
F. Ricca, A. Russo et al. (Eds.): Proc. 36th International Conference
on Logic Programming (Technical Communications) 2020 (ICLP 2020)
EPTCS 325, 2020, pp. 38–51, doi:10.4204/EPTCS.325.10

c© D. Aparicio-Sánchez, S. Escobar, and J. Sapiña
This work is licensed under the
Creative Commons Attribution License.

Variant-based Equational Unification under
Constructor Symbols∗

Damián Aparicio-Sánchez Santiago Escobar Julia Sapiña
VRAIN (Valencian Research Institute for Artificial Intelligence)

Universitat Politècnica de València
Valencia, Spain

{daapsnc,sescobar,jsapina}@upv.es

Equational unification of two terms consists of finding a substitution that, when applied to both terms,
makes them equal modulo some equational properties. A narrowing-based equational unification
algorithm relying on the concept of the variants of a term is available in the most recent version of
Maude, version 3.0, which provides quite sophisticated unification features. A variant of a term t
is a pair consisting of a substitution σ and the canonical form of tσ . Variant-based unification is
decidable when the equational theory satisfies the finite variant property. However, this unification
procedure does not take into account constructor symbols and, thus, may compute many more unifiers
than the necessary or may not be able to stop immediately. In this paper, we integrate the notion of
constructor symbol into the variant-based unification algorithm. Our experiments on positive and
negative unification problems show an impressive speedup.

1 Introduction

Equational unification of two terms is of special relevance to many areas in computer science, including
logic programming, and consists of finding a substitution that, when applied to both terms, makes them
equal modulo some equational properties. Several algorithms have been developed in the literature for
specific equational theories, such as associative-commutative symbols, exclusive-or, Diffie-Hellman, or
Abelian Groups (see [3]). Narrowing was proved to be complete for unification [23] and several cases
have been studied where narrowing provides a decidable unification algorithm [1, 2]. A narrowing-
based equational unification algorithm relying on the concept of the variants of a term [11] has been
developed in [22] and it is available in the most recent version of Maude, version 3.0, which provides
quite sophisticated unification features [9, 13].

Several tools and techniques rely on Maude’s advanced unification capabilities, such as termina-
tion [14] and local confluence and coherence [15, 16] proofs, narrowing-based theorem proving [35] or
testing [34], and logical model checking [20, 4]. The area of cryptographic protocol analysis has also
benefited from advanced unification algorithms: Maude-NPA [19], Tamarin [12] and AKISS [5] rely
on the different unification features of Maude. Furthermore, numerous decision procedures for formula
satisfiability modulo equational theories also rely on unification, either based on narrowing [37] or by
using variant generation in finite variant theories [32].

Constructor symbols are extensively used in computer science: for representing data instead of func-
tions, for manipulating programs as data, or for reasoning in complex semantic structures. In an equa-
tional theory, constructors can be characterized in the “no junk, no confusion” style of Goguen and

∗This work has been partially supported by the EU (FEDER) and the Spanish MCIU under grant RTI2018-094403-B-C32,
by the Spanish Generalitat Valenciana under grants PROMETEO/2019/098 and APOSTD/2019/127, and by the US Air Force
Office of Scientific Research under award number FA9550-17-1-0286.

http://dx.doi.org/10.4204/EPTCS.325.10
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

D. Aparicio-Sánchez, S. Escobar, and J. Sapiña 39

Burstall [7], providing the mathematical semantics of the equational theory as the initial algebra of a
Maude functional module, which corresponds to the least Herbrand model in logic programming (see
[9]). However, this more general notion of constructor differs from the “logic” notion of a functor and
the “functional” notion of a symbol not appearing in the root position of the left-hand side of any equa-
tion. The notion of a constructor symbol has not yet been integrated into the variant-based equational
unification procedure of Maude and, thus, it may compute many more unifiers than the necessary or it
may not be able to stop immediately. In this paper, we integrate the notion of constructor symbol into
the variant-based unification algorithm with an impressive speedup.

After some preliminaries in Section 2, we recall variant-based unification in Section 3. In Section 4,
we define our new unification algorithm that reduces the total execution time. Our experiments in Sec-
tion 5 show that this improved unification algorithm works well in practice. We conclude in Section 6.

2 Preliminaries

We follow the classical notation and terminology from [36] for term rewriting, from [3] for unification,
and from [27] for rewriting logic and order-sorted notions.

We assume an order-sorted signature Σ = (S,≤,Σ) with a poset of sorts (S,≤). The poset (S,≤)
of sorts for Σ is partitioned into equivalence classes, called connected components, by the equivalence
relation (≤ ∪ ≥)+. We assume that each connected component [s] has a top element under ≤, denoted
>[s] and called the top sort of [s]. This involves no real loss of generality, since if [s] lacks a top sort,
it can be easily added. We also assume an S-sorted family X = {Xs}s∈S of disjoint variable sets with
each Xs countably infinite. T

Σ
(X)s is the set of terms of sort s, and T

Σ,s is the set of ground terms of
sort s. We write T

Σ
(X) and T

Σ
for the corresponding order-sorted term algebras. Given a term t, Var(t)

denotes the set of variables in t.
Positions are represented by sequences of natural numbers denoting an access path in the term when

viewed as a tree. The top or root position is denoted by the empty sequence Λ. We define the relation
p ≤ q between positions as p ≤ p for any p; and p ≤ p.q for any p and q. Given U ⊆ Σ∪X , PosU(t)
denotes the set of positions of a term t that are rooted by symbols or variables in U . The set of positions
of a term t is written Pos(t), and the set of non-variable positions PosΣ(t). The subterm of t at position p
is t|p and t[u]p is the term t where t|p is replaced by u.

A substitution σ ∈S ubst(Σ,X) is a sorted mapping from a finite subset of X to T
Σ
(X). Sub-

stitutions are written as σ = {X1 7→ t1, . . . ,Xn 7→ tn} where the domain of σ is Dom(σ) = {X1, . . . ,Xn}
and the set of variables introduced by terms t1, . . . , tn is written Ran(σ). The identity substitution is id.
Substitutions are homomorphically extended to T

Σ
(X). The application of a substitution σ to a term t

is denoted by tσ or σ(t). For simplicity, we assume that every substitution is idempotent, i.e., σ satisfies
Dom(σ)∩Ran(σ) = /0. The restriction of σ to a set of variables V is σ |V , i.e., ∀x ∈ V , σ |V (x) = σ(x)
and ∀x 6∈V , σ |V (x) = x. Composition of two substitutions σ and σ ′ is denoted by σσ ′. Combination of
two substitutions σ and σ ′ such that Dom(σ)∩Dom(σ ′) = /0 is denoted by σ ∪σ ′. We call a substitution
σ a variable renaming if there is another substitution σ−1 such that (σσ−1)|Dom(σ) = id.

A Σ-equation is an unoriented pair t = t ′, where t, t ′ ∈ T
Σ
(X)s for some sort s ∈ S. An equational

theory (Σ,E) is a pair with Σ an order-sorted signature and E a set of Σ-equations. Given Σ and a set E
of Σ-equations, order-sorted equational logic induces a congruence relation =E on terms t, t ′ ∈ T

Σ
(X)

(see [28]). We say σ1 =E σ2 iff σ1(x) =E σ2(x) for any variable x. Throughout this paper we assume that
T

Σ,s 6= /0 for every sort s, because this affords a simpler deduction system. An equational theory (Σ,E) is
regular if for each t = t ′ in E, we have Var(t) = Var(t ′). An equational theory (Σ,E) is linear if for each

40 Variant-based Equational Unification under Constructor Symbols

t = t ′ in E, each variable occurs only once in t and in t ′. An equational theory (Σ,E) is sort-preserving if
for each t = t ′ in E, each sort s, and each substitution σ , we have tσ ∈ T

Σ
(X)s iff t ′σ ∈ T

Σ
(X)s. An

equational theory (Σ,E) is defined using top sorts if for each equation t = t ′ in E, all variables in Var(t)
and Var(t ′) have a top sort. Given two terms t and t ′, we say t is more general than t ′, denoted as t wE t ′,
if there is a substitution η such that tη =E t ′. Similarly, given two substitutions σ and ρ , we say σ is
more general than ρ for a set W of variables, denoted as σ |W wE ρ|W , if there is a substitution η such
that (ση)|W =E ρ|W . The wE relation induces an equivalence relation 'E , i.e., t 'E t ′ iff t wE t ′ and
t vE t ′.

An E-unifier for a Σ-equation t = t ′ is a substitution σ such that tσ =E t ′σ . For Var(t)∪Var(t ′)⊆W ,
a set of substitutions CSUW

E (t = t ′) is said to be a complete set of unifiers for the equality t = t ′ modulo
E away from W iff: (i) each σ ∈ CSUW

E (t = t ′) is an E-unifier of t = t ′; (ii) for any E-unifier ρ of
t = t ′ there is a σ ∈ CSUW

E (t = t ′) such that σ |W wE ρ|W ; and (iii) for all σ ∈ CSUW
E (t = t ′), Dom(σ)⊆

(Var(t)∪Var(t ′)) and Ran(σ)∩W = /0. Given a conjunction Γ of equations, a set U of E-unifiers of Γ is
said to be minimal if it is complete and for all distinct elements σ and σ ′ in U , σ wE σ ′ implies σ =E σ ′.
A unification algorithm is said to be finitary and complete if it always terminates after generating a finite
and complete set of unifiers. A unification algorithm is said to be minimal and complete if it always
returns a minimal and complete set of unifiers.

A rewrite rule is an oriented pair l → r, where l 6∈X and l,r ∈ T
Σ
(X)s for some sort s ∈ S. An

(unconditional) order-sorted rewrite theory is a triple (Σ,E,R) with Σ an order-sorted signature, E a set
of Σ-equations, and R a set of rewrite rules. The set R of rules is sort-decreasing if for each t → t ′ in
R, each s ∈ S, and each substitution σ , t ′σ ∈ T

Σ
(X)s implies tσ ∈ T

Σ
(X)s. The rewriting relation on

T
Σ
(X), written t→R t ′ holds between t and t ′ iff there exist p∈ PosΣ(t), l→ r ∈ R and a substitution σ ,

such that t|p = lσ , and t ′ = t[rσ]p. The relation→R/E on T
Σ
(X) is =E ;→R;=E . The transitive (resp.

transitive and reflexive) closure of→R/E is denoted→+
R/E (resp. →∗R/E).

Reducibility of→R/E is undecidable in general since E-congruence classes can be arbitrarily large.
Therefore, R/E-rewriting is usually implemented by R,E-rewriting under some conditions on R and E
such as confluence, termination, and coherence (see [24, 30, 33]). A relation→R,E on T

Σ
(X) is defined

as: t →R,E t ′ iff there is a non-variable position p ∈ PosΣ(t), a rule l → r in R, and a substitution σ

such that t|p =E lσ and t ′ = t[rσ]p. The narrowing relation R,E on T
Σ
(X) is defined as: t σ

 R,E t ′ iff
there is a non-variable position p ∈ PosΣ(t), a rule l→ r in R, and a substitution σ such that t|pσ =E lσ
and t ′ = (t[r]p)σ . We call (Σ,B,E) a decomposition of an order-sorted equational theory (Σ,E]B) if
B is regular, linear, sort-preserving, defined using top sorts, and has a finitary and complete unification
algorithm, and equations E are oriented into rules

−→
E such that they are sort-decreasing and convergent,

i.e., confluent, terminating, and strictly coherent modulo B [15, 26, 30]. The irreducible version of a term
t is denoted by t↓E,B.

Given a decomposition (Σ,B,E) of an equational theory and a term t, a pair (t ′,θ) of a term t ′ and
a substitution θ is an E,B-variant (or just a variant) of t if tθ↓E,B =B t ′ and θ↓E,B =B θ [11, 22]. A
complete set of E,B-variants [22] (up to renaming) of a term t is a subset, denoted by [[t]]E,B, of the
set of all E,B-variants of t such that, for each E,B-variant (t ′,σ) of t, there is an E,B-variant (t ′′,θ) ∈
[[t]]E,B such that (t ′′,θ) wE,B (t ′,σ), i.e., there is a substitution ρ such that t ′ =E t ′′ρ and σ |Var(t) =E

(θρ)|Var(t). A decomposition (Σ,B,E) has the finite variant property (FVP) [22] (also called a finite
variant decomposition) iff for each Σ-term t, there exists a complete and finite set [[t]]E,B of variants of
t. Note that whether a decomposition has the finite variant property is undecidable [6], but a technique
based on the dependency pair framework has been developed in [22] and a semi-decision procedure that
works well in practice is available in [8].

D. Aparicio-Sánchez, S. Escobar, and J. Sapiña 41

3 Variant-based Equational Unification in Maude 3.0

Rewriting logic [27] is a flexible semantic framework within which different concurrent systems can
be naturally specified (see [29]). Rewriting Logic is efficiently implemented in the high-performance
system Maude [9], which has itself a formal environment of verification tools thanks to its reflective
capabilities (see [10, 29]).

Maude 3.0 offers quite sophisticated symbolic capabilities (see [31] and references therein). Among
these symbolic features, equational unification [9] is a twofold achievement. On the one hand, Maude
provides an order-sorted equational unification command for any combination of symbols having any
combination of associativity, commutativity, and identity [13]. This is remarkable, since there is no other
system with such an advanced unification algorithm. On the other hand, a narrowing-based equational
unification algorithm relying on the concept of the variants [11] of a term is also available. A variant of
a term t is a pair consisting of a substitution σ and the canonical form of tσ . Narrowing was proved to
be complete for unification in [23], but variant-based unification is decidable when the equational theory
satisfies the finite variant property [11, 22]. The finite variant property has become an essential property
in some research areas, such as cryptographic protocol analysis, where Maude-NPA [19], Tamarin [12]
and AKISS [5] rely on the different unification features of Maude.

Let us make explicit the relation between variants and equational unification. First, we define the
intersection of two sets of variants. Without loss of generality, we assume in this paper that each variant
pair (t ′,σ) of a term t uses new freshly generated variables.

Definition 1 (Variant Intersection). [22] Given a decomposition (Σ,B,E) of an equational theory, two
Σ-terms t1 and t2 such that W∩ = Var(t1)∩Var(t2) and W∪ = Var(t1)∪Var(t2), and two sets V1 and V2 of
variants of t1 and t2, respectively, we define V1∩V2 = {(u1σ ,θ1σ ∪θ2σ ∪σ) | (u1,θ1) ∈V1∧ (u2,θ2) ∈
V2∧∃σ : σ ∈ CSUW∪

B (u1 = u2)∧ (θ1σ)|W∩ =B (θ2σ)|W∩}.

Then, we define variant-based unification as the computation of the variants of the two terms in a
unification problem and their intersection.

Corollary 2 (Finitary E -unification). [22] Let (Σ,B,E) be a finite variant decomposition of an equational
theory. Given two terms t, t ′, the set CSU∩E∪B(t = t ′) = {θ | (w,θ) ∈ [[t]]E,B ∩ [[t ′]]E,B} is a finite and
complete set of unifiers for t = t ′.

The most recent version 3.0 of Maude [9] incorporates variant-based unification based on the folding
variant narrowing strategy [22]. First, there exists a variant generation command of the form:

get variants [n] in ModId : Term .

where n is an optional argument providing a bound on the number of variants requested, so that if the
cardinality of the set of variants is greater than the specified bound, the variants beyond that bound are
omitted; and ModId is the identifier of the module where the command takes place. Second, there exists
a variant-based unification command of the form:

variant unify [n] in ModId : T1 =? T1’ /\ ... /\ Tk =? Tk’ .

where k≥ 1 and n is an optional argument providing a bound on the number of unifiers requested, so that
if there are more unifiers, those beyond that bound are omitted; and ModId is the identifier of the module
where the command takes place.

Example 1. Consider the following equational theory for exclusive-or that assumes three extra constants
a, b, and c. The second equation is necessary for coherence modulo AC.

42 Variant-based Equational Unification under Constructor Symbols

fmod EXCLUSIVE-OR is

sorts Elem EXor . subsort Elem < EXor .

ops a b c : -> Elem . op mt : -> EXor . op _*_ : EXor EXor -> EXor [assoc comm] .

vars X Y Z U V : [EXor] .

eq [idem] : X * X = mt [variant] .

eq [idem-Coh] : X * X * Z = Z [variant] .

eq [id] : X * mt = X [variant] .

endfm

The attribute variant specifies that these equations will be used for variant-based unification. Since
this theory has the finite variant property (see [11, 22]), given the term X * Y it is easy to verify that
there are seven most general variants.

Maude> get variants in EXCLUSIVE-OR : X * Y .

Variant #1 ... Variant #7

[EXor]: #1:[EXor] * #2:[EXor] ... [EXor]: %1:[EXor]

X --> #1:[EXor] ... X --> %1:[EXor]

Y --> #2:[EXor] ... Y --> mt

Note that Maude produces fresh variables of the form #n:Sort or %n:Sort using two different counters
(see [9] for details). When we consider a variant unification problem between terms X ∗Y and U ∗V ,
there are 57 unifiers:

Maude> variant unify in EXCLUSIVE-OR : X * Y =? U * V .

Unifier #1 ... Unifier #2

X --> %1:[EXor] * %3:[EXor] ... X --> %1:[EXor] * %3:[EXor]

Y --> %2:[EXor] * %4:[EXor] ... Y --> %2:[EXor]

V --> %1:[EXor] * %2:[EXor] ... V --> %1:[EXor] * %2:[EXor]

U --> %3:[EXor] * %4:[EXor] ... U --> %3:[EXor]

However, this variant-based unification algorithm may compute many more unifiers than the nec-
essary or may not be able to stop immediately. For instance, it is well-known that unification in the
exclusive-or theory is unitary, i.e., there exists only one most general unifier modulo exclusive-or [25].
For the unification problem X ∗Y ?

= U ∗V of Example 1, the most general unifier w.r.t. wE∪B is {X 7→
Y ∗U ∗V}, which should be appropriately written as σ = {X 7→ Y ′ ∗U ′ ∗V ′,Y 7→ Y ′,U 7→U ′,V 7→V ′}.
Note that {Y 7→ X ∗U ∗V}, {U 7→ Y ∗X ∗V}, and {V 7→ Y ∗U ∗X} are equivalent to the former unifier
w.r.t. wE∪B by composing σ with, respectively, ρ1 = {Y ′ 7→ X ′′ ∗U ′′ ∗V ′′,X ′ 7→ X ′′,U ′ 7→U ′′,V ′ 7→V ′′},
ρ2 = {U ′ 7→ Y ′′ ∗X ′′ ∗V ′′,X ′ 7→ X ′′,Y ′ 7→ Y ′′,V ′ 7→ V ′′}, and ρ3 = {V ′ 7→ Y ′′ ∗U ′′ ∗X ′′,X ′ 7→ X ′′,U ′ 7→
U ′′,Y ′ 7→Y ′′}. Similarly, {X 7→U,Y 7→V} and {X 7→V,Y 7→U} are equivalent to all the previous ones.

Furthermore, since the variants of both terms are generated by Corollary 2, there may be very simple
unification problems such as X ?

= t where the generation of the variants of t is unnecessary. For example,
when unifying terms X and U ∗V , the variants of U ∗V are generated

Maude> variant unify in EXCLUSIVE-OR : X =? U * V .

Unifier #1 Unifier #2 Unifier #3

X --> %1:[EXor] * %2:[EXor] X --> mt X --> #2:[EXor] * #3:[EXor]

V --> %1:[EXor] V --> #1:[EXor] V --> #1:[EXor] * #2:[EXor]

U --> %2:[EXor] U --> #1:[EXor] U --> #1:[EXor] * #3:[EXor]

D. Aparicio-Sánchez, S. Escobar, and J. Sapiña 43

Unifier #4 Unifier #5 Unifier #6

X --> #1:[EXor] X --> #1:[EXor] X --> #1:[EXor]

V --> #1:[EXor] * #2:[EXor] V --> #2:[EXor] V --> mt

U --> #2:[EXor] U --> #1:[EXor] * #2:[EXor] U --> #1:[EXor]

Unifier #7

X --> #1:[EXor]

V --> #1:[EXor]

U --> mt

but it is clear that the simplest, most general unifier is {X 7→U ∗V}. In [21], a new procedure to reduce
the number of variant unifiers in situations like this was developed. We showed that this new procedure
pays off in practice using both the exclusive-or and the abelian group equational theories.

4 Constructor-Root Variant-based Unification

Both the “logic” notion of a functor and the “functional” notion of a constructor refer to a symbol not
appearing in the root position of the left-hand side of any predicate or equation. This notion of con-
structor allows to split a signature Σ as a disjoint union Σ = D]C where D are called defined sym-
bols and C are called constructor symbols. In a decomposition (Σ,B,E), the canonical term algebra
CanΣ/(E,B) = {t↓E,B | t ∈ T

Σ
} is typically made of constructor terms, but this more general notion of

constructor differs from the “logic” and “functional” notions. A decomposition (Σ,B,E) protects a con-
structor decomposition (C ,BC ,EC) iff C ⊆ Σ, BC ⊆ B, and EC ⊆ E, and for all t, t ′ ∈TC (X) we have:
(i) t =BC t ′ ⇐⇒ t =B t ′, (ii) t = t↓EC ,BC ⇐⇒ t = t↓E,B, and (iii) CanC /(EC ,BC) = CanΣ/(E,B)|C . A
constructor decomposition (C ,BC , /0) is called free. For instance, the modular exponentiation property
typical of Diffie-Hellman protocols is defined using two versions of the exponentiation operator and an
auxiliary associative-commutative symbol ∗ for exponents so that (zx)y = (zy)x = zx∗y. Note that, in the
lefthand side of the equation, the outermost exponentiation operator is defined, whereas the innermost
exponentiation operator is constructor.

fmod DH-CFVP is

sorts Exp Elem ElemSet Gen . subsort Elem < ElemSet .

ops a b c : -> Elem [ctor] .

op exp : Gen ElemSet -> Exp [ctor] .

op exp : Exp ElemSet -> Exp .

op _*_ : ElemSet ElemSet -> ElemSet [assoc comm ctor] .

var X : Gen . vars Y Z : ElemSet .

eq exp(exp(X,Y),Z) = exp(X,Y * Z) [variant] .

endfm

Note that it may not always be possible to provide a (free) constructor decomposition, such as Example 1
where the exclusive-or symbol works both as defined and constructor (see [9] for a detailed discussion).
However, it is common to combine an equational theory with many different additional constructor sym-
bols, as shown in Section 5.

The notion of a constructor symbol has not yet been integrated into the variant-based equational
unification procedure of Maude. An integration of the notion of constructor involves two challenges. On
the one hand, when we consider the variant unification problem above between terms X and U ∗V , the
fast unification algorithm of [21] is able to return only one unifier but still generates all the variants of
term U ∗V , unnecessarily consuming resources. On the other hand, a unification problem between terms

44 Variant-based Equational Unification under Constructor Symbols

f (X ∗Y) and g(U ∗V) where f and g are different constructor symbols forces the generation of all the
variants of the terms X ∗Y and U ∗V wasting resources. Let us consider a unification problem C1[X]

?
=

C2[t] where both C1 and C2 are made of constructor symbols and either there exists σ s.t. C1[2]σ =B

C2[2]σ or there is no such σ .

Definition 3 (Constructor-root Position). Given a decomposition (Σ,B,E) protecting a free constructor
decomposition (C ,BC , /0) and given a Σ-term t and a position p ∈ Pos(t), we say p is a constructor-root
position in t if for all q < p, root(t|q) ∈ C .

Definition 4 (Constructor-root Variable). Given a Σ-term t and a variable x, we say x is a constructor-
root variable in t if for all p ∈ Posx(t), p is constructor-root in t.

First, we define the case when there exists σ s.t. C1[2]σ =B C2[2]σ . Intuitively, a variant unifier σ

of t1 and t2 is constructor-root if each variable in Ran(σ) is under a constructor-root variable of t1 and t2.

Definition 5 (Constructor-root Variant Unifier). Given a decomposition (Σ,B,E) protecting a free con-
structor decomposition (C ,BC , /0), two Σ-terms t1 and t2 s.t. W∩ = Var(t1)∩Var(t2), W∪ = Var(t1)∪
Var(t2), (u1,θ1) ∈ [[t1]]E,B, (u2,θ2) ∈ [[t2]]E,B, and σ ∈ CSUW∪

B (u1 = u2) s.t. (θ1σ)|W∩ =B (θ2σ)|W∩ , the
unifier (θ1∪θ2)σ is called constructor-root if for each x 7→ t ∈ σ , either (i) x 7→ t is a variable renaming,
(ii) x is a constructor-root variable in u1 and u2, or (iii) for each x′ 7→ t ′ ∈ σ \{x 7→ t} (and there exists
at least one such binding) s.t. t ′ =B C[t], then x′ is a constructor-root variable in u1 and u2.

Let us motivate the usefulness of a constructor-root unifier. Given the unification problem X
?
= V∗U

above, the unifier {X 7→ %1∗%2, V 7→ %1, U 7→ %2} is constructor-root, since X is a constructor-root
variable in the left unificand and V and U are not constructor-root variables but the variables %1 and %2
used in the bindings of V and U appear in the binding of X. Hence, we can safely avoid the generation of
the variants of V ∗U . Note that the unifier {X 7→ mt, V 7→%1, U 7→%1} is not constructor-root because
V and U are not constructor-root variables and for the bindings V 7→ %1 and U 7→ %1 there is no other
binding x′ 7→ t ′ such that %1 is a subterm of t ′ and x′ is a constructor-root variable.

Lemma 6 (Constructor-root Variant Unifier). Given a decomposition (Σ,B,E) protecting a free construc-
tor decomposition (C ,BC , /0), two Σ-terms t1 and t2 s.t. W∩ = Var(t1)∩Var(t2), W∪ = Var(t1)∪Var(t2),
(u1,θ1) ∈ [[t1]]E,B, (u2,θ2) ∈ [[t2]]E,B, and a constructor-root variant unifier σ ∈ CSUW∪

B (u1 = u2) s.t.
(θ1σ)|W∩ =B (θ2σ)|W∩ , then ∀(u′1,θ ′1) ∈ [[t1]]E,B s.t. (u′1,ρ) ∈ [[u1]]E,B and θ ′1|W∪ =B θ1ρ|W∪ , if there
exists σ ′ ∈ CSUW∪

B (u′1 = u2) s.t. (θ ′1σ ′)|W∩ =B (θ2σ ′)|W∩ , then ((θ1 ∪ θ2)σ)|W∪ and ((θ ′1 ∪ θ2)σ
′)|W∪

are both equational unifiers of t1 and t2 but ((θ1 ∪ θ2)σ)|W∪ wE∪B ((θ ′1 ∪ θ2)σ
′)|W∪ . Similarly for any

(u′2,θ
′
2) ∈ [[t2]]E,B.

Proof. By contradiction. Let us assume ∃σ ′ ∈CSUW∪
B (u′1 = u2) s.t. ((θ1∪θ2)σ)|W∪ 6wE∪B ((θ

′
1∪θ2)σ

′)|W∪ .
First, θ ′1|t1 = θ1|t1ρ|u1 and thus the difference is in σ |u2 and σ ′|u2 . By the constructor-root property,
∀x 7→ t ∈ σ |u2 either x is a constructor-root variable in u2 or ∀x′ 7→ t ′ ∈ (σ \{x 7→ t})|u2 s.t. t ′ =B C[t], x′

is a constructor-root variable in u2. But then ∀y ∈ Var(u2), there exist y 7→ w1 ∈ σ |u2 and y 7→ w2 ∈ σ ′|u2

and (w2,ρ) ∈ [[w1]]E,B, i.e., σ |u2 wE∪B σ ′|u2 , which contradicts the assumption.

We define the case when there is no σ s.t. C1[2]σ =B C2[2]σ . Intuitively, two terms that form a
constructor-root failure pair will never unify despite any further variant computation.

Definition 7 (Constructor-root Failure Pair). Given a decomposition (Σ,B,E) protecting a free con-
structor decomposition (C ,BC , /0), two Σ-terms t1 and t2 s.t. W∩ = Var(t1)∩Var(t2), W∪ = Var(t1)∪
Var(t2), (u1,θ1) ∈ [[t1]]E,B, and (u2,θ2) ∈ [[t2]]E,B, the pair (u1,u2) is a constructor-root failure pair if

D. Aparicio-Sánchez, S. Escobar, and J. Sapiña 45

CSUW∪
B (u1 = u2) = /0 and there exists two constructor contexts C1[2, . . . ,2] and C2[2, . . . ,2], terms

v1, . . . ,vn,w1, . . . ,wm, and fresh distinct variables x1, . . . ,xn,y1, . . . ,ym s.t. u1 =B C1[v1, . . . ,vn], u2 =B

C2[w1, . . . ,wm], and CSUW∪
B (C1[x1, . . . ,xn] =C2[y1, . . . ,ym]) = /0 .

Let us motivate the usefulness of a constructor-root failure pair. Given the unification problem
f(X∗Y) ?

= g(V∗U) above where f and g are different constructor symbols without axioms, the two
terms do not unify modulo the axioms of ∗ but neither f (W) and g(W ′) do. Hence, we can safely avoid
the generation of the variants of V ∗U and X ∗Y .

Lemma 8 (Constructor-root Failure Pair). Given a decomposition (Σ,B,E) protecting a free constructor
decomposition (C ,BC , /0), two Σ-terms t1 and t2 s.t. W∪ = Var(t1)∪Var(t2), (u1,θ1) ∈ [[t1]]E,B, (u2,θ2) ∈
[[t2]]E,B, and (u1,u2) is a constructor-root failure term, then CSUW∪

E∪B(u1 = u2) = /0.

Proof. Immediate by Definition 7.

These positive and negative stopping criteria, however, become useful only if we do not generate all
the variants a priori, as it is done in Corollary 2 as well as the fast unification technique of [21]. Some
incremental generation of variants is required.

Example 2. Consider the following theory where constructors have the ctor attribute.

fmod FASTvsCR is sort S .

ops a b c : -> S [ctor] . op s : S -> S [ctor] .

op g : S S -> S . op f : S S S -> S . vars X Y Z W : S .

eq f(a,X,Y) = s(Y) [variant] .

eq f(b,X,Y) = g(X,Y) [variant] .

eq g(c,Y) = s(Y) [variant] .

endfm

Consider the unification problem (a) f (X ,Y,Z) = s(W) with only two unifiers and its variant generation.

variant unify in FG : f(X, Y, Z) =? s(W) .

Unifier #1 Unifier #2

X --> a X --> b

Y --> #2:S Y --> c

Z --> #1:S Z --> %1:S

W --> #1:S W --> %1:S

f(X,Y,Z)
{X7→a}
zz {X7→b} %%

?
= s(W)

s(Z) g(Y,Z)

{Y 7→c} ��
s(Z)

Let us assume we have an expression ♣ with a considerably large narrowing tree and two new
unification problems (b) f (X ,Y,♣) = s(W) and (c) f (X ,♣,Z) = s(W). Note that the unifiers of (a) are
still valid for (b), whereas only the first unifier of (a) is valid for (c), assuming ♣ never narrows into c.
Both the variant-based unification command of Maude and the fast command of [21] cannot avoid the
computation of ♣ in both unification problems (b) and (c). However, the technique described below is
able to avoid the full computation of ♣ in (b), since the two unifiers are constructor-root, although it
cannot avoid the full computation of ♣ in (c).

We extend the notions of constructor-root unifier and constructor-root failure pair to the pairwise
combination of all the variants of a unification problem.

Definition 9 (Constructor-Root Intersection). Given a decomposition (Σ,B,E) protecting a free con-
structor decomposition (C ,BC , /0), two Σ-terms t1 and t2 such that W∩ = Var(t1)∩Var(t2) and W∪ =
Var(t1)∪Var(t2), and two sets V1 and V2 of variants of t1 and t2, respectively, we say that an intersection

46 Variant-based Equational Unification under Constructor Symbols

V1∩V2 is constructor-root if for each leaf (u1,θ1)∈V1 (resp. (u2,θ2)∈V2), and for each leaf (u2,θ2)∈V2
(resp. (u1,θ1) ∈ V1) such that σ ∈ CSUW∪

B (u1 = u2) and (θ1σ)|W∩ =B (θ2σ)|W∩ , we have (θ1∪θ2)σ is
constructor-root.

Definition 10 (Failure Intersection). Given a decomposition (Σ,B,E) protecting a free constructor de-
composition (C ,BC , /0) two Σ-terms t1 and t2 such that W∩=Var(t1)∩Var(t2) and W∪=Var(t1)∪Var(t2),
and two sets V1 and V2 of variants of t1 and t2, respectively, we say that an intersection V1∩V2 is a fail-
ure intersection if for each leaf (u1,θ1) ∈ V1 (resp. (u2,θ2) ∈ V2), and for each leaf (u2,θ2) ∈ V2 (resp.
(u1,θ1) ∈ V1) such that σ ∈ CSUW∪

B (u1 = u2) and (θ1σ)|W∩ =B (θ2σ)|W∩ , we have the pair (u1,u2) is a
constructor-root failure pair.

The following example shows that the folding variant narrowing trees of both terms t1, t2 of a unifi-
cation problem t1 = t2 must be unfolded down to a frontier where all leaves of t1 are tested for unification
with all the leaves of t2.

Example 3. Let us consider Example 2 and the unification problem f (X ,Y,Z) = f (U,V,W).

variant unify in FG : f(X, Y, Z) =? f(U, V, W) .

Unifier #1 Unifier #2 Unifier #3 Unifier #4

X --> %1:S X --> a X --> a X --> b

Y --> %2:S Y --> %2:S Y --> #2:S Y --> c

Z --> %3:S Z --> %1:S Z --> #1:S Z --> #1:S

U --> %1:S U --> a U --> b U --> a

V --> %2:S V --> %3:S V --> c V --> #2:S

W --> %3:S W --> %1:S W --> #1:S W --> #1:S

f(X,Y,Z)
{X7→a}

ww {X7→b} ''

?
= f(U,V,W)

{U7→a}

ww {X7→b} ''
s(Z) g(Y,Z)

{V 7→c} ��

s(W) g(V,W)

{V7→c} ��
s(Z) s(W)

The terms at the top position of both narrowing trees clearly unify, but the unifier is not constructor-root,
so we must continue expanding both narrowing trees. The condition that all leaves of t1 are unifiable
with all the leaves of t2 is reached only at depth 2. Indeed, if we expand the left unificand completely but
the right unificand only down to the leftmost branch, then the two leaves of the narrowing tree of the left
unificand unify with the leftmost leaf of the narrowing tree of the right unificand, but we may miss the
last two unifiers reported above if we stop here.

We define variant-based unification as the computation of the variants of the two terms in a unification
problem. We abuse the notation and write P([[t]]E,B) for the powerset of all the subsets of [[t]]E,B such
that each V ∈ P([[t]]E,B) corresponds to the variants of a term t associated to a particular narrowing tree
produced by the folding variant narrowing strategy from term t. We also write CSU∩,V1,V2

E∪B (t = t ′) for
a version of the unification algorithm of Corollary 2 that uses sets V1 and V2 of variants of t and t ′,
respectively, instead of generating all the variants.

Definition 11 (Constructor-Root Variant-based Unification). Let (Σ,B,E) be a finite variant decompo-
sition of an equational theory protecting a free constructor decomposition (C ,BC , /0). Given two terms
t, t ′ and two sets of variants V1 ∈ P([[t]]E,B), V2 ∈ P([[t ′]]E,B), the constructor-root variant unifiers are

D. Aparicio-Sánchez, S. Escobar, and J. Sapiña 47

CSU∩E∪B(t = t ′) =

/0 if ∃V1 ∈ P([[t]]E,B),V2 ∈ P([[t ′]]E,B),
and they are the smallest sets s.t
V1∩V2 is a failure intersection

CSU∩,V1,V2
E∪B (t = t ′) if ∃V1 ∈ P([[t]]E,B),V2 ∈ P([[t ′]]E,B),

and they are the smallest sets s.t
V1∩V2 is constructor-root

CSU
∩,[[t]]E,B,[[t ′]]E,B
E∪B (t = t ′) otherwise

Proposition 12 (Constructor-Root Variant-based Unification). Let (Σ,B,E) be a finite variant decompo-
sition of an equational theory protecting a free constructor decomposition (C ,BC , /0). Given two terms
t, t ′, the set CSU∩E∪B(t = t ′) is a finite and complete set of unifiers for t = t ′.

Proof. By contradiction. Let us assume that CSU∩E∪B(t = t ′) is not a complete set of unifiers of t and t ′.
That is, there exists a unifier ρ ′ ∈ CSU∩E∪B(t = t ′) and there is no unifier ρ ∈ CSU∩E∪B(t = t ′) s.t. ρ wE∪B

ρ ′. By definition, there exist smallest sets V1 ∈ P([[t]]E,B), V2 ∈ P([[t ′]]E,B) s.t. V1 ∩V2 is constructor-
root or a failure pair. The case of a failure pair is immediate by Lemma 8. Since ρ ′ ∈ CSU∩E∪B(t = t ′),
we have that there exists u1,u2,θ1,θ2,σ s.t. ρ ′ = θ1σ ∪ θ2σ ∪σ , (u1,θ1) ∈ [[t]]E,B, (u2,θ2) ∈ [[t ′]]E,B,
σ ∈ CSUW∪

B (u1 = u2), and (θ1σ)|W∩ =B (θ2σ)|W∩ . Since V1 ∩V2 is constructor-root, there must be two
leaves (v1,τ1) ∈V1, (v2,τ2) ∈V2 and a substitution τ3 s.t. τ3 ∈ CSUW∪

B (v1 = v2), (τ1τ3)|W∩ =B (τ2τ3)|W∩ ,
and (τ1∪τ2)τ3 is constructor-root. Furthermore, the variant (u1,θ1) (resp. (u2,θ2)) is obtained by further
narrowing of v1 (resp. v2), i.e., (u1,τ

′
1) ∈ [[v1]]E,B and (u2,τ

′
2) ∈ [[v2]]E,B. But then the conclusion follows,

since the statement is ((τ1∪ τ2)τ3)|W∪ wE∪B ((θ1∪θ2)σ)|W∪ .

5 Experimental Evaluation

We have performed some experiments with the constructor-root variant-based unification, which are
available at http://safe-tools.dsic.upv.es/cr-mgvu.

All the experiments were conducted on a PC with a 3.3GHz Intel Xeon E5-1660 and 64GB RAM.
We created a battery of 15 different unification problems for both the exclusive-or and the abelian group
theories. These are among the most complicated cryptographic theories in protocol analysis that Maude-
NPA [19], Tamarin [12] and AKISS [5] can hardly handle. Indeed, the exclusive-or and the abelian group
theories cannot be specified in Maude using constructor symbols and we introduce arbitrary constructors
f1, f2, f3, f4, f5, where the subindex indicates the number of arguments. This is a common situation in
crypto protocol analysis where the cryptographic properties are combined with many different additional
constructor symbols. Experiments using other cryptographic theories, such as Diffie-Hellmann expo-
nentiation, or more traditional programs, such as manipulating complex data structures, could also have
been included but were discarded because the improvement is less remarkable.

For each problem and theory, we computed: (i) the unifiers using the standard variant unify com-
mand provided by the C++ core system of Maude; (ii) the unifiers using the algorithm CSUeE∪B(t = t ′)
of [21]; (iii) the unifiers using the algorithm CSU∩E∪B(t = t ′) of Definition 11, and (iv) the unifiers us-
ing the algorithm CSUeE∪B(t = t ′) obtained from CSU∩E∪B(t = t ′) by replacing CSU∩,V1,V2

E∪B (t = t ′) with
CSUe,V1,V2

E∪B (t = t ′) from [21]. Note that (ii), (iii), and (iv) are implemented at the metalevel of Maude.
We measured both the number of computed unifiers and the time required for their computation.

Table 1 (resp. Table 2) shows the results obtained for the exclusive-or (resp. abelian group) theory.
T/O indicates that a generous 4 hours timeout was reached without any response. The first column
describes the unification problem, while the following #maude, #fast, #cr and #cr+fast columns show the

http://safe-tools.dsic.upv.es/cr-mgvu

48 Variant-based Equational Unification under Constructor Symbols

Unification problem #maude #fast #cr #cr+fast Tmaude Tfast Tcr Tcr+fast

P1 V1
?
=V2 ∗V3 ∗V4 57 1 1 1 50 95 1 1

P2 V1
?
= f3(V2 ∗V3, f1(V3 ∗V4), f2(V2, f1(V4))) 61 1 1 1 172 243 2 2

P3 V1 ∗V2
?
=V3 ∗V4 57 8 41 8 9 89 83 131

P4 V1 ∗V2
?
= f2(V3, f1(V4 ∗V5)) 28 4 4 4 12 18 8 10

P5 f1(a)∗ f1(V1 ∗V2)
?
= f1(b∗V3)∗ f1(c∗V4) 74 54 74 54 53 112 161 268

P6 f1(V1)
?
= f1(V2 ∗V3 ∗ f2(V4,V5)) 21 1 1 1 4 17 1 1

P7 f2(V1,V2 ∗V3 ∗V4)
?
= f2(V5 ∗ f1(V6 ∗V7),V8) 1596 1 1 1 3473 41592 9 9

P8 f3(V1,V2,V3)
?
= f3(f1(V4 ∗V5), f1(V6 ∗V7 ∗V8), f1(f1(V9))) 399 1 1 1 507 3289 8 8

P9 f4(V1,V2 ∗V3, f1(V2 ∗V4 ∗V5),V3)
?
=

f4(f2(V6,V7)∗V6,V8,V9, f1(f1(V10)))
492 14 1 1 122544 61184 14 14

P10 f5(V1,V2 ∗V3 ∗V4, f2(V5, f1(V3 ∗V4)),V4, f1(V6 ∗V7))
?
=

f5(f2(V8,V9),V10,V11, f1(f1(V8)),V12)
161 11 1 1 6780 9249 16 16

P11 f1(V1 ∗V2)
?
= f2(V3 ∗V4 ∗V5, f2(V4,V5)) 0 0 0 0 985 125 1 1

P12 f2(V1,V2 ∗V3 ∗V4)
?
= f3(V5 ∗ f1(V6 ∗V7),V8,V9) 0 0 0 0 2987 57 1 1

P13 f3(V1,V2,V3 ∗V4)
?
= f2(f1(V5 ∗V6 ∗V7), f1(f1(V8))) 0 0 0 0 468 48 1 1

P14 f4(V1,V2 ∗V3, f1(V2 ∗V4 ∗V5),V3)
?
=

f3(f2(V6,V7)∗V6,V8, f1(f1(V9)))
0 0 0 0 118028 53653 1 1

P15 f5(V1,V2 ∗V3 ∗V4, f2(V5, f1(V3 ∗V4)),V6, f1(V7 ∗V8))
?
=

f4(f2(V9,V10),V11, f1(f1(V9)),V12)
0 0 0 0 6968 7033 1 1

Table 1: Experimental evaluation (exclusive-or)

number of computed unifiers for all four unification algorithms (i), (ii), (iii), (iv) described above and the
columns Tmaude, Tfast, Tcr and Tcr+fast show the time (in milliseconds) required to execute the unification
command. Note that it is unfair to compare the performance between compiled code (Tmaude column)
and interpreted code (Tfast, Tcr and Tcr+fast columns), i.e., the C++ core system of Maude and a Maude
program using Maude’s metalevel. However, our constructor-root unification algorithm is able to beat
the compiled code in almost all the unification problems.

Tables 1 and 2 show that the cr+fast combination is the best choice, since it combines the benefits of
both the fast unification algorithm of [21] and the new constructor-root unification algorithm cr. For the
number of unifiers, cr always reported less unifiers than Maude except for problem P20, where both report
the same number. However, both the cr and the fast algorithm are incomparable and cr reported less
unifiers than fast in the unification problems P9 and P10, whereas fast reported less unifiers than cr in the
unification problems P3,P5,P18,P19,P20. As for the execution time, cr can beat both Maude and the fast
algorithm for almost all the unification problems. Indeed, unification in the abelian group is so complex
that neither Maude nor fast can terminate in most of the unification problems (e.g., P22,P23,P24,P25, and
more), whereas cr did.

Our best contribution are the non-unifiable problems in the third block of Tables 1 and 2. Our new
constructor-root unification algorithm immediately terminates, whereas neither Maude nor fast could, as
shown in the unification problems P11,P12,P13,P14,P15,P26,P27,P28,P29,P30.

6 Conclusion and Future Work

The variant-based equational unification algorithm implemented in the most recent version of Maude,
version 3.0, may compute many more unifiers than the necessary or may not be able to stop immedi-
ately. Constructor symbols are extensively used in computer science, but they have not been integrated
into the variant-based equational unification procedure of Maude. In this paper, we have redefined the

D. Aparicio-Sánchez, S. Escobar, and J. Sapiña 49

Unification problem #maude #fast #cr #cr+fast Tmaude Tfast Tcr Tcr+fast

P16 V1
?
=V2 +V3 +V4 3702 1 1 1 4344602 5034046 1 1

P17 V1
?
= f3(V2 +V3, f1(V3 +V4), f2(V2, f1(V4))) 3789 1 1 1 6956340 5413107 2 2

P18 V1 +V2
?
=V3 +V4 3611 664 3313 664 36258 547115 253078 657746

P19 V1 +V2
?
= f2(V3, f1(V4 +V5)) 376 8 52 8 26425 5083 366 2000

P20 f1(a)+ f1(V1 +V2)
?
= f1(b+V3)+ f1(c+V4) 316 193 316 193 10202 4175 3161 6976

P21 f1(V1)
?
= f1(V2 +V3 + f2(V4,V5)) 158 1 1 1 426 1410 2 2

P22 f2(V1,V2 +V3 +V4)
?
= f2(V5 + f1(V6 +V7),V8) - - 1 1 T/O T/O 11 11

P23 f3(V1,V2,V3)
?
=

f3(f1(V4 +V5), f1(V6 +V7 +V8), f1(f1(V9)))
- - 1 1 T/O T/O 11 13

P24 f4(V1,V2 +V3, f1(V2 +V4 +V5),V3)
?
=

f4(f2(V6,V7)∗V6,V8,V9, f1(f1(V10)))
- - 1 1 T/O T/O 19 19

P25 f5(V1,V2 +V3 +V4, f2(V5, f1(V3 +V4)),V4, f1(V6 +

V7))
?
= f5(f2(V8,V9),V10,V11, f1(f1(V8)),V12)

- - 1 1 T/O T/O 24 24

P26 f1(V1 +V2)
?
= f2(V3 +V4 +V5, f2(V4,V5)) - 0 0 0 T/O 5594580 1 1

P27 f2(V1,V2 +V3 +V4)
?
= f3(V5 + f1(V6 +V7),V8,V9) - 0 0 0 T/O 4399334 1 1

P28 f3(V1,V2,V3 +V4)
?
= f2(f1(V5 +V6 +V7), f1(f1(V8))) - 0 0 0 T/O 3757585 1 1

P29 f4(V1,V2 +V3, f1(V2 +V4 +V5),V3)
?
=

f3(f2(V6,V7)∗V6,V8, f1(f1(V9)))
- - 0 0 T/O T/O 1 1

P30 f5(V1,V2 +V3 +V4, f2(V5, f1(V3 +V4)),V6, f1(V7 +

V8))
?
= f4(f2(V9,V10),V11, f1(f1(V9)),V12)

- - 0 0 T/O T/O 1 1

Table 2: Experimental evaluation (abelian group)

variant-based unification algorithm and our experiments on some unification problems show an impres-
sive speedup. Especially for non-unifiable problems, where many resources are wasted.

As far as we know, this is the only research line to reduce the number of variant unifiers. The closest
work is to combine standard unification algorithms with variant-based unification, such as [18, 17]. Note
that the constructor variant unification of [32] is not connected to our work, since it is based on a new
notion of constructor variant. This is just a step forward on developing new techniques for improving
variant-based unification and we plan to reduce even more the number of variant unifiers.

References

[1] M. Alpuente, S. Escobar & J. Iborra (2009): Termination of Narrowing Revisited. Theoretical Computer
Science 410(46), pp. 4608–4625, doi:10.1016/j.tcs.2009.07.037.

[2] M. Alpuente, S. Escobar & J. Iborra (2011): Modular Termination of Basic Narrowing and Equational
Unification. Logic Journal of the IGPL 19(6), pp. 731–762, doi:10.1007/978-3-540-70590-1 1.

[3] F. Baader & W. Snyder (2001): Unification Theory. In J. A. Robinson & A. Voronkov, editors: Handbook of
Automated Reasoning, I, Elsevier Science, pp. 447–533, doi:10.1016/B978-044450813-3/50010-2.

[4] K. Bae, S. Escobar & J. Meseguer (2013): Abstract Logical Model Checking of Infinite-State Systems
Using Narrowing. In: Proceedings of the 24th International Conference on Rewriting Techniques and
Applications (RTA 2013), LIPIcs 21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 81–96,
doi:10.4230/LIPIcs.RTA.2013.81.

[5] D. Baelde, S. Delaune, I. Gazeau & S. Kremer (2017): Symbolic Verification of Privacy-Type Properties for
Security Protocols with XOR. In: Proceedings of the 30th International Symposium on Computer Security
Foundations (CSF 2017), IEEE Computer Society Press, pp. 234–248, doi:10.1109/CSF.2017.22.

http://dx.doi.org/10.1016/j.tcs.2009.07.037
http://dx.doi.org/10.1007/978-3-540-70590-1_1
http://dx.doi.org/10.1016/B978-044450813-3/50010-2
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.81
http://dx.doi.org/10.1109/CSF.2017.22

50 Variant-based Equational Unification under Constructor Symbols

[6] C. Bouchard, K. A. Gero, C. Lynch & P. Narendran (2013): On Forward Closure and the Finite Variant
Property. In: Proceedings of the 9th International Symposium on Frontiers of Combining Systems (FroCos
2013), Lecture Notes in Computer Science 8152, Springer, pp. 327–342, doi:10.1007/978-3-642-40885-4 23.

[7] R. M. Burstall & J. A. Goguen (1982): Algebras, Theories and Freeness: An Introduction for Computer
Scientists. In M. Broy & G. Schmidt, editors: Theoretical Foundations of Programming Methodology, NATO
Science Series 91, Springer, pp. 329–349, doi:10.1007/978-94-009-7893-5 11.

[8] A. Cholewa, J. Meseguer & S. Escobar (2014): Variants of Variants and the Finite Variant Property. Tech-
nical Report, University of Illinois at Urbana-Champaign. Available at http://hdl.handle.net/2142/
47117.

[9] M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Martı́-Oliet, J. Meseguer, R. Rubio & C. Talcott
(2020): Maude Manual (Version 3.0). Technical Report, SRI International Computer Science Laboratory.
Available at: http://maude.cs.uiuc.edu.

[10] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer & C. Talcott (2007): All About Maude:
A High-Performance Logical Framework. Springer, doi:10.1007/978-3-540-71999-1.

[11] H. Comon-Lundh & S. Delaune (2005): The Finite Variant Property: How to Get Rid of Some Algebraic
Properties. In: Proceedings of the 16th International Conference on Rewriting Techniques and Applica-
tions (RTA 2005), Lecture Notes in Computer Science 3467, Springer, pp. 294–307, doi:10.1007/978-3-540-
32033-3 22.

[12] J. Dreier, L. Hirschi, S. Radomirovic & R. Sasse (2018): Automated Unbounded Verification of State-
ful Cryptographic Protocols with Exclusive OR. In: Proceedings of the 31st International Sympo-
sium on Computer Security Foundations (CSF 2018), IEEE Computer Society Press, pp. 359–373,
doi:10.1109/CSF.2018.00033.

[13] F. Durán, S. Eker, S. Escobar, N. Martı́-Oliet, J. Meseguer, R. Rubio & C. Talcott (2020): Programming
and Symbolic Computation in Maude. Journal of Logical and Algebraic Methods in Programming 110,
doi:10.1016/j.jlamp.2019.100497.

[14] F. Durán, S. Lucas & J. Meseguer (2009): Termination Modulo Combinations of Equational Theories. In:
Proceedings of the 7th International Symposium on Frontiers of Combining Systems (FroCos 2009), Lecture
Notes in Computer Science 5749, Springer, pp. 246–262, doi:10.1007/978-3-642-04222-5 15.

[15] F. Durán & J. Meseguer (2012): On the Church-Rosser and Coherence Properties of Conditional Order-
sorted Rewrite Theories. The Journal of Logic and Algebraic Programming 81(7–8), pp. 816–850,
doi:10.1016/j.jlap.2011.12.004.

[16] F. Durán, J. Meseguer & C. Rocha (2020): Ground Confluence of Order-Sorted Conditional Specifi-
cations Modulo Axioms. Journal of Logical and Algebraic Methods in Programming 111, p. 100513,
doi:10.1016/jj.jlamp.2019.100513.

[17] A. K. Eeralla, S. Erbatur, A. M. Marshal & C. Ringeissen (2019): Rule-based Unification in Combined
Theories and the Finite Variant Property. In: Proceedings of the 13th International Conference on Language
and Automata Theory and Applications (LATA 2019), Lecture Notes in Computer Science 11417, Springer,
pp. 356–367, doi:10.1007/978-3-030-13435-8 26.

[18] S. Erbatur, D. Kapur, A. M. Marshall, P. Narendran & C. Ringeissen (2015): Unification and Matching in
Hierarchical Combinations of Syntactic Theories. In: Proceedings of the 10th International Symposium on
Frontiers of Combining Systems (FroCos 2015), Lecture Notes in Computer Science 9322, Springer, pp.
291–306, doi:10.1007/978-3-319-24246-0 18.

[19] S. Escobar, C. Meadows & J. Meseguer (2009): Maude-NPA: Cryptographic Protocol Analysis Modulo
Equational Properties. In: Foundations of Security Analysis and Design V (FOSAD 2007/2008/2009 Tuto-
rial Lectures), Lecture Notes in Computer Science 5705, Springer, pp. 1–50, doi:10.1007/978-3-642-03829-
7 1.

http://dx.doi.org/10.1007/978-3-642-40885-4_23
http://dx.doi.org/10.1007/978-94-009-7893-5_11
http://hdl.handle.net/2142/47117
http://hdl.handle.net/2142/47117
http://maude.cs.uiuc.edu
http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1007/978-3-540-32033-3_22
http://dx.doi.org/10.1007/978-3-540-32033-3_22
http://dx.doi.org/10.1109/CSF.2018.00033
http://dx.doi.org/10.1016/j.jlamp.2019.100497
http://dx.doi.org/10.1007/978-3-642-04222-5_15
http://dx.doi.org/10.1016/j.jlap.2011.12.004
http://dx.doi.org/10.1016/jj.jlamp.2019.100513
http://dx.doi.org/10.1007/978-3-030-13435-8_26
http://dx.doi.org/10.1007/978-3-319-24246-0_18
http://dx.doi.org/10.1007/978-3-642-03829-7_1
http://dx.doi.org/10.1007/978-3-642-03829-7_1

D. Aparicio-Sánchez, S. Escobar, and J. Sapiña 51

[20] S. Escobar & J. Meseguer (2007): Symbolic Model Checking of Infinite-State Systems Using Narrowing. In:
Proceedings of the 18th International Conference on Term Rewriting and Applications (RTA 2007), Lecture
Notes in Computer Science 4533, Springer, pp. 153–168, doi:10.1007/978-3-540-73449-9 13.

[21] S. Escobar & J. Sapiña (2019): Most General Variant Unifiers. In: Proceedings of the 35th International
Conference on Logic Programming (ICLP 2019) - Technical Communications, Electronic Proceedings in
Theoretical Computer Science 306, Open Publishing Association, pp. 154–167, doi:10.4204/EPTCS.306.21.

[22] S. Escobar, R. Sasse & J. Meseguer (2012): Folding Variant Narrowing and Optimal Variant Termination.
The Journal of Logic and Algebraic Programming 81(7–8), pp. 898–928, doi:10.1016/j.jlap.2012.01.002.

[23] J. P. Jouannaud, C. Kirchner & H. Kirchner (1983): Incremental Construction of Unification Algo-
rithms in Equational Theories. In: Proceedings of the 17th International Colloquium on Automata, Lan-
guages and Programming (ICALP 1990), Lecture Notes in Computer Science 154, Springer, pp. 361–373,
doi:10.1007/BFb0036921.

[24] J. P. Jouannaud & H. Kirchner (1986): Completion of a Set of Rules Modulo a Set of Equations. SIAM
Journal on Computing 15(4), pp. 1155–1194, doi:10.1137/0215084.

[25] D. Kapur & P. Narendran (1987): Matching, Unification and Complexity. ACM SIGSAM Bulletin 21(4), pp.
6–9, doi:10.1145/36330.36332.

[26] S. Lucas & J. Meseguer (2016): Normal Forms and Normal Theories in Conditional Rewriting. Journal of
Logical and Algebraic Methods in Programming 85, pp. 67–97, doi:10.1016/j.jlamp.2015.06.001.

[27] J. Meseguer (1992): Conditional Rewriting Logic as a United Model of Concurrency. Theoretical Computer
Science 96(1), pp. 73–155, doi:10.1016/0304-3975(92)90182-F.

[28] J. Meseguer (1997): Membership Algebra as a Logical Framework for Equational Specification. In: Pro-
ceedings of the 12th International Workshop on Algebraic Development Techniques (WADT 1997), Lecture
Notes in Computer Science 1376, Springer, pp. 18–61, doi:10.1007/3-540-64299-4 26.

[29] J. Meseguer (2012): Twenty Years of Rewriting Logic. The Journal of Logic and Algebraic Programming
81(7-8), pp. 721–781, doi:10.1016/j.jlap.2012.06.003.

[30] J. Meseguer (2017): Strict Coherence of Conditional Rewriting Modulo Axioms. Theoretical Computer
Science 672, pp. 1–35, doi:10.1016/j.tcs.2016.12.026.

[31] J. Meseguer (2018): Symbolic Reasoning Methods in Rewriting Logic and Maude. In: Proceedings of the
25th International Workshop on Logic, Language, Information, and Computation (WoLLIC 2018), Lecture
Notes in Computer Science 10944, Springer, pp. 25–60, doi:10.1007/978-3-662-57669-4 2.

[32] J. Meseguer (2018): Variant-based Satisfiability in Initial Algebras. Science of Computer Programming 154,
pp. 3–41, doi:10.1016/j.scico.2017.09.001.

[33] J. Meseguer (2020): Generalized Rewrite Theories, Coherence Completion, and Symbolic Methods. Journal
of Logical and Algebraic Methods in Programming 110, doi:10.1016/j.jlamp.2019.100483.

[34] A. Riesco (2014): Using Big-Step and Small-Step Semantics in Maude to Perform Declarative Debugging.
In: Proceedings of the 12th International Symposium on Functional and Logic Programming (FLOPS 2014),
Lecture Notes in Computer Science 8475, Springer, pp. 52–68, doi:10.1007/978-3-319-07151-0 4.

[35] V. Rusu (2010): Combining Theorem Proving and Narrowing for Rewriting-Logic Specifications. In: Pro-
ceedings of the 4th International Conference on Tests and Proofs (TAP 2010), Lecture Notes in Computer
Science 6143, Springer, pp. 135–150, doi:10.1007/978-3-642-13977-2 12.

[36] TeReSe (2003): Term Rewriting Systems. Cambridge University Press, doi:10.1017/S095679680400526X.
[37] E. Tushkanova, A. Giorgetti, C. Ringeissen & O. Kouchnarenko (2015): A Rule-based System

for Automatic Decidability and Combinability. Science of Computer Programming 99, pp. 3–23,
doi:10.1016/j.scico.2014.02.005.

http://dx.doi.org/10.1007/978-3-540-73449-9_13
http://dx.doi.org/10.4204/EPTCS.306.21
http://dx.doi.org/10.1016/j.jlap.2012.01.002
http://dx.doi.org/10.1007/BFb0036921
http://dx.doi.org/10.1137/0215084
http://dx.doi.org/10.1145/36330.36332
http://dx.doi.org/10.1016/j.jlamp.2015.06.001
http://dx.doi.org/10.1016/0304-3975(92)90182-F
http://dx.doi.org/10.1007/3-540-64299-4_26
http://dx.doi.org/10.1016/j.jlap.2012.06.003
http://dx.doi.org/10.1016/j.tcs.2016.12.026
http://dx.doi.org/10.1007/978-3-662-57669-4_2
http://dx.doi.org/10.1016/j.scico.2017.09.001
http://dx.doi.org/10.1016/j.jlamp.2019.100483
http://dx.doi.org/10.1007/978-3-319-07151-0_4
http://dx.doi.org/10.1007/978-3-642-13977-2_12
http://dx.doi.org/10.1017/S095679680400526X
http://dx.doi.org/10.1016/j.scico.2014.02.005

	1 Introduction
	2 Preliminaries
	3 Variant-based Equational Unification in Maude 3.0
	4 Constructor-Root Variant-based Unification
	5 Experimental Evaluation
	6 Conclusion and Future Work

