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Abstract. Mutation Testing is a well-established technique for assessing the 

quality of test cases by checking how well they detect faults injected into a 

software artefact (mutant). Using this technique, the most critical activity is the 

adequate design of mutation operators so that they reflect typical defects of the 

artefact under test. This paper presents the design of a set of mutation operators 

for Conceptual Schemas (CS) based on UML Class Diagrams (CD). In this 

paper, the operators are defined in accordance with an existing defects 

classification for UML CS and relevant elements identified from the UML-CD 

meta-model. The operators are subsequently used to generate first order mutants 

for a CS under test. Finally, in order to analyse the usefulness of the mutation 

operators, we measure some basic characteristics of mutation operators with 

three different CSs under test.   

Keywords: mutation testing · mutation operators · test cases quality · 
conceptual schemas · class diagram mutation.  

1 Introduction 

A conceptual schema (CS) defines the general knowledge required by an information 

system in order to perform its functions [1], so that an accurate representation of this 

information (following the requirements) is a key factor in the successful 

development of the system, especially in a Model-driven environment context [2]. 

The development of a conceptual schema is an iterative process involving evaluation 

of the CS, its accuracy and its improvement from the evaluation results. Testing is a 

well-established technique that helps to accomplish this task. It provides a level of 

confidence in the end product based on the coverage of the requirements achieved by 

the test cases.  

In this context, we proposed an approach for testing-based validation of Object-

Oriented Conceptual Schemas in a Model-driven environment [3][4], where one 

group of engineers (e.g. requirements engineers) specifies requirement models (RM) 

from which the test scenarios with test cases (i.e. an executable concrete story of a 
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user-system interaction and the expected result) are automatically generated. These 

test cases are then used to test the conceptual schemas in an early phase of software 

analysis and design. Since testing is performed to provide insight into the accuracy of 

a CS, we need to ensure the test suite quality (i.e. ability to reveal faults). 

Mutation testing assesses the quality of a test suite [5] using mutation operators to 

introduce small modifications or mutations into the software artefact under test, e.g. 

CS. The artificial faults can be created using a set of mutation operators to change 

(“mutate”) some parts of the software artefact. Mutants can be classified into two 

types: First Order Mutants (FOM) and Higher Order Mutants (HOM) [6]. FOMs are 

generated by applying mutation operators only once. HOMs are generated by 

applying mutation operators more than once [5]. Assuming that the software artefact 

being mutated is syntactically correct, a mutation operator must produce a mutant that 

is also syntactically correct. Each faulty artefact version, or mutant, is executed 

against the test suite. The ratio of detected mutants is known as the “mutation score” 

and indicates how effective the tests are in terms of fault detection. Approaches that 

employ mutation testing at higher levels of abstraction, especially on CS, are not 

common [5]. 

In Mutation testing the most critical activity is the adequate design of mutation 

operators so that they reflect the typical defects of the artefact under test. This paper 

presents the design of a set of mutation operators for Conceptual Schemas (CS) based 

on Unified Modelling Language (UML) Class Diagrams (CD) [7]. The main potential 

advantage of mutation operators is to describe precisely the mutants that can generate 

and thus support a well-defined, fault-injecting process [8]. The main contributions of 

this paper are:  

 It provides a classification of 50 mutation operators for UML CD-based CS, which 

may be used in evaluating verification1 and validation2 approaches. The resulting 

operators are mainly based on a defects classification reported previously [9]. 

 It illustrates the application of an effective subset of 18 mutation operators, which 

generate only first order mutants. These mutation operators were applied to three 

UML CD-based CS with the aim of showing their usefulness in evaluating testing 

approaches. 

The paper is organized as follows. Section 2 describes an UML CD-based CS. Section 

3 reviews the defect types at the model level. Section 4 explains the design process of 

the mutation operators. Section 5 demonstrates the application of the operators in 

three CS. Section 6 summarizes related work. Finally Section 7 concludes. 

                                                           

1  Verification is to check that the conceptual schema meets its stated functional and non-

functional requirements (making the right product) [27]. 

2 Validation is to ensure that the conceptual schema meets the customer's expectations (making 

the product right) [27]. 



2 UML CD-based Conceptual Schemas 

The aim of this work is to design mutation operators for evaluating the effectiveness 

of test cases in finding faults in a CS during the analysis and design of the software. 

The defects will be introduced by deliberately changing a UML CD-based CS, 

resulting in wrong behaviour possibly causing a failure.  

The CS of a system should describe its structure and its behaviour (constraints). In 

this paper a UML-based class diagram is used to represent such a CS. A class diagram 

(see Figure 1) is the UML’s main building block that shows elements of the system at 

an abstract level (e.g. class, association class), their properties (ownedAttribute), 

relationships (e.g. association and generalization) and operations. In UML an 

operation is specified by defining pre- and post-conditions. Figure 1 shows an excerpt 

of the UML structure for a class diagram and highlights eight elements of interest for 

this work. Finally, mutation testing requires an executable CS for validating the 

behavioural aspects included in the CS structural elements. Therefore, we used the 

Action Language for Foundational UML (Alf [10]) and the virtual machine of 

Foundational UML (fUML [11]) as the execution environment for mutation testing.  

 
Fig. 1. Excerpt of the Meta-model of an UML Class Diagram [7] 

3 Defect Types in UML-based Conceptual Schemas 

An important aspect when applying mutation testing to a CS is that the injected defect 

should represent common modelling errors. In previous work [5] we classified UML 

model defects reported in the literature and related the types of the defects with the 

CS quality goals affected by them. Table 1 summarizes the defect types for CS. 

Missing and unnecessary elements (i.e. redundant and extraneous) and incorrectly 

modelled requirements are the main causes of a design model inaccuracy that can be 

detected basing on requirement testing. Inconsistency defects require comparing CS 

versions in order to find them. Finally, ambiguous elements require of user (e.g. 

modeller, low-level designer) criteria for finding defects. 



Table 1. Defect types in a UML-based model (excerpt taken from [9]) 
Defect Cause  Sub modes 

        MISSING            Something is absent that should be present. 

WRONG 

Something is 

incorrect, 
inconsistent or 

ambiguous. 

Inconsistent:  There are contradictions in the models (1) vertical inconsistency (i.e. 

contradictions between model versions) and (2) horizontal inconsistency (i.e. 

contradictions between different model views). 

Incorrect: There is a misrepresentation of modelling concepts, their attributes and 
their relationships, as well as the violation of the rules by combining of these 

concepts at the time of building partial or complete models. 

Ambiguous (wrong wording): The representation of a concept in the model is 
unclear, and could cause a user (e.g. modeller) to misinterpret its meaning. 

UNNECESSARY  

(Extra) 
Something is 

present that need 

not be. 

Redundant: If an element has the same meaning that other element in the model. 

Extraneous: If there are items that should not be included in the model because they 

belong to another level of abstraction, e.g. details of implementation, which are 
decisions (e.g. type of data structure used at code level) that are left to be made by 

the developers, and is not specified at an earlier level (e.g. CS). 

4 Design of  Mutation Operators 

As can be seen in Figure 2, a CS mutant Mi is a faulty CS, which is generated by 

injecting defects (adding, deleting or changing elements) into modelling elements (see 

Figure 1 in section 2.1) of the original CS. A transformation rule that generates a 

mutant from the original model is known as a mutation operator. If the mutant is 

generated by applying only one mutation operator in the original CS, it is a first order 

mutant (e.g. CS with an added constraint), otherwise, it is a higher order mutant if it 

applies various changes in the CS by using nested operators. For example, a CS that 

has been mutated by deleting a class has also evidently deleted associations, 

properties, constraints, operations and parameters associated with the deleted class. 

During execution each CS mutant Mi will be run against a test case suite T. If the 

result of running Mi is different from the result of running CS for any test case in T, 

then the mutant Mi is said to be “killed”, otherwise it is said to have “survived”. A CS 

mutant may survive either because it is equivalent to the original model (i.e. it is 

semantically identical to the original model although syntactically different) or the 

test set is inadequate to kill the mutant.  

 
Fig. 2. Relationships among conceptual entities used in the  mutant definition (adapted from 

[12]) 

To apply Mutation Analysis in the context of UML CD-based CS we need to 

formulate mutation operators for CS. Mutation is based on two fundamental 



hypotheses, namely, the Competent Programmer Hypothesis (CPH) and the Coupling 

Effect Hypothesis (CEH), both introduced by DeMillo et al. [13].  The CPH states 

that a program produced by a competent programmer is either correct or near the 

correct version. The CEH states that complex (or higher-order) mutants are coupled to 

simple mutants in such a way that a test data set that detects all simple faults in a 

program will detect a high percentage of the complex faults [14]. Consequently, we 

use the following guiding principles [15]: 

─ Mutation categories should model potential faults. 

─ Only syntactically correct mutants should be generated 

─ Only first-order mutants should be generated 

4.1 Mutation Operators Categories 

There are several elements of a CS that can be subject to faults. The defined mutation 

operator set takes the intrinsic characteristics of a UML CD-based CS into 

consideration, where some UML elements are composed by other elements. They are 

thus divided into seven categories: (1) constraint operators, (2) association operators, 

(3) generalization operators, (4) class operators, (5) attribute operators, (6) operation 

operators, and (7) parameters operators. Each element-based group is then sub 

classified according to the three defect types of UML models (i.e. unnecessary, wrong 

or missing) [9]. However, as our research focuses on defining mutation operators for 

evaluating testing approaches, the inconsistent and ambiguity defects are not 

addressed in this work because they generate a faulty CS that is detected without 

requiring execution (i.e. testing is not required). The faulty CS is not detected by 

comparing the model against the requirements. Inconsistency defects are detected by 

comparing models to detect contradictions between them. Ambiguity defect are 

detected by the modeller which finds that the representation of a concept in the model 

is unclear. So that twenty-one categories are obtained, such as Unnecessary Constraint 

(UCO), Wrong Constraint (WCO), Missing Constraint (MCO), Unnecessary 

Association (UAS), Wrong Association (WAS); Missing Association (MAS) and so 

on. Based on the UML meta-model (see Figure 1) and the defects and faults reported 

in the literature [9], [16], [17], [18], we identified CD element features that can be 

mutated for their usefulness in evaluating testing approaches: 

 Mutating Classes: The attributes isAbstract and visibility can be mutated. 

 Mutating Class Attributes (i.e. Class Variables): The visibility, isDerived, and data 

type of the variables can be mutated. 

 Mutating Operations: The visibility and returned value type when the operation 

isQuery can be changed. Additionally, swapping compatible parameters in the 

definition of an operation can be another operation mutant. 

 Mutating Parameters: The data type can be mutated. 

 Mutating Associations: The visibility, isDerived can be mutated. Additionally, 

swapping the member of the Association, the kind aggregation and multiplicity for 

the members of the Association can be mutated. 

 Mutating Generalization: swapping the member of the Generalization. 



 Mutating Constraints: Changes the constraints by mutating operators (arithmetic, 

conditional, and negation), references to class attributes, references to operations. 

These categories and the main element features give rise to 50 mutation operators (see 

Table 4 in Appendix). Each of the 50 mutant operators is represented by a three-letter 

acronym of its category and a sequential number within its category if it is necessary. 

Some of these operators resulted in a CS that is determined to be faulty without 

requiring execution (i.e. testing is not required) and others resulted in behavioural 

faults (i.e. testing is required). Some of them generate FOM and others HOM. Since 

we only focus in FOM, 18 mutation operators (see the mutation operators marked 

with “*” in Table 4) that can generate FOM were obtained through two iterations, as 

follows (see Figure 3). 

First iteration (Exclude equivalent and non-valid mutants). We obtained a 

detailed list of actions that involve applying each mutation operator, to obtain the 

rules for each mutation operator (see Table 4). 
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Fig. 3. Selection process of the mutation operators used for evaluating testing approaches 

If the rule to generate the mutant is not followed, the mutant generated is a non-valid 

mutant, which can be detected at parser level. For example, the mutation operator 

MAS causes an association in a CS to be deleted, however, the constraints related 

with this association must be deleted in order to generate a valid mutant, otherwise 

this mutant will be detected by the parser and cannot be used for a testing process. We 



analysed the mutation operators that always generate a non-valid or equivalent 

mutant. These results are included in Table 4 as a restriction in the operator rule. 

These mutation operators are described as follows: 

 Adding duplicated elements (i.e. UCO1, UAS1, UAS2, UGE1, UCL1, UCL2, 

UAT1, UOP1 and UPA1) within a scope (redundant type defect) is determined to 

be faulty without requiring model execution (i.e. testing is not required). Therefore, 

these operators are not considering in this work. 

 A closer inspection of equivalent mutants generated by the WOP2 mutation 

operator (changes the visibility property of an operation) suggests that this operator 

generates an equivalent mutant when it is applied to a constructor operation 

because it only affects the access inherited by child classes (a private constructor of 

the super class is not inheritable). It is therefore impossible to detect this mutation 

operator when it is applied to a constructor operation. We therefore have to include 

this restriction in the rule of the WOP2 mutation operator to avoid generating this 

type of mutant. 

 Changing a navigable association to a shared aggregation or vice versa (WAS2) 

generates an equivalent mutant because “aggregation=shared” has no semantic 

effect in a executable model using Alf [10]. Therefore, we only applied this 

operator changing from aggregation =”none” to aggregation=”composite” or vice 

versa. 

 Changing an Association Class to a Class with two associations or vice versa 

(WCL2 and WCL3). The association class effect can be equivalently modelled 

when the CS is expressed in Alf [11] (i.e. our execution environment). 

The following operators could generate both and equivalent and non-valid mutants: 

 Changing the visibility kind of an attribute (WAT4) generates both equivalent and 

invalid mutants, depending on whether the attribute is accessed internally by any 

member of the class (it is equivalent because everyone has access) or externally for 

any constraint that refers to this attribute through an association. In the last case, 

the mutant is non-valid and is detected by the parser. 

 Changing a class abstract or vice versa (WCL4) when it does not result in a fault 

that the parser will detect when it tries to instantiate the class. 

 Adding extraneous elements to CS (i.e. UCO2, UAS3, UAS4, UGE2, UCL3, 

UCL4, UAT2 and UOP2) generate equivalent mutants. Apparently, these operators 

did not inject a fault into a CS due to the nature of the test suite: only expected 

elements are tested. So, any additional element will remain untested. However, the 

operator that adds a Parameter to an Operation (UPA2) has to be considered 

because this affects a CS element (operation) that is tested by the test suite and so 

can be killed. These operators require a structural coverage analysis to be detected. 

Finally, the operator that changes the order of the parameters in an operation (WOP1) 

generates a defect of inconsistency between the signatures of the CS operations and 

the operation calls from test cases. This defect affects the testing process more than 

the CS itself and also is detected by the parser. Therefore, this operator is not 



considered in this work. All the excluded operators generate mutants that require a 

static (without execution) technique for detecting. 

Second iteration (Exclude High Order Mutants). We next analysed each 

derivation rule and identified the mutation operators that generate FOM and those that 

can generate HOM (see in Table 4 the relations between operators). Needless to say, 

if no other nested elements exist, this mutation operator also generates a FOM. For 

example, applying an operator to delete an operation (MOP) which has no parameters 

or related constraints generates a FOM. According to the CEH, the HOM are coupled 

to simple mutants (FOM) in such a way that a test data set that detects all FOM will 

detect a high percentage of the HOM. The operators that generate HOM are the 

following: WCO2, MOP, WCL2, WCL3, WCL4, WAT1, WAT2, WAT3, WOP3, 

MCL, MGE, MOP and MAT. We added restrictions to several of these operators in 

order to generate only FOM. Table 4 shows the 18 operators that we used in this work 

(marked with “*”), which were obtained as products of the described iterations. 

Figure 4 shows a partial view of a CS in which five mutation operators have been 

applied. Four operators will generate valid mutants and the MPA operator will 

generate a non-valid FOM because there is a class attribute (i.e. product_name) that is 

related with the parameter (p_atrproduct_name), therefore more changes (i.e. HOM) 

are required so as not to be detected by the parser. This CS is used in the literature to 

explain the development of a requirements model [19] which is used for our test case 

generation approach. This CS is included in our analysis in Section 5. 

 
Fig. 4. Excerpt of a UML CD-based CS and the application of five mutation operators 

5 Application and Analysis of Mutation Operators 

The quality of mutants depends first on how well they reflect real errors that 

modellers make and second on whether they can be injected into a CS in such a way 



that they can be used for mutation testing. In order to analyse the effectiveness of the 

mutation operators, we used three conceptual schemas and respective test suites, 

which are described below. 

5.1 Conceptual Schemas Under Test 

We applied our mutation operators to three CS under test (CSUT) to evaluate the 

effectiveness of our mutation operators. These CS represent three kinds of systems: (i) 

the Super Stationery system (SS), which makes use of classes with attributes and 

derived attributes, associations and constraints but has no generalizations, (ii) an 

Expense Report management system (ER) that uses fewer classes and relations but 

more constraints, and lastly, (iii) the Sudoku Game (SG) system [20], which is more 

variant-rich than the other two CS including generalization relations, derived 

associations and aggregations. The size of each CSUT is shown in Table 2 in terms of 

model elements. 
Table 2. Elements of the Conceptual Schemas Under Test 

Element Super Stationery Expense Report Sudoku Game 

Classes 9 7 11 

Attributes 44 36 26 

Derived Attributes 1 6 6 

Operations 32 24 19 

Parameters 91 75 48 

Associations 9 8 6 

Derived Associations 0 0 2 

Composite Aggregations 0 0 3 

Constraints 12 21 19 

Generalizations 0 0 4 

5.2 Mutant Generation 

We developed a mutation tool prototype [21] to generate and analyse FOMs by 

applying the 18 selected mutation operators. This tool is divided into three distinct 

parts: a) calculate a mutants list, b) generate the mutants previously calculated; and, c) 

performing a syntactic analysis of the mutants. Figure 5 shows the number of valid 

and non-valid mutants generated by each mutation operator and CSUT.  

 
Fig. 5. Valid and non-valid mutants by each mutation operator. 



The number of valid mutants produced by the WCO8 is the highest of the three CS 

(13, 21 and 47 respectively). Operators like UPA2, WCO1, WCO4, WCO5, WCO6, 

WCO7, WCO8, WCO9, WAS2, WCL1 and WOP2 generated only valid mutants for 

the CSUTs. However, the WCO7 and WCO9 operators generated only 1 mutant for 

the CSUT of the Sudoku Game system, giving a total 528 valid mutants (195, 159 and 

174 respectively) and 495 non-valid mutants (171, 174, 150 respectively).  

5.3 Mutation Testing Results  

In this section, we assess the usefulness of the mutation operator for injecting faults in 

three CSUT. Test suites used in this study include tests checking all the CS class 

operations and constraints. Finally the data resulting from applying mutation analysis 

to the CS were collected by applying the following measures. 

For a conceptual schema CS and test suite T, MT let the total number of non-

equivalent mutants generated for CS and MK (T) be the number of mutants killed by 

T. Mutation score for a test suite (MS (T) = MK (T)/MT) is the main measure used in 

mutation to measure the test suite effectiveness to kill mutants generated by applying 

all mutation operators. Where, non-equivalent mutants (MT) = killed mutants (MK) + 

the surviving mutants. The following measures, reflecting basic characteristics of 

mutation operators, were defined to evaluate the usefulness of the mutation operators 

[18]. Table 3 summarizes results of these calculations. 

Table 3.   Results of mutation operator evaluation 
CS 

OP 

Super Stationery Expense Report Sudoku Game 

CF MS II CF MS II CF MS II 

UPA2 0.16 1.00 0.080 0.14 1.00 0.064 0.10 1.00 0.119 

WCO1 0.01 0.00 0.028 0.05 0.67 0.031 0.04 0.86 0.088 

WCO3 0.01 0.50 0.037 0.03 0.80 0.040    

WCO4 0.01 1.00 0.042 0.05 0.75 0.036 0.07 0.54 0.063 

WCO5 0.01 1.00 0.042 0.06 0.73 0.033 0.06 0.55 0.073 

WCO6 0.01 1.00 0.038 0.01 1.00 0.043 0.06 0.36 0.057 

WCO7       0.01 1.00 0.082 

WCO8 0.06 0.69 0.034 0.11 1.00 0.054 0.22 0.68 0.058 

WCO9       0.01 1.00 0.082 

WAS1 0.03 1.00 0.046       

WAS2 0.04 0.00 0.004 0.05 0.0 0.000 0.06 0.00 0.038 

WAS3 0.09 0.00 -0.035       

WCL1 0.04 1.00 0.050 0.04 1.00 0.047 0.06 1.00 0.101 

WOP2 0.11 1.00 0.028 0.10 1.00 0.018 0.04 1.00 0.053 

WPA 0.13 1.00 0.071 0.10 1.00 0.056 0.05 1.00 0.097 

MCO 0.05 1.00 0.052 0.09 1.00 0.055 0.06 1.00 0.101 

MAS 0.03 1.00 0.046       

MPA 0.16 1.00 0.080 0.13 1.00 0.063 0.06 1.00 0.101 

 Contribution Factor of mutation operator MO (CF (MO) = MT (MO)/MT). It shows 

to what extend mutants generated by applying mutation operator MO contributes to 

the total number of mutants generated for CS. 

 Mutation Score of a mutation operator MO (MS (MO, T) = MK (MO, T)/MT 

(MO)). It shows the degree of detection for mutants generated by applying MO. 



 Impact Indicator of a mutation operator MO (II (MO, T) = MS (T)-((MK (T)-MK 

(MO, T)) / (MT-MT (MO))). It shows how the mutation score obtained for T 

changes when operator MO was not applied. 

For the SS, we ran 62 test cases. These test cases were executed against 206 mutated 

CS created by the mutation operators, killing 82% of the mutants. In the case of the 

ER, we executed 88 test cases against 174 mutants created, killing 90% of the 

mutants. For the case of the SG, we executed 90 test cases against 185 mutants, 

killing 74%. Therefore 89% of the mutation operators (16/18 operators) generate 

mutants that can detected by the test suites. More detailed information on the 

mutation results can be found at 

https://staq.dsic.upv.es/webstaq/mutuml/mutation_operators.htm. 

5.4 Discussion 

The results in Table 3 show that the behaviour of the mutation operators may depend 

on some characteristics of the CS they are applied to (such as complexity of 

constraints, the number and type of elements included in the CS). However, the 

results suggest that some of these operators UPA2, WCO7, WCO9, WAS1, WCL1, 

WOP2, WPA, MCO, MAS, and MPA generated mutants that were relatively easy to 

detect by the provided test suites (the test suites had mutation scores of 100%). 

Moreover, all the operators had a “positive” impact (column value II>0) in the test 

suite assessment results. This means that the test suite quality is overestimated when 

any of these operators is not used. An underestimation of test quality, especially when 

the test suite is under development, would force an improvement of the test suite, 

while its overestimation could compromise the quality of any testing performed by 

them. The mutation operators WCO1, WCO3, WCO4, WCO5, WCO6, WCO8, 

WAS2 and WAS3 all having a low mutation score, should always be applied because 

they generate hard to detect mutants and their application would stimulate selection of 

high quality tests. WAS2 and WAS3 mutation operators suggest that there is a lack of 

use (test) in the test suite of the CS elements affected by these operators.  

Despite the mutation operator restrictions, all these mutation operators generated 

mutants in one or other of the three CS, these restrictions ensure that the mutants 

generated meet the condition “mutant has to be syntactically correct for mutation 

testing”.  Thus, these operators support a well-defined, fault-injecting process. 

Finally, mutation testing is computationally expensive, so it is important to use a 

technique that reduces the computational cost, the restrictions included in the 

mutation operator rules avoid generating non-valid mutants (495 in total in the three 

CS), which has practical benefits in the time saved in the mutation testing process. 

Additionally, the CEH states that complex (or higher-order) mutants are coupled to 

simple mutants (FOM) in such a way that a test data set that detects all FOM will 

detect a high percentage of the HOM. 



6 Related work  

Mutation Testing has been widely studied since it was first proposed in the 1970s by 

Hamlet [22] and DeMillo et al. [13]. In 2010, Jia and Harman [3] made a good survey 

of mutation techniques and also created a repository containing many interesting 

papers on mutation testing (last updated in 2014). This survey stated that mutation 

testing is mainly applied at the software implementation level (i.e. more than 50% of 

survey papers). But it has also been applied to models at the design level, for example 

to Finite State Machines [23], State Charts [24] and Activity Diagrams [25].  

As far as we know, the idea of applying mutation testing to modify a UML CD-

based CS and to assess the quality of test cases by checking how well they detect 

faults injected into a CS has not been explored to date in practice. However, some 

similarities can be found in Strug [26][18], Dinh-Trong et al. [17] and Derezinska 

[16]. In the former [26], the author introduces nine mutation operators to apply 

manual mutations to the test suite provided for a UML/OCL-based design model 

instead of modifying the model, which is a different approach to that used in the 

present paper. In the latter [18], the author presents a classification of 16 mutation 

operators defined for constraints specified in OCL and used in UML/OCL-based 

design models. Constraints are among the CS elements covered by our approach. 

Dinh-Trong et al. [17] describe a set of mutation operators for a UML class diagram 

but do not include the restriction on generating valid mutants. Finally, Derezinska 

introduced a set of mutation operators which can be applied to the UML CD 

specification but which are evaluated at the code level (C++) [16].  

The present work is based on UML-based model defects classified in a previous 

work [9]. We also adapted some mutation operators proposed by Derezinska [16], 

Dinh-Trong et al. [17] and some operators for OCL constraints proposed by Strug 

[18]. Finally, in our approach the faults introduced include restrictions on generating 

only valid mutants for detecting in the CS at the analysis and design phases. This 

differs from current conventional mutation, in which the faults are introduced and 

detected at the code level.  

7 Conclusions and Future Work 

Mutation testing applied at the CS level can improve early development of high 

quality test suites (e.g. elements coverage) and can contribute to developing high 

quality systems (i.e. it meets requirements) especially in a model-driven context. In 

this paper we describe a mutation-testing based approach for UML CD-based CS 

level and report our recent work: (1) classifying a set initial of 50 mutation operators 

in the context of Conceptual Schemas based on a UML class diagram; (2) selecting 

and applying 18 mutation operators for FOM to evaluate the usefulness of the 

mutation operators in three CS. The main potential advantage of the defined mutation 

operators is that can support a well-defined, fault-injection process. 



As opposed to code-based mutation, our mutation operators are based on the 

element characteristics of a UML CD–based CS and although some of the proposed 

operators perform syntactic changes at the constraints level, they are mainly focused 

(i.e. 41 of 50 operators) on the semantic changes of the high-level CD constructs. Our 

mutation operators are classified according to the element affected by the operator, 

injected defect type, and the action required by the mutation operator to generate valid 

mutants (syntactically correct). Since our purpose is to select mutation operators to be 

used to evaluate testing approaches, the selection process of mutation operators was 

divided into two iterations. In the first iteration, some operators were excluded 

because they generated only equivalent mutants (e.g. UCO2, UAS3, UAS4) and non-

valid mutants, (e.g. WCL4, UCO1, UAS1), which require a static technique (without 

CS execution) for detecting (e.g. syntax analysis or structural coverage analysis), and 

so are not useful for mutation testing. In the second iteration, we aimed to analyse the 

dependencies between different operators and to reduce the cost of applying mutation 

testing by selecting 18 mutation operators that generate only first order mutants. 

Based on the results obtained by applying the mutation testing, 56% (10/18) of our 

mutant operators generated a high number of killed mutants (score mutation=100 %). 

These results suggest that these operators generated mutants that are relatively easy to 

detect by the provided test suites. In the other case 44% (8/18) of the operators related 

to characteristics of associations (i.e. multiplicity and aggregation type) and 

constraints generated hard to detect mutants and their application would stimulate 

selection of high quality tests. However, the behaviour of the mutation operators may 

depend on the characteristics of the CS they are applied to, such as the number, 

element type and complexity of constraints.  

This study is a part of a more extensive research project, whose principal goal is to 

propose an approach for testing-based conceptual schema validation in a Model-

Driven Environment. Future work will proceed to extend the test suite for stimulating 

the disabled behaviour detected in this mutation analysis. We hope to evaluate the use 

of HOMs and compare them with FOMs. Finally, the proposed mutation analysis will 

be performed on a significant number of CS.  
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A Appendix 

Table 4. Mutation Operators defined for a UML CD-based CS 
# Code Mutation  Operator rule and relation with other mutation operators 

1 UCO1 Adds a redundant constraint to the CD 

2 UCO2 Adds an extraneous constraint to the CD 

3 UAS1 Adds a redundant association to the CD 

4 UAS2 Adds a redundant derived association to the CD. Relation: UCO2 

5 UAS3 Adds an extraneous association to the CD 

6 UAS4 Adds an extraneous derived association to the CD. Relation: UCO2 

7 UGE1 Adds a redundant generalization to the CD 

8 UGE2 Adds an extraneous generalization to the CD 



References  

1. Olivé, A.: Conceptual Modeling of Information System. Springer (2007). 

2. Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice. Springer Berlin 

Heidelberg, Cambridge (2007). 

9 UCL1 Adds a redundant class  to the CD 

10 UCL2 Adds an extraneous class to the CD  

11 UCL3 Adds a redundant association class to the CD 

12 UCL4 Adds an extraneous association class to the CD 

13 UAT1 Adds a redundant attribute to a Class 

14 UAT2 Adds an extraneous attribute to a Class 

15 UOP1 Adds a redundant operation to a Class 

16 UOP2 Adds an extraneous operation to a Class 

17 UPA1 Adds a redundant parameter to an Operation 

18 UPA2* Adds an extraneous Parameter to an Operation 

19 WCO1* Changes the constraint by deleting the references to a class Attribute  

20 WCO2 Changes the Attribute data type in the constraint. Relation: WPA, WAT3 

21 WCO3* Change the constraint by deleting the calls to specific operation. 

22 WCO4* Changes an arithmetic operator for another and supports binary operators: +, -,*,/ 

23 WCO5* Changes the constraint by adding the conditional operator “not” 

24 WCO6* Changes a conditional operator for another and supports operators: or, and 

25 WCO7* Changes the constraint by deleting the conditional operator “not” 

26 WCO8* Changes a relational operator for another operators: <, <=, >, >=, ==, != 

27 WCO9* Changes a constraint by deleting a unary arithmetic operator (-). 

28 WAS1* Interchange the members (memberEnd) of an Association. 

29 WAS2* Changes the association type (i.e. normal, composite). 

30 WAS3* Changes the memberEnd multiplicity of an Association (i.e. *-*, 0..1-0..1, *-0..1) 

31 WGE Changes the Generalization member ends. Relation: MPA, UPA 

32 WCL1* Changes visibility kind of the Class (i.e. private) 

33 WCL2 Changes Class by an Association Class 

34 WCL3 Changes Association Class for a Class 

35 WCL4 Changes the Class feature “isAbstract “ to true. 

36 WAT1 Changes the Attribute feature “Is Derived” to true. Relation: UCO2 

37 WAT2 Changes the Attribute property “Is Derived” to false. Relation: MCO 

38 WAT3 Changes the Attribute data type.  Relation: WPA, WCO2 

39 WAT4 Changes the Attribute visibility property 

40 WOP1 Changes the order of the parameters 

41 WOP2* Changes the visibility kind of an operation. Restriction. WOP2 has to be applied 
to operations that are not related with any constraints. Relation: MCO 

42 WOP3 Changes the data type returned by operation.  Relation:  WAT3 

43 WPA* 

 

Changes the Parameter data type (i.e. String, Integer, Boolean, Date, Real).  

Restriction. WPA has to be applied to parameters that are not related with 
attributes in a constructor operation.  To reduce mutants only a change is counted. 

44 MCO* Deletes a constraint (i.e. pre-condition, post-condition constraint, body constraint) 

45 MAS* 

 

Deletes an Association. Restriction. MAS has to be applied to associations that are 

not related with any constraints. Relation: MCO 

46 MGE Deletes a Generalization relation. Relation: MPA, UPA 

47 MCL Deletes the class (i.e. normal or association class). Relation: MCO, MAT, MOP, 

MGE. 

48 MAT Deletes an Attribute.   Relation: MPA, MCO 

49 MOP Deletes the operation.  Relation:  MPA, MCO, WCO3 

50 MPA* Deletes a Parameter from an Operation.  Restriction. This mutation operator has to 

be applied to operations without related constraints. Relation: MCO 



3. Granda, M.F.: Testing-Based Conceptual Schema Validation in a Model- Driven 

Environment. In: CAiSE 2013 Doctoral Consortium. , Valencia (2013). 

4. Granda, M.F., Condori-Fernandez, N., Vos, T.E.J., Pastor, O.: Towards the automated 

generation of abstract test cases from requirements models. In: 1st International Workshop 

on Requirements Engineering and Testing. pp. 39–46. IEEE, Karlskrona, Sweden (2014). 

5. Jia, Y., Harman, M.: An Analysis and Survey of the Development of Mutation Testing. 

Softw. Eng. IEEE Trans. 37, 1–31 (2011). 

6. Jia, Y., Harman, M.: Higher Order Mutation Testing. Inf. Softw. Technol. 51, 1379–1393 

(2009). 

7. Object Management Group: Unified Modeling Language (UML). (2015). 

8. Andrews, J.H., Briand, L.C., Labiche, Y.: Is mutation an appropriate tool for testing 

experiments? In: Proc. 27th Int. Conf. Soft. Eng., 2005. ICSE. pp. 402–411 (2005). 

9. Granda, M.F., Condori-fernández, N., Vos, T.E.J., Pastor, O.: What do we know about the 

Defect Types detected in Conceptual Models ? In: IEEE 9th Int. Conference on Research 

Challenges in Information Science (RCIS). pp. 96–107. IEEE, Athens, Greece (2015). 

10. Object Management Group: Action Language for Foundational UML (ALF). (2013). 

11. Object Management Group: Semantics of a Foundational Subset for Executable UML 

Models (fUML). (2012). 

12. IEEE: IEEE Standard Classification for Software Anomalies. (2010). 

13. DeMillo, R., Lipton, R., Sayward, F.G.: Hints on Test Data Selection: Help for the 

Practicing Programmer. Computer (Long. Beach. Calif). 11, 34–41 (1978). 

14. Offutt, J.: Investigations of the software testing coupling effect. ACM Trans. Softw. Eng. 

Methodol. 1, 5–20 (1992). 

15. Woodward, M.R.: Errors in algebraic specifications and an experimental mutation testing 

tool. Softw. Eng. J. (1993). 

16. Derezińska, A.: Object-oriented mutation to assess the quality of tests. Conf. Proc. 

EUROMICRO. 417–420 (2003). 

17. Dinh-Trong, T., Ghosh, S., France, R.: A Taxonomy of Faults for UML Designs. In: 2nd 

MoDeVa workshop - in conjunction with MoDELS (2005). 

18. Strug, J.: Classification of Mutation Operators Applied to Design Models. Adv. Des. 

Manuf. V. 572, 539–542 (2014). 

19. España, S., González, A., Pastor, Ó., Ruiz, M.: Technical Report Communication Analysis 

and the OO-Method : Manual Derivation of the Conceptual Model the SuperStationery Co. 

Lab Demo. , Valencia (2011). 

20. Tort, A., Olivé, A.: Case Study: Conceptual Modeling of Basic Sudoku, 

http://guifre.lsi.upc.edu/Sudoku.pdf. 

21. MutUML Tool, https://staq.dsic.upv.es/webstaq/mutuml.html. 

22. Hamlet, R.G.: Testing Programs with the Aid of a Compiler. IEEE Trans. Softw. Eng. SE-

3, 279 – 290 (1977). 

23. Fabbri, S.C., Maldonado, J.C., Masiero, P.C., Delamaro, M.E.: Mutation Analysis Testing 

for Finite State Machines. In: 5th Int. Symp. Soft. Reliability Eng. pp. 220–229 (1994). 

24. Ferraz, S., Maldonado, J.C., Sugeta, T., Masiero, P.: Mutation Testing Applied to Validate 

Specifications Based on Statecharts. In: Software Reliability Engineering, Proceedings. 

10th International Symposium on. pp. 210–219. IEEE, Boca Raton, FL (1999). 

25. Farooq, U., Lam, C.P.: Mutation Analysis for the Evaluation of AD Models. Int. Conf. 

Comput. Intell. Model. Control Autom. CIMCA. 296–301 (2008). 

26. Strug, J.: Mutation Testing Approach to Evaluation of Design Models. Adv. Des. Manuf. 

V. 572, 543–546 (2014). 

27. Sommerville, I.: Software Engineering. Addison-Wesley, Boston (2011). 


