

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/179813

Galindo-Jiménez, CS.; Pérez-Rubio, S.; Silva, J. (2020). Program slicing with exception
handling. ACM. 1-7. http://hdl.handle.net/10251/179813

https://2020.splashcon.org/details/tapas-2020-papers/2/Program-Slicing-with-Exception-
Handling

ACM

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

Program slicing with exception handling
Carlos Galindo

cargaji@vrain.upv.es
VRAIN

Universitat Politècnica de València
Valencia, Spain

Sergio Pérez
serperu@dsic.upv.es

VRAIN
Universitat Politècnica de València

Valencia, Spain

Josep Silva
jsilva@dsic.upv.es

VRAIN
Universitat Politècnica de València

Valencia, Spain

Abstract
Program slicing is a technique for program analysis and
transformation with many different applications such as pro-
gram debugging, program specialization, and parallelization.
The system dependence graph (SDG) is the most commonly
used data structure for program slicing. In this paper, we
show that the presence of exception-handling constructs can
make the SDG produce incorrect and sometimes even incom-
plete slices. We showcase the instances of incorrectness and
incompleteness and we propose a framework for correctly
handling exception-related instructions, which includes rep-
resentation of all possible exception throwing and catching
mechanisms, and a new kind of control dependence: con-
ditional control dependence; which produces more precise
slices in the presence of catch statements.

Keywords: program slicing, exception handling, system de-
pendence graph, conditional control dependence
ACM Reference Format:
Carlos Galindo, Sergio Pérez, and Josep Silva. 2020. Program slicing
with exception handling. In Proceedings of Workshop on Tools for
Automatic Program Analysis (TAPAS’20). ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Program slicing [14] is a technique for program analysis and
transformation whose main objective is to extract a slice
from a program: the set of statements that affect a specific
set of variables at a given statement, called a slicing criterion.
Program slicing has many practical applications, such as
debugging [3], program specialization [10], software main-
tenance [4], etc. Initially, program slicing was defined for
the imperative programming paradigm, but now it can be
used with practically all programming paradigms. The most

popular data structure used in program slicing is the sys-
tem dependence graph (SDG), introduced in the late 1980s by
Horwitz et al. [5]. It represents statements as nodes and the
dependencies between them as arcs, so that the slice can be
produced by traversing the graph starting from the slicing
criterion. Just as program slicing, the SDG and its underlying
elements have been extended to include modern program-
ming languages and their features, such as non-terminating
programs [12] or arbitrary control flow [2].

Exception handling is a common feature, present in most
modern programming languages. There are several approaches
to program slicing with exceptions, but all of them focus on
a specific language, such as Java or C++. In reality, the in-
structions and constructs used in exception handling are
quite similar across modern programming languages, with
the notable exception of Go∗, which purposefully does not
include an exception management system and instead relies
on early error reporting and panics for important errors.

1.1 Motivation
Precisely due to the similarity between programming lan-
guages, the inclusion of exception-handling instructions in
program slicing techniques is very similar such that most
publications on program slicing with exceptions are gen-
erally applicable regardless of the language they are based
on. One common approach is the one proposed by Allen
and Horwitz [1], which in turn extended Sinha’s proposal
[13]. It is arguably the basis used in most publications in the
area of exception-aware program slicing. It supports throw,
try, catch, and finally instructions. Nevertheless, despite
being valid for some combinations of the aforementioned
instructions, it does not completely support all possible com-
binations, resulting in incomplete slices, as can be seen in
Example 1.1.

Example 1.1 (Incompleteness when slicing try-catch con-
structs in [1]). Consider the Java program shown in Fig-
ure 1a, in which method f is the entrypoint. Two exceptions
are thrown, one in each call to g, but only one of them is
captured. Program slicing allows us to identify what parts
of the program can produce the execution of method g by
just selecting line 11 and an empty set of variables as the
slicing criterion. The slice produced by Allen and Horwitz

∗For more information on Go’s design choices regarding exceptions,
see https://golang.org/doc/faq#exceptions (retrieved May 2020).

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://golang.org/doc/faq#exceptions

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

can be seen in Figure 1b, and the SDG used to compute it
is shown in Figure 1d. In the SDG, the slicing criterion is
marked with a bold outline; and the statements included in
the slice have been filled in grey. However, the correct slice
would only remove line 5 from the code (see Figure 1c). As
it can be seen, Allen and Horwitz do not include the catch
statement, despite being necessary to execute the second
call to g. Thus, the slice produced by this approach is not
complete.

The source of this error is that in Allen and Horwitz’s
approach catch blocks are included only in a specific case:
the slicing criterion is or requires a variable defined inside
the catch block. This only happens when a statement of
the catch block is included in the slice and, consequently,
control dependencies force the catch itself to be included too.
Unfortunately, this is insufficient, since it does not capture
the complex control dependency involved in using catch
blocks. This counter example shows that even empty catch
blocks may be necessary in the slice.

1.2 Contributions
The main contribution of this work is a new approach to
program slicing with exception handling which is #JJJ: Esto
nos obliga a dejar online la prueba. Tambien se dice en las
conclusiones proven complete in all cases (e.g., it solves the
previous motivating problem). Moreover, the slices produced
are strictly more precise than previous approaches. It is ap-
plicable to most modern programming languages, such as
Java, C++, and JavaScript, among others. Our approach ex-
tends the techniques proposed by Allen and Horwitz [1],
while also using other improvements regarding control de-
pendence introduced by Kumar and Horwitz [9].
The rest of this paper is structured as follows: Section 2

describes our proposal, Section 3 compares our solution to
similar approaches and other proposals in the recent past,
and Section 4 summarizes our results.

2 Slicing exceptions
#CCC: Summary of changes: http://kaz2.dsic.upv.es:3000/
gqhmcvuLQC2p2UXfClctaw
We present our solution as a set of modifications to the

standard construction of the SDG. Our baseline employs
basic improvements to control dependence computation such
as the augmented control-flow graph (ACFG) [2] and the
pseudo-predicate program dependence graph (PPDG) [9].
We organize our modifications in the different phases of
creation of a slice: code to ACFG to PPDG to SDG, and finally
traversal of the SDG. In order to clearly differentiate between
each version of the graph, our graphs are prefixed by ‘ES-’,
which stands for “exception-sensitive”, so the ACFG becomes
the ES-ACFG, the PPDG becomes the ES-PPDG, and the SDG
becomes the ES-SDG.

2.1 Modifications to the ACFG to create the
ES-ACFG

In this section we describe compositionally how to construct
any ES-ACFG: we show the graph representation of each syn-
tax construct individually, but using a general representation
that can be composed with the other constructs.

Most instructions of the ACFG keep their traditional rep-
resentation, but there are six constructs that need to be mod-
ified to properly account for exception handling; specifically
procedure declarations, procedure calls and all structures
that cause or catch exceptions. The rest of this subsection
explains in detail these instructions and their correct repre-
sentation. Figure 2 showcases a simple generalized version of
each instruction. Arcs are not labeled for simplicity, but non-
executable arcs are displayed with a dashed arc. We often
use true and false to refer to executable and non-executable
arcs, respectively.

Unconditional exception sources are instructionswhose
execution will always result on an exception being
thrown or activated. They are represented as a pseudo-
predicate#JJJ: No has explicado qué es un pseudo-predicate.
Si no tienes espacio, quizás bastaría con poner "(pseudo-
predicate) instructions" en la motivación, cuando los
listas (pero hay que hacer algo con el finally), as a
return statement would be. The true arc will be con-
nected to the first catch instruction that can capture
it, or otherwise to the exception exit. The false arc will
be connected to the instruction that would be executed
if the pseudo-predicate failed to throw the exception.
Figure 2a shows a scheme.

Conditional exception sources are instructionswhose ex-
ecutionmay activate an exception. They have the same
representation as unconditional sources, but instead
of being pseudo-predicates, they are predicates; to ac-
count for the fact that the exception may or may not
be thrown. Figure 2b shows an example, displaying
the change from pseudo-predicate to predicate.

Exception catching structures
try is represented as a pseudo-predicate, with its true
arc connected to the first instruction within its body,
and its false arc connected to the first instruction
after the whole structure. A scheme is shown in
Figure 2c.

catch is represented either as a pseudo-predicate or
a predicate, depending on whether all exception
sources that are connected to it will be caught or not,
respectively In both cases, its true arc is connected
to the first instruction in its body, and its false arc
is connected to the next catch node that will catch
one of the exceptions or otherwise to the exception
exit node. Both cases can be seen in Figures 2e and
2d.

2

http://kaz2.dsic.upv.es:3000/gqhmcvuLQC2p2UXfClctaw
http://kaz2.dsic.upv.es:3000/gqhmcvuLQC2p2UXfClctaw

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

1 public void f() {

2 try {

3 g();

4 }catch (Exception e) {

5 e.printStackTrace ();

6 }

7 g();

8 }

9
10 public void g() {

11 throw new Exception ();

12 }

(a) The program

1 public void f() {

2 try {

3 g();

4 }

5
6
7 g();

8 }

9
10 public void g() {

11 throw new Exception ();

12 }

(b) Allen and Horwitz’s slice

1 public void f() {

2 try {

3 g();

4 }catch (Exception e) {

5
6 }

7 g();

8 }

9
10 public void g() {

11 throw new Exception ();

12 }

(c) The correct slice

enter f()

try g();

g();

normal return catch

enter g()

exception exit normal return

normal exit

e.printStackTrace()

throw

error exit normal exit

(d) Allen and Horwitz’ SDG associated with Fig-
ure 1b.

Figure 1. Java program that throws two exceptions but captures only the first one, its slices, and one SDG representation.

throw new Exception()

catch (Exception e) after

before

(a) Unconditional exception source

before

a = 10 / x;

catch (Exception e) after

(b)Conditional exception
source

before

try

statements

after

(c) try instruction

before

catch

body exception exit

after_try

(d) catch predicate

before

catch

body exception exit

after_try

(e) catch pseudo-
predicate

before

x_in = a
y_in = b
f(a, b)

normal return
a = x_out

exception return
a = x_out
b = y_out

after procedure call first shared node catch (Exception e) after try-catch

(f) Procedure call with exceptions

last instruction

return

normal exit
x_out = x
y_out = y

exception source
throw Exception

exception exit
x_out = x

Exit

(g) Procedure declaration exit with
exceptions

Figure 2. ACFGs of the structures relevant to exception handling.

Procedures that may throw or propagate exceptions
Calls to these procedures are represented as: one pro-
cedure call node, where the arguments are evaluated
and the call made; one normal return node, which is
reached only if no exception was propagated through
the procedure; and one exception return node, which
is reached when an uncaught exception was thrown
in the method call.
The procedure call is a predicate, whose true arc is
connected to normal return and the false arc, to ex-
ception return.

Normal return is a pseudo-predicate, whose true arc
is connected to the following instruction, and its
false arc is connected to the first instruction executed
regardless of whether the normal return or exception
return is executed.

Exception return is a pseudo-predicate, whose true
arc is connected to the first catch node that may cap-
ture it (or otherwise to exception exit, and its false arc
is connected to the first node after the try-catch,
or otherwise to the Exit node.

3

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

1 void main(int x) {

2 try {

3 throw new Exception ();

4 } catch (Exception e) { }

5 log(x);

6 }

Figure 3. Simple code that throws and catches an exception

The two return nodes contain assignments formodified
global variables and parameters passed by reference.
A scheme is shown in Figure 2f.

Procedure declarations with exceptions The Exit node
is split into three nodes: normal exit, exception exit
and exit.
normal exit This performs the function of the old
Exit node. It is represented as a statement, whose
arc is connected to Exit.

exception exit This is the equivalent to normal exit,
but for exceptions.

Exit A sink node, guaranteeing the common require-
ment of CFGs having only one sink.

In the presence of IO, formal-out are moved to the
specialized exit nodes, for increased precision. Figure
2g shows exit of a procedure with exceptions.

An additional variable must be tracked throughout proce-
dures that throw exceptions: the active exception; which is
declared in exception sources and used in exception exit and
catch nodes.

2.2 Modifications to the PPDG to create the
ES-PPDG

Example 1.1 reveals that the SDG proposed by Allen and
Horwitz can generate incomplete slices: catch blocks are
not correctly represented. A catch block is a statement that
is only relevant if the program execution does not occur
normally. For this reason, the control dependencies they
induce are slightly different from the ones generated by
other statements. Instead of influencing other statements
with their presence, it is their absence what may lead to a
non-desired behaviour. We can illustrate this with the code
in Figure 3 and considering three different slicing scenarios
that allow us to analyse how does the presence or absence
of the catch statement affect the other statements:

1. Only the throw statement is part of the slice. There
is no reason for including the catch block in the slice
if log(x) is not included. The slice would be lines 1,
3, and 6.

2. Only log(x) is part of the slice. If only log(x) is
in the slice, although the catch statement controls it,
since there is no possible statement inside the try-catch
block to raise an exception that the catch captures,
the catch statement does not influence the execution
of log(x). The slice would be lines 1, 5, and 6.

Algorithm 1 ES-PPDG transformation
Input: PPDG𝐺 = (𝑁,𝐴𝑐 , 𝐴) .
Output: ES-PPDG𝐺′ = (𝑁 ′, 𝐴′) .
Initializations:𝐴cc1 = ∅,𝐴cc2 = ∅.
for all 𝑐 ∈ CatchNodes do
{Move the arcs from𝐴𝑐 to𝐴cc1 .}
for all (𝑐, 𝑛) ∈ 𝐴𝑐 do
if 𝑛 ∉ getBlockInstructs (𝑐) then
𝐴𝑐 = 𝐴𝑐 \ (𝑐, 𝑛)
𝐴cc1 = 𝐴cc1 ∪ (𝑐, 𝑛)

end if
end for

{Generate the arcs of𝐴cc2 .}
for all 𝑛 ∈ getTryBlockInstructs (𝑐) do

if isExceptionSource (𝑛) ∧ (𝑛, 𝑐) ∈ 𝐴∗
𝑐 then

if ∀𝑛′ | (𝑛,𝑛′) ∈ 𝐴∗
𝑐 ∧ (𝑛′, 𝑐) ∈ 𝐴∗

𝑐 ∧ 𝑛 ≠ 𝑛′ ≠ 𝑐 . ¬𝑖𝑠𝑃𝑠𝑒𝑢𝑑𝑜𝑃𝑟𝑒𝑑 (𝑛′)
then

𝐴cc2 = 𝐴cc2 ∪ (𝑐, 𝑛)
end if

end if
end for

end for
𝐴′ = 𝐴 ∪𝐴𝑐 ∪𝐴cc1 ∪𝐴cc2
𝐺′ = (𝑁 ′, 𝐴′)

3. Both the throw statement and log(x) are part of
the slice. This situation is the counterpart of the pre-
vious one. In this case, log(x) is included in the slice,
but there is also an exception source inside the try
block that is part of the slice. Thus, to preserve the nor-
mal execution of the program and reach the log(x)
statement, the catch block cannot be omitted. The
slice would be the whole program.

These scenarios reveal a new kind of control dependence
which is conditional. The catch instruction controls log(x)
only if an exception that it can capture can be thrown, be-
cause the absence (rather than the presence) of the catch
would change the number of times that log(x) is executed.
This fact makes the control dependence of catch blocks
completely different from any control dependence seen be-
fore. We call this new control dependence conditional control
dependence.

Definition 2.1 (Conditional control dependence). Let 𝑃 =

(𝑁,𝐴) be a PPDG.We say a node𝑎 ∈ 𝑁 is conditional control
dependent on a pair of nodes 𝑏, 𝑐 ∈ 𝑁 , if the presence of 𝑎
allows the execution of 𝑐 when 𝑏 is executed and the absence
of 𝑎 prevents it.

Algorithm 1 describes the process to transform a PPDG
into an ES-PPDG through the definition of the conditional
control dependency sets CC1 andCC2. This algorithmsmakes
use of 4 different methods with descriptive names. For in-
stance, function getBlockInstructs/1, that receives a catch
node as argument, returns a set with all the instructions into
the catch block. Additionally, set CatchNodes contains all
the catch nodes of the graph. In Algorithm 1 the use of 𝐴∗

𝑐

represents the reflexive and transitive closure of 𝐴𝑐 .
Algorithm 1 analyses every catch node independently and

divides its processing in two steps, the generation of the CC1
arcs, and the generation of the CC2 arcs. In the first part,

4

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

it selects every outgoing control arc from a catch node and
move it from the 𝐴𝑐 set to the 𝐴cc1 set if this statement it
points to is not inside the catch block. In the second part, all
the nodes inside the try block are selected one by one, and
two conditions decide whether a CC2 arc needs to be added
to the graph or not: (i) the node represents a conditional or
unconditional exception source and (ii) there is a control
path in the PPDG from the exception source to the catch
node which is pseudo-predicate free. If these two conditions
are fulfilled, an arc from the catch node to the exception
source is added to the set 𝐴cc2 . Finally, all the sets of arcs are
put together in the set 𝐴′ and the final ES-PPDG is returned.

2.3 From ES-PPDGs to the final ES-SDG
The creation of the ES-SDG can be described as the union
of all the ES-PPDGs for each of the program’s procedures,
where the additional interprocedural and summary depen-
dencies are generated. The creation of call, parameter-in,
parameter-out and summary arcs is the same as in the SDG.
The main difference between the common SDG and the ES-
SDG is the treatment of the different possible exit contexts.
Every ES-PPDG may have two different Exit nodes: normal
exit and exception exit. For this reason, the ES-SDG features
an additional kind of arc: the return arc, which connects a
exit node in the declaration to its corresponding return
node in the call. These can be seen in Figure 4, where dotted
arcs connect each exit to their corresponding return counter-
parts.

2.4 Slicing the ES-SDG
The ES-SDG introduces various structural changes and a new
kind or arcs: the conditional control dependence. Therefore,
we need to determine how this new arcs are treated by the
slicing algorithm. The new graph traversal is based on the
slicing algorithm proposed by Horwitz et al. in [6] but with
some new considerations due to all the introduced elements:
return arcs, conditional arcs, and new instructions being
handled as pseudo-predicates. It can be summarized with
the next 4 rules:

1. The graph is traversed in two sequential passes. In
the first pass, output (param-out and return) arcs are
ignored; and in the second pass, input (param-in and
call) arcs are ignored. Each pass ends when there are
no more new arcs to traverse.

2. If a node 𝑛 is reached via a conditional arc of type 𝑡 ,
it will not be included in the slice unless it has also
been reached by another conditional type of type 𝑡 ′,
such that 𝑡 ≠ 𝑡 ′. If included in the slice, no arcs will
be traversed from 𝑛, unless it is reached via another
non-conditional arc.

3. Conditional arcs of type CC1 are transitive, even when
the intermediate node is not included in the slice. As
an example, if 𝑎 →CC1 𝑏 →CC1 𝑐 , if 𝑐 is in the slice, 𝑎

Enter f()

try g()

g()

normal returnexception return

catch (Exception e)

e.printStackTrace() Enter g()

exception exit

normal returnexception return

normal exit

throw new Exception()

exception exit normal exit

Figure 4. The ES-SDG associated to the program in Exam-
ple 1.1

and 𝑏 are both reachable via a conditional arc of type
CC1, even when 𝑏 is not in the slice.

4. Control dependency arcs that reach a node 𝑛 will not
be traversed if 𝑛 is a pseudo-predicate and 𝑛 has only
been reached via control dependency arcs. Conditional
control dependency arcs are not considered control
dependency arcs for this matter. This #Deleted: last
consideration is based on the traversal restriction in-
troduced by Kumar and Horwitz [9] for the slicing of
the PPDG.

The complexity of the new traversal algorithm remains
linear with respect to the number of nodes and arcs in the
ES-SDG. This is because the changes to the algorithm are to
stop the traversal when certain conditions are met; therefore
lowering the amount of nodes reached. Additionally, each
condition check can be made in linear time.

Example 2.2 shows the ES-SDG for the motivating exam-
ple, sliced with the same criterion.

Example 2.2 (A correctly generated slice for the program
in Example 1.1). If we apply our algorithm to the problem
shown in our motivating example (Example 1.1), we obtain
the ES-SDG shown in Figure 4. If we then choose as slicing
criterion ⟨throw, ∅⟩ in line 11, the Enter g() node is included,
which in turn includes both calls to procedure g. The first call
causes the inclusion of the try and Enter f() nodes. Finally,
thanks to the conditional arcs, the catch node is included,
so the exceptions generated by g’s first call can be caught
and g’s second call can be executed.

3 Related work
We have already explained the evolution of the SDG to treat
exceptions with the definition of the ACFG and the PPDG
(see Section ??). #JJJ: Enlace roto Here, we want to comple-
ment by commenting some approaches that have been a
milestone in this area and that have inspired our work or

5

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

are related to it. One of the most relevant initial approaches
to exception-aware program slicing was Allen and Horwitz
[1], which took advantage of the existing representation
of unconditional jumps to represent exception-causing in-
structions, such as throw. Regarding exception-catching con-
structs, they simulated the real control flow and added non-
executable control flow to generate the extra dependencies
they needed. Despite this, they failed to account for the con-
ditional need of catch statements, even when in the original
program no exception will escape from it, and therefore,
from a pure control flow approach, the whole try-catch
block cannot influence any instruction after it.
Later, Jiang et al. [7] described a solution for C++. catch

nodes are represented similar to an if-else chain, each try-
ing to capture the exception before deferring onto the next
catch or propagating it to the calling method. They also were
aware of the necessity of representing data dependencies
from procedure calls to catch nodes, but did not generalize
that concept to all exception sources and usages. Other ap-
proaches include Prabhu et al. [11], which centered around
the exception system of C++, and its specific quirks and
design choices; and Jie et al. [8], which combined object ori-
entation and exception handling. Jie et al. focused on the
object-oriented side, rather than on the exception side, for
which they used an approach similar to Jiang et al.’s or Allen
and Horwitz’s.

4 Conclusions
Program slicing is a powerful software analysis technique,
powered by the system dependence graph, a directed graph
that represents instructions and their dependencies. In this
paper, we have presented a new approach for program slicing
with exception handling, based on previous publications and
focusing on creating a general algorithm that is valid for
most programming languages with exception handling.

We have presented a counterexample to the current state
of the art, which reveals a problem of incompleteness present
in the literature; and we have proposed a solution, which
we have proven complete. This solution also improves the
correctness of slices by using a new notion of control depen-
dency called conditional control dependency, which allows
for the conditional inclusion of catch statements only when
there is a statement that requires an exception to be caught,
and at the same time, there exists a source of exceptions.
Thus, we limit the inclusion of try-catch instructions and
exception sources to the minimum necessary to generate
complete slices.

References
[1] Matthew Allen and Susan Horwitz. 2003. Slicing Java Programs That

Throw and Catch Exceptions. SIGPLAN Not. 38, 10 (June 2003), 44–54.
[2] Thomas Ball and SusanHorwitz. 1993. Slicing Programswith Arbitrary

Control-flow. In Proceedings of the First International Workshop on Au-
tomated and Algorithmic Debugging (AADEBUG ’93). Springer-Verlag,

London, UK, UK, 206–222.
[3] Richard A. DeMillo, Hsin Pan, and Eugene H. Spafford. 1996. Critical

Slicing for Software Fault Localization. SIGSOFT Softw. Eng. Notes 21,
3 (May 1996), 121–134. https://doi.org/10.1145/226295.226310

[4] Ákos Hajnal and István Forgács. 2012. A Demand-Driven Approach
to Slicing Legacy COBOL Systems. Journal of Software Maintenance
24, 1 (2012), 67–82. http://dblp.uni-trier.de/db/journals/smr/smr24.
html#HajnalF12

[5] SusanHorwitz, Thomas Reps, andDavid Binkley. 1988. Interprocedural
Slicing Using Dependence Graphs. In Proceedings of the ACM SIGPLAN
1988 Conference on Programming Language Design and Implementation
(Atlanta, Georgia, USA) (PLDI ’88). ACM, New York, NY, USA, 35–46.
https://doi.org/10.1145/53990.53994

[6] SusanHorwitz, Thomas Reps, andDavid Binkley. 1990. Interprocedural
Slicing Using Dependence Graphs. ACM Transactions Programming
Languages and Systems 12, 1 (1990), 26–60.

[7] S. Jiang, S. Zhou, Y. Shi, and Y. Jiang. 2006. Improving the Pre-
ciseness of Dependence Analysis Using Exception Analysis. In 2006
15th International Conference on Computing. IEEE, 277–282. https:
//doi.org/10.1109/CIC.2006.40

[8] H. Jie, J. Shu-juan, and H. Jie. 2011. An approach of slicing for Object-
Oriented language with exception handling. In 2011 International
Conference on Mechatronic Science, Electric Engineering and Computer
(MEC). 883–886. https://doi.org/10.1109/MEC.2011.6025605

[9] Sumit Kumar and Susan Horwitz. 2002. Better Slicing of Programs
with Jumps and Switches. In Proceedings of the 5th International Con-
ference on Fundamental Approaches to Software Engineering (FASE 2002)
(Lecture Notes in Computer Science (LNCS)), Vol. 2306. Springer, 96–112.

[10] Anirban Majumdar, Stephen J. Drape, and Clark D. Thomborson. 2007.
Slicing Obfuscations: Design, Correctness, and Evaluation. In Pro-
ceedings of the 2007 ACM Workshop on Digital Rights Management
(Alexandria, Virginia, USA) (DRM ’07). ACM, New York, NY, USA,
70–81. https://doi.org/10.1145/1314276.1314290

[11] Prakash Prabhu, Naoto Maeda, and Gogul Balakrishnan. 2011. Inter-
procedural Exception Analysis for C++. In Proceedings of the 25th Euro-
pean Conference on Object-oriented Programming (ECOOP’11). Springer-
Verlag, Berlin, Heidelberg, 583–608. http://dl.acm.org/citation.cfm?
id=2032497.2032536

[12] Venkatesh Prasad Ranganath, Torben Amtoft, Anindya Banerjee, John
Hatcliff, and Matthew B. Dwyer. 2007. A New Foundation for Control
Dependence and Slicing for Modern Program Structures. ACM Trans.
Program. Lang. Syst. 29, 5 (Aug. 2007), 27–es. https://doi.org/10.1145/
1275497.1275502

[13] S. Sinha and M. J. Harrold. 1998. Analysis of programs with exception-
handling constructs. In Proceedings. International Conference on Soft-
ware Maintenance (Cat. No. 98CB36272). IEEE, 348–357. https://doi.
org/10.1109/ICSM.1998.738526

[14] Mark Weiser. 1981. Program Slicing. In Proceedings of the 5th in-
ternational conference on Software engineering (ICSE ’81) (San Diego,
California, United States). IEEE Press, Piscataway, NJ, USA, 439–449.

6

https://doi.org/10.1145/226295.226310
http://dblp.uni-trier.de/db/journals/smr/smr24.html#HajnalF12
http://dblp.uni-trier.de/db/journals/smr/smr24.html#HajnalF12
https://doi.org/10.1145/53990.53994
https://doi.org/10.1109/CIC.2006.40
https://doi.org/10.1109/CIC.2006.40
https://doi.org/10.1109/MEC.2011.6025605
https://doi.org/10.1145/1314276.1314290
http://dl.acm.org/citation.cfm?id=2032497.2032536
http://dl.acm.org/citation.cfm?id=2032497.2032536
https://doi.org/10.1145/1275497.1275502
https://doi.org/10.1145/1275497.1275502
https://doi.org/10.1109/ICSM.1998.738526
https://doi.org/10.1109/ICSM.1998.738526

