree of freedom. The square shape is discretized into a total of

51105 nodes and the circular one into 14228 nodes. The main idea is to compare the influence

in the R estimation of contact placement at the corners or along the periphery of the shape [30].

Theoretically, it is considered that R can be accurately measured only if contacts are placed at

the corners.

The V –distribution for both geometries with Bz = 0 [T] and Bz = 1 [T] are displayed. As

can be observed in the square shape, four contacts are placed at the corners while in the circle

one they are at the vertical and horizontal axes of symmetry on the periphery.
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Figure 3.8: FEAP results of voltage distribution in square and circular shapes without (left)

and with an applied magnetic field (right).

No misalignment was introduced to provide results focused on the influence in R of the contact

placement. Since exactly equal V and I outputs from the a, b experiments were obtained for

each shape, only △V4,2 and Ix3,1
values are summarized:

I+
x , B+

z I−

x , B+
z I−

x , B−

z I+
x , B−

z

Circular △V4,2 0.6441 −0.644 0.6441 −0.644

shape Ix3,1
1.112 −1.112 −1.112 1.112

Square △V4,2 0.477 −0.477 0.477 −0.477

shape Ix3,1
0.7753 −0.7753 −0.7753 0.7753

Table 3.10: Voltage difference between contacts and applied electric current in square and

circular shapes.

As reflected in the Table 3.11, the contact placement at the corners of a symmetrical sample

provides an error of 0.08%. This result is the most precise compared to all the measurements

done before. The circular shape error for R is about of 6%, which is six times greater than in the

Hall’s bars and 75 times greater than in the square shape. The conclusion that can be carried

out is that at the corners the spin Hall effect is suppressed. But, if the contacts are placed along

the circular periphery, this effect and the error in the measurements are enlarged.

Data Calculated Error

Circular shape R −2.465 × 104 −2.316 × 104 6%

Square shape R −2.465 × 104 −2.463 × 104 0.08%

Table 3.11: Results of the Hall coefficient in square and circular shapes.
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Section 3.3. Methods of measurement and errors in the Hall coefficient estimation

3.3.2 Alternate Current (AC) field method

This technique is commonly used to eliminate Vm, the source of the largest intrinsic error

in R. In a real measurement Vm = 0 [V] only if the voltage contacts are mathematical points

placed at the corners and the geometry is a perfect square. Any change in shape or contact

placement results in non-zero Vm.

The AC method consists in prescribing a sinusoidal Bz signal, and as a consequence Vhl

becomes time-dependent. Considering only large voltage contributions from the definition of

VME from the Eq. (3.6):

VME = RIxBz cos(ωτ) − βBz ω sin(ωτ)
︸ ︷︷ ︸

AC voltage

+ αρIx + Vs
︸ ︷︷ ︸

DC voltage

(3.10)

where β is the inductance of the sample and ω is the angular velocity and τ is time.

As seen from the Eq. (3.10), VME is subdivided into AC and DC voltage. The DC contribution

can be easily removed using in the experiment a lock-in amplifier (LIA), that separates both

voltages and maintains only the desired AC signal [30]:

VME = RIxBz cos(ωτ)
︸ ︷︷ ︸

Hall voltage

− βBz ω sin(ωτ)
︸ ︷︷ ︸

Inductive pickup

(3.11)

The final AC voltage is decomposed into Vhl and an inductive pickup. The Vhl is in phase with

the Bz signal, while the inductive pickup is 90◦ out of phase and can be removed using the

electric current reversal:

VME(I+
x ) = RIxBz cos(ωτ) − βBz ω sin(ωτ)

VME(I−

x ) = −RIxBz cos(ωτ) − βBz ω sin(ωτ)
(3.12)

The FEAP cases are simulated with the regular six-contact bar and the circular VdP shape

with prescribed sinusoidal Bz. Typically, the frequency of Bz is from 0.1 [Hz] to 0.2 [Hz] and

then ω = 1 [rad/s] was chosen [30]. To separate the AC and DC signals from the FEAP

VME output, a block DC component offset from an input signal dsp.DCBlocker System from

MathW orks® was used [42]. The same result can be obtained by applying the discrete Fourier

transform [43], [44]:

Fk =
N−1∑

j=0

xjw
k,j
t ; F0 =

N−1∑

j=0

xj (3.13)

where wt is the twiddle factor (any of the trigonometric coefficients that are multiplied by the

data in the discrete Fourier transform), xj is the VME signal and F0 is a zero frequency signal.

59



Chapter 3. Measurement techniques of the Hall effect in thin-film semiconductors

An amplitude without frequency F0 corresponds to the DC signal, and as a consequence sub-

tracting F0 from the VME output, Vhl can be obtained.

• The six-contact Hall bar

As stated before, the Hall bar is considered an ideal shape for the R measurement. The

accuracy is reached by the extended arms that minimize misalignment errors, as the contacts

placement is restricted to the arms ends of width a. In that way, contact misalignments can

vary a small range [0, a]. To verify this statement, measurements of R with the six-contact

bar, characterized by the same number of nodes and dimensions as in the previous case, are

performed with misalignments of m = 0, m = a/2, m = a.
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Figure 3.9: FEAP results of Hall voltage in a regular six-contact bar after applying an alternate

current magnetic field. Measurements done with contact misalignments m = 0, m = a/2, m = a.

In the Figure 3.9 the Vhl sinusoidal outputs for three different misalignments are displayed. The

amplitude of the sinusoidal signal corresponds to the Vhl value. Even on a zoom of the left

figure, Figure 3.9 right, the difference in the amplitude for the three cases is minimal.

Misalignment [m] Amplitude [V] Vm [V] Vm/ Vhl [%]

m = 0 −0.4958 0 0

m = a/2 −0.4997 0.0002 0.78

m = a −0.4964 0.0005 0.12

Table 3.12: Comparison of Hall’s voltage amplitude, misalignment voltage and error in the

six-contact bar with several contact misalignments.

As summarized in the Table 3.12 the maximum error introduced by contact misalignment is
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Section 3.3. Methods of measurement and errors in the Hall coefficient estimation

0.8%, verifying that a small range of a contact placement leads to a minimal undesired Vm.

• The circular Van der Pauw geometry

In the Hall bars, the contact placement is restricted to a small width of the extended arms,

while in the VdP geometry contacts can be placed at any point along the contour of the shape.

Misalignment is the most common error in VdP measurements. To get an idea of the error

percentage that the produced Vm can create, three measurements are performed with the circular

shape with contact misalignments of m = 0, m = b/2, m = b, where b = 9.5 × 10−3 [m]. The

number of nodes and dimensions are as in the Figure 3.8.
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Figure 3.10: FEAP results of Hall’s voltage in a circular shape after applying alternate current

magnetic field. Measurements done with contact misalignments m = 0, m = b/2, m = b.

As seen in the Figure 3.10, at τ = 0 [s] and τ = 6.25 [s] (the start and the end of a signal’s cycle)

the Vhl change in value drastically, variation that corresponds to the Vm contribution. Taking

into account the results summarized in Table 3.13, it can be concluded that incorrect alignment

can produce a maximum of 19% error into the Vhl amplitude.

Misalignment [m] Vhl [V] Vm [V] Vm/ Vhl [%]

m = 0 −0.6441 0 0

m = b/2 −0.6088 0.021 5.48

m = b −0.5194 0.0716 19

Table 3.13: Comparison of Hall’s voltage amplitude Vhl, misalignment voltage and error in the

circular shape with contact misalignments m = 0, m = b/2, m = b.
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Chapter 3. Measurement techniques of the Hall effect in thin-film semiconductors

3.4 Parametric studies

3.4.1 Influence of magnetic field on thermoelectric properties

Commonly, the Hall effect measurements are done prescribing a low Bz, as in a such condition

the TE properties ρ, κ of a semiconductor are similar to the case without magnetic field. The

idea of the impact of high Bz on the TE properties was developed in [32], and to determine the

threshold Bz value, the VdP technique is going to be used with the square shape for the range

[0, 5] [T].

For the κ estimation using the VdP technique, a heat flow Q1,2 is prescribed to node 1 and 2, and

a T –gradient T4,3 is measured at the other two contacts see Figure 3.8; for the ρ estimation, a

similar approach is carried out applying I1,2 and measuring V4,3. Once these two tests are done,

identical BCs are prescribed to nodes 2 and 3, obtaining T1,4 or V1,4. The VdP formulations for

all these tests from [30] is:

RE1 =
V +

4,3 − V −

4,3

I+
1,2 − I−

1,2

=
T +

4,3 − T −

4,3

Q+
1,2 − Q−

1,2

; RE2 =
V +

1,4 − V −

1,4

I+
2,3 − I−

2,3

=
T +

1,4 − T −

1,4

Q+
2,3 − Q−

2,3

;

g =
RE1

RE2

; cosh

[(
g − 1

g + 1

)
ln(2)

fa

]

=
1

2
exp

(
ln(2)

fa

)

;

ρ =
πfat

ln(2)

RE1 + RE2

2
; κ =

πfat

ln(2)

RE1 + RE2

2

(3.14)

where RE1, RE2 are the measured resistances, g is the resistance ratio and fa a geometrical

factor to be numerically obtained from the fourth equation. For the ρ estimation, RE1, RE2

are calculated with V and I values, while for κ with T and Q values.

In FEAP and for the electric field, instead of applying I directly to the node, V = 0 [V] at

the contact 1 and V = 1 [V] at the contact 2 are prescribed; the value of I1,2 is taken from the

reaction output in the contact 2. The same approach is followed for the thermal field.

As seen in the Figure 3.11 right, in a range from 0 [T] to 2 [T] the difference between ρ(Bz),

κ(Bz) and their values when Bz = 0 [T] is below 1%. The largest percentage difference for ρ(Bz)

is reached at 5 [T] with a maximum of 60%, while for κ(Bz) the applied Bz affects slightly. It

can be concluded that for Bz > 2 [T], ρ(Bz), κ(Bz) should be considered as Bz functions.

62



Section 3.4. Parametric studies

4

5

6

7

ρ
(B

z
)

×
10

−
5

[Ω
·m

]

0

20

40

60

D
iff

er
en

ce
[%

]

10.812

10.815

10.818

10.821

0 1 2 3 4 5

κ
(B

z
)

[W
/m

·K
]

Bz [T]

0

0.02

0.04

0.06

0 1 2 3 4 5

D
iff

er
en

ce
[%

]

Bz [T]

Figure 3.11: FEAP results of electrical resistivity and thermal conductivity obtained with the

Van der Pauw method in a square applying magnetic field from 0 to 5 [T].

3.4.2 Effects of the thin-film thickness on resistivity measurements

Most of the past investigations are focused in shape, contact size or placement effects on the

accuracy of the VdP measurements. The effect of sample thickness was recently investigated

in [31]. The requirement of a thin-film sample comes from the VdP formulation, which was

developed for a completely 2D electrical/heat current distributions. An experimental study

developed in [31] on graphite concluded that the accuracy of this method is highly improved by

making the films sufficiently thin. The experimental results showing the constant value only for

t < 2 × 10−3 [m] can be observed in the Figure 3.12.

As stated before, for the FEAP simulations a semiconductor film is simulated with elmt12.f

witch incorporates 2D galvanomagnetic formulation; the film thickness is introduced as a mate-

rial property. The main idea is to verify if the ρ evolution seen in the Figure 3.12 is only due

to 3D interactions or if any anomalous 2D effect can be observed. For this purpose the VdP

method was applied to the square shape, varying the sample’s thickness.
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Figure 3.12: Measurements of resistivity by Van der Pauw method on graphite material with

different thikness [31].

From the results contained in the Table 3.14, it is observed that ρ does not change with

thickness in a sample. The conclusion that can be carried out is that if 2D symmetry in the

electrical/heat current distribution is maintained across the sample, the VdP method calculations

are highly precise.

Thickness [m] 1 × 10−4 1 × 10−3 1 × 10−2

ρ × 10−5 [Ω· m] 4.18 4.18 4.18

Table 3.14: Measurement of resistivity with Van der Pauw method on square of different thick-

ness.
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4
Simulation of Lithography-free resistance

thermometry

In this chapter, a new technique for measuring the Seebeck α(T ) and the Hall R(T ) coefficients

as function of temperature, developed by the Institute of Materials Research and Engineering

of Singapore [20] is reviewed. This technique can be applied to thin films of large dimension

and provide more accurate α(T ) estimation than common 2-probe and 4-probe techniques only

useful for miniature films. This new method has a strong potential and it is expected to be

widely adopted for the TE materials’ characterization; for that reason it was selected for the

study.

In the following sections a brief research motivation is presented and results of α(T ) and R(T )

from the outputs of FEAP are provided. The main idea is to test the method and perform an

analysis of the obtained results.

4.1 Motivation

Currently, two dominant setups are used to measure α: 2-probe and 4-probe methods, both

susceptible to errors. As represented in the Figure 4.1 left, in the 2-probe configuration, a TE

material is placed between two metal block, one acting as a heater and the other as a sink.

The T –measurements are taken from thermocouples, embedded in the metal blocks. This T –

measurements can be overestimated as one of the thermocouples is in direct contact with the

heater, called hot finger effect. The other drawback is the thermal contact resistance between

the sample and the heat source/sink: a poor contact connection between both can cause a large

offset in the T –measurements [38].

This thermal contact resistance can be avoided with the 4-probe configuration, see Figure 4.1

right, as thermocouples are placed along the side of the sample. However, some new issues such

as the cold-finger effect and the point contact resistance appear at high temperatures. The

former effect, is the result of heat transfer from the sample to the thermocouples, leading to an

underestimation of the T –measurements. The latter effect is related to the contacts: to ensure

a good connection between the thermocouple and the sample’s surface, a pressed union between

both is required. In soft organic TE materials this loading is the cause of sample’s breakage or

plastic deformation. To settle the loading problem, low forces can be used, however, this leads
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Chapter 4. Simulation of Lithography-free resistance thermometry

to a high thermal resistance between the thermocouple and the sample.

Thermocouple

TE material

Metal block

Figure 4.1: Representation of 2-probe (left) and 4-probe (right) methods for Seebeck coefficient

measurements [38].

4.2 Method’s configuration

4.2.1 Measurement device configuration

The new lithography-free resistance technique, which is thermometry based provides the

α(T ) and γ(T ) estimations for large area films. The thermal resistance issue mentioned is

solved by pre-pattering the electrodes to the sample using a low-cost shadow mask. Shadow

masks represented in the Figure 4.2(a) are an important tool to make metal thin films with hole

pattern cut on them; the pattern determines the areas of the substrate that will be coated with

metal [41]. This is a one-step process to fabricate high-quality electrodes, sensors and heating

wires in microelectronic devices.

(a) (b)

Figure 4.2: Representation of (a) Gold flexible shadow mask [41]; (b) a real laboratory device

for the Seebeck effect measurements [20].
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Section 4.2. Method’s configuration

These masks are deposited on the material to be studied with thickness t = 7 × 10−8 [m];

then this material is deposited on a substrate of thickness ts = 1×10−2 [m] as represented in the

Figure 3.2(b). The measurement device is seen in the Figures 4.2(b), 4.3 and contains a shadow

mask with patterned heater, two thermometers and two electrodes for electrical resistivity mea-

surements. All elements are gold lines that provide a large contact area with the material. There

are some geometrical requirements for the placement of these lines: the distance of 2 × 10−3 [m]

between thermometers and electrodes, the 1 × 10−3 [m] between two thermometers to achieve a

large T –gradient, and the 2 × 10−3 [m] between the heater and the first electrode are required.

I
V1,2

T1,2

Sapphire

Electrode 2

Thermometer 2

Heater

Ni

Electrode 1

Thermometer 1

Figure 4.3: Schematic representation of the setup for the Seebeck coefficient measurements [38].

4.2.2 Material

The material to be studied in this chapter is Niquel Ni, the properties of which are are

expressed in the Eqs. (4.1) [20]; their graphical evolution compared with the FEAP results can

be found in the following subsections.

κ(T ) = 10 − 3.33 × 10−2 T

γ(T ) = 8.99 × 106 − 1.51 × 104 T

α(T ) = 8.35 × 10−4 − 5 × 10−4 T

(4.1)

The properties of Sapphire (Eqs. (4.2)) are assumed constant and evaluated at Tm = 300 [K],

[36]. As mentioned before the heater, electrodes and thermometers are made of Gold Au, also

with very high κ and γ.

• Saphire:
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κ(Tm) = 53; γ(Tm) = 2 × 10−15; (4.2)

• Gold:

κ(T ) = 332 − 4.52 × 10−2 T

γ(T ) = 2.33 × 108 − 9.98 × 105 T + 1073 T 2

R(T ) = 6.16 + 2.43 × 10−2 T

(4.3)

The graphical representations of κ(T ), γ(T ), R(T ) from Eqs. (4.3) are [37]:
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Figure 4.4: Evolution of the resistance, thermal and electrical conductivities with temperature

for Gold material [37].

4.2.3 Elements and the mesh discretization

For the FEAP cases, Gold and Niquel materials along with rectangular 2D elements of

elmt12.f with coupled GM properties are used. In turn, for Sapphire rectangular 3D elements
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of elmt11.f with uncoupled thermal and electrical conduction formulation are used.

Thermometer 2
Electrode 2

Heater

Ni–film

a
b

L

w

Thermometer 1

Electrode 1

Figure 4.5: Representation of the FEAP mesh for the Seebeck coefficient measurements.

The FEAP mesh, which configuration is pictured in the Figure 4.5, is discretized into a total

of 14241 nodes. The device’s dimensions are similar to those listed in [20] and are summarized

in the Table 4.2:

Parameter Value Units

a 1 × 10−3 [m]

b 0.3 × 10−3 [m]

Parameter Value Units

w 0.6 × 10−2 [m]

L 0.3 × 10−2 [m]

Table 4.1: Dimensions for the Seebeck measurement setup represented in Figure 4.5, [20].

4.3 Results

4.3.1 Electrical conductivity estimation

To perform the ρ(T ) measurements, an electric current I is prescribed through the sample’s

width and the resistivity voltage is read between the electrodes 1 and 2. With FEAP , to

prescribe I the right side of Ni is maintained at Vright and the left side at V =0 [V]; then the

value is taken from the reaction output. The base of the substrate is maintained at constant T ,

then ρ(T ) at this temperature is estimated. From [20] the expression of ρ(T ) is:

ρ(T ) =
dV

dI

A

L
=

dV

dI

w t

L
(4.4)

where A is the cross-section area of the film.
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As seen from the Eq. (4.4), ρ(T ) is a dV/dI function; to calculate this slope, several mea-

surements varying the value of I are done. The prescribed Vright of FEAP were: 0.06, 0.02,

0.001 [V], values that created 4.46 ×10−4, 5.6 ×10−5, 1.7 ×10−5 [A] respectively.

Another aspect that needs to be controlled is the temperature of the film. A uniform T along

the electrodes width needs to be maintained to assure precise V –measurements. As seen from

the Figure 4.6, when the smallest V –gradient is prescribed (I =1.7 ×10−5 [A]), the T along the

electrodes is almost constant.

0
0.16
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0.66
0.839

1

V × 10−3 [V]

300

300

300

300

T [K]

Figure 4.6: FEAP results of voltage (left) and temperature (right) under prescribed electric

current of 1.7 ×10−5 [A].

The measurements are repeated for increased V –gradients. As seen from the Figure 4.7

left, under I=5.6 ×10−5 [A] the T –distribution becomes irregular, although the T –variations

in the film are still negligible. Nevertheless, under I=4.46 ×10−4 [A] of the Figure 4.7 right,

a Joule heating is observed: the 5 [K] increment in the T –distribution will lead to spurious

measurements. It can be concluded that for an accurate ρ(T ) estimation, values below 1 ×10−4

[A] need to be considered.
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Figure 4.7: FEAP results of temperature distributions with prescribed electric current of 5.6

×10−5 [A] (left) and 4.46 ×10−4 [A] (right).

In the Figure 4.8, γ(T ) results from FEAP , from laboratory measurements of [20] and
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from others of [39] are compared. In the first two results, a thickness of 7 × 10−8 [m] has

been considered while for the third 4 × 10−8 [m] has been estimated. The results of the three

studies fit almost perfectly. The small difference can be caused by the non-consideration of the

convection factor in the estimation or the instruments’ calibration. In addition, it can be seen

that the γ value for 4 × 10−8 [m] is greater than for 7 × 10−8 [m]. The same conclusion as in

the Subsection 1.4.2 can be carried out: the quantum confinement effect such as the reduction

of the film’s thickness increases γ and therefore enhances ZT .
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Figure 4.8: Results of electrical conductivity under different temperatures from FEAP and

experimental results from [20] and [39].

4.3.2 Seebeck coefficient estimation

In this test, during the measurements the base of the substrate and the heater are maintained

at different temperatures. The heater creates a small T –gradient across the film, necessary to

measure α(T ). In that way, experiments are preformed changing the substrate’s T to make a

reconstruction of α(T ), always maintaining the difference between the substrate and the heater of

15 [K]. The △V1,2 and △T1,2 values are read between the thermometers 1 and 2. The formulation

for α(T ) from [20] is:

α(T ) =
△V1,2

△T1,2
(4.5)

Additionally, the heater is covered with a Kapton tape. This tape is necessary to avoid an

electrical shorting between the heater and the film, and to evade spurious voltage measurements

caused by conduction between both. With FEAP , V = 0 [V] was prescribed in the heater, to

simulate this tape.
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Figure 4.9: FEAP results of voltage (left) and temperature (right) distribution with prescribed

flux in the heater.

The V and T distributions are represented in the Figure 4.9. It should be noted that the

V –values are very low, making difficult to achieve precise measurements. In a real experiment

sophisticated nanovoltmeters should be used to capture this small V –difference across the sam-

ple.
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Figure 4.10: Results of the Seebeck coefficient under different temperatures from FEAP and

experimental results from [20] and [40].

In the Figure 4.10, α(T ) results from FEAP , from laboratory measurements of [20] and

from [40] are compared. In the first two, experiments are performed with thin-films while in the

third with a nanowire. With these results, comparison between the properties of both quantum

films and quantum wires can be done. As reviewed in the Subsection 1.4.2 the objective of both

techniques is to enhance ZT , increase that can be done by α increment or κ reduction. Although

the α(T ) results are similar, it should be noted that in wires this property is greater than in

films. However no conclusions can be carried out on ZT , because additional studies on κ should
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be considered.

4.3.3 Hall coefficient estimation

The Hall and the Seebeck coefficients are both functions of the carrier concentration n of the

studied material. By finding n from the Mott formulation of α for transition metals (Eqs. (4.6)

left), and substituting it into the Eqs. (4.6) right, the R(T ) can be calculated varying the

substrate’s T .

α =
2π2 mi k2

b T

3 h2
p e

3

√
(

8π

3n

)2

; R =
1

n e
(4.6)

where mi is the free electron mass, kb the Boltzmann’s constant, hp the Planck’s constant and

e is the electron’s charge. The values of all the coefficients necessary are:

Parameter Value Units

mi 9.11 × 10−31 [kg]

kb 1.38 × 10−23 [J/K]

Parameter Value Units

hp 1.054 × 10−34 [J ·m]

e 1.6 × 10−19 [C]

Table 4.2: Values of coefficients for estimation of the sample’s carrier concentration.

In the Table 4.3, n results obtained from α(T ) taken from the FEAP simulation and n results

from R measurements [20] are presented. Some difference between results is observed, but

the decreasing evolution of n with T is maintained in both. Although a significant maximum

of 19% of error is obtained, the calculation of n from the Mott’s formulation can reduce the

amount of measurements and devices’ configurations for material characterization, since from α

measurements n and therefore R can be calculated.

n [m−3] 100 [K] 150 [K] 200 [K] 250 [K] 300 [K]

R 2.54 × 1029 2.48 × 1029 2.34 × 1029 2.31 × 1029 2.21 × 1029

FEAP 2.035 × 1029 2.019 × 1029 2.012 × 1029 2.0078 × 1029 2.0048 × 1029

Difference 19 % 18 % 14 % 13 % 9 %

Table 4.3: FEAP and experimental results of the sample’s carrier concentration.

In the Figure 4.11 three different distributions of R are compared. In the first, the R mea-

surement is done with one of the techniques described in the Chapter 3 while in the last two
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Chapter 4. Simulation of Lithography-free resistance thermometry

R is obtained calculating n with Mott’s formulation from the α results of Figure 4.10. The

distributions of the last two studies fit almost perfectly since their α values from the Figure 4.10

are similar. The difference of R comes from that of n from the Table 4.3.
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Figure 4.11: Results of the Hall coefficient under different temperatures with FEAP and [20]

calculations with Mott’s formulation, and with experimental results from [20].
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5
Conclusions

In this work, methods of characterization of thermoelectric thin films are reviewed. The necessity

of measuring properties on thin films deposited on a substrate is essential to capture the effect

of the quantum confinement. Another important aspect is that the reduced thickness suppresses

the 3D interactions making possible the calculation of the parameters with a 2D formulation.

Prior to the study of the material characterization, validation of the galvanomagnetic effect

is carried out by comparing the FDM and the FEM results from the FEAP program. Once the

validity of the FEAP results was completed the usual methods for Hall coefficient and electrical

resistivity estimation were simulated. The AC/DC methods described from ASTM protocol were

applied to the Hall bars and VdP geometries. This study was completed with an innovating

Hall bar shape from the Lake Shore’s Laboratory. A comparison of results obtained with these

geometries is provided along with the analysis of the pros/cons of the proposed Lake Shore’s

shape. Finally, an experiment from recent research technique for Seebeck and Hall coefficients

estimation was repeated with FEAP simulation. The experimental laboratory results were

compared with those of FEAP , showing that FEM is an accurate tool to make experimental

predictions.

The conclusions that can be carried out from the study are:

• The prescription of the magnetic field can improve the performance of thermoelectric

materials. The applied 1D current/heat flux, under magnetic field becomes 2D.

• It is very important to develop simple methods for measuring thermoelectric properties,

where the measured properties are not affected by the device configuration.

• The special elements of FEAP allow to simulate any phenomenon with known mathemat-

ical model. For that reason, a prior validation of FEAP results with analytical solution

is required.

• The cases simulated with FEAP allow to analyze the factors that affect the measurements

and create a configuration that minimizes errors.

• The material selection for elements such as substrate, electrode or thermometers of the

measurement device is important as they can affect the measurements.
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• It is important to maintain the device at fixed temperature as far as possible as thermo-

electric properties are temperature functions.

• In the Hall’s coefficient measurement, a large error can be introduced by the spin Hall

effect. This effect is minimized in the square shapes and maximized in the circular shapes.

• Misalignment of the voltage contacts can create a spurious voltage contribution in the

Hall’s measurement. The AC technique can provide an estimation of this contribution

from the signal offset.

• The value of prescribed magnetic field also affects γ and ρ. From Bz= 2 [T] these properties

become both magnetic and temperature functions.

• As verified with the last study, FEAP simulations can predict laboratory experiments

accurately. Although the results do not fit perfectly, the same evolution is observed. The

perfect fit can not be as the experiment are affected by the environmental conditions and

the devices’ calibration of the room.

76



Section 5.1. Future works

5.1 Future works

During the completion of this final degree project, new avenues of research on the character-

ization of the thermoelectric material were developed. Among all the ideas, the following stand

out:

• Analysis of the stresses experienced by the material under magnetic field and the influence

of these stresses on the measured properties.

• Analysis of 3D thermoelectric materials and reformulation of the existing methods of

properties’ characterization.

• Study of the radiation or convection influences on the thermoelectric properties.

• Study of the thermoelectric performance in multilayer thin films.

• Study of the techniques of measurement for Righi-Leduc and Ettinghausen-Nernst coeffi-

cients and their dependence on temperature and on magnetic field.

• Study of enhanced thermoelectric properties of nanocomposite materials (bulk material

embedded with nanoparticles).

• Research and simulation of techniques for properties’ measurement in nanowires.
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5.2 Budget

The following breakdown details the total cost for carrying out this work:

Amount Task Cost/unit Total cost

360 Total Engineer Hours 40.00 e 14400.00 e

60 Theoretical training

30 FEAP Training

30 FEM Models in FEAP

20 Analytical models in Matlab©

20 Analytical models in Mathematica©

20 Post-processing results in Illustrator©

40 Results analysis

60 Validations and errors analysis

80 Report reduction

200 Total Server hours 5.00 e 1000.00 e

100 FEAP results

100 Analytical results

1 FEAP License 1500.00 e

1 Matlab© Annual Academic License 35.00 e

1 Mathematica© Annual Academic License 199.00 e

1 Illustrator© Annual Academic License 290.00 e

Total budget (excluding VAT) 17334.00 e

VAT (21%) 3640.14 e

Total budget 20974.14 e

The budget amounted to TWENTY THOUSAND NINE HUNDRER SEVENTY-FOUR e.
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