

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/179782

Granda Juca, MF.; Condori-Fernández, N.; Vos, TE.; Pastor López, O. (2016). Mutation
Operators for UML Class Diagrams. Springer. 325-341. https://doi.org/10.1007/978-3-319-
39696-5_20

https://doi.org/10.1007/978-3-319-39696-5_20

Springer

adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Mutation Operators for UML Class Diagrams

Maria Fernanda Granda1, 3, Nelly Condori-Fernández2, Tanja E. J. Vos3 and Oscar

Pastor3

1 University of Cuenca, Computer Science Department, Cuenca, Ecuador

fernanda.granda@ucuenca.edu.ec
2 Vrije Universiteit van Amsterdam, Amsterdam, The Netherlands

n.condori-fernandez@vu.nl
3 Universitat Politècnica de València, PROS Research Centre,Valencia, Spain

{fgranda, tvos, opastor}@pros.upv.es

Abstract. Mutation Testing is a well-established technique for assessing the

quality of test cases by checking how well they detect faults injected into a

software artefact (mutant). Using this technique, the most critical activity is the

adequate design of mutation operators so that they reflect typical defects of the

artefact under test. This paper presents the design of a set of mutation operators

for Conceptual Schemas (CS) based on UML Class Diagrams (CD). In this

paper, the operators are defined in accordance with an existing defects

classification for UML CS and relevant elements identified from the UML-CD

meta-model. The operators are subsequently used to generate first order mutants

for a CS under test. Finally, in order to analyse the usefulness of the mutation

operators, we measure some basic characteristics of mutation operators with

three different CSs under test.

Keywords: mutation testing · mutation operators · test cases quality ·
conceptual schemas · class diagram mutation.

1 Introduction

A conceptual schema (CS) defines the general knowledge required by an information

system in order to perform its functions [1], so that an accurate representation of this

information (following the requirements) is a key factor in the successful

development of the system, especially in a Model-driven environment context [2].

The development of a conceptual schema is an iterative process involving evaluation

of the CS, its accuracy and its improvement from the evaluation results. Testing is a

well-established technique that helps to accomplish this task. It provides a level of

confidence in the end product based on the coverage of the requirements achieved by

the test cases.

In this context, we proposed an approach for testing-based validation of Object-

Oriented Conceptual Schemas in a Model-driven environment [3][4], where one

group of engineers (e.g. requirements engineers) specifies requirement models (RM)

from which the test scenarios with test cases (i.e. an executable concrete story of a

mailto:ernanda.granda@ucuenca.edu.ec
mailto:n.condori-fernandez@vu.nl

user-system interaction and the expected result) are automatically generated. These

test cases are then used to test the conceptual schemas in an early phase of software

analysis and design. Since testing is performed to provide insight into the accuracy of

a CS, we need to ensure the test suite quality (i.e. ability to reveal faults).

Mutation testing assesses the quality of a test suite [5] using mutation operators to

introduce small modifications or mutations into the software artefact under test, e.g.

CS. The artificial faults can be created using a set of mutation operators to change

(“mutate”) some parts of the software artefact. Mutants can be classified into two

types: First Order Mutants (FOM) and Higher Order Mutants (HOM) [6]. FOMs are

generated by applying mutation operators only once. HOMs are generated by

applying mutation operators more than once [5]. Assuming that the software artefact

being mutated is syntactically correct, a mutation operator must produce a mutant that

is also syntactically correct. Each faulty artefact version, or mutant, is executed

against the test suite. The ratio of detected mutants is known as the “mutation score”

and indicates how effective the tests are in terms of fault detection. Approaches that

employ mutation testing at higher levels of abstraction, especially on CS, are not

common [5].

In Mutation testing the most critical activity is the adequate design of mutation

operators so that they reflect the typical defects of the artefact under test. This paper

presents the design of a set of mutation operators for Conceptual Schemas (CS) based

on Unified Modelling Language (UML) Class Diagrams (CD) [7]. The main potential

advantage of mutation operators is to describe precisely the mutants that can generate

and thus support a well-defined, fault-injecting process [8]. The main contributions of

this paper are:

 It provides a classification of 50 mutation operators for UML CD-based CS, which

may be used in evaluating verification1 and validation2 approaches. The resulting

operators are mainly based on a defects classification reported previously [9].

 It illustrates the application of an effective subset of 18 mutation operators, which

generate only first order mutants. These mutation operators were applied to three

UML CD-based CS with the aim of showing their usefulness in evaluating testing

approaches.

The paper is organized as follows. Section 2 describes an UML CD-based CS. Section

3 reviews the defect types at the model level. Section 4 explains the design process of

the mutation operators. Section 5 demonstrates the application of the operators in

three CS. Section 6 summarizes related work. Finally Section 7 concludes.

1 Verification is to check that the conceptual schema meets its stated functional and non-

functional requirements (making the right product) [27].

2 Validation is to ensure that the conceptual schema meets the customer's expectations (making

the product right) [27].

2 UML CD-based Conceptual Schemas

The aim of this work is to design mutation operators for evaluating the effectiveness

of test cases in finding faults in a CS during the analysis and design of the software.

The defects will be introduced by deliberately changing a UML CD-based CS,

resulting in wrong behaviour possibly causing a failure.

The CS of a system should describe its structure and its behaviour (constraints). In

this paper a UML-based class diagram is used to represent such a CS. A class diagram

(see Figure 1) is the UML’s main building block that shows elements of the system at

an abstract level (e.g. class, association class), their properties (ownedAttribute),

relationships (e.g. association and generalization) and operations. In UML an

operation is specified by defining pre- and post-conditions. Figure 1 shows an excerpt

of the UML structure for a class diagram and highlights eight elements of interest for

this work. Finally, mutation testing requires an executable CS for validating the

behavioural aspects included in the CS structural elements. Therefore, we used the

Action Language for Foundational UML (Alf [10]) and the virtual machine of

Foundational UML (fUML [11]) as the execution environment for mutation testing.

Fig. 1. Excerpt of the Meta-model of an UML Class Diagram [7]

3 Defect Types in UML-based Conceptual Schemas

An important aspect when applying mutation testing to a CS is that the injected defect

should represent common modelling errors. In previous work [5] we classified UML

model defects reported in the literature and related the types of the defects with the

CS quality goals affected by them. Table 1 summarizes the defect types for CS.

Missing and unnecessary elements (i.e. redundant and extraneous) and incorrectly

modelled requirements are the main causes of a design model inaccuracy that can be

detected basing on requirement testing. Inconsistency defects require comparing CS

versions in order to find them. Finally, ambiguous elements require of user (e.g.

modeller, low-level designer) criteria for finding defects.

Table 1. Defect types in a UML-based model (excerpt taken from [9])
Defect Cause Sub modes

 MISSING Something is absent that should be present.

WRONG

Something is

incorrect,
inconsistent or

ambiguous.

Inconsistent: There are contradictions in the models (1) vertical inconsistency (i.e.

contradictions between model versions) and (2) horizontal inconsistency (i.e.

contradictions between different model views).

Incorrect: There is a misrepresentation of modelling concepts, their attributes and
their relationships, as well as the violation of the rules by combining of these

concepts at the time of building partial or complete models.

Ambiguous (wrong wording): The representation of a concept in the model is
unclear, and could cause a user (e.g. modeller) to misinterpret its meaning.

UNNECESSARY

(Extra)
Something is

present that need

not be.

Redundant: If an element has the same meaning that other element in the model.

Extraneous: If there are items that should not be included in the model because they

belong to another level of abstraction, e.g. details of implementation, which are
decisions (e.g. type of data structure used at code level) that are left to be made by

the developers, and is not specified at an earlier level (e.g. CS).

4 Design of Mutation Operators

As can be seen in Figure 2, a CS mutant Mi is a faulty CS, which is generated by

injecting defects (adding, deleting or changing elements) into modelling elements (see

Figure 1 in section 2.1) of the original CS. A transformation rule that generates a

mutant from the original model is known as a mutation operator. If the mutant is

generated by applying only one mutation operator in the original CS, it is a first order

mutant (e.g. CS with an added constraint), otherwise, it is a higher order mutant if it

applies various changes in the CS by using nested operators. For example, a CS that

has been mutated by deleting a class has also evidently deleted associations,

properties, constraints, operations and parameters associated with the deleted class.

During execution each CS mutant Mi will be run against a test case suite T. If the

result of running Mi is different from the result of running CS for any test case in T,

then the mutant Mi is said to be “killed”, otherwise it is said to have “survived”. A CS

mutant may survive either because it is equivalent to the original model (i.e. it is

semantically identical to the original model although syntactically different) or the

test set is inadequate to kill the mutant.

Fig. 2. Relationships among conceptual entities used in the mutant definition (adapted from

[12])

To apply Mutation Analysis in the context of UML CD-based CS we need to

formulate mutation operators for CS. Mutation is based on two fundamental

hypotheses, namely, the Competent Programmer Hypothesis (CPH) and the Coupling

Effect Hypothesis (CEH), both introduced by DeMillo et al. [13]. The CPH states

that a program produced by a competent programmer is either correct or near the

correct version. The CEH states that complex (or higher-order) mutants are coupled to

simple mutants in such a way that a test data set that detects all simple faults in a

program will detect a high percentage of the complex faults [14]. Consequently, we

use the following guiding principles [15]:

─ Mutation categories should model potential faults.

─ Only syntactically correct mutants should be generated

─ Only first-order mutants should be generated

4.1 Mutation Operators Categories

There are several elements of a CS that can be subject to faults. The defined mutation

operator set takes the intrinsic characteristics of a UML CD-based CS into

consideration, where some UML elements are composed by other elements. They are

thus divided into seven categories: (1) constraint operators, (2) association operators,

(3) generalization operators, (4) class operators, (5) attribute operators, (6) operation

operators, and (7) parameters operators. Each element-based group is then sub

classified according to the three defect types of UML models (i.e. unnecessary, wrong

or missing) [9]. However, as our research focuses on defining mutation operators for

evaluating testing approaches, the inconsistent and ambiguity defects are not

addressed in this work because they generate a faulty CS that is detected without

requiring execution (i.e. testing is not required). The faulty CS is not detected by

comparing the model against the requirements. Inconsistency defects are detected by

comparing models to detect contradictions between them. Ambiguity defect are

detected by the modeller which finds that the representation of a concept in the model

is unclear. So that twenty-one categories are obtained, such as Unnecessary Constraint

(UCO), Wrong Constraint (WCO), Missing Constraint (MCO), Unnecessary

Association (UAS), Wrong Association (WAS); Missing Association (MAS) and so

on. Based on the UML meta-model (see Figure 1) and the defects and faults reported

in the literature [9], [16], [17], [18], we identified CD element features that can be

mutated for their usefulness in evaluating testing approaches:

 Mutating Classes: The attributes isAbstract and visibility can be mutated.

 Mutating Class Attributes (i.e. Class Variables): The visibility, isDerived, and data

type of the variables can be mutated.

 Mutating Operations: The visibility and returned value type when the operation

isQuery can be changed. Additionally, swapping compatible parameters in the

definition of an operation can be another operation mutant.

 Mutating Parameters: The data type can be mutated.

 Mutating Associations: The visibility, isDerived can be mutated. Additionally,

swapping the member of the Association, the kind aggregation and multiplicity for

the members of the Association can be mutated.

 Mutating Generalization: swapping the member of the Generalization.

 Mutating Constraints: Changes the constraints by mutating operators (arithmetic,

conditional, and negation), references to class attributes, references to operations.

These categories and the main element features give rise to 50 mutation operators (see

Table 4 in Appendix). Each of the 50 mutant operators is represented by a three-letter

acronym of its category and a sequential number within its category if it is necessary.

Some of these operators resulted in a CS that is determined to be faulty without

requiring execution (i.e. testing is not required) and others resulted in behavioural

faults (i.e. testing is required). Some of them generate FOM and others HOM. Since

we only focus in FOM, 18 mutation operators (see the mutation operators marked

with “*” in Table 4) that can generate FOM were obtained through two iterations, as

follows (see Figure 3).

First iteration (Exclude equivalent and non-valid mutants). We obtained a

detailed list of actions that involve applying each mutation operator, to obtain the

rules for each mutation operator (see Table 4).

WCO1-WCO9
WAS1-WAS3

WGE
WCL1-WCL4
WAT1-WAT4

MCL
MAT
MOP
MPA

MAS

In
co

rr
ec

t
M

is
si

n
g

W
ro

n
g

Ex
tr

an
eo

u
s

U
n

n
ec

es
sa

ry

Class
Attribute
Operation
Parameter

Association
Generalization

Constraint MCO

WOP1-WOP3
WPA

Requirements are not required for detection

WCO1,WCO3-WCO9

Mutant Operators Categorization 1° Iteration 2° Iteration

Legend:
Operator Excluded for testing

FOM

Class
Attribute
Operation
Parameter

Association
Generalization

Constraint

In
co

n
si

st
en

t
A

m
b

ig
u

o
u

s
R

ed
u

n
d

an
t

Class
Attribute
Operation
Parameter

Association
Generalization

Constraint

Class
Attribute
Operation
Parameter

Association
Generalization

Constraint

MGE

MOP

MCL
MGE

WOP1
WAT4

WOP3
WAT1-WAT3

WCL2-WCL4
WGE

WCO2

MPA

MAS
MCO
WPA

WOP2

WCL1

WAS1-WAS3

MAT

UCO1

UCO2

UAS1-UAS2

UAS3-UAS4

UGE1

UGE2

UCL1-UCL2

UCL3-UCL4

UAT1

UAT2

UOP1UOP1

UOP2

UPA1

UPA2 UPA2

UCO1

UCO2

UAS1-UAS2

UAS3-UAS4

UGE1

UGE2

UCL1-UCL2

UCL3-UCL4

UAT1

UAT2

UOP1UOP1

UOP2

UPA1

Constraint,
Association, etc.

Constraint,
Association, etc.

Fig. 3. Selection process of the mutation operators used for evaluating testing approaches

If the rule to generate the mutant is not followed, the mutant generated is a non-valid

mutant, which can be detected at parser level. For example, the mutation operator

MAS causes an association in a CS to be deleted, however, the constraints related

with this association must be deleted in order to generate a valid mutant, otherwise

this mutant will be detected by the parser and cannot be used for a testing process. We

analysed the mutation operators that always generate a non-valid or equivalent

mutant. These results are included in Table 4 as a restriction in the operator rule.

These mutation operators are described as follows:

 Adding duplicated elements (i.e. UCO1, UAS1, UAS2, UGE1, UCL1, UCL2,

UAT1, UOP1 and UPA1) within a scope (redundant type defect) is determined to

be faulty without requiring model execution (i.e. testing is not required). Therefore,

these operators are not considering in this work.

 A closer inspection of equivalent mutants generated by the WOP2 mutation

operator (changes the visibility property of an operation) suggests that this operator

generates an equivalent mutant when it is applied to a constructor operation

because it only affects the access inherited by child classes (a private constructor of

the super class is not inheritable). It is therefore impossible to detect this mutation

operator when it is applied to a constructor operation. We therefore have to include

this restriction in the rule of the WOP2 mutation operator to avoid generating this

type of mutant.

 Changing a navigable association to a shared aggregation or vice versa (WAS2)

generates an equivalent mutant because “aggregation=shared” has no semantic

effect in a executable model using Alf [10]. Therefore, we only applied this

operator changing from aggregation =”none” to aggregation=”composite” or vice

versa.

 Changing an Association Class to a Class with two associations or vice versa

(WCL2 and WCL3). The association class effect can be equivalently modelled

when the CS is expressed in Alf [11] (i.e. our execution environment).

The following operators could generate both and equivalent and non-valid mutants:

 Changing the visibility kind of an attribute (WAT4) generates both equivalent and

invalid mutants, depending on whether the attribute is accessed internally by any

member of the class (it is equivalent because everyone has access) or externally for

any constraint that refers to this attribute through an association. In the last case,

the mutant is non-valid and is detected by the parser.

 Changing a class abstract or vice versa (WCL4) when it does not result in a fault

that the parser will detect when it tries to instantiate the class.

 Adding extraneous elements to CS (i.e. UCO2, UAS3, UAS4, UGE2, UCL3,

UCL4, UAT2 and UOP2) generate equivalent mutants. Apparently, these operators

did not inject a fault into a CS due to the nature of the test suite: only expected

elements are tested. So, any additional element will remain untested. However, the

operator that adds a Parameter to an Operation (UPA2) has to be considered

because this affects a CS element (operation) that is tested by the test suite and so

can be killed. These operators require a structural coverage analysis to be detected.

Finally, the operator that changes the order of the parameters in an operation (WOP1)

generates a defect of inconsistency between the signatures of the CS operations and

the operation calls from test cases. This defect affects the testing process more than

the CS itself and also is detected by the parser. Therefore, this operator is not

considered in this work. All the excluded operators generate mutants that require a

static (without execution) technique for detecting.

Second iteration (Exclude High Order Mutants). We next analysed each

derivation rule and identified the mutation operators that generate FOM and those that

can generate HOM (see in Table 4 the relations between operators). Needless to say,

if no other nested elements exist, this mutation operator also generates a FOM. For

example, applying an operator to delete an operation (MOP) which has no parameters

or related constraints generates a FOM. According to the CEH, the HOM are coupled

to simple mutants (FOM) in such a way that a test data set that detects all FOM will

detect a high percentage of the HOM. The operators that generate HOM are the

following: WCO2, MOP, WCL2, WCL3, WCL4, WAT1, WAT2, WAT3, WOP3,

MCL, MGE, MOP and MAT. We added restrictions to several of these operators in

order to generate only FOM. Table 4 shows the 18 operators that we used in this work

(marked with “*”), which were obtained as products of the described iterations.

Figure 4 shows a partial view of a CS in which five mutation operators have been

applied. Four operators will generate valid mutants and the MPA operator will

generate a non-valid FOM because there is a class attribute (i.e. product_name) that is

related with the parameter (p_atrproduct_name), therefore more changes (i.e. HOM)

are required so as not to be detected by the parser. This CS is used in the literature to

explain the development of a requirements model [19] which is used for our test case

generation approach. This CS is included in our analysis in Section 5.

Fig. 4. Excerpt of a UML CD-based CS and the application of five mutation operators

5 Application and Analysis of Mutation Operators

The quality of mutants depends first on how well they reflect real errors that

modellers make and second on whether they can be injected into a CS in such a way

that they can be used for mutation testing. In order to analyse the effectiveness of the

mutation operators, we used three conceptual schemas and respective test suites,

which are described below.

5.1 Conceptual Schemas Under Test

We applied our mutation operators to three CS under test (CSUT) to evaluate the

effectiveness of our mutation operators. These CS represent three kinds of systems: (i)

the Super Stationery system (SS), which makes use of classes with attributes and

derived attributes, associations and constraints but has no generalizations, (ii) an

Expense Report management system (ER) that uses fewer classes and relations but

more constraints, and lastly, (iii) the Sudoku Game (SG) system [20], which is more

variant-rich than the other two CS including generalization relations, derived

associations and aggregations. The size of each CSUT is shown in Table 2 in terms of

model elements.
Table 2. Elements of the Conceptual Schemas Under Test

Element Super Stationery Expense Report Sudoku Game

Classes 9 7 11

Attributes 44 36 26

Derived Attributes 1 6 6

Operations 32 24 19

Parameters 91 75 48

Associations 9 8 6

Derived Associations 0 0 2

Composite Aggregations 0 0 3

Constraints 12 21 19

Generalizations 0 0 4

5.2 Mutant Generation

We developed a mutation tool prototype [21] to generate and analyse FOMs by

applying the 18 selected mutation operators. This tool is divided into three distinct

parts: a) calculate a mutants list, b) generate the mutants previously calculated; and, c)

performing a syntactic analysis of the mutants. Figure 5 shows the number of valid

and non-valid mutants generated by each mutation operator and CSUT.

Fig. 5. Valid and non-valid mutants by each mutation operator.

The number of valid mutants produced by the WCO8 is the highest of the three CS

(13, 21 and 47 respectively). Operators like UPA2, WCO1, WCO4, WCO5, WCO6,

WCO7, WCO8, WCO9, WAS2, WCL1 and WOP2 generated only valid mutants for

the CSUTs. However, the WCO7 and WCO9 operators generated only 1 mutant for

the CSUT of the Sudoku Game system, giving a total 528 valid mutants (195, 159 and

174 respectively) and 495 non-valid mutants (171, 174, 150 respectively).

5.3 Mutation Testing Results

In this section, we assess the usefulness of the mutation operator for injecting faults in

three CSUT. Test suites used in this study include tests checking all the CS class

operations and constraints. Finally the data resulting from applying mutation analysis

to the CS were collected by applying the following measures.

For a conceptual schema CS and test suite T, MT let the total number of non-

equivalent mutants generated for CS and MK (T) be the number of mutants killed by

T. Mutation score for a test suite (MS (T) = MK (T)/MT) is the main measure used in

mutation to measure the test suite effectiveness to kill mutants generated by applying

all mutation operators. Where, non-equivalent mutants (MT) = killed mutants (MK) +

the surviving mutants. The following measures, reflecting basic characteristics of

mutation operators, were defined to evaluate the usefulness of the mutation operators

[18]. Table 3 summarizes results of these calculations.

Table 3. Results of mutation operator evaluation
CS

OP

Super Stationery Expense Report Sudoku Game

CF MS II CF MS II CF MS II

UPA2 0.16 1.00 0.080 0.14 1.00 0.064 0.10 1.00 0.119

WCO1 0.01 0.00 0.028 0.05 0.67 0.031 0.04 0.86 0.088

WCO3 0.01 0.50 0.037 0.03 0.80 0.040

WCO4 0.01 1.00 0.042 0.05 0.75 0.036 0.07 0.54 0.063

WCO5 0.01 1.00 0.042 0.06 0.73 0.033 0.06 0.55 0.073

WCO6 0.01 1.00 0.038 0.01 1.00 0.043 0.06 0.36 0.057

WCO7 0.01 1.00 0.082

WCO8 0.06 0.69 0.034 0.11 1.00 0.054 0.22 0.68 0.058

WCO9 0.01 1.00 0.082

WAS1 0.03 1.00 0.046

WAS2 0.04 0.00 0.004 0.05 0.0 0.000 0.06 0.00 0.038

WAS3 0.09 0.00 -0.035

WCL1 0.04 1.00 0.050 0.04 1.00 0.047 0.06 1.00 0.101

WOP2 0.11 1.00 0.028 0.10 1.00 0.018 0.04 1.00 0.053

WPA 0.13 1.00 0.071 0.10 1.00 0.056 0.05 1.00 0.097

MCO 0.05 1.00 0.052 0.09 1.00 0.055 0.06 1.00 0.101

MAS 0.03 1.00 0.046

MPA 0.16 1.00 0.080 0.13 1.00 0.063 0.06 1.00 0.101

 Contribution Factor of mutation operator MO (CF (MO) = MT (MO)/MT). It shows

to what extend mutants generated by applying mutation operator MO contributes to

the total number of mutants generated for CS.

 Mutation Score of a mutation operator MO (MS (MO, T) = MK (MO, T)/MT

(MO)). It shows the degree of detection for mutants generated by applying MO.

 Impact Indicator of a mutation operator MO (II (MO, T) = MS (T)-((MK (T)-MK

(MO, T)) / (MT-MT (MO))). It shows how the mutation score obtained for T

changes when operator MO was not applied.

For the SS, we ran 62 test cases. These test cases were executed against 206 mutated

CS created by the mutation operators, killing 82% of the mutants. In the case of the

ER, we executed 88 test cases against 174 mutants created, killing 90% of the

mutants. For the case of the SG, we executed 90 test cases against 185 mutants,

killing 74%. Therefore 89% of the mutation operators (16/18 operators) generate

mutants that can detected by the test suites. More detailed information on the

mutation results can be found at

https://staq.dsic.upv.es/webstaq/mutuml/mutation_operators.htm.

5.4 Discussion

The results in Table 3 show that the behaviour of the mutation operators may depend

on some characteristics of the CS they are applied to (such as complexity of

constraints, the number and type of elements included in the CS). However, the

results suggest that some of these operators UPA2, WCO7, WCO9, WAS1, WCL1,

WOP2, WPA, MCO, MAS, and MPA generated mutants that were relatively easy to

detect by the provided test suites (the test suites had mutation scores of 100%).

Moreover, all the operators had a “positive” impact (column value II>0) in the test

suite assessment results. This means that the test suite quality is overestimated when

any of these operators is not used. An underestimation of test quality, especially when

the test suite is under development, would force an improvement of the test suite,

while its overestimation could compromise the quality of any testing performed by

them. The mutation operators WCO1, WCO3, WCO4, WCO5, WCO6, WCO8,

WAS2 and WAS3 all having a low mutation score, should always be applied because

they generate hard to detect mutants and their application would stimulate selection of

high quality tests. WAS2 and WAS3 mutation operators suggest that there is a lack of

use (test) in the test suite of the CS elements affected by these operators.

Despite the mutation operator restrictions, all these mutation operators generated

mutants in one or other of the three CS, these restrictions ensure that the mutants

generated meet the condition “mutant has to be syntactically correct for mutation

testing”. Thus, these operators support a well-defined, fault-injecting process.

Finally, mutation testing is computationally expensive, so it is important to use a

technique that reduces the computational cost, the restrictions included in the

mutation operator rules avoid generating non-valid mutants (495 in total in the three

CS), which has practical benefits in the time saved in the mutation testing process.

Additionally, the CEH states that complex (or higher-order) mutants are coupled to

simple mutants (FOM) in such a way that a test data set that detects all FOM will

detect a high percentage of the HOM.

6 Related work

Mutation Testing has been widely studied since it was first proposed in the 1970s by

Hamlet [22] and DeMillo et al. [13]. In 2010, Jia and Harman [3] made a good survey

of mutation techniques and also created a repository containing many interesting

papers on mutation testing (last updated in 2014). This survey stated that mutation

testing is mainly applied at the software implementation level (i.e. more than 50% of

survey papers). But it has also been applied to models at the design level, for example

to Finite State Machines [23], State Charts [24] and Activity Diagrams [25].

As far as we know, the idea of applying mutation testing to modify a UML CD-

based CS and to assess the quality of test cases by checking how well they detect

faults injected into a CS has not been explored to date in practice. However, some

similarities can be found in Strug [26][18], Dinh-Trong et al. [17] and Derezinska

[16]. In the former [26], the author introduces nine mutation operators to apply

manual mutations to the test suite provided for a UML/OCL-based design model

instead of modifying the model, which is a different approach to that used in the

present paper. In the latter [18], the author presents a classification of 16 mutation

operators defined for constraints specified in OCL and used in UML/OCL-based

design models. Constraints are among the CS elements covered by our approach.

Dinh-Trong et al. [17] describe a set of mutation operators for a UML class diagram

but do not include the restriction on generating valid mutants. Finally, Derezinska

introduced a set of mutation operators which can be applied to the UML CD

specification but which are evaluated at the code level (C++) [16].

The present work is based on UML-based model defects classified in a previous

work [9]. We also adapted some mutation operators proposed by Derezinska [16],

Dinh-Trong et al. [17] and some operators for OCL constraints proposed by Strug

[18]. Finally, in our approach the faults introduced include restrictions on generating

only valid mutants for detecting in the CS at the analysis and design phases. This

differs from current conventional mutation, in which the faults are introduced and

detected at the code level.

7 Conclusions and Future Work

Mutation testing applied at the CS level can improve early development of high

quality test suites (e.g. elements coverage) and can contribute to developing high

quality systems (i.e. it meets requirements) especially in a model-driven context. In

this paper we describe a mutation-testing based approach for UML CD-based CS

level and report our recent work: (1) classifying a set initial of 50 mutation operators

in the context of Conceptual Schemas based on a UML class diagram; (2) selecting

and applying 18 mutation operators for FOM to evaluate the usefulness of the

mutation operators in three CS. The main potential advantage of the defined mutation

operators is that can support a well-defined, fault-injection process.

As opposed to code-based mutation, our mutation operators are based on the

element characteristics of a UML CD–based CS and although some of the proposed

operators perform syntactic changes at the constraints level, they are mainly focused

(i.e. 41 of 50 operators) on the semantic changes of the high-level CD constructs. Our

mutation operators are classified according to the element affected by the operator,

injected defect type, and the action required by the mutation operator to generate valid

mutants (syntactically correct). Since our purpose is to select mutation operators to be

used to evaluate testing approaches, the selection process of mutation operators was

divided into two iterations. In the first iteration, some operators were excluded

because they generated only equivalent mutants (e.g. UCO2, UAS3, UAS4) and non-

valid mutants, (e.g. WCL4, UCO1, UAS1), which require a static technique (without

CS execution) for detecting (e.g. syntax analysis or structural coverage analysis), and

so are not useful for mutation testing. In the second iteration, we aimed to analyse the

dependencies between different operators and to reduce the cost of applying mutation

testing by selecting 18 mutation operators that generate only first order mutants.

Based on the results obtained by applying the mutation testing, 56% (10/18) of our

mutant operators generated a high number of killed mutants (score mutation=100 %).

These results suggest that these operators generated mutants that are relatively easy to

detect by the provided test suites. In the other case 44% (8/18) of the operators related

to characteristics of associations (i.e. multiplicity and aggregation type) and

constraints generated hard to detect mutants and their application would stimulate

selection of high quality tests. However, the behaviour of the mutation operators may

depend on the characteristics of the CS they are applied to, such as the number,

element type and complexity of constraints.

This study is a part of a more extensive research project, whose principal goal is to

propose an approach for testing-based conceptual schema validation in a Model-

Driven Environment. Future work will proceed to extend the test suite for stimulating

the disabled behaviour detected in this mutation analysis. We hope to evaluate the use

of HOMs and compare them with FOMs. Finally, the proposed mutation analysis will

be performed on a significant number of CS.

Acknowledgments. This work has been developed with the financial support by

SENESCYT of the Republic of Ecuador, European Commission (CaaS project) and

Generalitat Valenciana (PROMETEOII/2014/039).

A Appendix

Table 4. Mutation Operators defined for a UML CD-based CS
Code Mutation Operator rule and relation with other mutation operators

1 UCO1 Adds a redundant constraint to the CD

2 UCO2 Adds an extraneous constraint to the CD

3 UAS1 Adds a redundant association to the CD

4 UAS2 Adds a redundant derived association to the CD. Relation: UCO2

5 UAS3 Adds an extraneous association to the CD

6 UAS4 Adds an extraneous derived association to the CD. Relation: UCO2

7 UGE1 Adds a redundant generalization to the CD

8 UGE2 Adds an extraneous generalization to the CD

References

1. Olivé, A.: Conceptual Modeling of Information System. Springer (2007).

2. Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice. Springer Berlin

Heidelberg, Cambridge (2007).

9 UCL1 Adds a redundant class to the CD

10 UCL2 Adds an extraneous class to the CD

11 UCL3 Adds a redundant association class to the CD

12 UCL4 Adds an extraneous association class to the CD

13 UAT1 Adds a redundant attribute to a Class

14 UAT2 Adds an extraneous attribute to a Class

15 UOP1 Adds a redundant operation to a Class

16 UOP2 Adds an extraneous operation to a Class

17 UPA1 Adds a redundant parameter to an Operation

18 UPA2* Adds an extraneous Parameter to an Operation

19 WCO1* Changes the constraint by deleting the references to a class Attribute

20 WCO2 Changes the Attribute data type in the constraint. Relation: WPA, WAT3

21 WCO3* Change the constraint by deleting the calls to specific operation.

22 WCO4* Changes an arithmetic operator for another and supports binary operators: +, -,*,/

23 WCO5* Changes the constraint by adding the conditional operator “not”

24 WCO6* Changes a conditional operator for another and supports operators: or, and

25 WCO7* Changes the constraint by deleting the conditional operator “not”

26 WCO8* Changes a relational operator for another operators: <, <=, >, >=, ==, !=

27 WCO9* Changes a constraint by deleting a unary arithmetic operator (-).

28 WAS1* Interchange the members (memberEnd) of an Association.

29 WAS2* Changes the association type (i.e. normal, composite).

30 WAS3* Changes the memberEnd multiplicity of an Association (i.e. *-*, 0..1-0..1, *-0..1)

31 WGE Changes the Generalization member ends. Relation: MPA, UPA

32 WCL1* Changes visibility kind of the Class (i.e. private)

33 WCL2 Changes Class by an Association Class

34 WCL3 Changes Association Class for a Class

35 WCL4 Changes the Class feature “isAbstract “ to true.

36 WAT1 Changes the Attribute feature “Is Derived” to true. Relation: UCO2

37 WAT2 Changes the Attribute property “Is Derived” to false. Relation: MCO

38 WAT3 Changes the Attribute data type. Relation: WPA, WCO2

39 WAT4 Changes the Attribute visibility property

40 WOP1 Changes the order of the parameters

41 WOP2* Changes the visibility kind of an operation. Restriction. WOP2 has to be applied
to operations that are not related with any constraints. Relation: MCO

42 WOP3 Changes the data type returned by operation. Relation: WAT3

43 WPA*

Changes the Parameter data type (i.e. String, Integer, Boolean, Date, Real).

Restriction. WPA has to be applied to parameters that are not related with
attributes in a constructor operation. To reduce mutants only a change is counted.

44 MCO* Deletes a constraint (i.e. pre-condition, post-condition constraint, body constraint)

45 MAS*

Deletes an Association. Restriction. MAS has to be applied to associations that are

not related with any constraints. Relation: MCO

46 MGE Deletes a Generalization relation. Relation: MPA, UPA

47 MCL Deletes the class (i.e. normal or association class). Relation: MCO, MAT, MOP,

MGE.

48 MAT Deletes an Attribute. Relation: MPA, MCO

49 MOP Deletes the operation. Relation: MPA, MCO, WCO3

50 MPA* Deletes a Parameter from an Operation. Restriction. This mutation operator has to

be applied to operations without related constraints. Relation: MCO

3. Granda, M.F.: Testing-Based Conceptual Schema Validation in a Model- Driven

Environment. In: CAiSE 2013 Doctoral Consortium. , Valencia (2013).

4. Granda, M.F., Condori-Fernandez, N., Vos, T.E.J., Pastor, O.: Towards the automated

generation of abstract test cases from requirements models. In: 1st International Workshop

on Requirements Engineering and Testing. pp. 39–46. IEEE, Karlskrona, Sweden (2014).

5. Jia, Y., Harman, M.: An Analysis and Survey of the Development of Mutation Testing.

Softw. Eng. IEEE Trans. 37, 1–31 (2011).

6. Jia, Y., Harman, M.: Higher Order Mutation Testing. Inf. Softw. Technol. 51, 1379–1393

(2009).

7. Object Management Group: Unified Modeling Language (UML). (2015).

8. Andrews, J.H., Briand, L.C., Labiche, Y.: Is mutation an appropriate tool for testing

experiments? In: Proc. 27th Int. Conf. Soft. Eng., 2005. ICSE. pp. 402–411 (2005).

9. Granda, M.F., Condori-fernández, N., Vos, T.E.J., Pastor, O.: What do we know about the

Defect Types detected in Conceptual Models ? In: IEEE 9th Int. Conference on Research

Challenges in Information Science (RCIS). pp. 96–107. IEEE, Athens, Greece (2015).

10. Object Management Group: Action Language for Foundational UML (ALF). (2013).

11. Object Management Group: Semantics of a Foundational Subset for Executable UML

Models (fUML). (2012).

12. IEEE: IEEE Standard Classification for Software Anomalies. (2010).

13. DeMillo, R., Lipton, R., Sayward, F.G.: Hints on Test Data Selection: Help for the

Practicing Programmer. Computer (Long. Beach. Calif). 11, 34–41 (1978).

14. Offutt, J.: Investigations of the software testing coupling effect. ACM Trans. Softw. Eng.

Methodol. 1, 5–20 (1992).

15. Woodward, M.R.: Errors in algebraic specifications and an experimental mutation testing

tool. Softw. Eng. J. (1993).

16. Derezińska, A.: Object-oriented mutation to assess the quality of tests. Conf. Proc.

EUROMICRO. 417–420 (2003).

17. Dinh-Trong, T., Ghosh, S., France, R.: A Taxonomy of Faults for UML Designs. In: 2nd

MoDeVa workshop - in conjunction with MoDELS (2005).

18. Strug, J.: Classification of Mutation Operators Applied to Design Models. Adv. Des.

Manuf. V. 572, 539–542 (2014).

19. España, S., González, A., Pastor, Ó., Ruiz, M.: Technical Report Communication Analysis

and the OO-Method : Manual Derivation of the Conceptual Model the SuperStationery Co.

Lab Demo. , Valencia (2011).

20. Tort, A., Olivé, A.: Case Study: Conceptual Modeling of Basic Sudoku,

http://guifre.lsi.upc.edu/Sudoku.pdf.

21. MutUML Tool, https://staq.dsic.upv.es/webstaq/mutuml.html.

22. Hamlet, R.G.: Testing Programs with the Aid of a Compiler. IEEE Trans. Softw. Eng. SE-

3, 279 – 290 (1977).

23. Fabbri, S.C., Maldonado, J.C., Masiero, P.C., Delamaro, M.E.: Mutation Analysis Testing

for Finite State Machines. In: 5th Int. Symp. Soft. Reliability Eng. pp. 220–229 (1994).

24. Ferraz, S., Maldonado, J.C., Sugeta, T., Masiero, P.: Mutation Testing Applied to Validate

Specifications Based on Statecharts. In: Software Reliability Engineering, Proceedings.

10th International Symposium on. pp. 210–219. IEEE, Boca Raton, FL (1999).

25. Farooq, U., Lam, C.P.: Mutation Analysis for the Evaluation of AD Models. Int. Conf.

Comput. Intell. Model. Control Autom. CIMCA. 296–301 (2008).

26. Strug, J.: Mutation Testing Approach to Evaluation of Design Models. Adv. Des. Manuf.

V. 572, 543–546 (2014).

27. Sommerville, I.: Software Engineering. Addison-Wesley, Boston (2011).

