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Abstract—Generalized Spatial Modulation (GSM) is a trans-
mission technique used in wireless communications in which
only part of the transmitter antennas are activated during
each time signaling period. A low complexity Sphere Decoding
(SD) algorithm to achieve maximum likelihood (ML) detection
has recently been proposed by using subproblem partitions,
sorting preprocessing and radius updating. However, the ordering
method has a serious limitation when the number of activated
antennas is equal to the number of received antennas. Therefore,
alternative sorting methods are studied in the present paper. In
addition, the computational cost of the ML algorithm can be
high when the system sizes increases. In this paper a suboptimal
version is proposed where only the first L SD subproblems
are carried out. The results show that the proposed algorithm
achieves near optimal performance at lower computational cost
than ML algorithms.

Index Terms—Complexity, GSM, MIMO, performance, Signal
Detection.

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) systems [1], and
in particular Massive MIMO systems, have gained signif-
icant research attention lately because they provide mean-
ingful enhancements in the transmission rate and capacity
of communications systems. Recently, an 8 MIMO system
has been standardized in the fourth-generation (4G) mobile
communication systems and it is expected that massive MIMO
with a large number of antennas will be standardized in fifth-
generation (5G) [2].

Spatial Modulation (SM) [3] is another recent and promising
transmission technique where only one transmitter antenna
is active at any instant of time. The use of only one active
transmitter antenna provides good energy efficiency and allevi-
ates the requirement of multiple transmit RF chains in MIMO
systems. However SM limits the spectral efficiency that can
be achieved.

In a generalized version of SM called Generalized Spatial
Modulation (GSM) systems [4] more than one transmitter
antenna is active at the same time, overcoming the drawbacks
of SM. Thus, GSM keeps the advantages of SM with respect
to the conventional MIMO systems but increasing the system

spectral efficiency. Due to the advantages of GSM, it is
currently being studied as an emerging challenge for the 5G
[5]. Unfortunately the detection process of GSM becomes
more complex since the receiver needs to detect both the
transmitted symbols and the subset of antennas chosen for
the transmission.

Different strategies have usually been considered in order to
recover the information at the receiver side. One strategy is to
detect the bits into two stages. In the first stage, the antenna
combination (the subset of selected antennas) is determined
and then the transmitted signal is detected by solving a
smaller MIMO detection scheme. Some examples of subopti-
mal detectors that apply this strategy can be found in [2] [6]
[7]. Otherwise, an extended constellation by considering the
transmitted signals from the active antennas and null symbols
from the inactive antennas is used in [8] [9] [10].

On the other hand, a suboptimal algorithm called Ordered
Block minimum mean squared error (OBMMSE) was pro-
posed in [6] where the detection of the antenna combination
and the detection of the symbols are carried out jointly.
The OBMMSE can achieve an error rate performance close
to the maximal likelihood (ML) performance under certain
configuration setups.

Additionally, a recent ML method called Sorting Assisted
Successive Sphere Decoding Algorithm (SA-SSDA) was pro-
posed in [11]. This algorithm uses successive applications
of Sphere Decoders (SD), one for each valid transmit an-
tenna combination (TAC). This algorithm is an efficient ML
detector for GSM. The efficiency is achieved by employing
an adjustable decoding radius and an ordering step of the
valid TACs. Thereby the combinations with higher reliability
are processed first. However, as will be shown later, the
ordering method proposed in [11] is not efficient under certain
configuration settings.

Motivated by the above, alternative TAC sorting have been
evaluated in order to overcome the restriction of the original
algorithm proposed in [11]. The ordering methods evaluated
through the paper are based in two well known estimators:
Zero-Forcing (ZF) [12] and Minimum Mean Square Error
(MMSE) [13]. The main goal of this paper is to present a



suboptimal algorithm called L-first MMSE algorithm. This
algorithm employs the MMSE ordering step, which allows to
execute only the first L SD subproblems with minimal loss of
performance. A suitable L parameter based on the reliability
of the detected solution is adjusted during the execution.
The results show that the proposed detector can achieve an
error rate close to the ML detector, while its complexity is
significantly reduced.

The remainder of this paper is organized as follows. In
Section II the system model for GSM scheme is described.
In Section III we briefly discuss the ML detection problem in
GSM and a recent ML method is revised. In Section IV, the
L-first proposed algorithm is presented. Computer simulation
results are given in Section V. Finally, Conclusions are given
in Section VI.

Notation: Upper and lower case boldface letters denote
matrices and vectors, respectively. ()H , ()−1 and ‖ · ‖ denote
the Hermitian transpose, inversion and 2−norm operation,
respectively. | · | denotes the cardinality of a set.

(
n
k

)
denotes

the binomial coefficient, the number of combinations in which
k items can be taken from a set of n items.

II. PROBLEM DESCRIPTION

Consider a GSM system over a MIMO channel using nT
transmit antennas and nR receive antennas. In the GSM
system, only nA (2 ≤ nA ≤ nT ) transmitter antennas
are activated at each period of time. Consequently, the total
number of possible TAC is

(
nT

nA

)
. Among these TACs some of

them are considered as valid TACs. If nb bits of information
are used to select the valid TAC, then Nc = 2nb valid
TACs are chosen from the total TACs. Thus, a TAC index,
k ∈ θ = {1, 2, · · · , Nc} is therefore associated with a set of
nA active antenna indices {i1, i2, · · · , inA

}.
In addition, the nA activated transmit antennas are used to

transmit nA independent M -ary modulation symbols belong-
ing to the Ω constellation of size |Ω| = M , and hence to
convey additional nA log2(M) bits. Thereby, the bits to be
transmitted are grouped in blocks of nA log2(M) + log2(Nc).
The first nA log2(M) bits are mapped into a symbol vector
s = [s1, · · · , snA

]. The remaining nb bits are used to select
the valid TAC.

Let H ∈ CnR×nT be the MIMO channel matrix. Conse-
quently, the received signal y ∈ CnR×1 can be described as
y = Hx + v, where x = [· · · , 0, s1, 0, · · · , s2, 0, · · · , snA

,
0, · · · ]T denotes the transmitted symbol vector, and v ∈
CnR×nT denotes an additive white-Gaussian noise (AWGN)
with variance σ2. If the transmission is carried out through
the kth valid TAC, the corresponding channel submatrix can
be defined as Hk ∈ CnR×nA . Therefore the received signal
vector can be represented as

y = Hks + v. (1)

The receiver side has to recover both, the modulated symbol
vector s and the TAC index k ∈ θ. With this notation, the ML

detector for the GSM problem can be described as

(k̂, ŝ) = arg min
k∈θ,s∈ΩnA

‖y −Hks‖2. (2)

III. ML DETECTION WITH ADJUSTABLE RADIUS
AND ORDERING PREPROCESSING

Standard ML MIMO detection algorithms cannot be directly
applied to GSM problems when nT > nR because it is not
possible to obtain the required QR factorization of the channel
matrix. Furthermore, these methods have a high computational
complexity. However, to compute the ML solution we can
decouple the problem into Nc subproblems and solve one ML
subproblem for each valid TAC as:

ŝk = arg min
s∈ΩnA

‖y −Hks‖2. (3)

The optimal selection of k̂ and ŝ will be given by the TAC that
gives the minimum Euclidean distance dk = ‖y−Hkŝk‖2 for
k = 1, · · · , Nc. The Successive Sphere Decoding Algorithm
(SSDA) [11] employs one SD to solve (3) for each k, with k =
1, · · · , Nc. However, the cost of solving Nc SD subproblems
can be very high. Nevertheless, an adjustable radius and an
ordering preprocessing stage can be used in order to reduce
the computational complexity. The algorithm that implements
these strategies is called SA-SSDA [11].

The first idea proposed in [11] is to reduce the computa-
tional cost employing an adjustable radius. In its search for the
ML solution, the standard MIMO SD detectors use an initial
radius Co, which is updated during the detection procedure
when a better solution is found. Thus, the search is reduced to
a hyper-sphere of radius Co. The idea of an adjustable radius
is extended for GSM problems. Thus, the best radius obtained
in a given TAC can be propagated as the initial radius for the
next TAC.

The second idea is to carry out an ordering preprocessing
step. The goal of this step is that the detected valid TACs,
which have the highest probability of being the correct one,
are taken into account in the first places. In this way, the
smallest radius will be found in those places, and along with
the radius propagation strategy, the computational cost of the
whole detection process is considerably reduced.

IV. L-FIRST MMSE DETECTION

The SA-SSDA ML detector is very efficient with low size
GSM problems. However, for larger problems its computa-
tional cost becomes unfeasible. The motivation of this paper is
to achieve the near-ML performance with reduced complexity,
for this purpose we propose a novel detection scheme called L-
first MMSE. The main idea is to execute a sorting step which
puts the correct TAC in the first places. Therefore, the correct
TAC is tested on the first solved ML subproblems, resulting in
the fact that it is not necessary to test all the Nc valid TACs.
Hence, we can conclude that a good ordering method is needed
that puts the correct TAC in the first places. The second issue
to solve is to find a suitable L parameter in order to reduce
the complexity while keeping near-ML performance.



A. Ordering preprocessing

The ordering method proposed in SA-SSDA algorithm
depends on the QR decomposition of the channel submatrices
Hk with k = 1, · · · , Nc, which can be rewritten as:

Hk = QkRk = Qk

(
Rk1

0

)
=
(
Qk1 Qk2

)(Rk1

0

)
(4)

where Rk1 ∈ CnA×nA , Qk1 ∈ CnR×nA and Qk2 ∈
CnR×(nR−nA). The QR decomposition is performance in
nR × nA size matrices, being nA � nT . Furthermore, for
slow fading channel the QR decomposition of Hk, produces
a reduced cost in the total computation.

We can rewrite (2) as

(k̂, ŝ) = arg min
k∈θ

(
‖Qk2

Hy‖2+

min
s∈ΩnA

‖Qk1
Hy −Rk1s‖2

)
.

(5)

Then, it sorts the valid TACs by ordering the term
‖Qk2

Hy‖2, which is independent of s. However, when nR =
nA, this term disappears of (5) and thus it cannot be used
to order the TACs. For this reason, two different ordering
methods are analyzed as meaningful alternatives. First of all,
a simple but effective ordering method, proposed in [7], and
based on the ZF estimator is employed. The ZF solution for
each valid TAC is given by

ẑk = Q
(

(Hk
HHk)−1Hk

Hy
)
, (6)

where Q(·) gives the nearest constellation symbol. The Eu-
clidean distances of these estimators are computed as dzk =
‖y −Hkẑk‖2. Then, the valid TACs are sorted according to
dzk , from the smallest to largest. This method does not have
any restrictions. Furthermore, as we will show in the Section
V, this ordering method considerably reduces the number of
visited nodes by the SD.

However, when the MIMO channel Hk is ill-conditioned,
the ZF estimator suffers from the well-known noise enhance-
ment problem: the noise is amplified along those directions
corresponding to small singular values of Hk. Then the
MMSE estimator can be used instead. The MMSE solution
is given by

ŵk = Q
(

(Hk
HHk + σ2I)−1Hk

Hy
)
. (7)

Thus, the Euclidean distance of the MMSE estimator is
computed as dwk

= ‖y −Hkŵk‖2 and then the valid TACs
are sorted, from the smallest to largest dwk

.
In Section V, the sorting operation based on both estimators

(ZF and MMSE) has been tested and analyzed under different
parameter configurations. The results lead us to employ the
MMSE estimator in the sorting step.

Algorithm 1: Proposed L-first MMSE detector
Input: y, Λ, channel submatrices Hk,

k = 1, 2, · · · , Nc
Output: ŝ, k̂
/* Sorting step */

1 for k = 1 : Nc do
2 ŵk = Q

(
(Hk

HHk + σ2I)−1Hk
Hy
)

dwk
= ‖y −Hkŵk‖2

3 [k1, k2, · · · , kNc ] = arg sort(dwk
)

4 korder = [k1, k2, · · · , kNc ]
/* Detection step */

5 if dwk1
≤ Λ then

6 ŝ = ŵk1

7 k̂ = k1

8 else
9 i = 1

10 C0 = dwk1

11 while C0 < Λ and i ≤ Nc do
12 k = korder(i)
13 [sk, dk] = SD(y,Hk, C0)
14 if dk ≤ C0 then
15 C0 = dk
16 ŝ = sk
17 k̂ = k

18 i = i+ 1

B. Adjustable L value

The main idea of the proposed algorithm is to execute the
sorting step employing the MMSE estimator and after that
evaluates only the L-first subproblems of (3) instead of Nc.
Thus, it is important to choose a suitable L value in order to
obtain minimum performance degradation.

For this purpose, we use a threshold Λ to guess how many
L ML subproblems need to be solved. In this way, Λ is a
threshold to define the reliability of the detected signal vector.
According to [14], Λ can be computed as:

Λ = nRσ
2. (8)

Thus, when a ML subproblem is solved, in addition to
evaluate if the present radius is smaller than the adjustable
initial radius Co, we also have to judge if the estimated
transmit vector is reliable or not according to:

‖y −Hkŝk‖2 ≤ Λ. (9)

If the evaluated kth valid TAC fulfills equation (9), we can
discard the rest of valid TACs, thus reducing the computa-
tional cost. Thus, the L value will be variable and adjustable
given by Λ. This procedure is implemented in Algorithm 1.
Furthermore, if after the sorting step, the distance associated
with the first MMSE estimator is lower than the threshold Λ,
it is not necesary to execute any SD algorithm. The solution



will be given by the first MMSE estimator after the sorting
step.

V. SIMULATION RESULTS

In this section, we present the results obtained by Monte
Carlo simulation. The experiments were carried out varying
the signal-to-noise ratio (SNR) and employing Rayleigh fading
channel with a channel coherence time of 5 transmission
periods. Each simulation point has been obtained by averaging
the number of over 10000 independent realizations. Two
different setups have been chosen for simulation (see Table
V).

TABLE I
SETUPS FOR COMPUTED SIMULATIONS

nT nA nR Nc

Setup 1 8 2 8 16
Setup 2 32 6 6 64

A. Ordering preprocessing Evaluation

First of all, the different sorting methods have been ana-
lyzed. The original sorting step of the SA-SSDA algorithm
has been compared with the MMSE and the ZF estimators
for the ordering preprocessing, calling the algorithms MMSE-
SSDA and ZF-SSDA, respectively. It is important to highlight
that the three sorting methods and the successive SD algorithm
achieve the ML BER performance.

The number of visited nodes is widely used to measure
the complexity of the SD algorithms, for this reason it has
been used to measure the efficiency of the sorting step. That
is, the sorting method that places firstly the most reliable
TACs achieves the lowest number of visited nodes. Figures
1 and 2 illustrate the average number of visited nodes for the
three different sorting methods and the two different setups.
It is important to note, that the tree algorithm employs the
SSDA algorithm to achieve the optimal solution. The only
difference is the preprocessing stage in which three different
ordering methods are evaluated. From the results, we can
conclude that, depending on the ordering method of the valid
TACs different computational cost (evaluated in our case in
number of expanded nodes) is achieved. The reason behind
these differences in the computational cost is based on the
fact that the method which expands lower number of nodes
implements a more efficient ordering step. Thus means, this
method puts the optimal TAC at the first places. Figure 3
illustrates this claim. This Figure represents the percentage
of times when the optimal TAC is placed on the first five
evaluated TACs (after the ordering step). Figure 3 shows that
the MMSE ordering method sets the valid TAC at the first
places with higher probability than the other ordering methods.
Thus, the results led us to choose the MMSE ordering method
as the better alternative for our L-first algorithm.
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Fig. 1. Complexity comparisons for ML algorithms under a GSM MIMO
system with nT = 32, nA = 6, nR = 6 and Nc = 64.
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Fig. 2. Complexity comparisons for ML algorithms under a GSM MIMO
system with nT = 8, nA = 2, nR = 8 and Nc = 16.

B. L-first MMSE detector Evaluation

In this section the L-first MMSE detector has been com-
pared with the original SA-SSDA algorithm (which achieves
ML performance). For a more complete comparison we have
also plotted the performance of the popular suboptimal OB-
MMSE algorithm. The BER curves of the three algorithms are
provided in Figures 4 and 5 for the different setups. Figures
show that the performance of the proposed L-first MMSE
algorithm is close to the ML detector performance. Further-
more, the computational complexities of the L-first MMSE
detector and the SA-SSDA algorithm have been analyzed in
this section. Specifically, the computational complexity has
been measured by the number of visited nodes and also by
the total number of flops. The results are shown in Figures 6
and 7. The proposed algorithm can reduce the complexity by
up to several orders of magnitude in most cases. In this sense
and in regard to the obtained results, we can confirm that the
proposed algorithm can achieve near-ML performance with a
considerably reduced complexity.
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Fig. 3. Percentage of time when the optimal TAC is placed on the first
five evaluated TACs (after the ordering step) in a GSM MIMO system with
nT = 32, nA = 6, nR = 6 and Nc = 64.
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Fig. 4. BER curves for a GSM MIMO system with nT = 32, nA = 6,
nR = 6 and Nc = 64.

VI. CONCLUSIONS

This paper compares and evaluates different ordering meth-
ods for the valid TACs. Furthermore, using best sorting method
a novel L-first MMSE detection algorithm is proposed. This
algorithm only needs to solve the L first ML TAC subprob-
lems. Compared to the faster ML algorithm, the simulation
curves show that the proposed algorithm provides a near-ML
detection performance by reducing the overall complexity.
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