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Abstract

Theory evaluation is a key problem in many areas: machine learning, sci-
enti�c discovery, inverse engineering, decision making, software engineering,
design, human sciences, etc. If we have a set of theories that are able to
explain the same set of phenomena, we need a criterion to choose which one
is best. There are, of course, many possible criteria. Model simplicity is one
of the most common criteria in theory evaluation. The Minimum Message
Length (MML) is a solid approach to evaluate theories relative to a given
evidence or data.

Theories can be expressed in speci�c or general (Turing-complete) lan-
guages. First-order logic, and logic programming in particular, is a Turing-
complete language. Evaluating the simplicity of a theory or program de-
scribed in a Turing-complete language is much more di�cult than just count-
ing the number of lines or bits. It is, in fact, the problem of calculating its
Kolmogorov complexity, which is uncomputable. Few works in the litera-
ture have been able to present accurate and e�ective approximations for a
Turing-complete language.

In this work, we present the �rst general MML coding scheme for logic
programs. With this scheme, we can quantify the bits of information required
to code (or send) a theory, a set of data or the same data given the theory.

Moreover, we extend the expressiveness of the language to stochastic
logic programs, which are not only able to model the truth value of any set
of phenomena, but also their probability. As a result, we extend the coding
scheme to stochastic logic programs.

This opens up the applicability of model selection to many di�erent prob-
lems which have a stochastic or probabilistic character, such as games, social
phenomena, language processing, Markov processes, etc.

As a realization of the above-mentioned schemes, we present a software
tool which is able to code and evaluate a set of alternative (stochastic) the-
ories (programs) against a set of examples. We illustrate the application of
the tool to a variety of non-probabilistic and probabilistic scenarios.
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Chapter 1

Introduction

Induction involves the generalization of facts into patterns. Patterns can
be expressed in the form of rules, equations or other kind of concepts. In
the process of generalizing the data (or evidence), patterns try to eliminate
redundancy, a key issue in inference processes such as inductive learning and
abstraction. Di�erent reasoning systems, individuals, contexts or procedures
lead to di�erent models or theories (see Figure 1.1), with varied syntactic
and semantic properties. Hence, the evaluation of theories with respect to
data is a very common problem.

Imagine now that we have a group of models for a given phenomena. The
question is to �nd which one of these models is best, that is, has the lowest
redundancy, the best condensation of the problem. The purpose of this work
is a system that numerically evaluates a model, by using a criterion known
as the Minimum Message Length (MML) [55], which we will describe later
on.

Data

Model 1

Model 2

Model N

...

Figure 1.1: Same data could apply to di�erent models

This number must represent something: one pervasive preference crite-
rion is Ockham's principle of parsimony, which states that simple explana-
tions are preferable, provided anything else is similar. This principle was
incarnated in terms of information theory as the cost in bits of transferring

1



2 CHAPTER 1. INTRODUCTION

the evidence using a model from a sender to a receiver. This cost (or infor-
mation) is the MML value in bits, and the best theory will be the one which
leads to the shortest message.

We will use �rst-order logic as the language for expressing theories and
models. In particular, we will use logic programs, which are Turing-complete.
This will allow us to evaluate any possible theory: provided we express it
as a logic program. We will present an MML coding such that, given a set
of examples (the evidence) and a logic program (a theory), it will output a
number representing how much information (in bits) is required in order to
transmit the theory and the evidence using the theory.

1.1 A simple example

Imagine we have a normal deck of French cards with four suits and usual
ranks, and that we use the predicate card/2 for representing the whole deck:

suit(clubs).

suit(hearts).

suit(diamonds).

suit(spades).

rank(ace).

rank (2).

...

rank (10).

rank(jack).

rank(queen).

rank(king).

card(R,S):- suit(S), rank(R).

If the deck is not rigged, a model that represents the suit and the rank of
the deck using labeled clauses with probabilities is:

0.25 :: card(clubs ,_).

0.25 :: card(hearts ,_).

0.25 :: card(spades ,_).

0.25 :: card(diamonds ,_).

0.0769 :: card(_,ace). % 1/13

...

The previous program leads to a probability of 1/52 for every card in the
pack. But let us see what happens if we introduce some tricks in the deck.
For example, imagine that we remove three cards (8 of hearts, 7 of diamonds



1.2. Objectives 3

and 6 of spades) and we repeat the experiment. With this alteration, a
possible alternative model (but certainly not accurate):

0.2653 :: card(clubs ,_). % 13/49

0.2448 :: card(hearts ,_). % 12/49

0.2448 :: card(spades ,_). % 12/49

0.2448 :: card(diamonds ,_).% 12/49

0.0816 :: card(_,10). % 4/49

...

0.0612 :: card(_, 8). % 3/49

0.0612 :: card(_, 7). % 3/49

0.0612 :: card(_, 5). % 3/49

The only di�erence between the two models lies in the probabilities, because
we do not have completely removed any rank or suit, so the rules in the pro-
gram are the same. This means that a MML evaluation of these two models
will give lower or higher scores depending on the frequency of appearance
of the cards. The optimal situation is when the probabilities given by the
program are higher for the events that we have observed, because in this
case fewer bits are invested for examples that do not appear.

Consider now a more altered deck without clubs:

0.3333 :: card(hearts ,_). % 13/39

0.3333 :: card(spades ,_). % 13/39

0.3333 :: card(diamonds ,_). % 13/39

0.1026 :: card(_,10). % 4/39

...

In this case, not only do the rule probabilities change, but also the rules
themselves: we do not have the rule card(clubs,_). In general, we would
need to measure the cost of the program and the cost of coding the examples
given that program. The best compromise leads to the shortest coding and
hence the best MML choice.

1.2 Objectives

Many possible models using predicate card/2 could be derived by a human
expert or an inductive inference system. As a result, if we have more than a
model that applies for a set of observations, the problem is then to determine
the best one. It is not a question of computational (execution) e�ciency, but
rather a question of compactness and coverage of the evidence. The main
objective of this work is to develop a MML coding scheme for logic

and stochastic logic programs, and to implement a software tool
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able to calculate the cost using this coding for several programs

and sets of data.

From this general objective, some more speci�c objectives follow:

• To develop the most appropriate MML coding schema for logic pro-
grams. For this, it will be compulsory to �rst review the state of the
art about the MML principle and related notions, and also to review
some other previous work on coding logic programs.

• To develop a tool that implements that coding scheme. To achieve this
objective, the subgoals will be:

1. To select a logic language (Prolog) to make the implementation.

2. To analyze the di�erent ways to implement probabilities.

3. To insert them into the selected language.

4. To develop the tool using it.

• To analyze and test the developed tool in di�erent scenarios, some
speci�c examples will be studied and tested.

• To determine the advantages of the developed tool.

The ultimate purpose of achieving these goals is to have a tool to apply
the MML principle to a universal (Turing-complete) language. Also there is
another important advantage: by having a tool we can look for new areas
where the principle can be applied.

1.3 Organization

The thesis is organized in six chapters and an appendix with �ve sections.
The document also includes a list of references at the end.

The following chapter reviews concepts like logic programming, induc-
tion, stochasticity, logic models and the MML principle. This chapter also
includes a comparison of previous approximations to the problem of theory
evaluation in general, and speci�c approaches known as Model Complexity
(MC) and Proof Complexity (PC) in particular.

In the third chapter, we deal with the coding scheme. This coding scheme
has been developed in an incremental way. So, �rst we will show how to do
this coding for non-stochastic programs (also analyzing the di�erent parts:
heads, bodies, variables, signature...) and later on we will deal with the
stochastic programs and the examples.

The fourth chapter is focused on the description of the implemented tool:
the transformations done to the programs of the model that we want to an-
alyze, how we have introduced the probabilities in Prolog, how the evidence
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and the probabilities together lead to the development of a meta-interpreter
to determine the probability of each example, and �nally, a section for the
work conducted to manage free variables in the clauses.

The �fth chapter will give three examples of application, covering di�er-
ent areas where logic programming can be used as a representation/modeling
language, with and without probabilities. With these examples we see how
the tool works and we anticipate the range of possible applications.

The last chapter has the conclusions and the proposal for future work.

Appendix A is dedicated to the way we code numbers: real, rational or
integer.

Appendix B explains the basic rules of the Prolog language.

Appendix D appendix explains the �le organization of the tool, and how
to install it.

Following it, Appendix E includes the source code of the most complete
example we describe in this thesis.





Chapter 2

Background

In this chapter, we will �rst explain theory evaluation, the MML prin-

ciple and its use for model selection. We will also introduce some

fundamentals of logic programming, inductive logic programming and

stochastic logic programming. At the end of the chapter, we will re-

view some previous approaches for coding logical theories, such as the

Model Complexity (MC) and the Proof Complexity (PC).

2.1 Theory evaluation

In the 1970s, Len Bickman, Carol Weiss and Joseph Wholey started to use
the concept of �model� in the quest of a simpli�cation of the huge amount
of data in the international aid and development area. Since that initial
proposal, many re�nements and variations have been added to the basic
concept, as we can see in [58].

A logic model from a given domain (a collection of entities) gives us
an appropriate semantic entity, using a function which, for each symbol
in the domain, speci�es an appropriate semantic value. It is an abstract
representation of a domain of information (a program, but also a project,
a policy, a machine...) that is intended to produce particular results. The
key is to extract the relationships (the outputs) among the resources (the
inputs) that are used, and the bene�ts or changes that result, as a sequence
of events. We can consider a speci�c stage of an activity, or the whole. We
could analyze the process from left to right, or from top to bottom. Any of
these analyses could generate a logic model that summarizes the behavior of
a system in the form of patterns (not only rules) that govern it.

Many models take some inputs and generate some output data. A model
must describe the semantics of those inputs and return also the outputs in
the same type of representation. Since those representations are created by

7



8 CHAPTER 2. BACKGROUND

human beings, we must consider that the same domain of information might
have many di�erent models, and all of them could be valid.

As a result, one of the big issues in modeling, design and any other ab-
straction processes is to determine how well the model represents the domain.
This problem is known as �theory evaluation�, in very general terms.

Theory evaluation (or selection) has been addressed from many di�erent
points of view. In philosophy of science, for instance, we may �nd criteria for
theory evaluation, such as accuracy, performance, generalizability [17] [13]
[11] [53], explanatory power [51], coherence [52], consilience [24] 1, reinforce-
ment [20], information gain [21], aesthetics [32] and, of course, simplicity
[25]. Similar criteria can be found when models are used in engineering and
social sciences. This usually contrasts to the view of a theory or model in
software engineering and database design, especially in software requirement
analysis [19], where the criteria are, apparently, di�erent. Nonetheless, the
notion of simplicity has also been advocated in software engineering as a way
of reducing maintenance costs [22].

Even though the notions of accuracy and simplicity are the most common
criteria for model selection and evaluation, both concepts are understood in
many di�erent ways. Most especially, the relation between accuracy and
simplicity is always at stake, because a very simple model can be highly
inaccurate, and a very detailed, accurate model can be extremely complex.
As a result, the idea of a compromise between accuracy and simplicity has
been a recurrent issue in philosophy, science and engineering.

The basic idea can be traced back to Ockham's Razor, which says that the
simplest model is the best one, all the other things being equal. The original
assert is attributed to William of Ockham (14th-century): �Entia non sunt
multiplicanda praeter necessitatem� (Entities must not be multiplied beyond
necessity). It is a good principle to explain the phenomena by the simplest
possible hypothesis.

Around 1960, Ray Solomono� founded the theory of universal inductive
inference, which set the basics for a formal notion of inductive inference,
based upon Ockham's Razor and Kolmogorov complexity (an area of research
that despite its name, was endeavored by Solomono� himself).

Kolmogorov or algorithmic complexity [31] is a measure of the amount
of computational resources needed to describe the object, given a descriptive
language for the strings or sequences. In other words: given a Turing machine
T , the algorithmic complexity of a string S, denoted by KT (S), is the length
of the shortest input given to T which causes T to output S. It is also known
as algorithmic entropy. It is named after the Russian mathematician Andrey
Kolmogorov.

Still, simplicity can be understood in many other ways, and not only as

1The integration of principles from di�erent disciplines especially when forming a com-
prehensive theory.
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the length of description. For example, in computer science, and program-
ming in particular, we are usually interested in the economy of the compu-
tational resources needed by a program, such as time and space complexity.
This has led to an enormous amount of work and results in algorithmic and
theoretical computer science.

Even if we restrict to �program size�, the calculation of the �size�, �length�
or descriptional complexity of a model or theory T , denoted by L(T ), has
been attempted in the past for many di�erent kinds of representation lan-
guages: graphs can be evaluated by a function of the number of nodes and
arrows, trees by the number of leaves, propositional formulae by the number
of terms in their canonical CNF 2 expression, computer programs by the
number of lines, variables or loops, etc.

As we have already said, in this work we focus on logical models (i.e., logic
programs) as representation language. Logic programming is a declarative
Turing-complete language, which has a simple syntax and a clear semantics.
All this makes logic programs very suitable for knowledge representation.

The applications of properly evaluating the simplicity of logic programs
are countless, since logic programs can be used to represent models of any
parcel of the world, speci�cations in software engineering, including database
models, cryptographic models, biological models, social models, etc.

Even though logic programs are Turing-complete, there is an important
limitation when modeling stochastic processes and events, which are very
frequent phenomena. Many real-world problems appear with stochastic or
probabilistic evidence, where the data from which we can construct a model
is probabilistic in nature. Domains such as meteorology, social processes,
transportation, games, networks, just to name a few, are stochastic in nature
and are better described by stochastic models.

Stochastic, probabilistic and Bayesian logic programs are extensions of
logic programming to consider these domains. These approaches tighten
better for phenomena where the examples in the evidence are just a sam-
ple from a probability distribution. Thus, the theory must represent not
only the things that are possible and impossible, but also how likely the
phenomena are. For instance, a logic program can state whether the fact
rains('10/10/2011',valencia) is true, but a stochastic logic program can
state the probability of rains(X,valencia) :- October(X). In fact, the
view of a logic program as de�ning a distribution on examples, makes it
very easy to de�ne the cost of coding an evidence E given a theory T as
L(E|T ) = −loge∈Ep(e|T ). In this way, the cost will be higher the lower the
probabilities that the theory assigns to the examples and lower otherwise.
This makes the coding of theory and data given the theory: L(T ) +L(E|T )
fully in accordance with Shannon's information theory, as we will see below.

2A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses, where
a clause is a disjunction of literals.
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2.2 The MML principle

The Minimum Message Length (MML) principle can be seen as a proper
restatement of Ockham's Razor in the area of information theory: since
models are not usually equal in goodness of �t accuracy to the observed data,
the one generating the shortest overall message is more likely to be correct
(including the cost of coding the exceptions or details not well covered by
the theory). The message is composed of the set of rules of the model plus
the evidence concisely encoded using that model. The MML principle was
invented by Chris Wallace in 1968 [56].

The MML principle is related to Kolmogorov complexity [57] [31]. In
fact, we know that the calculation of the shortest representation for a set
of data (i.e., its Kolmogorov complexity) is undecidable in general. Most
MML coding schemes can be seen, then, as robust approximations of the
Kolmogorov complexity of the theory, K(T ) plus the Kolmogorov complexity
of the data given the theory, K(D|T ).

Let us see now how the MML principle derives from �rst principles. This
will help us to understand it better. If we have one hypothesis H that covers
the problem data D, and we have a way to determine (or estimate) the
probabilities of each of the facts of the theory, we have enough information
to apply Bayes' Theorem:

P (H|D) =
P (H) · P (D|H)

P (D)

where P (H) is the prior probability of hypothesis H
P (D) is the prior probability of the evidence D
P (H|D) is the posterior probability of

hypothesis H given the data
P (D|H) is the likelihood of H

(2.1)

Shannon3 says that, in an optimal code, the message length of an event
E, MsgLen(E), where E has probability P (E), is given by:

MsgLen(E) = −log2(P (E)) (2.2)

So, we have:

MsgLen(H|D) = MsgLen(H) +MsgLen(D|H)−MsgLen(D) (2.3)

3From the well-known theorem in �Mathematical Theory of Communication� of Claude
E. Shannon [50]
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MsgLen(H) can usually be estimated. The same happens with the cal-
culation of MsgLen(D|H). However, deriving MsgLen(D) is more prob-
lematic.

However, we can see that for two rival hypotheses H and H ′:

MsgLen(H|D)−MsgLen(H ′|D) = MsgLen(H) +MsgLen(D|H)
−MsgLen(H ′)−MsgLen(D|H ′)

(2.4)

Clearly, the MsgLen(D) is a constant that vanishes when comparing two
or more theories. So if we have a situation where we need to transmit the
hypothesis and the data using a Shannon's communication channel, and
both sender and receiver have previously agreed on a coding for data and
the hypothesis, the best hypothesisH will be the one that transmits both the
hypothesis and the data given that theory (MsgLen(H) +MsgLen(D|H))
using fewer bits.

Then the Minimum Message Length encoding gives a trade-o� between
hypothesis complexity, MsgLen(H), and the goodness of �t to the data,
MsgLen(D|H). The MML principle is one way to justify and realize Ock-
ham's razor, as we have seen before.

So, even when hypotheses are not equal in goodness of �t to the observed
data, the one generating the shortest overall message is more likely to be
correct (where the message consists of a statement of the model, followed
by a statement of data encoded concisely using that model). This is the
trade-o� found by the MML principle, which is better, the better the coding
is.

Using the same Ockham's Razor formalization, Jorma Rissanen in 1978
de�ned the concept of the Minimum Description Length (MDL) [48], which
says that the best hypothesis for a given set of data is the one that minimizes
the length of the theory plus the length of the data coded by the theory.
Let us remark �rst that this concept appeared ten years after Wallace's
MML principle, but MDL principle has become more popular than the MML
principle.

The di�erence between MDL and MML is very subtle and it is a source of
ongoing confusion, especially because the MDL principle has been changing
over time. For a good account of the di�erences, see [2] [55, sec. 10.2] [12,
sec. 6.7]. Part of the confusion comes from the way the source paper of the
MML principle [56] is cited by the source paper of MDL [48]. In the rest of
this work, we will just use the term MML, as being the oldest original term,
except for papers which explicitly use the term MDL, but with the same
philosophy.
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2.3 Logic programs

A logic program, based on Horn-clause logic, is a �nite set of rules or clauses
of the form:

A : −B1, . . . , Bn (2.5)

Where n ≥ 0, A is an atom called head, and the symbols Bi are literals
that together constitute the body of the rule. If n = 0, the rule is a fact in
which the symbol : − is dropped in the representation and assumed present.

An atom is a predicate term together with its arguments, each argument
being also a term. An atom is called ground if it does not contain any
variables. A literal is de�ned as an atom or the negation of an atom (using
the predicate not/1 or the symbol ¬).

We can have di�erent kinds of terms:

• A predicate term: an expression p(t1, . . . , tm), withm ≥ 0. The arity of
the predicate symbol ism, so in the expression p(t1, . . . , tm) we say that
f is an m-ary predicate symbol. Each ti is again a term (for instance,
another variable or function symbol, but not a predicate term). The
expression p(t1, . . . , tm) must have an interpretation or de�nition in
the logic program.

• A variable: a term which can be assigned to any value in the logic
program. By convention they are represented by uppercase letters
(A,B,C..., or more commonly, X,Y, Z...). The arity of a variable is 0.

• A function term: an expression of the form f(t1, . . . , tm), with m ≥ 0.
It is like a predicate term that cannot appear at the top level of an
atom. The symbol f is known as the function symbol or functor.

• A constant: with a �xed value (numbers, for instance). We could
consider them as function symbols with arity 0.

For example, the small program P1 below (Listings 2.1) de�nes the pred-
icates uncle/2, father/2 and brother/2, has the variables X,Y,Z and con-
stants adam, peter, tom. This is known as the signature of the program.
Note that the number of terms that can be constructed with this signature
is �nite.

Listing 2.1: Program P1

uncle(X,Y):- father(Z,Y),brother(X,Y).

brother(X,Y):- brother(Y,X).

brother(adam ,peter).

father(tom ,adam).
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But if we look at program P2 (Listings 2.2), the introduction of the function
term suc/1 makes the number of possible terms in�nite.

Listing 2.2: Program P2

odd(suc(0)).

odd(suc(suc(X))):-

odd(X).

The Herbrand Base B(P ) for a logic program P is the set of all possible
ground atoms formed by using its signature. On the other hand, the set of
all ground terms constructed only from functors and constants is called the
Herbrand Universe U(P ).

Listing 2.3: Program P3

p(0).

q(suc(X)):-p(X).

Let us explain this with an example, using programs P2 and P3. The
Herbrand Universe and the Herbrand Base of P2 is:

U(P2)={0,suc(0),suc(suc(0)),suc(suc(suc(0))),...} B(P2)
={odd(0),odd(suc(0)),odd(suc(suc(0))),...}

Since here we have only the predicate odd/1, there are no big di�erences
between the Herbrand Base and the Herbrand Universe in this case. But,
let us see program P3:

U(P3)={0,suc(0),suc(suc(0)),...}

B(P3)={ p(0),p(suc(0)),p(suc(suc(0)),...,

q(0),q(suc(0)),q(suc(suc(0))),... }

A Herbrand interpretation I is a speci�c subset of the Herbrand Base.
One possible interpretation for the program P2 is this:

IP2={odd(suc(0)),odd(suc(suc(suc(0))))}

A Herbrand model is a Herbrand interpretation which is a model of every
formula in its own set. For example, {odd(suc(0)),odd(suc(suc(0)))} is
a model of {odd(suc(0))} for program P2. Notice that the Herbrand base
of a program is always a Herbrand model of the program.

A Herbrand model is minimal if no proper subset of it is also a model.
The usual terminology for any partial ordering is that least means unique
minimal. So sometimes we speak of the least Herbrand model. More formally,
we will de�ne the least Herbrand model (if it exists) as the intersection of
all Herbrand models for a program P , denoted by M(P ), and it is unique.

In our example, for programs P2 and P3, we have:
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M(P2)={0,odd(suc(0)),odd(suc(suc(0))),odd(suc(suc(suc(0)))),...}

M(P3)={p(0),q(suc(0))}

Every de�nite clause program P has an operator TP (the immediate con-
sequence operator) associated with it, which maps subsets of atoms from P

to subsets of atoms from P. Or, what is the same, it maps Herbrand inter-
pretations of the program to Herbrand interpretations of the program.

Our operator TP has a �xpoint interpretation I where TP (I) = I, and
also we can de�ne the least �xpoint as TP ↑ω.

With this basis, the process that allows the inference of facts from de�nite
programs 4 can use one of these two di�erent strategies:

• Top-down: it produces a resolvent between a head of clause and a goal.
Using again the program P2 seen in the previous example, to solve
odd(suc(suc(X))):-odd(X), we unify the rule with odd(suc(0)), us-
ing the substitution {X= suc(0)}. Then we recursively solve the new
goal obtained from the right-hand side of the rule (if there is). The
top-down approach corresponds to SLD-resolution, a concept that we
will introduce later on in section 2.5.

• Bottom-up: The resolvent is obtained between a fact and the body of
a clause. This is also known as the hyper-resolution. In our exam-
ple, we start from odd(suc(0)) and we apply that in the right of the
other clause. The bottom-up approach corresponds to hyper-resolution
(sometimes called unit-resolution).

2.4 Inductive Logic Programming (ILP)

Deductive inference derives consequences E from a prior theory T . Similarly,
inductive inference derives a general belief T from E, but since it is a hypoth-
esis we are going to name it as H. In both deduction and induction T (H)
and E must be consistent and H |= E. It is usual to separate the above el-
ements into examples (E), background knowledge (B), and hypothesis (H),
and state that B ∧H |= E.

E consists of ground clauses, and can be separated into positive examples
(E+, composed by de�nite clauses) and negative examples (E−, composed
by ground unit headless Horn clauses). The problem is de�ned as �nding
the theory that is always true with each example in E+ and also false with
each in E−. On some occasions, we only have positive examples, and we
only consider E+ .

4 A de�nite program is a program composed only by de�nite clauses. A de�nite clause
is a clause where we have exactly one positive literal. These representations are equivalent:
¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pn ∨ u u← p1 ∧ p2 ∧ . . . ∧ pn but we are going to use the second one.
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So, the inductive inference will generate a hypothesis H subject to the
following requirements:

necessity B 6` E+

consistency B 6` e for every e in E−
coverage B ∪H ` E+

(2.6)

The necessity condition ensures that the background knowledge does not
already entail the examples (because then there would be no necessity of
the new hypothesis). The consistency condition asserts that the negation
of the hypothesis is not entailed by the background knowledge and exam-
ples (because then the hypothesis would be against what we already know)
and the coverage condition ensures that the background knowledge and the
hypothesis entail the observations.

Application areas of ILP are many and include: learning drug structure-
activity rules, learning rules for predicting protein secondary structure, learn-
ing rules from chess databases, learning rules for �nite element mesh design,
learning qualitative models of transport system and many others [40].

The idea of carrying out induction by inverting deduction was �rst math-
ematically investigated by Stanley Jevons [36], solving by tabulation the
�inductive Problem� involving two propositional symbols. But the initial
research in ILP was conducted by G.D. Plotkin [43] with the lgg and rlgg

operators. This is an example of a bottom-up approach, where hypothesis
are obtained by generalizing examples.

One of the �rst operative approaches, the Duce system, is also bottom-up:
it was presented in 1987 by Stephen Muggleton [34]. It suggests high-level
domain features to the user (or oracle on the basis of a set of example object
description. Six transformation operators are used to successively compress
the given examples by generalization and feature construction:

• Inter-construction: It takes a group of rules, like:

X ← B ∧ C ∧D ∧ E
Y ← A ∧B ∧D ∧ F (2.7)

and replaces them with the new rules (where the new one is the most
speci�c generalization of the other two rules):

X ← C ∧ E ∧ Z
Y ← A ∧ F ∧ Z
Z ← B ∧D

(2.8)

• Intra-construction: The application of the distribution law of Boolean
equations:

X ← B ∧ C ∧D ∧ E
Y ← A ∧B ∧D ∧ F (2.9)
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replaced with
X ← B ∧D ∧ Z
Z ← C ∧ E
Z ← A ∧ F

(2.10)

• Absorption: Pro�table to generalize rule sets:

X ← A ∧B ∧ C ∧D ∧ E
Y ← A ∧B ∧D (2.11)

replaced by
X ← Y ∧D ∧ E
Y ← A ∧B ∧ C (2.12)

• Identi�cation: A set of rules which all have the same head, the body
of at least one of them contains exactly one symbol not found within
the other rules, such as

X ← A ∧B ∧ C ∧D ∧ E
X ← A ∧B ∧ Y (2.13)

can be replaced by
X ← A ∧D ∧ Y
Y ← C ∧D ∧ E (2.14)

• Dichotomization: This operator works on sets of mixed positive and
negative examples. Thus a set of rules which contain positive and
negative heads, and which all have some common symbols within the
bodies, such as

X ← A ∧B ∧ C ∧D
¬X ← A ∧ C ∧ J ∧K
¬X ← A ∧ C ∧ C ∧ L

(2.15)

can be replaced by
X ← A ∧ C ∧ ¬Z
¬X ← A ∧ C ∧ ¬Z (2.16)

• Truncation: The truncation operator, like dichotomization, is intended
for the use with rule sets containing positive and negative examples
of the same concept. However, truncation generalizes by dropping
conditions. A set of rules which all contain the same head, such as

X ← A ∧B ∧ C ∧D
X ← A ∧ C ∧ J ∧K (2.17)

can be replaced by

X ← A ∧ C (2.18)
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In 1990, Stephen Muggleton and Cao Feng presented GOLEM. The prin-
ciple of the system is again based on Plotkin's relative least general general-
izations (rlggs). Consequently, it is a bottom-up approach.

In the general case, the rlgg may contain in�nitely many literals. There-
fore, GOLEM imposes some restrictions on the background knowledge and
hypothesis language which ensure that the length of rlggs grows at worst
polynomially with the number of positive examples. The background knowl-
edge of GOLEM is required to consist of ground facts. For the hypothesis
language, the determinacy restriction applies, that is, for given values of the
head variables of a clause, the values of the arguments of the body literals
are determined uniquely. The complexity of GOLEM's hypothesis language
is further controlled by two parameters which limit the number and depth
of body variables in a hypothesis clause.

GOLEM learns Horn clauses with functors. It may be run as a batch
learner or in interactive mode where the induction can be controlled man-
ually. GOLEM is able to learn from positive examples only. Negative ex-
amples are used for clause reduction in the post-processing step, as well as
input/output mode declarations for the predicates the user may optionally
supply. For dealing with noisy data, GOLEM provides a system parame-
ter enabling the user to de�ne a maximum number of negative examples a
hypothesis clause is allowed to cover.

In 1993 J.R. Quinlan and R.M. Cameron-Jones presented FOIL [46], a
system for learning intensional concept de�nitions from relational tuples.
This is one of the �rst top-down systems. It avoids searching a large hypoth-
esis space for consistent hypotheses (as happened with GOLEM). Stephen
Muggleton introduced a new system in 1996 called Progol [36], which im-
plements the theoretical framework of inverting entailment (IE). Since our
purpose is just to introduce the basics of ILP, for a better understanding of
ILP or a complete list of ILP systems, please refer to [14, sec. 16.3.2], or to
the Website of ILPnet2 http://www-ai.ijs.si/~ilpnet2/systems.

2.5 Stochastic Logic Programs

In general, the integration of probability theory with �rst order logic is not
straightforward. There are numerous proposals for probabilistic logics. Also,
there are some proposals for the inclusion of probabilities in logic programs.

One of these proposals introduced the so-called Stochastic Logic Pro-
grams (SLPs) [37]. They have been shown to be a generalization of Hid-
den Markov Models (HMMs), stochastic context-free grammars and directed
Bayes' nets.

A stochastic logic program is composed of clauses of the form (p : C)
where p represents the probability associated to C (0 ≤ p ≤ 1) and C is a

http://www-ai.ijs.si/~ilpnet2/systems
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range-restricted de�nite clause 5.

Given a stochastic program S, the sum
∑

p of the labels pi of all clauses Ci

of S whose heads share the predicate symbol p must be one. These programs
are said to be normalized. In what follows, normalized applies to complete

and pure programs 6.

A complete program is a program which is self-contained and it does not
depend on external de�nitions. In the other hand, a program is pure if these
both statements about it hold:

• The program always evaluates the same output given the same inputs.
It cannot depend on any hidden information or state that may change
as program execution proceeds or between di�erent executions of the
program, nor depend on any external consideration (so those programs
with random are impure).

• Evaluation of the result does not cause any semantically observable
side e�ect or output, such as mutation of mutable objects or output to
I/O devices.

The SLD-resolution (Selective Linear De�nite clause resolution) is the ba-
sic inference rule used in logic programming. It is a re�nement of resolution,
which is both sound and refutation complete for Horn clauses. The terms
SLD-derivation and SLD-tree are applied to the non-stochastic programs,
and we are going to introduce them shortly.

An SLD-derivation of a program P and a goal G 7 is a sequence of goals
(G0, G1, ...) whereG = G0, a sequence (C1, C2, . . .) of variants of the program
clauses P and a sequence (θ1, θ2, . . .) of MGUs8.

An SLD-refutation is a �nite SLD-derivation which has the empty goal
as its last goal. An SLD-tree is a tree containing all possible derivations from
a program P and a goal G, via some computation rule. The SLD-tree can
be in�nite or �nite.

The terms SLD-refutation, SLD-derivation and SLD-tree will apply in
the same way to the Stochastic Logic Programs, but we are going to pre�x
them with an extra �S�. So, from now on, we are going to use the term
SSLD-tree for stochastic SLD-tree and SSLD-resolution for SLD-resolution.

The operational semantics of stochastic programs is an extension of the
operational semantics of non-stochastic where the labels are used in the SLD-

5A range-restricted de�nite clause is a clause where all the variables that appear in the
head also appear in its body at least once.

6A pure program is a program which has not negations as failure or negated clauses.
7A goal is a clause p1 ∧ p2 ∧ . . .∧ pn. If n = 0, it is the empty goal and denoted by �).
8 A substitution σ is the Most General Uni�er (MGU) of p and q if: σ (a) is a uni�er

(it is a substitution that makes p and q syntactically identical, and remember that we can
only substitute variables) and (b) for every other uni�er Θ of p and q there must exist a
third substitution λ such that Θ = σλ.
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derivation to obtain a resolvent with programs and an attached probability
label, calculated as:

• For the initial goal G0 the SSLD-derivation is (1 : G0).

• Given an intermediate labeled goal (q : Gi) in the SSLD-derivation
such that the selected atom of Gi uni�es with the head of the clauses
(p1 : C1, . . . , pn : Cn) and (pi : Ci) is the clause chosen, then the
next SSLD-tree step between (q : Gi) and the labeled clause (p : Ci)
produces the goal (m : R) as resolvent, where m, the probability of
this SSLD-derivation step, is the product of q and pi

p1+...+pn
, and R is

the resolvent obtained from Gi and Ci by SLD-resolution.

The SSLD-refutation is the SLD-derivation that ends in the goal (
∑
pi :←)

where
∑
pi, the answer probability, is the summation of the probabilities of

the given steps in the refutation.

To build the signature of stochastic programs, we use the method used
for non-stochastic ones. The operational mechanism of SLPs described in
[37] can be used to de�ne a probability distribution over the Herbrand Base
constructed from the signature as follows:

• The labels with the probabilities of the clauses of a SLP are not taken
into consideration for the signature.

• Given an atom a ∈ BP , let Answ(a, P ) = {p|P ∪{← a} −→∗SLD (p :←
)} the set of answer probabilities of a wrt. P .

• From here, the probability of a is de�ned as p(a|P ) =
∑

p∈Answ(a,P ) p.

For example, with the program P4 (the notation is in Prolog syntax, with
a special functor ::/2 to introduce the probability on the left):

Listing 2.4: Program P4

0.3 :: p(X,Y):-q(X),q(Y). [1]

0.3 :: p(X,Y):-q(X). [2]

0.4 :: p(0,1). [3]

0.25 :: q(0). [4]

0.25 :: q(1). [5]

0.50 :: q(2). [6]

The process to obtain the probability of an example like p(0,1) is shown at
the left part of the Figure 2.1. The SSLD-refutation for p(0,1) is composed
by three successfully branches, each one labeled with the probabilities of the
predicate immediately under the value.

The evidence p(0,1) has a probability of 0.49375, obtained as the sum
of the three SSLD-refutations:
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p(X1,X2)

p(1,1) p(2,0)

p(0,0)

p(0,1) p(0,2) p(1,0) p(1,2) p(2,1)

p(2,2)

q(0),q(1) q(0)
p(0,1)

q(0)q(0) q(1)

S={0,1,2}

0.3

0.4

0.3

0.25

0.25
0.25

Figure 2.1: Estimating the probability of p(0,1). The derivation of other
examples is not illustrated here.

• Using the rule 1 and then applying rules 4 and 5, we obtain a proba-
bility of 0.3 · (0.25 · 0.25) = 0.01875.

• Using the rule 2 and then the rule 4, we obtain a probability of 0.3 ·
0.25 = 0.075.

• Using the rule 3 we obtain a probability of 0.4.

Despite the fact that we are going to focus our attention to SSLDs, there
are other important approaches that have tried to integrate probabilities
into logical programming. For example, Bayesian Networks [41] express the
probability distribution over a �nite set of random variables with two com-
ponents: one qualitative component that encodes the local in�uences among
the random variables using an acyclic graph, and a quantitative component
that encodes the probability densities over these local in�uences. The most
important limitation of Bayesian Networks is that they use a propositional
representation that limits us to express interactions. An evolution of this ap-
proach is the Relational Bayesian Networks of Manfred Jäger [27] [4]. Other
approaches are Poole's Independent Choice Logic [44] and Pfe�er's Proba-
bilistic Relational Models [18].

2.5.1 SSLD-derivation approaches

Constructing a mechanism to derive accurate probabilities for a general fam-
ily of stochastic logic programs is not an easy task. This is the reason-why
the construction of a stochastic logic programming interpreter calculating
the probabilities is a challenging problem. For instance, for the program P4,
if we calculate the probabilities of the facts p(0,0), p(0,1), p(1,0), etc. we
will see that the sum of their probabilities is much greater than one. Con-
sequently, this way of calculating the probabilities does not really generate
(in general) a probability distribution and hence it is useless for our MML
coding.
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Muggleton's approach

The �rst approach using SSLD-derivation is due to Muggleton. The under-
lying idea is the same we have introduced above, and it is to obtain the
probability of a fact in the evidence as the sum of the probabilities of all
successful refutations in the SSLD-tree. The examples are facts for a single
predicate and the goal is to learn the corresponding predicate de�nition an-
notated with probabilities incrementally, from each individual example. The
probability of the predicate de�nition is estimated as we go along, in each
step.

In his approach, Muggleton [38] starts with the initial objective of a goal
composed of the example with all the arguments replaced by variables. So,
in our program P4 (Listings 2.4), we will solve p(X1, X2, X3) to obtain the
probability of p/2: that means eight di�erent combinations p(0,1) using
the signature {0,1,2}. Before we have calculated the probability of p(1,0),
but we will need also p(2,0), p(0,2), etc. The cost of each of this branches
(and also of the seven not unfolded) is added up to obtain the cost for the
predicate p/2.

Unfortunately, this mechanism is so simple that is only able to manage
ground facts as evidence, and there are many stochastic logic programs not
suitable to apply this technique. Muggleton also supposes that there is
no overlapping between the rules of the stochastic logic program (and it is
possible, as we are going to see), so with this technique, some predicates in
the evidence could have a value greater than 1.

De Raedt's approach

De Raedt [30] introduced the normalization with hindsight of the predicates:
the underlying idea to apply a posteriori normalization of the values is to
correct the �nal probability of a predicate to be exactly 1. The problem with
this approach is involved with the huge amount of calculations we will need to
determine the whole SSLD-tree for each predicate and also the normalization
process.

2.5.2 Our method for SSLD-derivation

Basically we are going to follow Muggleton's approach together with the
normalization of De Raedt. We will also introduce some extensions to have
an approach able to cover stochastic logic programs of any nature.

The �rst modi�cation we are going to apply to Muggleton's approach is
involved with the substitutions. We will introduce it directly with an exam-
ple. Let us use the example sum(s(0), s(s(0)), s(s(s(0)))) with program P5

(Listing 2.5). We depart from sum(X1, X2, X3) as the root of our demon-
stration, and we apply the two rules once: the second one and next the �rst



22 CHAPTER 2. BACKGROUND

one, so 1
2 ×

1
2 = 1

4 . We will assign to the branch a probability of 1
4 .

Listing 2.5: Program P5

0.5 :: sum(0,W,W).

0.5 :: sum(s(X),Y,s(Z)):-sum(X,Y,Z).

But we have not �nished, because we have to solve the substitution
W/s(s(0)). To estimate this last substitution, we will need the signature
(which is {0/0, s/1}). As we have only two function symbols, each time we
will select one of them we will have a probability of 1

2 . In W/s(s(0)) we have
used this selection three times, so the probability of this last substitution is
1
23

= 1
8 .

Thus, with our approximation the probability for this example is 1
4×

1
8 =

1
32 .

In this case, since there are no overlapping rules and no other exceptional
issue, we get the right probability for this example on program P5.

Overlapping heads

If we look again at the program P4 (Listings 2.4), we can determine the prob-
abilities of predicate p/2 calculating the probabilities of all the combinations,
to discover that the sum is greater than 1:

Obtained probability Normalized probability

p(0,0) 0.09375 0,06117
p(0,1) 0.49375 0,32216
p(0,2) 0.07875 0,05138
p(1,0) 0.09375 0,06117
p(1,1) 0.09375 0,06117
p(1,2) 0.07875 0,05138
p(2,0) 0.1875 0,12234
p(2,1) 0.1875 0,12234
p(2,2) 0.225 0,14681

Total 1.53262 1

Table 2.1: Probabilities before normalization of p/2 in program P4

We have overlapping heads in program P4. This is a speci�c problem of
the stochastic programs, where the probabilities of the assigned rules can
hide di�erent paths for the same fact. The solution here will be to apply an
a posteriori normalization process for the predicates. For instance, with p/2,
we have determined a sum of 1.53262 (Table 2.1), so we will divide by this
value to have the real probability of each partial probability (for instance,
p(2,2) it will be 0.225/1.53262 = 0, 14681).
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The problem with free variables

There could be SSLD-derivations that have variables without instantiation.
So, the estimation of the probability of a predicate with this kind of deriva-
tions will generate an in�nite loop in our proposed approach if we do not
introduce some corrections. For example in this simple program, the vari-
able Z1 is not bound with the head of the rule. The same happens with the
variable Z2 with the body of the second rule. We give Z1 and Z2 the name
of �free variables�:

p(X,Y):-r(X),r(Z1).

q(X,Z2):-r(X).

r(_).

If we try to generate the SLD-tree for p( X1, X2) and for q( X1, X2),
we can see that our solver is unable to �nd a valid assignment for the free
variables:

p(X1,X2)

r(X1),r(Z)

{X/X1}

q(X1,X2)

r(X1)

{X/X1}

Figure 2.2: An example of SLD-tree with free-variables

In fact, it is impossible to determine a priori which the value of probability
is for all the derivations of those predicates using the solver described in the
previous chapter. Since it is a non-assigned variable (a free variable), its
possible assignments depend on the di�erent symbols that we have in the
signature (if the free variable is in the head of the rule) or on the probability
of the predicate that remains with a free variable, if the predicate is in the
body of the rule.

In our example (Figure 2.2) the free variables that remain without assig-
nation after the uni�cation/matching process of Prolog are two: Y in the
head of p/2 and Z in the body of r/1.

In this situation, the success of the uni�cation is not being discussed.
The only problem is that the probability of that assignment is a�ected by
this non-assigned variable, which could take any value from the signature of
the program as we have said. So, we need to apply some corrections to the
solver.
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The solution for free variables

The changes necessary in the process of solving a predicate di�er if the free
variable is in the head, in the body or also if the predicate of the head is
also present in the body of that rule (due to the recursion). Let us see each
of them separately:

• Free variables in the head of the rule:

� If there is a free variable in the head of a rule the di�erent combi-
nations that we could have are all the di�erent we can build with
the signature (because there is no limitation in the rule to the ap-
parition of any symbol here, because there is no bound between
the free variable and any rule).

� So, the number of di�erent possibilities to instantiate a value to
the free variable is given by the division by the number of elements
of the signaturem if the arity of the function symbols is equal to
zero. That is, if we have q(X,Y):-s(X) and a signature S={a/0,
b/0, c/0}, it is clear that we will have only q(_,0), q(_,1) and
q(_,c) as possibilities.

� But maybe the signature could contain a function symbol with a
greater arity, for example S={0/0, s/1}. Here the possibilities
for the given are in�nite combinations of that symbols for that
variable: 0, s(0), s(s(0)), etc...

� So generalizing, the solution will be to trace from the beginning
where the free variables are in the head of a rule. This is because
if we postpone this analysis after solving it against the Prolog
interpreter, the arguments of the head will have variables that
maybe are bound with the body of the rule, maybe not. And
we need to separate those two groups of variables to compute the
cost.

So, the probability of the evidence will be the result of dividing the
probability of the rule by the number of elements of the signature,
raised to the power of the number of di�erent symbols that are in
the assignment of that free variable in the example:
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ProbExample = Prob(Pred)
∏

k=1...a

1

length(S)

where
Prob(Pred) = Probability of the predicate
length(S) = Length of the signature

(only function symbols)
a = Number of di�erent elements

in the free position

(2.19)

For example, we have determined that the probability of the ex-
ample r(0,t(0,s(0))) using the goal r(X1,X2) as root of the
tree, over the program P6 (Listing 2.6) is 0.8, using the assign-
ment X1/0.

Listing 2.6: Program P6

r(X,_):-p(X).

0.8 :: p(0).

0.2 :: p(s(_)).

0.3 :: q(X):-X<1,r(X,Y).

0.7 :: q(1).

0.25 :: r(0,1).

0.25 :: r(0,2).

0.5 :: r(1,2).

Variable X2 remains as a free variable. If we have the signature
S={0/0, s/1,t/2}, with the example r(0,t(0,s(0))) (notice
that the second argument is using exactly four symbols from the
signature) the estimated probability for this example would be:

ProbExample = 0.81
3
1
3
1
3
1
3 = 0.009876

• Free variables in the body of the rule:

� The other problem is when there are free variables in the body:
in this case, the probability is not going to depend on the number
of symbols of the signature. Although we have a free variable,
all the combinations done with the signature are not going to
be valid, because this predicate is de�ned and it has rules that
make to success or not some combinations we can made with the
signature.
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For instance, in Program P6 (Listings 2.6) we have a free variable
Y in q(X):-r(X,Y). So, we must analyze the valid subtrees of pred-
icate r(X1,X2) that can be applied here. On the one hand, there
are invalid combinations of the signature (r(2,0),r(2,1),...). On
the other hand, the �rst bound variable of the predicate r/2makes
that only r(0,1) and r(0,2) are valid subtrees.

� So, we need to check the rule after each solving step, checking if
there are new variables after the substitutions. If there are, we
will need to obtain the probability of the whole predicate that has
free variables, in the same way we are calculating a new example.
For instance, if we have:

0.7 :: r(A,B):-B is A,p(C).

0.3 :: r(A,0).

... % we do not include the rules for p/1.

To calculate r(X1, X2), we will need �rst p(X) because in the rule
r/2 this predicate appears with a free variable. If we suppose that
p/1 has an estimated probability of 0.25, then we will multiply by
this factor the result for the rule r/2 to obtain the real probability
of that evidence.

Although, a limitation in the depth of SSLD-derivations must be consid-
ered, since they could be in�nite. If we look again at program P5 (Listings
2.5), the function symbol s/1 makes in�nite the growth of the SSLD-tree for
predicate sum/3, as we show in Figure 2.3.

sum(X1,X2,X3)

sum(s(X1),X2,s(X3)) sum(0,X2,X2)

sum(s(s(X1)),X2,s(s(X3)))

{X1/0,X2/X3}
0.5{X1/s(X1),X3/s(X3)}

0.5

sum(s(s(s(X1))),X2,s(s(s(X3))))

0.5
{X1/s(X1),X3/s(X3)}

0.5
{X1/s(X1),X3/s(X3)}

{X2/0}
0.5

sum(0,0,0)sum(0,s(X2),s(X2))

{X2/s(X2)}
0.5

Figure 2.3: An example of SLD-tree with in�nite derivations

In this SSLD-tree, if we use a low value for the maximum depth inside
the tree, the sum of the probabilities for the predicate is going to be nearby
1, but not all the stochastic logic programs are going to have a so simple
structure in which the prune of the SSLD-tree is not going to trim important
facts that need more depth in the derivation.
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2.6 Previous approaches for coding logical theories

Measuring the length or �cost� of a theory expressed as a logic program is
not a new area of research. As we have pointed out at the beginning of this
chapter, there are other previous works for coding logic programs. However,
most approaches have been based on the semantics of the program, rather
than its syntax. Two exceptions are the so-called Model Complexity (MC) [8]
and the Proof Complexity (PC) [35], which present a way of coding L(D|T )
and L(T ). Here, however, the complexity of the program, L(T ), is measured
in a very simplistic way, just counting the number of rules, literals, etc., in
a program, so disregarding repetitions, structure and other redundancies in
how the program is expressed. One of the crucial issues in MML is that the
coding must be e�cient. Otherwise, the evaluation of the �length� of the
program might be misleading.

Also, there are several problems about how theMC and PC approaches
calculate the cost of the examples given the theory, L(D|T ), especially for
cases where the program covers an in�nite number of examples, which is a
very common situation.

Let us start with the coding of the program, L(T ), which is common for
both approaches. Two conditions are assumed for these approaches:

• Examples must be ground.

• Function-free logic programs are used, in order to avoid in�nite least
Herbrand models.

With these conditions, assuming that well-formed logic programs have
an unambiguous probabilistic context-free grammar, the length in bits of
the coding T is calculated as −log2Pr(T ), where Pr(T ) is the product of
the production probabilities used in the derivation of T . For each atom in the
theory T with arity n, the code length of the atom is log2|P|+n·log2(|X|+|F|),
where P represents the predicate terms of the theory, X the variables and F

the function terms. In addition to this, to identify the number of variables v
needed to express T , we must send a code of length log2(X) + 1 bits before.

To sum up, the number of bits required to code a logic program is the
sum of:

• log2(v + 1) bits for the variables, where v = |X|.

• 1 bit per program.

• 2 bits per rule in the program.

• 2 bits per literal in the body of each rule.

• The bits for coding all atoms in the program, using the coding scheme
seen above.
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The previous scheme works for function-free programs. In the next chap-
ter we will extend this to programs including functions, using a MML-coding
scheme.

In the following two subsections we will analyze how examples are coded
given the program, i.e. L(D|T ), in both the model complexity and proof
complexity approaches.

2.6.1 The Model Complexity Approach

The Model Complexity (MC) [8] was presented by D. Conklin and I. H.
Witten in 1995. In it, the best theory for a concept is de�ned to be the one
that minimizes the number of bits required to communicate the examples,
that involves the encoding and transmission of the theory T and the same
examples using that theory T , while they refer to this as a MDL approach,
it certainly follows the MML philosophy. First, the coding requires the
de�nition of the content Q(T ), de�ned as:

Q(T ) = O ∩MT , E ⊆ O (2.20)

where O are the possible observations and MT is the least Herbrand model
of the logic program T (MT is �nite). Q(T ) is just the set of ground facts
derived from T . With this, there are three possible situations:

1. E 6⊂ Q(T ). There are examples not covered by the theory. In this
case we must increase the theory to cover those examples, so leading
to cases 2 and 3.

2. E ⊆ Q(T ). The theory covers all the examples, and perhaps other
observable atoms: this is the situation that theMC considers, sending
a code of length (in bits):

LMC(E|T ) = log2

(
|Q(T )|
|E|

)
(2.21)

which is large enough for identifying a subset of Q(T ) of either size
|E| or size |Q(T )|. One extra bit allows the communication of which
of these is the case.

3. E = Q(T ). The theory covers all and only all the examples: the ideal
but not usual situation. This is a particular case of 2.

There are, however, some problems with this approach:

1. It cannot be applied when Q(T ) is in�nite. This happens frequently if
we have function symbols.
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2. As expected, adding a new positive example to the evidence would
need fewer bits than adding an example as a rule to the theory, but
this asymmetry depends highly on the size of the evidence.

The disadvantages are partially solved with the Evidence Complexity
(EC) approach, which we are going to introduce in chapter 3.3.

2.6.2 The Proof Complexity Approach

The other approach for L(E|T ) was proposed by Muggleton, Srinivasan and
Bain in 1992 [35] called the �proof complexity� measure (PC), de�ned as the
bits required to code the proof of each example given the theory. The proof
complexity of an example e is calculated as the sum of the logarithm of the
choice-points involved in the SLD-refutation of e. In each step of a refutation,
if G is the actual goal, the choice-points are the number of program clauses
whose heads unify with the atom of G selected by the selection function.
Therefore,

LPC(E|T ) =
∑
A∈E

LPC(A|T ) (2.22)

where LPC(A|T ) is the code length of an atom A wrt. a theory T .

In this case, only the given evidence is coded, never the absent examples
(those elements in Q(T ) which are not in E). This is counter-intuitive, since
LPC(E|T ) > 0 when Q(T ) = E. Even with a perfect-covering program, we
have that LPC(E|T ) is not zero.

The following chapter is then devoted to a coding scheme which considers
programs with function symbols (for both L(T ) and L(E|T )) and tries to
solve the problems of both theMC and PC approaches.

Also, one of the important things of a coding scheme, especially if it is
used for theory selection, is that it must be as e�cient as possible. TheMC
and PC approaches, as we will see, contain several sources of redundancy in
their codes.





Chapter 3

Coding scheme

In this chapter we will detail the process of coding theory and data in

the form of (stochastic) logic programs, using the MML principle. The

organization of the chapter is as follows: we start with the coding of

non-stochastic programs. Next we analyze how to extend the coding

to stochastic programs. Finally, we focus on the coding of examples.

In the non-stochastic section, we split the coding of the signature from

the coding of the parts of the rules (heads, body, variables). There is

also a subsection dedicated to how background knowledge should be

handled.

3.1 Coding of non-stochastic programs

A preliminary version of this scheme was presented in [23] in 2007. The
goal of the �rst scheme was to overcome some of the problems found in
the MC and PC approaches seen in the previous chapter. However, the
original version contained some glitches and did not properly address the
necessary normalization for stochastic programs. Consequently, we present
a new scheme based on the previous one, but including an important number
of changes and extensions.

To determine the MML cost of a program we will need to analyze the
terms of each rule: the head, the body and also the variables that are used.

For a non-empty program P with m rules r1, r2, . . . , rm, the cost of en-
coding P is done by the formula:

cost(P ) = CodeLength(m) + cost(ΣP ) +
∑

1≤i≤m
cost(ri) (3.1)

Where ΣP represents the signature, and CodeLength the cost of trans-
ferring the number of rules, which is calculated as:

31



32 CHAPTER 3. CODING SCHEME

CodeLength(m) = log∗m+ C (3.2)

Here C is a normalization constant chosen to satisfy
∑∞

n=1 2− log∗ n = 1
and whose value is log2 2.8665064. And besides, log∗ represents the iterated
logarithm (usually read �log star�). The iterated logarithm is explained in
Appendix A.1. Basically, it is used in CodeLength for coding unbounded
natural numbers and it is the number of times the logarithm function must
be iteratively applied before the result is less than or equal to 1.

Continuing with the cost of a program P , for each rule ri of the form
Hi : −Bi, its cost is calculated as:

cost(ri) = cost(Hi) + cost(Bi) + cost(Vi) (3.3)

Where the last term represents the cost of coding the variables appearing
in the rule (if there are, or 1 bit otherwise). The rules without body (heads)
have cost(Bi) = 0.

3.1.1 Cost of the signature: cost(ΣP )

Consider a program P which has np predicates and nf function symbols: We
need to transmit that list of elements (which might be zero), but the only
relevant information to transmit about them is the arity of each element
i (because both function symbols and predicate symbols have arity). The
order in which that signature is transmitted is not relevant.

For example: If we have the predicate symbols {p/3, q/0, r/2, s/1}, it
does not matter if we transmit {3, 1, 2, 0}, {2, 0, 3, 1}, {1, 0, 3, 2} or any of
the possible twelve di�erent permutations. We only need to transmit the
arities in an optimal way.

Let us then start �nding the maximum arity of all the predicate symbols
pi and all the function symbols fi:

maxp = maxi=1...nparity(pi)
maxf = maxj=1...nf

arity(fj)
(3.4)

And now, for each possible value in the intervals 1..maxp and 1..maxf
we will count how many symbols we have to transmit with each arity. So,
the cost of transferring the whole signature will be:

cost(ΣP ) = CodeLength(1 +maxp)+
CodeLength(1 +maxf )+∑

0≤k<maxp
CodeLength

(
1 + card {pi : arity(pi) = k}i=1...np

)
+∑

0≤l<maxf
CodeLength

(
1 + card {fj : arity(fj) = l}j=1...nf

) (3.5)
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Note that k and l do not need to range until maxp and maxf , since the
number of predicate and function symbols for the maximum arities can be
inferred from the already coded information.

It is easier to explain this with an example: if we have the signature
S = {p/3, q/1, r/3, f/0}, where only f/0 is a function symbol, the cost of
this signature would be:

maxp = 3
maxf = 0

Cost = CodeLength(3 + 1) + CodeLength(0 + 1)
+CodeLength(1 + {0 pi with arity 0})
+CodeLength(1 + {1 pi with arity 1})
+CodeLength(1 + {0 pi with arity 2})
+CodeLength(1 + {2 pi with arity 3})
+CodeLength(1 + {1 fj with arity 0})

= CodeLength(4) + CodeLength(1) + CodeLength(1)
+CodeLength(2) + CodeLength(1) + CodeLength(3)
+CodeLength(2)

= 4.51853 + 1.51853 + 1.51853
+2.51853 + 1.51853 + 3.76794 + 2.51853

= 17.81912

(3.6)

Note that this coding is ine�cient when there are many �unused� arities.
In logic programs, this is not usually the case, since we have many predicates
and functions with low arities.

3.1.2 Cost of coding rule heads: cost(H)

The �rst thing to know about the head of a rule is which predicate symbol
appears in it. So for the total nr rules of a program this will cost nr×log2(np)
to code, where nr are the total number of rules and np is the total number
of predicates. Note that the order of rules matters, so we cannot subtract
any redundancy to this term.

For each argument of the head's atom (if the term has arguments, because
this could also be zero), it is necessary to know whether it is a variable or a
function symbol, so we will add extra log2(2) bits (assuming a probability of
1
2). If it is a function symbol, we need to add also an extra log2(nf ) for coding
which function it is (considering a uniform distribution for probabilities),
and this is applied in a recursive calculation if the arity of that argument is
greater than zero.

So, summarizing:
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cost(H) = nr log2 np +
∑nr

i=1

∑narg,i

j=1 costt(ri,j)

where costt(t) = cost of the termt
nr = number of rules
np = number of predicates

narg,i = number or arguments of predicate i
ri,j = argument j of the predicate term in the head of rule i

(3.7)

Remember that with each ri,j , if it is a function symbol, we must proceed
recursively. The cost of each term is:

costt(t) = log2 2 +


0 if t is a variable

log2 nf +
∑narg

j=1 costt(rj) if t is a function term
(3.8)

where nf = number of functions
narg = number of arguments of the function term t
rj = argument j of the function term t

Let us use again an example to facilitate the understanding. Suppose
that we have this small program:

Listing 3.1: Program P7

pred1(s(X),Y):-pred2(s(X)),pred2(Y).

pred2(s(s(X))):-pred2(X).

pred2 (0).

Applying the explained scheme for this example, the �rst term of the
formula (nr log2(np)) is 3 log2 2 = 4.75488 bits, because we have 3 rules of a
total of 2 predicates. In the program there are a two function symbols, 0/0
and s/1), so when a function symbol appears, we must add log2(2).

Let us focus on the �rst rule, whose head predicate has two arguments.
The �rst argument of this rule contains a function symbol and a variable
inside (so log2(2) + log2(2) + log2(2)), and the second argument has only
one variable (log2(2)). So, if we add up everything, we have a total of
4 log2(2) = 4 bits for this �rst rule.

Applying the same procedure to the second rule we will obtain 2 log2(2)+
2 log2(2) + log2(2)) = 5 bits. Finally, for the third rule we have 2 log2(2) = 2
bits.

So, for the whole program, the cost of the heads is cost(H) = 4.75488 +
4 + 5 + 2 = 15.75489 bits.
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3.1.3 Cost of the bodies: cost(B)

The next step is to encode the bodies of the rules. Here the order of the
rules and also the order of the literals inside each rule matters. Again, we
will use np as the number of di�erent predicates, and nr as the number of
rules. We will introduce now liti as the number of literals inside the rule i.

For each literal, we will add a bit (log2(2)) if it is variable or log2(nf )
if it is a function symbol, to inform which function it is. We will proceed
recursively in the same way with its arguments (if there are), as costt.

So, summarizing:

Cost(B) =
∑nr

i=1

[
CodeLength(1 +mi) +

∑mi
j=1

(
log2 np +

∑nargsi,j
k=1 costt(ti,j,k)

)]
where nr = number of rules

mi = number or literals of rule ri
ti,j,k = term k of the literal j of rule i

nargsi,j = number of arguments in the literal i, j
(3.9)

Let us use again the �rst rule of the example P7 (Listing 3.1):

pred1(s(X),Y):-pred2(s(X)),pred2(Y)

The cost of coding the body of this rule (pred2(s(X)),pred2(Y)) is 9.76795
bits, due to:

• It has two literals, so mi = 2, so we need CodeLength(1 + 2) bits.

• We need to code the predicate symbol of each �rst literal (log2 2) and
the �rst literal contains also a function symbol s/1 and a variable
inside, so we need 3 log2 2.

• The second literal contains only a variable, so we need log2 2 for coding
the predicate and log2 2 for saying it is a variable.

• All together we have:

Cost(B1) = CodeLength(1 + 2) + [log2 2 + 3 log2 2]
+[log2 2 + log2 2]

= CodeLength(3) + [3 + 1] + [1 + 1] =
= 3.76795 + 6 = 9.76795

(3.10)

3.1.4 Cost of the variables: cost(V )

After the previous information is sent, the receiver can know the number
of di�erent variables existing in each rule. So far, we have not coded yet
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the position of them and how many times each of them appears in the rule
(remember that the name is not relevant). Fortunately, in a logical program,
all the variables are local to each rule.

So, we need to consider whether they are the same or di�erent variable,
and the number of appearances of each one.

Computing the position is a combinatorial problem but with some con-
siderations. Let us suppose that nv is the number of di�erent variables in a
rule, and d is the number of positions inside the rule.

Since the order of the variables matters we will have di�erent (nv)d com-
binations at the most, instead of

(nv

d

)
, because p(X,Y) is not equal to p(Y,X).

Moreover, we know that at least each variable appears at least once, so
there are a few combinations in (nv)d we could remove: those that do not
contain the nv variables. We will subtract the sum of the ways we can �ll
the d positions with 1 . . . nv − 1 variables only.

For example, if we have 3 di�erent variables and 10 positions in the rule,
we will subtract two amounts: The �rst one, the number of ways that two
variables of the three can �ll all the positions:

(3
2

)
(210 − 2). The second

amount is more intuitive: the 3 di�erent combinations that one variable of
the three can �ll all the positions. So, the di�erent possibilities we have
with 3 variables and 10 positions are �nally 310 −

(3
2

)
(210 − 2)− 3 = 55, 980

combinations.

Generalizing:

F (d, nv) = (nv)d −
∑

1≤i≤(nv−1)
(nv

i

)
∗ F (d, i)

F (d, 0) = 1

cost(V ) =
∑nr

i=1 log2 F (di, nv,i)

where nv,i = number of di�erent variables for the rulei
nr = number of rules

(3.11)

We do not need to code the number of positions with variables in the rules
because from section 3.1.2 and section 3.1.3 we can infer that information.
Let us apply the formula using the same rule of program P7 (Listing 3.1):

pred1(s(X),Y):-pred2(s(X)),pred2(Y).

The cost of the variables of the rule is 5.80735 bits:

• It has four di�erent positions, so d = 4.

• It has two di�erent variables, so nv,i = 2.

• So we have for this rule cost(V1) = log2 4 + log2(F (4, 2)) = 2 +
log2(14) = 2 + 3.80735 = 5.80735.
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3.1.5 Cost of the background knowledge

The background knowledge, previous knowledge or knowledge base (KB in
its short form) is the collection of rules (not included in the program) that
we assume that are known by both sender and receiver. We can think of
many examples: the predicates that allow us to show results on the screen,
the predicates that deal with the storage of results in disk (I/O predicates),
libraries shared and commonly used, or knowledge that we assume as known.
All of this is not really part of the model we want to analyze, since this
previous knowledge is shared by sender and receiver, we do not need to
transfer it, and then, to code it.

If the knowledge base was really relevant and we wanted to consider in
the calculations, one way it would be to include it as part of the program and
analyze as a whole, summing the values for its heads, bodies and variables
as we have described till now.

But if we prefer not to join part of the KB to the program, we can analyze
it as if it was part of the program but as a separate entity. The reasons to do
this can be many: maybe the previous knowledge is shared between di�erent
models and it will be faster not to copy the knowledge base for each model,
or maybe we want to evaluate more complex models and programs in which
other models and programs take part in, but we want a separate assessment.
In that situation, the knowledge base will be managed as if it was part of the
same program, increasing the cost because its heads, bodies and variables.

Considering the KB or not is important on how the programs are coded,
and this in�uence is not necessarily constant for all programs. The reason
is that if we sum up the knowledge base it will also a�ect the signature,
and will impact also in the operations done with the models or programs
analyzed. The signature obtained from the whole KB will be merged and
analyzed with the one obtained from the code introduced as program. Since
the number or predicates np and functions nf is increased, it will a�ect also
to the cost in bits generated in the programs or models.

So, as an example, if we add this two predicates as a knowledge base to
program P7 (Listing 3.1):

pred3 (1,2).

pred4(t(1)).

As program P7 has not used any of this predicate and function symbols (they
are new), it will a�ect the global cost because we have increased the signature
with new predicate and function symbols {t/1, 1/0, 2/0} (nf is increased in
3), and also two new rules (np is increased in 2). That extra cost will be
calculated as we have explained before for heads and signature, and the same
if there were variables or bodies.
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3.2 Coding of stochastic programs

Stochastic programs can be coded in the same way as non-stochastic pro-
grams, but we need to send the bits for probabilities of each rule. These
probabilities are real numbers but they will be approximated and trans-
formed to rational numbers.

A real number x can be approximated by a rational number. Of course,
since rational numbers are dense on the real line, we can make the di�erence
between x and its rational approximation p

q as small as we wish. The problem

is that, as we try to make p
q closer and closer to x, we may have to use larger

and larger p and q and, clearly, more bits. So, the reasonable question to
ask here is how well we can approximate x by rational denominators which
are not too large. The idea has been to use a precision threshold.

The way real numbers are transformed to rational numbers and the way
they are later coded it is fully explained in Appendix A. Basically, we �nd
a close rational approximation and we code the denominator and ignore the
numerator (among all the values which are not reducible). As an example,
if we have this program:

0.25 :: p(0).

0.25 :: p(1).

0.50 :: p(X):-X > 20.

The cost of coding this stochastic program is the same as this other
equivalent program without probabilities but increasing it with the cost of
coding the three real numbers:

p(0).

p(1).

p(X):-X > 0.

Using the procedures we have seen till now, the MML cost of the program
without probabilities is 31.43476 bits. Now, we will add the extra probabilis-
tic cost of 11.03707 due to the coding of the probabilities of the three rules,
because:

• The �rst probability has a cost of Cost(1/4) = CodeLength(4) +
log2(2) = 4.518535 + 1 = 5.518535 bits.

• The second clause the same.

• The third probability 1/2 has a cost of Cost(1/2) = CodeLength(2) +
log2(1) = 2.518535 bits. However, we actually do not need to com-
municate this last probability of 1/2 because it is redundant since the
probabilities are supposed to be normalized, so they must add up to 1.

• So, we obtain summing up the three values the total of 11.03707.
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3.3 Coding the examples (cost(E|T ))

The evidence consists of facts. The coding cost for the evidence will depend
on the probability of each example observed, deriving the cost of coding it as
the − log2 of the probability. 1This leads to this de�nition of the Evidence
Complexity approach (EC):

Cost(E|T ) = − log2 p(E|T ) (3.12)

Where p(E|T ) represents the probability of the evidence, given the pro-
gram T . This does not solve the problem by itself, because there are many
di�erent ways to estimate p(E|T ). For stochastic programs, this probability
is derived by the speci�c method used for deriving the probabilities. How-
ever, for non-stochastic programs we need to derive a way to get the prob-
abilities. Basically, as we detail regard below, we consider a non-stochastic
program as a stochastic one where the probabilities are set uniformly.

Then, the idea is to use the program as a stochastic example generator
and compare E (the examples) with M(T ) (the Minimal Herbrand Model
of T ). This is highly related to the PC approach, but we have to derive the
probabilities with some conditions.

The �rst condition is that the probability for each rule with the same
predicate on the head must have a uniform distribution. We will suppose
that ∀e ∈ Q(T ) : p(e|T ) > 0 (if not, that example can be removed). Q(T ),
as seen in equation 2.20, is the set of ground facts derived from T .

The second condition is:

∑
e∈Q(T )

p(e|T ) = 1 (3.13)

In case this second condition does not hold we can normalize the probabili-
ties.

For instance, for the small program P8:

Listing 3.2: Program P8

even (0).

even(s(s(X))) :- even(X).

Each rule will have a probability of 0.5. The probability of each pos-
sible observable fact is computed by SSLD-resolution: p(even(0)) = 0.5,
p(even(s(s(0)))) = 0.25, p(even(s(s(s(s(0))))) = 0.125, . . .

Another consideration is that the evidence could have or not repeated
examples. Also we may cover other facts that are not at the evidence. Ex-
amples not covered by the program are not allowed: if there are examples
not covered by the program, we will add these examples to the program.
Therefore, we have four di�erent combinations:
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1. No repeated examples and E = Q(T ): This is the simplest case, since
Q(T ) covers all examples in E and nothing else, from the set of logic
consequences of Q(T ) we will obtain E, and therefore we do not need
to transmit L(E|T ).

2. No repeated examples and E ⊂ Q(T ): In this case we have two options:
To code E wrt. Q(T ) using the probabilities, or to code the exceptions,
i.e. Q(T ) − E. We select the cheapest option and then we add an
additional bit to inform about our selection.

3. Repeated examples and E = Q(T ): From Q(T ) we can deduce E, but
in this situation some of the elements of E appear more than once,
therefore we need to code the number of times that every element
appears (Ne). This costs

∑
e∈E CodeLength(Ne).

4. Repeated examples and E ⊂ Q(T ): This case is very similar to the
previous one, but here we have that some logical consequences of
T do not appear in E, then we need to code E wrt. Q(T ) using
the probabilities. Another option could be to code the number of
times that every element appears (Ne) where Ne can be 0; this costs∑

e∈E CodeLength(Ne + 1).

Considering these ways of coding the evidence, we select the case that
the evidence contains repeated examples (4), because we can use it for both
stochastic and non-stochastic programs and evidence. It is also easy to code
each example just using their probabilities. To simplify the coding scheme,
we have preferred to consider the case with repeated examples, without dis-
tinguish whether the number of repetitions is high or not. If we had a huge
number of repetitions, a more optimal coding could be found (consider read-
ing [23]).

With this, we �rst need to code the length of the given evidence as
CodeLength(|E|).

Now, we compute the probability of the sample as the product of the
single probabilities: p(E|T ) =

∏
e∈E p(e|T ). The cost of coding this is

− log2 p(E|T ) =
∑

e∈E − log2 p(e|T ). We have to correct this expression
because the order does not matter. Since the order is not important, there
will be some combinatorial term corresponding to the number of possible
permissible syntactically di�erent but semantically equivalent orderings. A
corresponding term should be subtracted from the message length. In this
case, the number of di�erent possible orders is given by the permutations
with repetition of the elements of E.

To sum up, with the evidence we will proceed as follows:
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cost(E|T ) = CodeLength(|E|) +
∑

e∈E − log2 p(e|T )− log2

(
|E|!∏

ei∈Enr
|ei|!

)
where |ei| = number of times that example ei is in E

Enr = the evidence without repeated examples
(3.14)

Here the term log2

(
|E|!∏

ei∈Enr
|ei|!

)
is a reduction because the order does

not matter. Let us see the process using an example. If we have the program
P8 (Listing 3.2) just seen and the evidence is this:

even (0).

even (0).

even (0).

even(s(s(0)).

even(s(s(0)).

Then the cost of coding this will be:

Cost(E|P ) = CodeLength(5) +
∑

e∈E − log2 p(e|P )− log2(
5!

3!·2!)
= 5.3378− 3 · log2 0.5− 2 · log2 0.25− 3.3219
= 5.3378 + 3 + 4− 3.3219 = 9.0959 bits

(3.15)

It is interesting to compare the results of this coding scheme with the
other approaches we reviewed in section 2.6, the Model Complexity (MC)
and the Proof Complexity (PC). Imagine again the program P5 that we have
seen in section 2.5.1, which comes from [23]:

Listing 3.3: Program P5 without probabilities

sum(0,X,X).

sum(s(X),Y,s(Z)):-sum(X,Y,Z).

And the evidence composed by the following set of examples (with no
repetitions):

sum(0,0,0).

sum(0,s(s(0)),s(s(0))).

sum(s(0),s(0),s(s(0))).

sum(s(s(0)),s(s(0)),s(s(s(s(0))))).

sum(0,s(0),s(0)).

sum(s(0),s(s(0)),s(s(s(0)))).

sum(s(0) ,0,s(0)).

To code the evidence, we give the same probability for each rule.

So the cost of L(E|T) using our proposal, the (EC), is for this example
22.77 bits. TheMC cannot be applied for this problem, because the program
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is not �nite. For the PC approach, the cost of coding L(E|T) is 37 bits. It
is clear then the advantages of EC approach against the other two.

Let us then to use an extra example to compare the three di�erent ap-
proaches (our EC, theMC, and the PC). This example appears in [23] and
also in [8], and it is related with reachability in a network. Suppose we have
this knowledge base of which node reaches which other:

linked (0,1).

linked (0,3).

linked (1,2).

linked (3,2).

linked (3,4).

linked (4,5).

linked (4,6).

linked (6,8).

linked (7,6).

linked (7,8).

One vertex can reach another if there is a path between them in the
graph, and we have obtained from this knowledge six di�erent theories that
cover the evidence:

T1 reach(X,Y ).
T2 reach(0, 1). reach(0, 2). reach(0, 3). reach(0, 4).

reach(0, 5). reach(0, 6). reach(0, 8). reach(1, 2).
reach(3, 2). reach(3, 4). reach(3, 5). reach(3, 6).
reach(3, 8). reach(4, 5). reach(4, 6). reach(4, 8).
reach(6, 8). reach(7, 6). reach(7, 8).

T3 reach(X,Y ) : −linked(X,Y ).
reach(0, 2). reach(0, 4). reach(0, 5).
reach(0, 6). reach(0, 8). reach(3, 5).
reach(3, 6). reach(3, 8). reach(4, 8).

T4 reach(X,Y ) : −linked(X,Y ).
reach(X,Y ) : −linked(X,Z).

T5 reach(X,Y ) : −linked(X,Y ).
reach(X,Y ) : −linked(X,Z), linked(Z, Y ).
reach(0, 5). reach(0, 6).
reach(0, 8). reach(3, 8).

T6 reach(X,Y ) : −linked(X,Y ).
reach(X,Y ) : −linked(X,Z), reach(Z, Y ).

The Table 3.1 presents the code lengths of these programs using this
scheme. The �rst �ve columns show the cost in bits of coding each part
of the theories, whose sum is in the sixth column, representing the cost of
coding only T . The seventh column includes the cost of expressing E wrt.
T for the programs.
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T Rules Lexicon Heads Bodies Variables LEC(T ) LEC(E|T )

1 1.52 18.21 3.00 1.52 1.00 34.90 109.00
2 9.00 18.21 177.46 28.87 0.00 233.54 109.71
3 7.37 18.21 87.06 19.19 3.80 135.64 125.34
4 2.52 18.21 6.00 11.04 8.98 46.75 97.44
5 5.93 18.21 43.36 21.36 12.88 101.75 128.74
6 2.52 18.21 6.00 15.29 12.88 25.25 104.17

Table 3.1: Code lengths of the programs and their parts using our approach
EC

Really, the interest now is to compare the cost of coding E wrt. T with
the three di�erent approaches.

The following table compares the evaluation of each theory according to
the Model Complexity approach, the Proof Complexity approach and the
Evidence Complexity approach we are using:

MC T6 T1 T4 T5 T3 T2
PC T1 T4 T6 T5 T3 T2
EC T6 T1 T4 T5 T3 T2

The ranking of theories is from cheapest to most expensive, from left to
right. The results forMC and PC come from [8] and are in Table 3.2.

T LEC LPC/MC(T ) LMC(E|T ) LMC LPC(E|T ) LPC
1 143.9 12.5 60.4 72.9 120.5 133.0
2 343.2 178.5 0.0 178.5 80.7 259.2
3 261,9 111.7 0.0 111.7 96.3 208.0
4 144,2 43.7 47.4 91.1 110.6 154.3
5 230,5 94.5 0.0 94.5 101.9 196.5
6 129,4 53.8 0.0 53.8 106.1 160.0

Table 3.2: Code lengths of the programs using the di�erent approaches. Here
L = L(T ) + L(E|T ).

WhileMC and EC obtain almost identical rankings, LPC di�ers in their
preferences. Both (MC and EC) rank the �correct� theory (T6) as the best,
and T2 as the worst. LPC selects the most general theory T1 as the best
theory. This fact is mainly because LPC needs to always encode E, even
when it can be derived from T . For that reason, it gives preference to short
theories even though being too general. So, in this example we see that EC
inherits the good properties ofMC when O (possible observations) is �nite.

But the good thing is that EC is also applicable to problems with func-
tion symbols, to problems with repeated examples and also for stochastic
programs. We will see more coding and examples in chapter 6.





Chapter 4

The tool

In this chapter we present a software tool that implements the MML
coding scheme seen in the previous chapter. This chapter is organized
as follows: �rst we will present the interfaces of the tool. Next, we
will analyze some problems that have appeared, such as the necessary
canonization of the code, some changes applied to special predicates
in the compiler and also the control of the execution of the user code.
Later on, we will explain how the probabilities have been introduced in
the Prolog language, and how a meta-interpreter is used to determine
the probability of the examples. There is a �nal section dedicated to
free variables, another di�cult problem that we have addressed.

4.1 Interfaces of the software tool

The tool is an interpreted Prolog source �le that needs to be executed in the
Yap Prolog compiler, which load also some extra available libraries available
in that compiler.

The results are returned in the standard output (stdout).

The tool receives the data to analyze from �les referenced in the command
line. It will return the cost of each combination in the Cartesian product of
two di�erent kinds of �les that we could use: the program and the evidence
�les. The content of each kind of �les is:

• The program or programs to analyze (at least one program is compul-
sory).

• The evidence. It could be composed by di�erent �les also, The di�erent
examples sources must be compatible as evidence with the di�erent
programs.

45
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stdout

mml_cost

arguments
stdin

p1 .. pn

program

e1 .. em+
evidence

kb1..kbq+
knowledge 

base

kb1..qp3 e1 ...

kb1..qp3 e2 ...

kb1..qp3 em ...

...

kb1..qpn e1

kb1..qpn e2

kb1..qpn em

kb1..qp2 e1

kb1..qp2 e2

kb1..qp2 em

kb1..qp1 e1

kb1..qp1 e2

kb1..qp1 em

kb1..qstdin e1

kb1..qstdin e2

kb1..qstdin em

Figure 4.1: Combinations generated by the tool from inputs

• The knowledge base. This kind of �les is not going to be included in
the Cartesian product to generate the results. Despite the others, if
you introduce more than one KB source, they'll be merged together.

In the Figure 4.1, we can see that if we have p1 . . . pn items considered
as programs, combined with the e1 . . . em di�erent evidences, we obtain the
matrix of n×m outputs. If there is also (or only) an input program in the
stdin, it will also be combined with the m evidence sets.

For instance, if we have these command line arguments:

cat p4 | ./mml_cost p1 p2 p3 --examples=e1,e2 --kb=kb1,kb2

We will have eight di�erent outputs from the tool (see Table 4.1) using the
di�erent program sources (three as arguments p1,p2 and p3, and also in the
standard input p4) with the example �les (e1 and e2). The knowledge base
will be considered in each one of those eight combinations, and it will contain
the direct merge of kb1 and kb2.

Let us introduce some screenshots of the tool in a Windows environment
as an example: the Figure 4.2 shows the help that the tool gives to us if we
do not use any argument.

Figure 4.3 shows the results of an execution with a program which has
evidence and knowledge base. If we had introduced a second program in the
command line (compatible with the evidence and knowledge base done) then
a second evaluation for that program would have done.

Notice also that the tool analyzes the correctness of the user code (P , B
and E). So, a warning has been issued here due to not assigned variables in
the user code.
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Program Examples KB

#1 stdin (p4) e1 kb1+kb2
#2 stdin (p4) e2 kb1+kb2
#3 p1 e1 kb1+kb2
#4 p1 e2 kb1+kb2
#5 p2 e1 kb1+kb2
#6 p2 e2 kb1+kb2
#7 p3 e1 kb1+kb2
#8 p3 e2 kb1+kb2

Table 4.1: Example of number of outputs of the tool using a combination of
di�erent �les

Figure 4.2: Calling the tool without arguments

Figure 4.3: Calling the tool with a program

There is also a Web wrapper for the tool for those without a console
or an installation. All the options available from the command-line are
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also available at http://users.dsic.upv.es/~flip/mml-cost, whose main
page is shown in Figure 4.4.

Figure 4.4: Initial main page of the Web based version

The results are shown in Figure refscreenWeb2. They are easier to un-
derstand in this way than for the console application, especially when you
introduce more than a program source or more than an example �le, because
the table returned allows us to easily compare the results between them.

There are some parameters that alter the results given by the tool, de-
scribed in section 4.5. They allow us to debug the tool or to format the
results. These are fully explained in Appendix D.3.

4.2 Transformations of the user code

In this section we describe some preprocessing and transformations that we
need to apply to the user code.

4.2.1 Canonizing the input program

The special predicate ;/2 allows us to synthesize in a single rule many dis-
junctions. This makes the code more readable. For example, if we have:

http://users.dsic.upv.es/~flip/mml-cost
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Figure 4.5: Results screen of the Web-based version

1/5 :: p(_):-a,b,c;d,e,(f;g).

The coding scheme seen in chapter 3 could not handle this. In order to solve
this, we could untie it totally in three equivalent rules. Notice that we have
divided the probability uniformly:

1/15 :: p(_):-a,b,c.

1/15 :: p(_):-d,e,f.

1/15 :: p(_):-d,e,g.

When Yap Prolog stores a rule, it is done in the merged form, and the only
solution was to transform it after the user code was loading in a new module
where we have replaced the merged rules in new ones with no presence of
the ;/2 predicate. But this has not been an easy task: when we access the
IDB rules using the predicate clause/2, the assigned variables in the head
and in the body of a rule could not lose the association, so we must process
each rule Header:-BodiesWithSemicolon together in any moment to avoid
the creation of new variable names and lose the relationship between head
and bodies:

manage(Head ,BodiesWithSemicolon): -(.....)

manage( p(X,Y), (X>0,Y is 5;X<0,Y is 3) ).

% now Prolog will generate a call in the form:
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% manage( p(_A,_B), (_C >0,_D is 5;_C <0,_D is

3)

% So a possible solution could be:

manage(HeadAndBodiesTogether): -(.....)

manage( ( p(X,Y):-X>0,Y is 5;X<0,Y is 3) ).

% manage( p(_A,_B), (_A >0,_B is 5;_A <0,_B is 3)

But, at the same time we were trying to transform a rule dividing it by
its disjunctions, we also need the number of appearances of each di�erent
variable. Storing it was also di�cult without loss of the original name (each
time Prolog makes a call or a matching, it assigns new variable names), so
the decision was to transform the rules and their symbols and variables to
strings, analyze them using a grammar and the Prolog predicate phrase/2

and store the result in other separated lists with the labeled information we
need: total number of appearances of variables, function symbols, number of
free variables, etc. Finally, when the process is done and the new probabilities
are assigned, we create a new module with the transformed rules generated
from the �nal transformed list of strings.

Another transformation we are going to do is to convert the rules to polish
notation. Fortunately we have the format_to_chars/3 with the special
control sequence '�k' that uses the write_canonical/2 predicate:

? write_canonical( 3+2+p(3,5) ),nl.

p(+(3 ,2) ,[]).

We have also decided to modify lists by replacing the predicate ./2 and
the function symbol for the empty list []. There are two reasons for doing it:
with this transformation, we will also consider the appearances of the func-
tion symbol of the empty list, and it will be easier to divide the disjunctions
and to go through the items of the body of the rules.

4.2.2 Solving the problem with predicate **/2

Yap Prolog has some particular interpretations about the predicate **/2 that
could interfere with some user code that comes from other Prolog compilers
or dialects.

Suppose that we have X is Y**2 (one of the power function symbols to
obtain Y 2, because we have also the equal predicate �/2). If we ask Yap
Prolog about 9 is 3**2 the answer will be surprisingly false.

This is because the predicate **/2 returns always a real number instead of
returning the data type of the operation (however, the predicate �/2 returns
the correct one). Float exponentiation is needed for (very) large integers, so
the developers preferred to create a new predicate �/2 returning the result
in the same kind of values used (real if you are using a real numbers, integer
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if you are using integers), instead of changing the existing one, since it has
been used for exponentiation since the 80's.

But we preferred the other behavior, so during the loading of user code,
the occurrences of **/2 by �/2 in order to avoid this misinterpretations.

4.2.3 Avoiding direct execution of objectives

Finally, another thing we are going to transform during the loading of the
program is the execution of objectives (clauses without a head). By default,
they are executed immediately after loading the �le and they could a�ect
also our program (generating for example an abnormal failure using the
prede�ned predicate halt/1 that will break our analysis of the user code).

The solution has been to create a new dummy head for those objectives
with the dummy predicate mml-objective/0, transforming them in a normal
rule:

user:term_expansion( ( :- Body ) , DefGoal ) :-

DefGoal = ( mml_objective :- Body ).

If we completely remove them, then the analysis of this code is not done
and we do not have really the MML cost of the whole program. Refurbish-
ing the code adding a head without variables and predicate is not going to
signi�cantly increase the cost and at the same time we are going to have the
complete code analyzed.

4.3 Introducing probabilities in Prolog

The Prolog language is not thought to work with stochastic logic, and also
our purpose with this tool is not to have a full implementation of a stochastic
Prolog compiler. The way in which we are going to introduce the probabili-
ties will be a pre-processing of the user code in which we will transform the
probabilities in predicates attached as arguments inside the rules.

4.3.1 The pre-process of the user code

The Yap Prolog compiler has the possibility of enriching the number of oper-
ators with new ones, and also to pre-process all terms read when consulting
a �le. We are going to take the advantage of these characteristics of Yap
Prolog in the same way it has been used by the developers of ProbLog [9].
With a special binary operator :: with higher priority than the same binary
operator :-, we will be able to pre�x all the clauses with a real number that
represents the probability of that rule, in a clear and nice notation:

0.33434 :: Head :- Body.

0.1 :: Head.
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These probabilities are really stored internally in the body of the clause
inside the IDB of Yap Prolog, transforming the previous user code in this:

Head :- mml_prob (0.33434) ,Body.

Head :- mml_prob (0.1).

That is the reason to forbid the use of the predicate mml_prob/1 in the
user code loaded, and the same with the predicate ::/2. It is also important
to normalize the probabilities later. The user could use any real number
higher than zero as a value for the probability of a rule. If the sum of
probabilities for all the rules with the same predicate is greater than 1, they
are being replaced later by the correct real number that makes the sum of 1
for all the probabilities for the same predicate.

There are two reasons that justify the way we store the probabilities in
the IDB. The �rst one is involved with the access to that number. Since
we need to manage many rules, it is easier to always have that value in the
body, especially if there are more rules with the same predicate name.

If we have two rules with the same predicate header (and di�erent prob-
abilities), and we do not store the probability in the body, each time we need
to use the probability we will need to analyze which is the rule identifying
by the body, with the corresponding waste of time.

Another reason is for compatibility with the code for non-probabilistic
rules: if a rule does not have a probability, its format was (Head :- Body),
or in polish notation :-(Head,Body), that is rather di�erent to

::(Probability,:-(Head,Body)).

So transforming the stochastic rules to the same notation of non-stochastic
ones make simpler the coding.

4.3.2 Management of the repetitions in the evidence

In the example �le (the evidence) we could use a new binary operator #/2
(again with higher priority than :- but incompatible with ::), created to
avoid the necessity of repeating the same example many times. So, if we
have this evidence:

color(blue).

color(blue).

color(red).

color(red).

color(red).

color(green).

We could synthesize this as:
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2 # color(blue).

3 # color(red).

color(green).

And these repetitions are stored internally in the same way we have
stored the probabilistic values. We pre-process the examples �les when they
are loaded in our program replacing the repetitions and introducing them as
the �rst term of each fact of the evidence. So, in the previous example, after
loading it in our tool, it will be stored in the IDB as follows:

color(blue):-mml_rep (2).

color(red):-mml_rep (3).

color(green).

As before, if a fact has no repetitions, it is stored without body (notice
that our facts in the evidence could be transformed as rules with body, but
this is not going to a�ect our evaluation of the cost).

If the user has decided not to use the notation with the operator #/2 and
has introduced repeated examples as the �rst example (where color(blue)
appears twice), then it is not a problem because during the loading of the
code this is also detected , remaining only one of each di�erent with the
correct term of mml_rep/1.

It is important to only allowing the use of positive integer numbers for
repetitions: the program will fail with any other value.

4.3.3 How we handle real and rational numbers

Our probabilities could be inserted in the program using only real numbers.
In order to insert a probability of 1

3 in a rule, it is necessary to use 0.33333,
if our precision is de�ned with 6 signi�cant decimal positions. The reason
for not allowing rational numbers directly is to sustain a compatibility of
the code with other previous approaches to stochastic programs. So if the
program to analyze is going to have a 1

3 probability for each clause, it will
be necessary to use 0.33333. It is also possible to use proportional amounts
that the tool will normalize. For example, in the next program the value of
1 will be transformed to 1

3 in each rule:

1 :: p(a).

1 :: p(b).

1 :: p(c).

Even though Yap Prolog has the possibility of managing rational numbers
with the predicates rationalize/1, rational/1 and the operator rdiv/2,
the way it is implemented could produce some strange results, as we see in
the following examples:

?- A is rational(0.25).
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A is 1 rdiv 4

?- A is rational(0.1).

A = 3602879701896397 rdiv 36028797018963968

?- A is rationalize(0.1).

A = 1 rdiv 10

The documentation of the compiler says that the function rational/1

returns a �oating point number, the rational number that exactly represents
the �oat. As �oats cannot exactly represent all decimal numbers the results
may be surprising. The function rationalize/1, unlike the �rst one, is only
accurate within the rounding error of �oating point numbers, �generally�
producing a much smaller denominator. However, since the denominator is
just the most important part of the rational numbers that we are going to
use in the estimation of the cost, �nally our own implementation for rational
numbers was used.

In order to approximate a real number to the nearest rational one, there
are many di�erent techniques [16]. The three simplest ones are this:

1. Removing common factors from the fractions. It is always correct but
unable to manage 0.33333 in order to get 1/3, because it will be instead
approximated by 33333/100000 (that is actually exactly the equivalent
to our �oat number, but not an approximation, as we wanted, and also
a bit ine�cient).

2. By brute force (sequential testing). If we have the real number R:

(a) We obtain Q as the division of 1
R .

(b) Then the �oat number R is transformed to n
Q·n , where n = 1...k,

till we have Q · n− round(Q · n) < Precision.

This method requires more steps, but it is more precise.

3. And the fastest method, which is the one implemented here: decimal
inversion, which is not easy to understand. First we isolate the frac-
tional part of the number, because we need only the decimal part to
get the denominator through inversion. After trimming the number,
we invert the fractional part and we proceed using this pseudo-code:

getDenominator(num) {

var decimal = num_int(num);

if (Math.abs(decimal)<Precision)

return 1;

else {
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num = 1/ decimal;

return num*getDenominator(num);

}

}

With this function we will obtain the denominator, and despite we have
only the fractional part of the original number, there is no di�erence:
Trimming the integer part will not a�ect the denominator q, because
the denominator for the number and the decimal are the same. A
number 1.4 is represented as 7

5 before trimming, and after trimming
and leave only the decimal part, it is 2

5 , so the denominators for both
are the same.

4.3.4 Euler's Totient and the F function

In chapter 3, we developed the basics of the cost of coding some aspects of
the programs. There were two di�erent functions that we needed to develop
in Prolog because they were not part of any library:

• The Euler's Totient (as seen in Appendix A.2) needs the Phi function
(also known as Euler's Phi function or ϕ(n)) used in the coding of the
numerators of rational numbers.

It is de�ned for a given integer number m as the amount of numbers
from 1 to m − 1 without common divisors with m. If m = 1 then
the Euler's Totient is de�ned as 1 (instead of 0). The formula that
represents this is:

ϕ(n) = n ·
∏
p|n

(1− 1

p
) (4.1)

Where the product is over the distinct prime numbers dividing n (
∏

p|n
means that p iterates over prime numbers in the range 1 . . . n). A direct
(but non-e�cient) implementation for obtaining this with Prolog:

totientPhi(Number ,Result) :-

totientPhi(Number ,Result ,1,0).

totientPhi( _, 1, Acum , Result):-

Result is Acum + 1.

totientPhi( M, N, Acum , Result):-

( coprime(M,N),

NewAcum is Acum + 1

;

NewAcum is Acum

),
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NewN is N - 1,

totientPhi( M, NewN , NewAcum , Result).

But a more e�cient implementation was the following:

totientPhi(Number ,Result) :-

totientPhi(Number ,Result ,1,0).

totientPhi(M,Phi ,M,Phi).

totientPhi(M,Phi ,K,C) :-

K < M, coprime(K,M),!,

C1 is C + 1, K1 is K + 1,

totientPhi(M,Phi ,K1,C1).

totientPhi(M,Phi ,K,C) :-

K < M, K1 is K + 1,

totientPhi(M,Phi ,K1,C).

• And the other complex thing was to obtain the special function used
for coding the variables of the rules (described as �function F� in the
code), which is obtained from the number of variables nv:

V ariableProd(d, nv) = (nv)d −
∑
i=1

nv − 1

(
nv
i

)
· V ariableProd(d, i)

(4.2)

• Obviously the binomial coe�cient of two numbers nv and i or
(nv

i

)
was

not implemented in Prolog, so the code used for this was:

binomialCoefficient(N,N,Result):-

!,factorial(N,Result).

binomialCoefficient(N,K,Result) :-

N>=K,

NMinusK is N-K,

factorial(NMinusK ,FactNMinusK),

factorial(N,FactN),

factorial(K,FactK),

Result is ( FactN / (FactK*FactNMinusK))

.

4.4 Analyzing the evidence

4.4.1 Overlapping heads

To obtain the probability of an example, the simplest method could be to use
the Prolog interpreter, and if it success, to use then the labeled probability
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of the rule to recover the probability. Since there can be di�erent successful
paths in the resolution (because di�erent rules can be used), this is not
enough for us and will need to solve using a di�erent mechanism: a meta-
interpreter, adapting the concepts of the well-known Vanilla meta-interpreter
to our needs.

The simplest possible meta-interpreter has only one clause which directly
calls Prolog interpreter: solve(A):-call(Goal). But it is just the direct
execution of code in Prolog what we want to avoid.

The Vanilla meta-interpreter is a meta-interpreter for Logic Program-
ming (and then, for Prolog) speci�ed in rules of Logic-Programming (so, in
Prolog). It was �rst introduced by [29] in 1982, and extended with the years.
It will allow us to intercept the solving procedure as we are going to describe.
The core of the Vanilla meta-interpreter is this:

Listing 4.1: Vanilla meta-interpreter used to estimate evidence

builtin(A is B).

builtin(A = B).

builtin(A >= B).

builtin(read(X)).

builtin(A > B).

builtin(A < B).

builtin(A =:= B).

builtin(A =< B).

builtin(functor(T, F, N)).

builtin(write(X)).

solve(true):- !.

solve((A,B)) :-!, solve(A), solve(B).

solve(A):- builtin(A), !, A.

solve(A) :- clause(A, B), solve(B).

The meta-interpreter shown in Listings 4.1 allows us to generate the SSLD-
tree of execution of a goal without arrive to execute the Goal in the Prolog
interpreter. There is no call to call/1, so we are not going never to exe-
cute any predicate of the program we are analyzing. Instead of that, we are
unfolding the SSLD-tree, obtaining in each step all the di�erent branches,
launching again till we success with all the expanded terms, and later sum-
ming the returned probabilities of the branches.

To obtain the probabilities then, we only will need to add to the Vanilla
meta-interpreter some code able to catch and sum the values we have stored
in the clauses of the program with the predicate mml_prob/1:

solve( ( mml_prob(Number), Other ), ResultProb ):-

number(Number),!,
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solve( Other , Branch ),

ResultProb is Number * Branch.

Later, in a second visit to the generated tree of probabilities, we will
normalize the values (because the probability of each predicate must be 1).

4.4.2 Executing the rules when solving an example

There are some prede�ned predicates in Prolog that could a�ect the behavior
of the calculations. For instance, the debug/0 predicate will be executed and
it interacts with the same MML coding.

So, since those predicates involved with debugging con�ict with our pur-
poses (their presence would increase the information and then the cost for
the MML coding), we will ignore them during the execution when we are
executing the evidence to �nd its probability.

During that process of executing the rules of the program to analyze an
example, we need to analyze whether each term to execute is or is not a pre-
de�ned predicate (using predefined_predicate/2 from Yap Prolog). If it
is, they will be discarded. Once we have discarded those predicates, the next
step is to execute the others using with_output_to_chars/2, used to send
the output of the execution of the goal to a string instead to current_output:

executeTransparently(debug):-!.

executeTransparently ((spy _)):-!.

[...]

executeTransparently( Term ):-

copy_term(Term ,NewCopy),with_output_to_chars(

NewCopy ,_).

With this technique, all these predicates are ignored and not executed
during the evaluation of examples:

• debug/0, nodebug/0, which switches the debugger on/o�.

• spy/1, nospyall, nospy/1, which set/unset spy-points on predicates.

• trace/0, notrace/0, which switch on/o� the debugger and also implies
the same with the tracing.

• leash/1, which sets leashing mode to certain value.

• source/0, no_source/0: these two predicates are not for debugging,
but when we analyze the program we need to ensure that we are ob-
taining its source. If in the middle of the code a no_source appears,
the tool will have no more access to the source. To avoid this, we block
that predicates also.

• halt/1 and halt/0, to abort the execution of program.
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The schema of execution of items of clauses is shown in Figure 4.6.

predefined_predicate(_,Term)

copy_term(Term,B),

with_output_to_chars(B,_)

Is in the list of debug predicates?

?

Use again the Vanilla 
meta-interpreter to obtain new 

derivations

Yes

No

New 
terms

Ignore it

?

No

Yes

Figure 4.6: Execution schema to check for debug and execution of prede�ned
predicates

4.4.3 Obtaining the probabilities of the root predicates

The �rst step to estimate the probability of a fact is to know the value of all
the facts with the same functor name, because we need to normalize. That
is:

p(3). --> p(X).

q(3,1). --> q(X,Y).

Till now, we have built a Vanilla meta-interpreter to estimate the proba-
bility of the example (for instance p(3)). Unfortunately, this meta-interpreter
is not going to be useful for estimate p(X), because we need to control some
extra problems in the solving process with only variables and no assignments.

As we introduced in subsection , the approach has a maximum depth limit
used in the go round SSLD-derivations used to estimate the probability of
the root predicates (with the success branches labeled with the probabilities).
This is because we can have in�nite SSLD-derivations in some programs.

The arbitrary value used in the tool is 20 (it could be changed using the
modi�er ��maxrecursion), considered enough to avoid the loss of successful
normal branches of the program.

But there is another limitation involved with inequalities and equality
predicates. For instance, if we have this two predicates, describing relation-
ships in an intensional way:

p(X):-X==a;X\=b.

q(X):-X>0.
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Our Vanilla meta-interpreter will fail with both predicates, due to the im-
possibility of assign all the values to the variable if we are deriving p(X1)

or q(X1) . It is possible at least to solve p/1 with the signature. But q/1
represents the list of all positive numbers, so the probability of the predicate
also it will be problematic.

In our tool, the equalities and inequalities of the bodies of the rules are
problematic and they will make not to solve covered examples of a program:
they are not going to success. Our Vanilla meta-interpreter does not know
how to obtain values to instantiate if there are equalities and inequalities
like the one described in the example.

We also need in this second meta-interpreter to control the apparition
of new free variables in the rule we are analyzing. In each branch of the
SSLD-tree our meta-interpreter must check if there are new free variables
and compute them in the probability of the step.

So, the solution will be to use a di�erent Vanilla meta-interpreter en-
riched to control both free variables and predicates that could fail (all the
comparisons).

4.4.4 Repeated predicates in the body of the rule without

reduction

There is also another problem not really related with free variables, but with
a similar treatment. We can have an in�nite SSLD-tree if in the body of a
rule if it appears the same predicate without any reduction in the body: it
is an odd situation, because we cannot refute this program and it will also
fail in an interpreter. For example:

0.4 :: r(A,B):-r(A,B),B > 0.

0.6 :: r(A,B):-B is A.

Here the predicate r/2 appears again in the �rst rule at the body, so we have
an in�nite left-recursion. In this situation, the tool will fail with an error
(the same that it will happen if we execute this program with an interpreter),
because it has rules without sense (a non-terminating program).

4.4.5 The problem with factorial

In our development of the tool, we looked for a mathematical library able
to manage huge numbers. Despite the chosen library GMP1 seemed to �t
our requirements, Yap Prolog has some problems determining the cost of the
evidence, which we have seen in the previous section 3.1.4:

1GMP (GNU Multiple Precision Arithmetic Library, http://gmplib.org) is a free
library for arbitrary precision arithmetic, operating on signed integers and �oating point.
Theoretically, there is no practical limit to the precision except the ones implied by the
available memory in the machine GMP runs on.

http://gmplib.org
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cost(E|T ) = CodeLength(|E|) + log2 p(E|T ) =
∑

e∈E − log2 p(e|T )− log2

(
|E|!∏

ei∈Enr
|ei|!

)
where|ei| = number of times that example ei is in E

(4.3)

The problem is just the term log2

(
|E|!∏

ei∈Enr
|ei|!

)
. If we have for instance

this evidence:

500 # p(0).

300 # q(1).

100 # r(2).

where we have a total of 900 examples (many of them repeated), let us
see what happens when we estimate the problematic term using inside Yap
Prolog using the normal operators:

log2

(
|E|!∏

ei∈Enr
|ei|!

)
= log2

( |900|!
500! 300! 100!

)
= log2

(
7.7105 101980

1.220 101134 300! 100!

)
(4.4)

The real representation of these big numbers is as integer values, but
when the compiler tries to calculate the division, we obtain an in�nite result.

We renounce to solve this problem for any example �le with more than
around seven hundred examples inside. We will solve the problem for a range
between two hundred and seven hundred examples. Also, we will issue an
error whenever the maximum value is exceeded.

We will proceed as follows. In all the evidence sets, the fraction that
causes the problem has a factorial in the numerator that could be simpli�ed:

since always a < b a!
b! = a . . . b

for instance 15!
10! = 15 14 13 12 11 = 360360

(4.5)

The other thing we are going to do is to apply at the same time the
multiplications for the factorial in the denominator and in the denominator,
inside the recursive function:

a!
b! = factorial(a,b) = a

b factorial(a-1,b-1)

Both techniques together give us the possibility of having a big numerator
before applying the division by a big denominator, making a division each
time we apply a multiplication, and also simplifying the operations.
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4.5 About the cost of stochastic programs

When the tool determines the cost of the probabilities of each rule in a
stochastic program, by default it only codes the probabilities of the necessary
clauses, since probabilities are assumed to be normalized. This is the coding
explained in the previous chapter 3.1, but there are also two more possibilities
that are available in the tool using the modi�er �rulesprob=x.

With an example it will be easier to understand the di�erences between
them. If we have this simple program:

0.5 :: p(X):-X>0,q(X). [1]

0.5 :: p(X):-X<0,r(X). [2]

1 :: q(3). [3]

The three options are:

• The default behavior, in which we only sum up the cost of the prob-
abilities of the necessary clauses (without any option, or using the
command-line modi�er ��rulesprob=zerobitslast). We will code
the probability 0.5 of rule [1] only (the probability 0.5 of rule [2] is
unnecessary because it is the last rule of p/1. Also, the probability of
rule [3] is not necessary because it is 1.

• Using the criterion of ignoring only the probabilistic cost of the last
rule of each predicate (�rulesprob=notlast), we will sum up [1] and
[2], even if q/1 has a probability of 1.

• Using the option to code every probability (�rulesprob=all), then the
three probabilities of the rules will be summed up.

4.6 The treatment of the knowledge base

As we have described in section 3.1.5, the knowledge base is not really part
of the model we want to analyze, and since this previous knowledge is shared
between sender and receiver, we do not need to transfer it.

But there are some situations in which maybe the user will �nd it easier
to have a set of common code for di�erent models. The common code could
then be seen as the knowledge base, and the di�erent models as the programs.
The tool will then estimate the cost of the common code as the knowledge
base, and it will report it in the results separately.

This option is enabled with the command-line option ��kb=files. The
tool will check that no rule in the knowledge base will appear also de�ned
with the same predicate name in the program (and the same in the other
direction).
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Examples

In order to see this work in practice, we will give some examples where
we will apply the MML coding to evaluate and compare several theories
using our tool.

We are going to include three small examples in this chapter.
The chapter starts addressing the classical well known problem of

animal classi�cation, using di�erent theories, and we will use the tool
to compare them and select which one is the most optimal (in terms
of the MML principle).

There is a second example where we address a language analysis
problem and the possibility of using the MML principle to identify the
authorship of a document by determining the model of how a user uses
that language.

Finally, the last example also shows the use of probabilities: a

probabilistic graph, and a closer look at how the tool works.

5.1 Animal classi�cation

This classical logical problem involving classi�cation of animals was �rst used
in 1985 by Winston and Horn [59], and it is a well-known example in ILP.
We have eight known attributes of animals, here shown as mode declarations
used in Progol:

has_milk (+ animal).

has_gills (+ animal).

has_eggs (+ animal).

has_gills (+ animal).

habitat (+animal ,# habitat).

has_legs (+animal ,#nat).

homeothermic (+ animal).

has_covering (+animal ,# covering).

63
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And we also have a set of facts of positive and negative examples (the
negative ones are written as objectives, not facts):

Listing 5.1: Evidence (Animal classi�cation)

% 16 positive examples:

class(dog ,mammal).

class(dolphin ,mammal).

class(platypus ,mammal).

class(bat ,mammal).

class(trout ,fish).

class(herring ,fish).

class(shark ,fish).

class(eel ,fish).

class(lizard ,reptile).

class(crocodile ,reptile).

class(t_rex ,reptile).

class(snake ,reptile).

class(turtle ,reptile).

class(eagle ,bird).

class(ostrich ,bird).

class(penguin ,bird).

% 42 negative examples (used only to generate models):

:-class(trout ,mammal).

:-class(herring ,mammal).

:-class(shark ,mammal).

:-class(lizard ,mammal).

:-class(crocodile ,mammal).

:-class(t_rex ,mammal).

:-class(turtle ,mammal).

:-class(eagle ,mammal).

:-class(ostrich ,mammal).

:-class(penguin ,mammal).

:-class(dog ,fish).

:-class(dolphin ,fish).

:-class(platypus ,fish).

:-class(bat ,fish).

:-class(lizard ,fish).

:-class(crocodile ,fish).

:-class(t_rex ,fish).

:-class(turtle ,fish).

:-class(eagle ,fish).

:-class(ostrich ,fish).

:-class(penguin ,fish).

:-class(dog ,reptile).

:-class(dolphin ,reptile).

:-class(platypus ,reptile).

:-class(bat ,reptile).

:-class(trout ,reptile).
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:-class(herring ,reptile).

:-class(shark ,reptile).

:-class(eagle ,reptile).

:-class(ostrich ,reptile).

:-class(penguin ,reptile).

:-class(dog ,bird).

:-class(dolphin ,bird).

:-class(platypus ,bird).

:-class(bat ,bird).

:-class(trout ,bird).

:-class(herring ,bird).

:-class(shark ,bird).

:-class(lizard ,bird).

:-class(crocodile ,bird).

:-class(t_rex ,bird).

:-class(turtle ,bird).

Negative examples are use by ILP systems to infer the model, but we are
not going to use them for MML evaluation.

The purpose is to learn the class of those animals using the predicate
class/2, where its �rst argument is the animal, and the second argument
the result from the set of classes {mammal,fish,reptile,bird}.

The knowledge base we are going to use is this:

Listing 5.2: Knowledge base (Animal classi�cation)

has_covering(dog ,hair).

has_covering(dolphin ,none).

has_covering(platypus ,hair).

has_covering(bat ,hair).

has_covering(trout ,scales).

has_covering(herring ,scales).

has_covering(shark ,none).

has_covering(eel ,none).

has_covering(lizard ,scales).

has_covering(crocodile ,scales).

has_covering(t_rex ,scales).

has_covering(snake ,scales).

has_covering(turtle ,scales).

has_covering(eagle ,feathers).

has_covering(ostrich ,feathers).

has_covering(penguin ,feathers).

has_legs(dog ,4).

has_legs(dolphin ,0).

has_legs(platypus ,2).

has_legs(bat ,2).

has_legs(trout ,0).

has_legs(herring ,0).

has_legs(shark ,0).

has_legs(eel ,0).

has_legs(lizard ,4).

has_legs(crocodile ,4).
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has_legs(t_rex ,4).

has_legs(snake ,0).

has_legs(turtle ,4).

has_legs(eagle ,2).

has_legs(ostrich ,2).

has_legs(penguin ,2).

has_milk(dog).

has_milk(dolphin).

has_milk(bat).

has_milk(platypus).

homeothermic(dog).

homeothermic(dolphin).

homeothermic(platypus).

homeothermic(bat).

homeothermic(eagle).

homeothermic(ostrich).

homeothermic(penguin).

habitat(dog ,land).

habitat(dolphin ,water).

habitat(platypus ,water).

habitat(bat ,air).

habitat(bat ,caves).

habitat(trout ,water).

habitat(herring ,water).

habitat(shark ,water).

habitat(eel ,water).

habitat(lizard ,land).

habitat(crocodile ,water).

habitat(crocodile ,land).

habitat(t_rex ,land).

habitat(snake ,land).

habitat(turtle ,water).

habitat(eagle ,air).

habitat(eagle ,land).

habitat(ostrich ,land).

habitat(penguin ,water).

has_eggs(platypus).

has_eggs(trout).

has_eggs(herring).

has_eggs(shark).

has_eggs(eel).

has_eggs(lizard).

has_eggs(crocodile).

has_eggs(t_rex).

has_eggs(snake).

has_eggs(turtle).

has_eggs(eagle).

has_eggs(ostrich).
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has_eggs(penguin).

has_gills(trout).

has_gills(herring).

has_gills(shark).

has_gills(eel).

This makes a total number of eighty rules in the knowledge base (Listing
5.2). From here, and an ILP system like Aleph or Progol generates the
learned hypothesis that �ts better with the data:

Listing 5.3: Base model (Animal classi�cation)

class(snake ,reptile).

class(A,mammal) :- has_milk(A).

class(A,fish) :- has_gills(A).

class(A,bird) :- has_covering(A,feathers).

class(A,reptile) :- has_covering(A,scales), has_legs(A,4).

With this theory, all the positive examples are covered, and none of the
negative.

Let us obtain more theories. Using TopLog (another ILP solver), it is
possible to obtain more models using a boosted classi�er (and obviously,
losing precision from the evidence). We have selected three only, and added
a fourth:

1. The �rst one, which classi�es two negative examples as positive (its
accuracy is 96.55%):

Listing 5.4: Model 1 (Animal classi�cation)

class(A,mammal) :-

has_milk(A).

class(A,fish) :-

has_gills(A).

class(A,reptile) :-

has_covering(A,scales).

class(A,bird) :-

has_covering(A,feathers).

Since we have not considered the negative examples in our analysis,
this will not a�ect the coding.

2. Another model has an accuracy of 92.45%, and also it does not cover
all the positive examples. So, we will complete the theory with the �ve
examples which are not covered:

Listing 5.5: Model 2 (Animal classi�cation)
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class(A,mammal) :-

has_milk(A).

class(A,fish) :-

has_gills(A).

class(A,bird) :-

has_covering(A,feathers).

class(lizard ,reptile).

class(crocodile ,reptile).

class(t_rex ,reptile).

class(snake ,reptile).

class(turtle ,reptile).

3. There is another possible model with less accuracy (71.43%). This
needs to add a positive example not covered by the model. That is:

Listing 5.6: Model 3 (Animal classi�cation)

class(A,mammal) :-

has_milk(A).

class(A,fish) :-

has_gills(A).

class(A,bird) :-

has_covering(A,feathers).

class(A,reptile) :-

has_covering(A,scales),

habitat(A,land).

class(turtle ,reptile).

4. We have added a fourth model with an accuracy of 96.55%, which does
not cover any negative example.

Listing 5.7: Model 4 (Animal classi�cation)

% class(snake ,reptile).

class(A,mammal) :- has_milk(A).

class(A,fish) :- has_gills(A).

class(A,bird) :- has_covering(A,feathers),habitat(A,land)

.

class(A,reptile) :- has_covering(A,scales), has_legs(A,4)

.

Let us now compare the base model and the three other models we have
generated 1:

1In the table, the ∞ of cost for examples is not returned by the tool. It only raises
a warning indicating that there is evidence not covered by the program and returns the
value without considering the negative examples. The returned values are 83.54547 for
Model 1, 86.79624 for Model 2, and 101.25119 for Model 3.
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Model Base Model Model 1 Model 2 Model 3 Model 4

Total cost 1402.42929 1358.30051 1424.51142 1403.45611 1381.12335
Program 128.95529 101.50541 164.46556 128.95529 121.91262
Rules 5.33789 4.51929 6.76870 5.33789 4.51929
Lexicon 21.18376 21.18376 21.18376 21.18376 21.18376
Heads 54.72518 39.81679 104.40455 54.72518 39.81679
Bodies 47.70847 35.98557 32.10854 47.70847 56.39278
Vars 0.00000 0.00000 0.00000 0.00000 0.00000
Examples 144.47527 127.79637 131.04713 145.50209 130.21200
Knowledge Base 1128.99873 1128.99873 1128.99873 1128.99873 1128.99873
No. of E+ covered 16/16 16/16 16/16 16/16 14/16
No. of E− covered 0/42 2/42 0/42 0/42 0/42
Accuracy 58/58 56/58 58/58 58/58 56/58

100.00% 96.55% 100.00% 100.00% 96.56%

Table 5.1: Comparison of cost between models covering all the positive evi-
dence

In accordance to the results, in terms of total cost, the best one seems
to be Model 1. However, we see that models 1 to 3 are inconsistent with
some negative examples (so the in�nite value with examples in the table,
because not all covered evidence is part of the program), so the only possible
direct comparative using the MML principle is between models 1 and 4. Like
model 4 takes the advantage of having a rule less (despite having extra cost
in the body of the last rule but one), it has the best cost (despite the loss of
accuracy).

We can also relax the models 2 and 3 removing the rules to cover explicitly
positive evidence, to obtain these two new variants:

Listing 5.8: Model 2 modi�ed (Animal classi�cation)

class(A,mammal) :-

has_milk(A).

class(A,fish) :-

has_gills(A).

class(A,bird) :-

has_covering(A,feathers).

Listing 5.9: Model 3 modi�ed (Animal classi�cation)

class(A,mammal) :-

has_milk(A).

class(A,fish) :-

has_gills(A).

class(A,bird) :-

has_covering(A,feathers).

class(A,reptile) :-

has_covering(A,scales),

habitat(A,land).
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So, if we recalculate after the removal of the positive examples, the results
are these 2:

Model Base Model Model 1 Model 2 Model 3 Model 4
modi�ed modi�ed

Total cost 1402.42929 1358.30051 1290.35762 1373.40119 1381.12335
Program 128.95529 101.50541 79.32713 111.70902 121.91262
Rules 5.33789 4.51929 3.76870 4.51929 4.51929
Lexicon 21.18376 21.18376 21.18376 21.18376 21.18376
Heads 54.72518 39.81679 29.86259 39.81679 39.81679
Bodies 47.70847 35.98557 24.51208 46.18917 56.39278
Vars 0.00000 0.00000 0.00000 0.00000 0.00000
Examples 144.47527 127.79637 82.03176 132.69345 130.21200
Knowledge Base 1128.99873 1128.99873 1128.99873 1128.99873 1128.99873
No. of E+ covered 16/16 16/16 11/16 15/16 14/16
No. of E− covered 0/42 2/42 0/42 0/42 0/42
Accuracy 58/58 56/58 53/58 57/58 56/58

100.00% 96.55% 91.38% 98.28% 96.55%

Table 5.2: Comparison of cost between models covering almost the evidence

With this data, the best model now seems to be the modi�ed Model
2, with less cost and only a few less accuracy. And this decision has been
possible easily due to this MML tool we are explaining here.

5.2 Language analysis: speaker recognition

Another area in which the MML tool could help to decide between models
is language analysis. In this area, a model that �ts data perfectly is not
possible, so in the majority of situations an approximate model is used.
Approximate models may have di�erent accuracies and complexities.

Generating a language model from scratch is di�cult and time-consuming.
However, if we already have a general model, we can specialize it to several
contexts.

In general, if we can determine the frequencies of each rule from evidence,
we would be able to transform a non-stochastic model (with only rules) into
a stochastic one (with probabilities attached to the rules). This will help us
(applying the MML tool) to identify which pattern (another set of examples)
corresponds to which theory (language or theory).

The example we are going to show is about speeches. If we can generate
a model from di�erent speeches, and we have di�erent frequencies of each
rule in the model for several speakers, we could apply the tool to determine
to which speaker another speech corresponds. The new speech will �t better

2Same as we had in Table 5.1: the cost of evidence are not ∞ in our tool but 83.54547
for Model 1, 56.78051 for Model 2 and 92.44255 for Model 3. But in accordance with the
MML principle, the negative examples covered must cost in�nite.
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in terms of cost with the previous calculated model of that speaker. The
reason is that each person tends to use some particular type of sentences
and vocabulary, so even if the language is the same, analyzing the number of
occurrences of each type of sentence or speci�c words in a text could guide
us to recognize the speaker. Our purpose is to analyze syntactically the
sentences, obtaining the whole syntax of each individual sentence.

Even though it was not the purpose of this thesis to develop a whole
parser able to recognize the English language or a di�erent one, a basic ana-
lyzer has been developed using Prolog, whose code is available in Appendix
E.1. We explain the basics of the parser below.

5.2.1 English language parser

Our parser is based on a De�nite Clause Grammar (DCG). The DCG nota-
tion was developed as the result of research in natural language parsing in
1980 by Fernando Pereira and David Warren [15], and it is widely used in
Prolog for language parsing. We have also used a DCG to analyze the Prolog
source code. DCGs are closely related to the concept of attribute grammars
from which Prolog was originally developed, and usually they are identi�ed
only with Prolog. They represent a grammar as a set of de�nite clauses in
�rst-order logic from which we derive the language:

sentence --> noun_phrase , verb_phrase.

noun_phrase --> det , noun.

verb_phrase --> verb , noun_phrase.

det --> [the].

noun --> [cat].

verb --> [eats].

In the past the use of Prolog in natural language processing (NLP) was
common [42], but nowadays the research in this area is focused on other
languages and tools, like NLTK [3]. Despite this, we have decided to use a
top-down parser in Prolog because we prefer to obtain the models to use in
our MML tool directly in the Prolog language.

The parser is specially constructed to avoid being left-recursive, because
Prolog will go into an in�nite loop on left-recursive grammars. The state of
the art with NLP demonstrates that language analysis is still a big problem,
so our capacity of recognition is less than the third of the total amount of
sentences with this parser. But it could be considered rather well for this
example and our purpose.

The process we have followed to obtain models from speeches using a
DCG can be depicted in Figure 5.1 and goes as follows:

• First, we introduce a speech in the English language into language.pl,
a tool which converts the input stream into a list of sentences suitable
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To be or not to be, 
that is the question: 
Wheter ‘tis Nobler 
in the mind to suffer

speech

[to,be,or,not,to,be]
[that,is,the,question]
[wheter,\’tis,nobler,…]

sentences

stochastic 
models

sentence(np(prep,verb),conj,s…)
sentence(np(prep),vp(verb)…)
sentence(np(prep,verb),conj,s…)

prep.verb.

conj.

verb.verb...

to.be.or.not.to.

be...

0.255 :: sentence(np(prep,verb),conj,s…).
0.532 :: sentence(np(prep),vp(verb)…).
...

0.255 :: lex(prep).
0.532 :: lex(verb).
0.255 :: lex(noun).
...

0.055 :: word(be).
0.015 :: word(i).
0.011 :: word(to).
...

language.pl

grammar.pl

filter.sh (awk)

tokens.pl

wordnet.pl

Irregulars.pl

syntactic model lexical model word model

models

Figure 5.1: Developed parser for language processing

for Prolog syntax. Each sentence is also a list of words, transformed
into Prolog terms.

• Then, the same language.pl program loads the DCG to analyze the
sentences from grammar.pl and tries to obtain the syntactic equiva-
lence for this sentence:

? s([my,tailor ,is,rich],X)

X= attributive_sentence( np(det(my),noun(

tailor)),

vp(verb(is),adj(rich)) )

The syntactic model of the speech is built using the syntactic equiva-
lence of the recognized sentences.

• Our DCG also uses the ANSI Prolog version of the WordNet database
3 in wordnet.pl, in order to recognize the nouns, verbs, adjectives and
adverbs. The rest of lexical items of the English language are loaded

3WordNet is a lexical database for the English language [33]. It groups English words
into sets of synonyms called synsets, provides short, general de�nitions, and records the
various semantic relations between these synonym sets. Our purpose with the WordNet

database is only to have a dictionary of the English language.
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from tokens.pl (prepositions, determiners, etc) and from irregulars.pl

(irregular verbs, which are not present in WordNet).

• The sentences from which we are not able to obtain its syntactic rela-
tionships are ignored (around two thirds of the total, according to the
complexity of the speech).

• Since our intention is to test the MML tool, we are also going to con-
sider two extra di�erent models of the speeches: �rst, a model of the
vocabulary used (named here �word model�). And second, a model of
the lexicon of the speech (so a model of how many times a noun, a
verb or another lexical item appears in the speech). These models are
generated together with the syntactic one with language.pl using a
di�erent command line modi�er.

• The results of language.pl are a collection of rules of the three dif-
ferent models, many of them repeated (two sentences with the same
syntactic form will generate the same rule, and the same in the lexical
model). We need then to apply some �lters using tools like awk, uniq
and sort to transform the results into a notation for the number of
occurrences of each item (and also the item):

$ ./language.pl | sort | uniq -c \

| grep -v "^$" | awk '{ print $1 " :: " $2 }' \

| sort -g -r

85 :: sentence(np(det,noun)),conj,noun),vp(verb,noun))

53 :: sentence(np(det,noun)),vp(verb))

...

This is not yet a normalized stochastic logic model (the left numbers
are not a percentage), but our MML tool is able to normalize this
without our intervention, so these values are suitable as input of the
MML tool.

The DCG we have developed is able to manage a�rmative, negative,
interrogative and imperative sentences, with subordinated sentences also.
Obviously it is not intended to cover a real speech, especially because the
order in a sentence could be altered (increasing the di�culty of recognizing
the parts of the sentence) and also some parts could be missed (because they
are assumed). Some techniques like gap threading have been applied to solve
this, but it makes the DCG more complex.

For example, these two real sentences from George Orwell's novel 1984
are really complex (they are represented in the Prolog syntax we are using):
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[ [thirty,to,forty,group,!, yapped,a,piercing, female, voice],

[was,only,a,bundle,of,blankets,that,she,was, carrying] ]

The �rst sentence has an incorrect order, so our DCG is not going to recog-
nize it, and the second one has and assumed subject. To have them recog-
nized, they must be rewritten like this:

[ [a,piercing,female,voice,yapped,thirty,to,forty,group,!],

[it,was,only,a,bundle,of,blankets,that,she,was,carrying]

]

Then, the incorrect order of sentences is not going to be recognized by our
parser. The use of gap techniques could solve that, since our intention is not
really to develop a precise parser for the English language.

Also, it is problematic with our DCG to recognize personal nouns. In
order to avoid this, we will transform the speech to lowercase, and consider
the personal nouns as simple nouns. Also, shorts forms like �I�ve� are going
to be expanded.

Obama 
Speech Obama 

Speech

Obama 
Speech

Obama 
SpeechObama 

Speech
Bush 

Speech

Bush 
Speech

Bush 
Speech

Bush 
SpeechBush 

Speech

0.255 :: sentence(np(prep,verb),conj,s…)
0.532 :: sentence(np(prep),vp(verb)…)
...

0.155 :: sentence(np(prep,verb),conj,s…)
0.232 :: sentence(np(det,prep),vp(verb)…)
...

?
 Speech

Obama 
Speech

Obama 
Speech

Bush 
SpeechBush 

Speech

evidence

program

1212 bits 1312 bits

MML tool WordNet

knowledge
base

Figure 5.2: Experiment with speeches

5.2.2 Experimenting with speeches

With this parser and the MML tool, we are going to analyze some speeches
of two American presidents: Barack Obama and George W. Bush (son). The
decision of selecting them is because we consider the language used in the
speeches rather modern and simple.
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We used some speeches of each president, extracted from the Internet:

http://www.presidentialrhetoric.com/speeches

http://obamaspeeches.com

We will select �ve of them to create the model and we will use three extra
speeches as evidence. Applying the parser to the merge of the �ve speeches
will generate a unique model for each president, one for Obama and another
for Bush. A unique syntactic model, but also unique lexical and word models.

Applying the parser to each one of the three example speeches of each
president we generate three syntactic models, three lexical and three for the
words. If we apply the MML tool to the model of each president together
with one of this �evidence� models, the most probable president that has
produced this speech introduced as evidence is the one that should generate
the lowest cost with the model as program. This is depicted in Figure 5.2
(in the �gure, the evidence speech �ts better as an Obama's speech, due to
the lower cost of 1212 bits).

We could include also wordnet.pl and tokens.pl as knowledge base in
our analysis with the MML tool, but since it is the same to all of them, it is
not going to give us any relevant information. It will only increase the cost
and also the computational time necessary to compute the results, so we are
going to ignore it.

With the �rst �ve speeches of each president, we obtain these two syntax
models of their language:

% Bush syntactic model:

12 :: imperative_sentence(verb_phrase(verb,noun_phrase(noun)))

13 :: affirmative_sentence(noun_phrase(noun),verb_phrase(verb))

3 :: imperative_sentence(verb_phrase(verb,noun_phrase(noun),

prop_pred(prep,noun_phrase(det,noun))))

3 :: imperative_sentence(verb_phrase(verb,noun_phrase(noun),

prop_pred(prep,noun_phrase(noun))))

4 :: affirmative_sentence(connector,

affirmative_sentence(noun_phrase(noun),

verb_phrase(verb(aux,verb,verb),noun_phrase(noun))))

4 :: affirmative_sentence(noun_phrase(noun),

verb_phrase(verb(aux,aux,verb)))

4 :: imperative_sentence(verb_phrase(verb))

7 :: affirmative_sentence(noun_phrase(noun),

verb_phrase(verb,noun_phrase(det,noun)))

...

% Obama:

2 :: affirmative_sentence(noun_phrase(noun),verb_phrase(

verb,noun_phrase(det,noun,prop_pred(prep,

noun_phrase(noun)))))

http://www.presidentialrhetoric.com/speeches
http://obamaspeeches.com
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2 :: affirmative_sentence(noun_phrase(noun),

verb_phrase(verb,noun_phrase(noun)))

2 :: affirmative_sentence(noun_phrase(noun),

verb_phrase(verb(verb,prep),

noun_phrase(det,noun)))

4 :: affirmative_sentence(noun_phrase(noun),

verb_phrase(verb,noun_phrase(det,noun)))

4 :: imperative_sentence(verb_phrase(verb))

8 :: affirmative_sentence(noun_phrase(noun),

verb_phrase(verb))

...

The same with the models of the lexicon:

% Bush lexical model:

460 :: lex(adj).

858 :: lex(adv).

681 :: lex(aux).

689 :: lex(connector).

2104 :: lex(det).

3423 :: lex(noun).

1906 :: lex(prep).

36 :: lex(qmark).

4017 :: lex(verb).

189 :: lex(wh).

% Obama lexical model:

304 :: lex(adj).

862 :: lex(adv).

574 :: lex(aux).

535 :: lex(connector).

1914 :: lex(det).

2657 :: lex(noun).

1627 :: lex(prep).

24 :: lex(qmark).

3238 :: lex(verb).

219 :: lex(wh).

And �nally, a model of frequency of occurrence of each word in the
speeches (we discard the words that appear less than ten times):

% Bush word model:

33 :: word(would).

20 :: word(years).
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113 :: word(you).

...

% Obama word model:

24 :: word(would).

17 :: word(years).

69 :: word(you).

10 :: word(young).

17 :: word(your).

...

With all these models, it is now possible to analyze the other speeches we
have (three of each president) to ask the MML tool to calculate the lengths
of the coding, and discover the attribution to a president. In the results, we
provide the cost in bits obtained from the MML tool only for the evidence,
because the cost of transferring the model is not relevant for the comparison
we want to make here. Remember that in the attribution to a president, the
one with the most reduced value is the one that �ts best:

Examples Bush Obama

Speech Obama #1 8 79.19680 77.11631

Speech Obama #2 3 33.44175 26.90248

Speech Obama #3 2 22.47810 17.89818

Speech Bush #1 9 66.26869 66.66219
Speech Bush #2 3 26.96017 28.22441
Speech Bush #3 2 15.23098 17.20021

Table 5.3: Cost in bits of the syntax models

With respect to the syntax models shown in the Table 5.3, the few number
of recognized sentences in the speeches (around a quarter of the total) makes
that in our comparison, the values are rather similar (in the �rst model of
Bush, the di�erence is less than a bit). But in all the situations, the MML
tool has been able to identify the correct author of the speech.

Examples Bush Obama

Speech Obama #1 440 424.25036 423.02164

Speech Obama #2 501 640.18616 635.88235

Speech Obama #3 822 1281.44781 1281.29256

Speech Bush #1 1848 4272.77811 4286.86068
Speech Bush #2 2031 4884.13975 4900.03561
Speech Bush #3 1031 2094.55003 2105.75096

Table 5.4: Cost in bits of the lexicon models

Our second perspective, focused on identifying the authority of the speech
attending to the lexicon that the speech has, is shown in Table 5.3. Here
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the amount of examples is huge because we have used all words, not only
the ones from the recognized sentences. The alignment to the right speaker
is correct, although in some cases the margin is small.

Examples Bush Obama

Speech Obama #1 609 1879.75577 1766.46546

Speech Obama #2 1423 5558.68996 5973.74698
Speech Obama #3 2765 11597.30464 10969.02078

Speech Bush #1 1323 4938.43965 6107.28398
Speech Bush #2 1298 5386.01222 5124.47835

Speech Bush #3 2886 13548.21633 12468.35593

Table 5.5: Cost in bits of the word models

And �nally, in the analysis of the word models in Table 5.5, we have
determined three mismatches that shown that the model based in the fre-
quency of words is not a good classi�er of the speeches. This may be because
there might be speeches which are thematic or address some speci�c issues,
which makes them align better with speeches from other speakers. In any
case, from the number in the three tables, we can say which speeches are
more distinctively Obama-like or Bush-like.

Overall, this example shows how a representation of natural language
text patterns in the form of stochastic logic programs can be used for model
selection.

5.3 A probabilistic graph

We are going to use an example extracted from ProbLog [9] to illustrate how
the tool works, instead of using it for comparing theories (section 5.1) or
evidences (section 5.2). Also this example is going to show the limitations
of the developed tool. The example is available for testing ProbLog on the
website of the University of Lovaine (http://dtai.cs.kuleuven.be/problog):

Listing 5.10: A probabilistic program

%% :- use_module(library(problog)).

% probabilistic facts

0.9:: dir_edge (1,2).

0.8:: dir_edge (2,3).

0.6:: dir_edge (3,4).

0.7:: dir_edge (1,6).

0.5:: dir_edge (2,6).

0.4:: dir_edge (6,5).

0.7:: dir_edge (5,3).

0.2:: dir_edge (5,4).

% Now comes the background knowledge

http://dtai.cs.kuleuven.be/problog/tutorial-inference.html
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% definition of acyclic path using list of visited nodes

path(X,Y) :- path(X,Y,[X],_).

path(X,X,A,A).

path(X,Y,A,R) :-

X\==Y,

edge(X,Z),

absent(Z,A),

path(Z,Y,[Z|A],R).

% using directed edges in both directions

edge(X,Y) :- dir_edge(Y,X).

edge(X,Y) :- dir_edge(X,Y).

% checking whether node hasn't been visited before

absent(_,[]).

absent(X,[Y|Z]):-X \= Y, absent(X,Z).

In Figure 5.3 it is drawn the network representing the reachability of the
nodes of this simple program. So simple that is going to cause a failure in
the tool when we look for successful derivations of predicate edge/2.

The reason lies in the predicate absent/2, whose second rule contains an
inequality that blocks the Vanilla meta-interpreter to obtain the successful
subgoals. This happens only in our solver (used to estimate the probability of
predicate absent/2), because we have variables without assignations, and it
is not the same to compare two values when Prolog solves the predicate (for
instance: 1	1), than to compare the meta-interpreter a value and a variable
(X	1).

Although the MML tool cans obtain the cost of the rules, if we analyze
it together with the evidence, no one of the examples in the evidence will
success for our Vanilla meta-interpreter. So to continue with this analysis, we
are going to de�ne the predicate absent/2 in an extensional way (the purpose
of the predicate is to check whether node has not been visited before, and
then, it is not present in the list of the second argument):

absent (1 ,[2]).

absent (1 ,[5]).

absent (1 ,[6 ,5]).

absent (2 ,[1]).

absent (2,[1,6,5]).

absent (2 ,[5]).

absent (2 ,[6 ,5]).

absent (3,[1,]).

absent (3 ,[1 ,2]).

absent (3,[1,6,5]).

absent (3 ,[2]).

absent (3 ,[2 ,1]).

absent (3,[2,1,6,5]).

absent (3 ,[5]).

absent (3,[5,6,1,2]).

absent (3,[6,1,2]).
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absent (3 ,[6,5]).

absent (5 ,[1]).

absent (5 ,[1,2]).

absent (5 ,[2]).

absent (5 ,[2,1]).

absent (5,[3,2,1]).

absent (5,[6,1,2]).

absent (6 ,[1,2]).

absent (6 ,[2]).

absent (6 ,[5]).

This extensional list contains the necessary facts of absent/2 to work with
the probabilistic graph we have. Now we will generate some evidence to test
the results:

3 # path (1,3). % this is: three times this

example

path (1,5).

2 # path (2,3). % twice this one

path (5,3).

path (1,2).

1

2 6

3 5

4

0.9 0.7

0.5

0.8

0.7

0.6 0.2

0.4

Figure 5.3: Network representing the reachability of the nodes of the prob-
abilistic example

If we use the program without the debugging output, only the cost is
returned. But with the debugging option, we will obtain some extra lines
(preceded in the original text by double dash, here removed) that we are
going to analyze now, dividing them in four blocks:

Listing 5.11: Output of the probabilistic program

1 -- Program tesis/examples/prob.pl readed as module prob2

2 -- Module with values of probability in some clauses

3 % Discontiguous definition of examples_prob: (#) /2.

4 % Discontiguous definition of examples_prob:path /2.

5 -- Example file tesis/examples/examples.prob.pl readed as module

examples_prob

6 -- Normalizing probability of dir_edge /2 dividing by 4.80000

7 -- There are 1 clauses of path/2 that will have a prob of 1.00000
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8 -- There are 2 clauses of path/4 that will have a prob of 0.50000

9 -- There are 2 clauses of edge/2 that will have a prob of 0.50000

10 -- There are 2 clauses of absent /2 that will have a prob of 0.50000

11 -- #1 rule cost: Head :7.16993 Body :1.51929 Vars :0.00000 RuleProb

:25.07072

12 -- 0.18750 :: dir_edge (1,2).

13 -- #2 rule cost: Head :7.16993 Body :1.51929 Vars :0.00000 RuleProb

:6.92873

14 -- 0.16667 :: dir_edge (2,3).

15 -- #3 rule cost: Head :7.16993 Body :1.51929 Vars :0.00000 RuleProb

:8.76870

16 -- 0.12500 :: dir_edge (3,4).

17 -- #4 rule cost: Head :7.16993 Body :1.51929 Vars :0.00000 RuleProb

:23.53157

18 -- 0.14583 :: dir_edge (1,6).

19 -- #5 rule cost: Head :7.16993 Body :1.51929 Vars :0.00000 RuleProb

:15.28798

20 -- 0.10417 :: dir_edge (2,6).

21 -- #6 rule cost: Head :7.16993 Body :1.51929 Vars :0.00000 RuleProb

:9.82745

22 -- 0.08333 :: dir_edge (6,5).

23 -- #7 rule cost: Head :7.16993 Body :1.51929 Vars :0.00000 RuleProb

:23.53157

24 -- 0.14583 :: dir_edge (5,3).

25 -- #8 rule cost: Head :7.16993 Body :1.51929 Vars :0.00000

26 -- 0.04167 :: dir_edge (5,4).

27 -- #9 rule cost: Head :2.00000 Body :13.74811 Vars :9.07682

28 -- 1.00000 :: path(A,B):-path(A,B,[A],C).

29 -- #10 rule cost: Head :4.00000 Body :14.07004 Vars :5.95420 RuleProb

:2.51929

30 -- 0.50000 :: path(A,A,B,B).

31 -- #11 rule cost: Head :4.00000 Body :27.94753 Vars :34.55796

32 -- 0.50000 :: path(A,B,C,D):-A \== B,edge(A,E),absent(E,C),path(E,B

,[E|C],D).

33 -- #12 rule cost: Head :2.00000 Body :6.84122 Vars :3.80735 RuleProb

:2.51929

34 -- 0.50000 :: edge(A,B):-dir_edge(B,A).

35 -- #13 rule cost: Head :2.00000 Body :6.84122 Vars :3.80735

36 -- 0.50000 :: edge(A,B):-dir_edge(A,B).

37 -- #14 rule cost: Head :4.58496 Body :10.74811 Vars :0.00000 RuleProb

:2.51929

38 -- 0.50000 :: absent(A, [] ).

39 -- #15 rule cost: Head :6.58496 Body :12.41256 Vars :10.81858

40 -- 0.50000 :: absent(A,[B|C]):-A \= B,absent(A,C).

41 -- 5 predicates (np): [absent/2,edge/2,path/4,path/2,dir_edge /2]

42 -- 6 function symbols: [1/0 ,2/0 ,3/0 ,4/0 ,5/0 ,6/0]

This part gives information about the normalization process of the pro-
gram, and also returns information about the individual cost of each of the
�fteen rules of the program. For example, if we took one:

-- #8 rule cost: Header :2.00000 Body

:1.51854 Vars :0.00000

-- 0.04167 :: dir_edge (5,4).

This rule had an original probability of 0.2, but the program has deter-
mined that after summing all the values for the predicate dir_edge/2, it is
normalized to 0.04167.
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There are also two lines (3 and 4) preceded by the percentage sign, that
are warnings issued by the Prolog interpreter. They do not a�ect the exe-
cution of the tool, and can help us to understand whether the user program
introduced is well formed or has mistakes.

Second block

43 Estimate the probabilities of the predicates

44 dir_edge /2 --> prob :1.00000 paths:8

45 dir_edge (5,4). (prob :0.04167)

46 dir_edge (5,3). (prob :0.14583)

47 dir_edge (6,5). (prob :0.08333)

48 dir_edge (2,6). (prob :0.10417)

49 dir_edge (1,6). (prob :0.14583)

50 dir_edge (3,4). (prob :0.12500)

51 dir_edge (2,3). (prob :0.16667)

52 dir_edge (1,2). (prob :0.18750)

53 path/2 --> prob :0.56250 paths :1

54 path(_182234 ,_182235):-path(_182234 ,_182235 ,[ _182234],_182242). (

prob :0.56250)

55 path(_182284 ,_182285 ,[ _182284],_182287):-_182284 \== _182285 ,

edge(_182284 ,_182303),absent(_182303 ,[ _182284 ]),path(

_182303 ,_182285 ,[_182303 ,_182284],_182287). (prob

:0.06250)

56 absent(_182361 ,[ _182363 ]):-_182361 \=_182363 ,absent(

_182361 ,[]). (prob :0.50000)

57 edge(_182417 ,_182418):-dir_edge(_182417 ,_182418). (prob

:0.50000)

58 dir_edge (5,4). (prob :0.04167)

59 dir_edge (5,3). (prob :0.14583)

60 dir_edge (6,5). (prob :0.08333)

61 dir_edge (2,6). (prob :0.10417)

62 dir_edge (1,6). (prob :0.14583)

63 dir_edge (3,4). (prob :0.12500)

64 dir_edge (2,3). (prob :0.16667)

65 dir_edge (1,2). (prob :0.18750)

66 edge(_182854 ,_182855):-dir_edge(_182855 ,_182854). (prob

:0.50000)

67 dir_edge (5,4). (prob :0.04167)

68 dir_edge (5,3). (prob :0.14583)

69 dir_edge (6,5). (prob :0.08333)

70 dir_edge (2,6). (prob :0.10417)

71 dir_edge (1,6). (prob :0.14583)

72 dir_edge (3,4). (prob :0.12500)

73 dir_edge (2,3). (prob :0.16667)

74 dir_edge (1,2). (prob :0.18750)

75 path(_183372 ,_183372 ,[ _183372],[_183372 ]). (prob :0.50000

freeVars :2)

76 path/4 --> prob :0.62500 paths :2

77 path(_183504 ,_183505 ,_183506 ,_183507):-_183504 \== _183505 ,edge(

_183504 ,_183521),absent(_183521 ,_183506),path(_183521 ,_183505

,[ _183521|_183506],_183507). (prob :0.12500)

78 absent(_183597 ,[ _183599|_183600 ]):-_183597 \=_183599 ,absent(

_183597 ,_183600). (prob :0.50000)

79 absent(_183675 ,[]). (prob :0.50000 freeVars :1)

80 edge(_183743 ,_183744):-dir_edge(_183743 ,_183744). (prob

:0.50000)

81 dir_edge (5,4). (prob :0.04167)

82 dir_edge (5,3). (prob :0.14583)

83 dir_edge (6,5). (prob :0.08333)

84 dir_edge (2,6). (prob :0.10417)
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85 dir_edge (1,6). (prob :0.14583)

86 dir_edge (3,4). (prob :0.12500)

87 dir_edge (2,3). (prob :0.16667)

88 dir_edge (1,2). (prob :0.18750)

89 edge(_184387 ,_184388):-dir_edge(_184388 ,_184387). (prob

:0.50000)

90 dir_edge (5,4). (prob :0.04167)

91 dir_edge (5,3). (prob :0.14583)

92 dir_edge (6,5). (prob :0.08333)

93 dir_edge (2,6). (prob :0.10417)

94 dir_edge (1,6). (prob :0.14583)

95 dir_edge (3,4). (prob :0.12500)

96 dir_edge (2,3). (prob :0.16667)

97 dir_edge (1,2). (prob :0.18750)

98 path(_185112 ,_185112 ,_185114 ,_185114). (prob :0.50000 freeVars :2)

99 edge/2 --> prob :1.00000 paths :2

100 edge(_185286 ,_185287):-dir_edge(_185286 ,_185287). (prob :0.50000)

101 dir_edge (5,4). (prob :0.04167)

102 dir_edge (5,3). (prob :0.14583)

103 dir_edge (6,5). (prob :0.08333)

104 dir_edge (2,6). (prob :0.10417)

105 dir_edge (1,6). (prob :0.14583)

106 dir_edge (3,4). (prob :0.12500)

107 dir_edge (2,3). (prob :0.16667)

108 dir_edge (1,2). (prob :0.18750)

109 edge(_186110 ,_186111):-dir_edge(_186111 ,_186110). (prob :0.50000)

110 dir_edge (5,4). (prob :0.04167)

111 dir_edge (5,3). (prob :0.14583)

112 dir_edge (6,5). (prob :0.08333)

113 dir_edge (2,6). (prob :0.10417)

114 dir_edge (1,6). (prob :0.14583)

115 dir_edge (3,4). (prob :0.12500)

116 dir_edge (2,3). (prob :0.16667)

117 dir_edge (1,2). (prob :0.18750)

118 absent /2 --> prob :1.00000 paths:2

119 absent(_187119 ,[ _187121|_187122 ]):-_187119 \=_187121 ,absent(

_187119 ,_187122). (prob :0.50000)

120 absent(_187238 ,[]). (prob :0.50000 freeVars :1)

This second block is dedicated to estimate the probabilities for all the
predicates dir_edge/2, path/2, path/4, edge/2 and absent/2. That is,
to generate the SSLD-tree to consider the probabilities for all the possible
values and later use that information with the evidence done.

The program does not return any graphical output, so the SSLD-tree is
tabulated text where each line represents an element in the same level of the
tree (if there are the same amount of spaces), or a new child (if there are
more spaces). For example, the SSLD-resolution for path/2 is represented
graphically in Figure 5.4, with the probability of each predicate at that level
of the tree. In the output of the second block, the analysis of path/2 starts
on line 12, with the resulting probability and number of paths that it has
(number of children we are going to have).

The child is path/4, which has also two children. The �rst one that
starts on line 14, and the second one on line 34. The lines between these two
(14-34) are the unfolding of the �rst child.

Third block
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path(X,Y)
0.56250

path(X,Y,[X],_R)
0.56250

path(X,Y,[X],[X]).
0.5

0.06250

X\=Y, edge(X,_Z),absent(_Z,A),path(_Z,Y,[_Z|X],_R).

_Z\=A,absent(_Z,[])
0.5

dir_edge(X,_Z)
0.5

dir_edge(5,4)
0.04167

dir_edge(5,3)
0.14583

dir_edge(6,5)
0.08333

dir_edge(2,6)
0.10417

dir_edge(1,6)
0.14583

dir_edge(3,4)
0.125

dir_edge(2,3)
0.16667

dir_edge(1,2)
0.1875

Figure 5.4: SSLD-resolution tree for predicate path/2

121 -- Estimate the probabilities of the examples (Np=5)

122 -- example path (1,2): times=1 probability =0.00167

123 -- path (1,2):-path(1,2,[1], _874406). (prob :0.00417)

124 -- 1 freeVars at right in path(1,2,[1], _874443) [*0.00417]

125 -- path(1,2,[1], _874479):-1\==2, edge(1,_874495),absent(_874495

,[1]),path(_874495 ,2,[_874495 ,1], _874479). (prob :0.00208)

126 -- absent (5 ,[1]). (prob :0.03333)

127 -- absent (3 ,[1]). (prob :0.03333)

128 -- absent (2 ,[1]). (prob :0.03333)

129 -- edge(1,_874656):-dir_edge(1,_874656). (prob :0.16667)

130 -- dir_edge (1,6). (prob :0.14583)

131 -- dir_edge (1,2). (prob :0.18750)

132 -- edge(1,_874775):-dir_edge(_874775 ,1). (prob :0.00000)

133 -- example path (5,3): times=1 probability =0.00181

134 -- path (5,3):-path(5,3,[5], _874865). (prob :0.00451)

135 -- 1 freeVars at right in path(5,3,[5], _874913) [*0.00451]

136 -- path(5,3,[5], _874960):-5\==3, edge(5,_874976),absent(_874976

,[5]),path(_874976 ,3,[_874976 ,5], _874960). (prob :0.00226)

137 -- absent (3 ,[5]). (prob :0.03333)

138 -- absent (2 ,[5]). (prob :0.03333)

139 -- absent (1 ,[5]). (prob :0.03333)

140 -- absent (6 ,[5]). (prob :0.03333)

141 -- edge(5,_875231):-dir_edge(5,_875231). (prob :0.09375)

142 -- dir_edge (5,4). (prob :0.04167)

143 -- dir_edge (5,3). (prob :0.14583)

144 -- edge(5,_875386):-dir_edge(_875386 ,5). (prob :0.04167)

145 -- dir_edge (6,5). (prob :0.08333)

146 -- example path (2,3): times=2 probability =0.00306

147 -- path (2,3):-path(2,3,[2], _875557). (prob :0.00764)

148 -- 1 freeVars at right in path(2,3,[2], _875618) [*0.00764]

149 -- path(2,3,[2], _875678):-2\==3, edge(2,_875694),absent(_875694

,[2]),path(_875694 ,3,[_875694 ,2], _875678). (prob :0.00382)

150 -- absent (3 ,[2]). (prob :0.03333)

151 -- absent (5 ,[2]). (prob :0.03333)

152 -- absent (6 ,[2]). (prob :0.03333)

153 -- absent (1 ,[2]). (prob :0.03333)
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154 -- edge(2,_876014):-dir_edge(2,_876014). (prob :0.13542)

155 -- dir_edge (2,6). (prob :0.10417)

156 -- dir_edge (2,3). (prob :0.16667)

157 -- edge(2,_876208):-dir_edge(_876208 ,2). (prob :0.09375)

158 -- dir_edge (1,2). (prob :0.18750)

159 -- example path (1,5): times=1 probability =0.00167

160 -- path (1,5):-path(1,5,[1], _876418). (prob :0.00417)

161 -- 1 freeVars at right in path(1,5,[1], _876492) [*0.00417]

162 -- path(1,5,[1], _876565):-1\==5, edge(1,_876581),absent(_876581

,[1]),path(_876581 ,5,[_876581 ,1], _876565). (prob :0.00208)

163 -- absent (5 ,[1]). (prob :0.03333)

164 -- absent (3 ,[1]). (prob :0.03333)

165 -- absent (2 ,[1]). (prob :0.03333)

166 -- edge(1,_876890):-dir_edge(1,_876890). (prob :0.16667)

167 -- dir_edge (1,6). (prob :0.14583)

168 -- dir_edge (1,2). (prob :0.18750)

169 -- edge(1,_877120):-dir_edge(_877120 ,1). (prob :0.00000)

170 -- example path (1,3): times=3 probability =0.00167

171 -- path (1,3):-path(1,3,[1], _877284). (prob :0.00417)

172 -- 1 freeVars at right in path(1,3,[1], _877369) [*0.00417]

173 -- path(1,3,[1], _877453):-1\==3, edge(1,_877469),absent(_877469

,[1]),path(_877469 ,3,[_877469 ,1], _877453). (prob :0.00208)

174 -- absent (5 ,[1]). (prob :0.03333)

175 -- absent (3 ,[1]). (prob :0.03333)

176 -- absent (2 ,[1]). (prob :0.03333)

177 -- edge(1,_877822):-dir_edge(1,_877822). (prob :0.16667)

178 -- dir_edge (1,6). (prob :0.14583)

179 -- dir_edge (1,2). (prob :0.18750)

180 -- edge(1,_878085):-dir_edge(_878085 ,1). (prob :0.00000)

181 -- Cost of this 8 examples is 77.73486

The third block is dedicated to obtain the probabilities of the given evi-
dence, again by SSLD-resolution using the Vanilla solver. For instance, the
evidence path(5,3) is solved using two di�erent clauses, the �rst one using
the clause path(X,X,A,A) with probability 0.00451, and the second one with
the other clause of path/2 with probability 0.00226. Since there are also free
variables (not instantiated during the SSLD-resolution), the multiplier ap-
plied (which depends on the size of the signature and the probability of the
predicate path/2) is applied:

example path (5,3): times =1 probability =0.00181

path (5,3):-path(5,3,[5], _874865). (prob :0.00451)

1 freeVars at right in path(5,3,[5], _874913)

[*0.00451]

path(5,3,[5], _874960):-5\==3, edge(5,_874976),

absent(_874976 ,[5]) ,path(_874976 ,3,[_874976 ,5],

_874960).

(prob :0.00226)

absent (3 ,[5]). (prob :0.03333)

absent (2 ,[5]). (prob :0.03333)

absent (1 ,[5]). (prob :0.03333)

absent (6 ,[5]). (prob :0.03333)

edge(5,_875231):-dir_edge(5,_875231). (prob

:0.09375)

dir_edge (5,4). (prob :0.04167)

dir_edge (5,3). (prob :0.14583)
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edge(5,_875386):-dir_edge(_875386 ,5). (prob

:0.04167)

dir_edge (6,5). (prob :0.08333)

Fourth block

182 tesis/examples/prob2.pl + examples:tesis/examples/examples.prob.pl

183 Total cost: 1019.48514 bits

184 Cost of program: 441.53204 bits

185 Cost of 15 rules: 8.36748 bits

186 Cost of lexicon: 25.66265 bits

187 of 5 predicates [absent/2,edge/2,path/4,path/2,dir_edge /2]

188 and 6 function symbols [1/0 ,2/0 ,3/0 ,4/0 ,5/0 ,6/0]

189 Cost of heads: 117.35825 bits

190 Cost of bodies: 104.76314 bits

191 Cost of vars: 68.02227 bits

192 Probabilistic cost: 500.21824 bits

193 Cost of 8 examples: 77.73486 bits

And �nally the last block, where we obtain the cost in bits. If there were
also function symbols, they would appear also.

This last block is the only part of the output that was not originally
preceded by double dash, because is the normal output returned when the
debugging is not used.



Chapter 6

Conclusions and future work

6.1 Conclusions

The general objective has been achieved: We have developed a MML coding
scheme for non-stochastic and stochastic logic programs and a tool imple-
menting it.

With regard to the speci�c objectives:

• After reviewing the state of the art about the MML principle, we have
introduced some changes in the way that the cost is calculated in [23]:
the formula used to code the signature is di�erent, and now it is also
more clear when the probability of a rule needs to be coded and when
not. The problem with the cost of the signature was related to the cor-
rection term for the relevance of the order (otherwise it could generate
negative results for large signatures).

• The objective of developing a tool has these �ve achieved subgoals:

� An interpreter of a logic language (Yap Prolog) has been selected
to do the implementation.

� After reviewing di�erent ways to implement the probabilities, we
have selected the most clear to the end user, the one used in
ProbLog.

� The extension of Yap Prolog to manage the probabilities has also
been done.

� The tool is able to manage probabilities.

� The tool is also able to insert the number of repetitions in the
examples, to avoid these repetitions in the input �le.

• The tool has been tested using di�erent scenarios, some of them ex-
plained in this document. We have shown how it can be used for
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model selection, as in the animal example, by calculating Cost(T ) +
Cost(E|T ). We have also seen how to use to just calculate Cost(E|T )
in the language example. This problem contains in�nite minimal mod-
els and many examples, and the evidence has repetitions.

Finally, we have shown how complex programs are dealt with the last
example (probabilistic graph). Note that only the �rst problem can be
handled by theMC and PC approaches.
All this shows how the tool can be applied to many di�erent scenarios
and applications. There is a suite of examples available on the Web
page and also in the distributed code.

During the developing of the tool, di�erent particularities and problems
have appeared that have a�ected the process. The major part of those
problems was related to the limitations that the use of a particular Prolog
compiler introduces: the user programs to be analyzed are also loaded in the
Prolog compiler, so their access without any limitation or modi�cation has
been a bit di�cult many times.

6.2 Future work

The implementation done has not covered all the options in [23]: there are
other possibly more e�cient coding schemes for programs without repeated
examples and also for programs with a huge amount of repetitions.

The tool works only in a speci�c platform of Prolog, the Yap compiler.
The reason is the interaction with the user and the I/O, where each compiler
uses di�erent syntax, and also because there is not a standard way to manage
large numbers with large precision. With some changes, it could be adapted
to run with other compiler, like SICStus or SWI-Prolog.

The work conducted is suitable for analyzing stochastic logic programs,
as examples in sections 5.2 and 5.3, but there are also other di�erent possi-
bilities:

• Estimate the best probabilities of a stochastic program where the initial
values have been randomly (e.g. uniformly) assigned, by brute force.

• Compare ILP platforms, if each di�erent ILP tool (Progol, FOIL...)
generates a di�erent model from facts, our MML tool is able to deter-
mine the best one.



Appendix A

Coding numbers

The cost of coding a number will depend on whether it is an integer or a real
or a rational. In computer terminology, we usually refer to real numbers and
rational numbers indistinctly, because real numbers are usually represented
by �oating point numbers, which are rational numbers in the end. In fact, we
are going to approximate real numbers using rational numbers, because the
cost of coding the probabilities is calculated from the rational approximation
of the real number.

A.1 Coding positive integers

An integer number n > 0 is coded in binary form as a sequence of k binary
digits, where k = (log2 n) + 1. The �rst digit of this string is 1, but it is also
necessary to use a pre�x code to distinguish them from other representations.
The pre�x code used by Wallace [55] is suitable for this. He used a string
corresponding to an integer n, which is obtained as the function head(n)
followed by 0, where head(n) is the following function to transform an integer
to a binary representation:

head(1) = Λ (an empty string)
head(n) = head(k − 1) followed by the k = dlog2(n)e

digits of n, with n > 1
(A.1)

In this case, the code string length is CodeLength(n) = length(head(n))+
1, and that is optimal and universal, as Wallace explained, because the ex-
pected string length required to encode an integer n selected from some
�nite-entropy distribution is �nite using the CodeLength code, which means
that the CodeLength code is feasible for this kind of distributions.

The function CodeLength, as we have introduced in section 3.1, equals
to:

CodeLength(m) = log∗m+ C (A.2)
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Where C = log2(2.8665064) is a normalization constant chosen to satisfy∑∞
n=1 2− log∗ n = 1. Sometimes the authors use log∗ when they are speak-

ing about CodeLength. We want to be distinguish those terms to avoid
confusion.

The iterated logarithm log∗ is the number of times the logarithm function
must be iteratively applied before the result is less than or equal to 1, and
it can be obtained using a recursive function:

log∗(m) =

{
0 if m ≤ 1
1 + log∗(logm) if m > 1

(A.3)

Since this recursive de�nition is not optimal for e�ective calculations, we
need to compute a feasible approximation to the value of log∗ for a certain
n: for that, Rissanen [49] has suggested the following approximation to the
log∗ function:

log∗ n = log2 n+ log2 log2 n+ log2 log2 log2 n (A.4)

So, the coding cost of any integer value that we are going to apply in the
toolkit will be:

CodeLength(n) = log2 n+ log2 log2 n+ log2 log2 log2 n+ . . .+ C (A.5)

A.2 Coding rational numbers

As mentioned elsewhere, we use rational numbers for probabilities. Rational
numbers can approximate a real number to any given precision (and this
precision is going to be a modi�able value in the toolkit), so there is no
e�ective loss in generality if we assume that probabilities are represented as
rational numbers.

In particular, the following de�nitions will be used to code the probabil-
ities of rules, which will be a rational number between 0 (excluded, because
that rule then could be ignored) and 1 (higher values will be normalized,
because they represent probabilities).

Despite other coding systems which approximate real numbers, the cho-
sen one is the one given by Dalgleish [7], in which the denominator of the
rational number is the relevant part to estimate the cost of coding that
number n/m, with n and m being natural numbers:

Cost( n
m) = CodeLength(m) + log2 φ(m), where n > 0

m > 0
n ≤ m

(A.6)
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From the real number n
m , we �rst encode the denominator m, and then

there are φ(m) choices for the numerator, where φ is the Euler's totient
function. The Euler's totient φ(m) is the cardinality of the set of integers x
such that it satis�es 1 ≤ x < m and the greatest common divisor of x and
m is 1.

The �rst term of the previous formula (CodeLength) codes only the
denominator m using the technique described for integer numbers. Like the
denominator cannot be 0, we do not have to add an extra bit here.

To code the numerator n such that there are no common factors with m
we must code only the Euler's totient.

As example, the cost of coding the real number 0.33333 (approximated
by the rational 1/3) is the cost of code CodeLength(3) + log 2, since φ(3) =
|{1, 2}| = 2 .





Appendix B

A short introduction to Prolog

The language used to develop the tool is Prolog, because it is �per se� the
most suitable logic language to use: the major part of the examples and code
interesting to use lately in the tool is available in this language, it is robust
and mature.

The name of the Prolog language comes from an abbreviation for pro-
grammation en logique, the French words for �programming in logic�. It is
an old language created in 1972 by a group led by Alain Comerauer and
Philippe Roussell in Marseille (France). It is a logic programming language
and was �rst associated with arti�cial intelligence and computational linguis-
tics. It was one of the �rst logic programming languages created and nowa-
days remains among the most popular programming languages, at least in
academics. The language is now used in many areas, such as: games, expert
systems, automated answering systems and control systems.

Prolog is said to be a declarative language, i.e., the logic is expressed
by relations and the execution is done by calling queries over these relations
(de�ned by clauses).

The goal is to �nd a resolution refutation of one negated query. If this
negated query is refuted successfully then the query is set to false. Pro-
log allows the use of impure predicates for checking whether the value of a
predicate may have some side e�ects, such as printing a value to the screen.
But this is also one of the most important problems when programming in
Prolog: since everything must be solved by resolution, the control the user
input/output and the management of streams is a bit harder than with other
language paradigms.

B.1 Syntax of Prolog

Prolog programs describe relations de�ned in a set of clauses: each clause
has a head and a body (then is known as a rule) or only a head (and then is
known as a fact). The head must have only a term, but in the body of the
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rule we could form compound predicates by conjunction of terms (with the
special predicate ,/2) or by disjunction of them (using the special predicate
;/2).

Due to the relational nature of many built-in predicates, they can typi-
cally be used in several directions, so length/2 can be used to determine the
length of a list (length([a,b,c],X)), but also to generate a list skeleton of
a given length (length(List,5)), and also both things if the arguments are
not assigned.

The most elemental term is a constant. They are usually words written in
Prolog code without any special syntax, although we must surrounded them
by single quotes if it starts by capital letter or contain spaces or non-English
symbols.

Numbers can be �oat or integer numbers, and in recent implementations
of Yap Prolog (versions higher than 6.0), there is no a big limitation to preci-
sion if we have compiled it with the multi-precision library GMP, that is the
common situation in the major part of packages available for Windows/Unix
platforms nowadays.

Variables are strings starting with a capital letter and followed by more
letters, numbers and/or underscore characters. The single underscore is
called an anonymous variable and it means �any term�. This type of variable
does not represent the same value everywhere it occurs within a predicate
de�nition.

B.2 Programming with Prolog

A Prolog program is a set of procedures (the order does not matter), each of
them composed by one or more clauses (and here the order of the clauses is
important, due to the evaluation of each of them is performed in a top-down
fashion. The objective then is to describe relations using the clauses (facts
or rules).

A fact is a rule without any body, which could be considered equivalent
to a rule with the only body �true�. A goal is the opposite concept: a rule
without any head.

Once the facts and rules are built it is possible to make queries to that
knowledge (using goals), or modify them in the IDB 1.

The reasoning system that makes logical programming di�erent to other
paradigms is that it consists in unifying the rules we have introduced with the
goals. The idea of uni�cation in Prolog is close to the concept of matching.
The Prolog compiler matches two terms if they are equal of if they contain
variables that can be instantiated in such a way that the resulting terms

1IDB is the Intensional DataBase of a Prolog compiler, where the rules from the pro-
gram are stored. The other database is the EDB or Extensional Database, where the facts
of the logic during execution are analyzed.
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are equal. So the process of matching for the compiler generates a SLD-
resolution2 with all the possible matches unifying the goal with the rules of
the program by backtracking. This operational strategy needs to create a
choice-point each time that multiple clause heads could match with a given
call, store it, unify with the �rst clause which has not used yet, and continue
with that goal until it success or fails. If it fails in the course of executing the
program (or if the user retries for more possibilities) then all variable bindings
that were made since the most-recent choice-point with other clauses are
undone, and Prolog follows with the next unused clause of that choice-point.
This execution strategy is called chronological backtracking.

The following example shows this:

% lectures(X, Y): person X lectures in course Y

lectures(turing , 9020).

lectures(codd , 9311).

lectures(backus , 9021).

lectures(ritchie , 9201).

lectures(minsky , 9414).

lectures(codd , 9314).

% studies(X, Y): person X studies in course Y

studies(fred , 9020).

studies(jack , 9311).

studies(jill , 9314).

studies(jill , 9414).

studies(henry , 9414).

studies(henry , 9314).

% year(X, Y): person X is in year Y

year(fred , 1).

year(jack , 2).

year(jill , 2).

year(henry , 4).

In order to illustrate what happens when Prolog tries to �nd a solution
and backtracks, we draw in Figure B.1 a �proof tree� with the goal:

lectures(codd ,Course),studies(Student ,Course)

where there are four derivations that are true (the bold lines) and many
others that are false.

The negation is implemented by the predicate +/1, which drives Prolog
to try to prove the goal without the negation. If a proof of that non-negated
goal can be found, the original goal fails. If no proof can be found, then the
original goal success.

2Selective Linear De�nite clause resolution
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lectures(codd,Course),studies(Student,Course)

lectures(codd,9311) lectures(codd,9314)

studies(jack,9311)
studies(jill,9314)

studies(henry,9314)

Figure B.1: The backtracking in Prolog



Appendix C

Prolog interpreters and

probabilities

C.1 Systems implementing probabilities in logic pro-
gramming

Even though Prolog has been used for implementing the tool, there is no
�natural� support for stochastic rules in any widespread compiler of Prolog.
This was �nally not a problem for our purpose: the idea was to determine
the cost of coding probabilistic programs, not to work with them. We only
need a basic functionality, as described in section 2.5.

But it is interesting to analyze what other projects and extensions of
Prolog have done to integrate probabilities, instead of starting from scratch.
Let us see some of these other implementations:

• ProbLog [9]: It has been developed since 2007 by De Raedt's team
in the University of Lovaine, by Angelika Kimmig, Bernd Gutmann,
Theofrastos Mantadelis, Guy Van den Broeck, Vitor Santos Costa,
Gerda Janssens, and the same Luc De Raedt. So this is one of the new
attempts to cover stochasticity and so the �rst we mention.

It is implemented in Yap Prolog, and we have borrowed from it the way
to code the probabilities in the clauses. Despite it is one of the most
powerful implementations, with current work and a promising future,
ProbLog lacks at the moment the capacity of managing clauses with
body, and that is basic for our purpose (programs with body are more
di�cult to be evaluated as we have seen in section 2.5).

The way that ProbLog uses probabilistic clauses is by inserting the
probability before the rule preceded by :: (a notation we have copied
here):

0.8 :: coin(odd).
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0.2 :: coin(X).

• P-Log [1]: Proposed in 2007 by Chitta Baral, Michael Gelfond, J.
Nelson Rushton and Weijun Zhu. It extends Answer Set Prolog (a
speci�c compiler of Prolog) with causal probabilities and deliberate
actions. In addition to normal rules, a P-log program may contain
a random selection rule that indicates the probability of selecting it
unintentionally (because we can also select it by a deliberate action
in other rule). For example, the probability of dying for a certain rat
eating arsenic is:

random(arsenic).

random(death).

pr(arsenic)=0.4

pr(death | arsenic) =0.8

pr(death | \! arsenic) =0.01

ProbLog way to indicate probabilities is clearer.

• PRISM [26]: Started in 1995, it has been developed in the University
of Tokyo by the team led by Taisuke Sato and Yoshitaka Kameya.

PRISM is an extension of Prolog that allows the expression of complex
statistical models as logic programs. A PRISM program is a usual
Prolog program augmented with random variables. PRISM de�nes a
probability distribution over the possible Herbrand models of a pro-
gram using predicates values_x/2 and msw/2.

The execution of a PRISM program is a simulation where values for the
random variables are selected stochastically, according to the under-
lying probability distribution. PRISM programs can have constraints,
usually in the form of equalities between uni�ed logic variables.

For example, this is the implementation for Bernoulli trials:

target(ber ,2).

values(coin ,[heads ,tails]).

:- set_sw(coin , 0.6+0.4).

ber(N,[R,Y]) :-

N>0,

msw(coin ,R), % Probabilistic choice

N1 is N + 1,

ber(N1,Y). % Recursion

ber(0,[]).

As we can notice, we would need to introduce many changes in the
code to allow stochastic models. It is not so intuitive as ProbLog to
attach the probabilities to the code of the program.
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• Stochastic Prolog [39]: In the University of Bologna the group of En-
rico Oliva developed a framework with promising future, but with no
current implementation. The idea was to use two special predicates for
inserting the probabilities: r/1 for storing the probabilities of a rule
and solve_trace/3 to estimate the probability of a given number of
repetitions.

A program in this framework has this aspect:

r(49.5):coin(head).

r(49.5):coin(tail).

r(1):coin(manhole).

toss() :- coin(X), continuation(X).

continuation(manhole) :- !.

continuation(_) :- toss().

% ---------------------------

% ?- solve_trace(toss(), 100, T).

Again the problem is that the work seems not to be continued since
2008.

• Pepl [28] (by Jianzhong Chen, Stephen Muggleton, James Cussens,
and Nicos Angelopoulos) introduces probabilistic choices in the reso-
lution process in 2011. It was used in a framework called MCMCMS
(from Nicos Angelopoulosy and James Cussens) to specify models for
statistical machine learning in a Bayesian framework. We can consider
it an implementation of the failure adjusted maximization algorithm
(FAM), but it is far from our purpose to work with these complex
programs.

• The CLP(BN) System [5], by Vitor Santos Costa, David Page, and
James Cussens (2003). It combines constraint logic programming with
Bayesian networks. Again a bit far from our purpose to work with
logical programs.

• David Poole [45] worked with the concept of Independent Choice Logic
(ILC), also introduced by him in 1997. Essentially it extends logical
programming with probability distributions over groups of facts that
induce distributions over Herbrand models. This representation can
be used as a (runnable) speci�cation for agents that observe the world
and have memory. However no more work was conducted.

• CP-logic [54], from Joost Vennekens (2009) merges the basics of CP-
logic with the language of Logic Programs with Annotated Disjunctions
(LPADs), also used in a similar system known as PITA [47] (2011), of
Fabrizio Riguzzi. They share the following syntax for input programs:
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heads(Coin):1/2 ; tails(Coin):1/2:-

heads(Coin):0.6 ; tails(Coin):0.4:-

fair(Coin):0.9 ; biased(Coin):0.1.

toss(Coin) ,\+biased(Coin).

toss(Coin),biased(Coin).

It computes the probability of queries by transforming the input pro-
gram into a normal logic program and then calling a modi�ed version
of the query on the transformed programs. Again the modi�cation of
the original version makes it harder for us to analyze the cost.

C.2 Which compiler to use

The compiler of Prolog used here has been Yap Prolog, an implementation
done by Vitor Santos Costa that has some interesting advantages: It has
been written in C++ (so better for e�ciency) and it has also been espe-
cially improved to support ILP development (many ILP systems have been
developed in that compiler, like Aleph and TopLog).

Yap is de�ned by its developers as a high-performance Prolog compiler
developed in the University of Porto 1. Its Prolog engine is based in the
WAM 2, and it follows the Edinburgh tradition 3. It is largely compatible
with the ISO-Prolog standard and with Quintus and SICStus Prolog.

Yap appeared in 1985: its stability is supposed, because its development
is still active. Nowadays it is written in C++, but originally it was developed
in assembly, C and re�ectively in Prolog. At that moment it achieved high
performance on m68k based machines. Yap is compiled for many 32 and 64
bits platforms and in many di�erent operative systems, such as Sun Solaris,
Linux, Microsoft Windows, Mac OS...

Even though SWI-Prolog (other compiler) has more powerful libraries,
Yap Prolog is a rather good compiler for this project due to speed. Even
with huge in�nite SLD-derivations from a clause, it is possible to manage
them in a reasonable time. A benchmarking conducted by Bart Demoen [10]
demonstrated that among the most known Prolog compilers, Yap obtains a
good mark (only outperformed by hProlog):

1By the CRACS (http://cracs.fc.up.pt) in collaboration with the LIACC (http:
//www.liacc.up.pt)

2In 1983, David H. D. Warren designed an abstract machine for the execution of Prolog
consisting of a memory architecture and an instruction set. This design became known
as the Warren Abstract Machine (WAM) and has become as �de facto� standard target
for Prolog compilers, as alternative for the Berkeley Abstract Machine and the Vienna
Abstract Machine

3Prolog dialect which eventually developed into the standard, as opposed to Marseille
Prolog. (The di�erence is largely syntax.)

http://cracs.fc.up.pt
http://www.liacc.up.pt
http://www.liacc.up.pt
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Goal B-Prolog ECLIPSe SWI SICStus GNU Yap hProlog

g(_) 130 10 229 90 90 20 10
g(_,..,_) 240 120 380 180 130 120 90
copy_term/2 9030 6460 20179 29530 16740 5670 4980
findall/3 - 1290 849 2840 240 450 470
Sorting 373700 18850 57070 175100 26610 16230 25710
Integers 1040 1730 18270 940 1690 430 480
Floats 2820 3770 25139 3710 3380 5280 1910

Table C.1: Benchmark between Prolog compilers in ms of CPU usage, from
[10]

So if we consider only the most commonly known compilers (SWI-Prolog,
SICStus and Yap), the Yap Prolog seems to be a good option for our tool.

C.3 Other tools

Nowadays we need an IDE 4 and also a RCS 5 to develop code.

Although Prolog is not so supported by Eclipse natively as other lan-
guages, there are some plug ins that allow the integration of the Prolog
language into Eclipse 6, the IDE par excellence nowadays:

• Prolog Development Tools (ProDT)
(http://prodevtools.sourceforge.net), the one chosen �nally, with
the aspect described in Figure C.1.

• The Prolog Development Tool
(http://roots.iai.uni-bonn.de/research/pdt): Rather good, but
with some problems when you extend the language of Prolog with new
operators (as we are doing), this made us change to the other tool in
the middle of the development, with the aspect described in Figure
C.2.

• Prolog Plugin, from USP University (Brazil)
(http://eclipse.ime.usp.br/projetos/grad/plugin-prolog).

• SPIDER IDE
(http://www.sics.se/sicstus/spider/site/index.html), a modi-
�cation of the Eclipse IDE though for SICStus Prolog.

4An integrated development environment (IDE), to have at least a source code editor
and a debugger.

5Revision control System (RCS): to allow the management of changes to the source
code.

6Eclipse (http://www.eclipse.org) is a multi-language and multi-platform IDE with
extensible plug-ins.

http://prodevtools.sourceforge.net
http://roots.iai.uni-bonn.de/research/pdt
http://eclipse.ime.usp.br/projetos/grad/plugin-prolog
http://www.sics.se/sicstus/spider/site/index.html
http://www.eclipse.org
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Figure C.1: Aspect of Eclipse with ProDT plug-in

Figure C.2: Aspect of Eclipse with PDT plug-in

Also for the development of some speci�c �les for the Website we de-
scribe later, we needed the Web Development Tools for Eclipse (http://www.
eclipse.org/webtools), a more common and known plug-in for Eclipse.

http://www.eclipse.org/webtools
http://www.eclipse.org/webtools
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The other important tool, as said, it was an RCS. We will use Git (http:
//git-scm.com): a distributed revision control and source code management
system, created by Linus Torvalds for the Linux kernel development. It is
distributed because each copy of the RCS data for control a directory of
code is a full repository with complete history and tracking of the code, not
dependent on network access or a central server.

Since it is also distributed using the GNU license, it is very common
nowadays over the well-known CVS and Subversion.

The perfect partner for a RCS tool is a Web page that provides a reposi-
tory to store a back-up or collaborate with others. Even though this second
thing was unnecessary (there is no team when you are developing alone), an
Assembla (https://www.assembla.com) repository has been used.

The address of the repository is opened for access to consult the sources of
the project (even though it was available at the same time in the Web page
of the research group) in https://www.assembla.com/spaces/mml-cost/

new_items. The change set of the almost three hundred commits done to
the source (including Prolog, PHP and also the same LATEX generation of
this document) can be viewed there.

C.4 Restrictions

Because this tool is written in Prolog, its use to analyze Prolog programs
needs to set some limitations over the program syntax, due to the limitations
of access to the predicates of the code introduced by the user.

For instance, if some user wants to analyze a program, it is loaded as a
module in Prolog, the loading introduces some special predicates (mml_prob/1,
mml_rep/1...), and so the use of these words is not allowed in the user code.

Another important limitation: if the user program has modules, the tool
will not be able to analyze the code of these other modules. So, the use of
modules is forbidden.

As a result, by design, the tool is able to work only with programs intro-
duced by the user that:

• Do not use any predicate starting with the pre�x 'mml_'.

• Do not use modules or di�erent �les.

• Do not contain de�nitions of the same predicate in the knowledge base
�le and the program �le.

http://git-scm.com
http://git-scm.com
https://www.assembla.com
https://www.assembla.com/spaces/mml-cost/new_items
https://www.assembla.com/spaces/mml-cost/new_items
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User manual of the tool

D.1 How to install the program

The tool is distributed as Prolog source �les, so no binary dependence of the
platform or compilation is needed. The only requisite to run the tool is to
have the Yap Prolog compiler previously installed, and to have it available
in the path.

Despite other Prolog compilers, Yap does not include some useful li-
braries by default, such the GMP library we are using in the tool. So, it
is also important to install or compile Yap with this mathematical library.
Without this library being active, the tool also will run, but when an oper-
ation overloads the machine (easily except for really simple programs), our
tool will exit with an error.

Inside the ZIP �le there are two executables scripts, one for Windows
with the extension BAT, and a shell script for Unix/Linux with no extension.
These are the entry points to the tool and they must not be removed.

D.2 Organization

The code is divided in di�erent �les: �ve of them are modules located in a
subdirectory. This subdirectory with the modules and the other three �les
could be moved to any directory in a computer, if there is a Yap compiler
available in the local execution path:

This tool could be run on any platform compatible with Yap Prolog
(Linux, Windows, Solaris, Mac OS X and HP-UX), but it has been tested
only on Windows and Linux.

In the main directory, the purpose of the mml_cost and mml_cost.bat

�les is only to provide the executables �les needed to run the tool in both
platforms, and mml_cost.yap is the entry point that manages the modules:

• mml_cost: Shell script for Linux platforms: it calls mml_cost.yap.
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lib/

functions.yap

code_load.yap

cost_calculate.yap

example_analyze.yap

program_analyze.yap

mml_cost.yap

mml_cost

mml_cost.bat

• mml_cost.bat: Script for Microsoft platforms: it calls mml_cost.yap.

• mml_cost.yap: Entry point to the tool. It loads the �ve modules and
it is in charge of answering the user with the results of the code, or to
notice the errors.

• lib/functions.yap: Math involved predicates, global modi�ers, print
options.

• lib/code_load.yap: It manages the loading of the user code. It also
intercepts the special function predicates ::/2 and #/2 to transform
them, removing also non-desired predicates involved with debugging.

• lib/program_analyze.yap: It obtains the body of all the clauses of
the program and processes them (determining the number of variables,
number and type of symbols, etc).

• lib/cost_calculate.yap: It determines the cost of the user code al-
ready loaded as modules and previously tokenized.

• lib/example_analyze.yap: It transforms and analyzes the user ex-
ample �les, in a similar way to the lib/cost_calculate.yap, but
considering only the evidence (it also detects and fails when a body of
a clause is found).

In any Microsoft/Linux platform, the behavior of the tool is exactly the
same: the Yap Prolog compiler is the responsible of transforming the calls
to �les in order to �t the speci�c platform format, so there is no necessity to
use di�erent code in di�erent platforms.
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Rather di�erent is the behavior of the tool depending of which version
of Yap Prolog we are going to use: the stable version used in many Linux
distributions (Debian, Ubuntu...) is still Yap Prolog 5, instead of Yap Prolog
6.

The old one does not have the prede�ned predicates between/3 and
is_list/3. This problem is detected when we load the code and solved
declaring them in functions.yap, but there is a more important di�erence
that a�ects the precision of integer and �oat calculations: only in Yap Prolog
6 can we have the precision library GMP attached when the code is compiled,
and this library is compulsory to make calculations that clearly a�ect the
results (if we have a probability of 0.0019, the result of cost will be hugely
di�erent from a probability of 0.002). To avoid problems with this lack of
precision, the functions.yap will halt when max_precision value (a Yap
Prolog �ag) is not enough to make mathematical calculations.

When we call the program without using any modi�er, the tool will fail
indicating that you need to call the program with at least one user code �le
(as a program �le) to analyze. It is possible to run the program directly
reading from the standard input using the special modi�er ��, in this way:

$ echo -e "p(0,1).\np(_,_)." | ./mml_cost --

The modi�ers will start always with a double dash and the others ar-
guments without them will be considered as �les to load as user program
code:

$ mml_cost --help

It determines the MML cost of a Prolog program

Arguments:

--examples=e1,e2... Files with the examples as clauses

--kb=kb1,kb2... Files with the knowledge base

--debug Detailed evaluation process

--warnings=off With 'on', warnings issued by Prolog

also abort the execution of the tool

--precision=0.00001 Maximum error allowed in operations

You can also use num. of digits (<=15)

--dialect=cprolog Dialect type: cprolog,iso,sicstus

--predefined Show the cost of predef predicates

and numbers

--normalize=on Normalize to 1 the sum of probs with

same predicate ('off' to disable)

--rulesprob=zerobitslast Treatment done to probs of rules:

-zerobitslast: Only the relevant (def)
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-notlast: The last rule prob is ignored

-all: All of them

--tabled Show summarized results

--maxrecursion=20 Max SLD-resolution derivations

[file1.pl..fileN.pl] At least one file with a prolog

program (-- for stdin)

You can use '::' to indicate the probability of a clause:

0.25 :: f(X,Y):-X>0,Y is 3.

And also '#' in the examples to indicate the repetitions:

32 # f(0,1). ~> Like writing f(0,1) 32 times

So the usual way to call the program will be this (we could omit the
examples or the Knowledge Base �le):

$ mml_cost program_code.pl --examples=example_code.pl \

--kb=kb_file.pl

This will produce an answer from the tool in which it sums up all the
costs, separated by each part:

program_code.pl + example_code.pl + kb_file.pl

Total cost: 106.91945 bits

Cost of program: 106.91945 bits

Cost of 5 rules: 5.33713 bits

Cost of lexicon: 25.66446 bits

of 3 predicates [sum/3,pos/1,even/1]

and 2 function symbols [0/0,s/1]

Cost of heads: 24.92481 bits

Cost of bodies: 31.10245 bits

Cost of vars: 19.89060 bits

If we need to use more �les, we must consider that the cost results will
be calculated for each combination of program code and example code. This
is applicable to programs and examples, but not to knowledge base (KB). If
we indicate more than a KB �le, all of the KB �les will be merged, so when
we call the tool as this:

$ mml_cost p1.pl p2.pl --examples=e1.pl,e2.pl \

--kb=kb1.pl,kb2.pl

That is exactly the same as calling the program in this way:

$ mml_cost p1.pl --examples=e1.pl --examples=e2.pl \

--kb=kb1.pl --kb=kb2.pl p2.pl
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The same type of results as we have seen in the previous example will
be produced, but now it will be repeated four times: p1-e1, p1-e2, p2-e1
and p2-e2. Taking into account that we have called the program with two
program �les and two example �les, so we must take care that the example
�les have examples that match with both desired program �les.

D.3 Modi�ers

Since there are many modi�ers (parameters) available from command line,
it is necessary to explain which the purpose of each of them is, and explain
which the default values are when we do not indicate one:

• ��examples: It accepts the �le (or �les separated by comma) contain-
ing the evidence of the program to analyze.

• ��kb: It accepts the KB �le or �les separated by comma to load. KB
is code which is not present in the same user program code but is
required by it. It will be treated separately. Notice that the prede�ned
predicates (part of ISO Prolog and also the speci�c of Yap Prolog) are
ignored and are not the same as the KB. Also notice that any other
symbol that appears in the code that is not de�ned in the KB, in
the user program or prede�ned in Prolog, will be considered a symbol
function.

• ��debug: Detailed evaluation process, where you could see the solving
process performed with the evidence, or also the normalization done
to the clauses of the programs.

• ��warnings: Its default value is 'o�'. By switching it to 'on', warnings
abort the execution of the program. For example, if you introduce a
variable which is not assigned, the Prolog compiler will issue a warning
that in the normal behavior, is ignored. If you activate this modi�er,
then the tool will exit abnormally.

• ��precision: By default the value is 0.00001 (5 digits). This it will be
used as a resolution in the output of �oat values and also (and this is
more important) as the maximum error allowed for a rational number.
So, with precision 0.0001:

0.3333 ⇀ 1
3 but 0.333 ⇀ 333

1000

You can also use the amount of digits you want (i.e., 6 instead of
0.000001). The maximum resolution allowed by Yap Prolog numeric
library GMP is 15 (so 1/1015).
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• ��dialect: The Yap Prolog developers decided to allow for a change
between the speci�c syntax of CProlog, SICStus and ISO Prolog (ISO/IEC
13211-1)). By default, the �dialect� used is CProlog, but there is the
possibility to change to the two others. The most important consider-
ation about the dialects is the incompatibility between SICStus dialect
and the use of evidence (��examples, due to the impossibility of mod-
ifying code).

• ��predefined: Shows the cost of the prede�ned predicates in Prolog:
without this modi�er, they are ignored, and the same applies to num-
bers. These are the predicates like write/1,nl/0,is/2... For instance,
if we have this program:

p(X):-X is 3+2+r(a)+s(0),write(0),nl.

Without this modi�er, the tool reports that the signature is formed by
the function symbols {a/0,s/1} and the predicate symbols {p/1,r/1}.
With the modi�er, we obtain new function symbols:

{a/0,s/1,3/0,2/0,0/0}

and the predicate symbols will be:

{p/1,r/1,+/2,is/2,write/1,nl/0}.

• ��normalize: By default, we normalize the sum of probabilities of
rules with same predicate to make them 1. This could be disabled
by using the off value with this modi�er. Let us see �rst what the
normalization implies. If we have this as the whole program:

0.3 :: p(0,X):-X > 0.

0.3 :: p(1,X):-X < 0.

Since the sum of both probabilities is less than 1, the code will be
transformed into:

0.5 :: p(0,X):-X > 0.

0.5 :: p(1,X):-X < 0.

And the same probability of 0.5 will be assigned in this other one
situation (even though is >1, we could deduce that each clause must
have a probability of 0.5):

1 :: p(0,X):-X > 0.

1 :: p(1,X):-X < 0.
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When there are clauses without probability (but at least one has prob-
ability, otherwise the program will not be considered as a stochastic
one), then the tool also deduces the probabilities which are not present
by assuming a uniform distribution:

0.6 :: p(0,X):-X > 0.

p(1,X):-X < 0. % --> prob. will be 0.2

p(3,0). % --> prob. will be 0.2

Then if we disable the normalization using this modi�er, the tool will
fail for any of these examples: whenever there is one clause without
probability, the sum of them is not 1, etc.

0.8 :: p(a).

0.1 :: p(b).

0.4 :: q(a).

q(b).

q(c).

r(a).

⇀

0.8888 :: p(a).

0.1111 :: p(b).

0.4 :: q(a).

0.3 :: q(b).

0.3 :: q(c).

1 :: r(a).

Figure D.1: Example of normalization (left not normalized, right normalized)

• ��rulesprob: Another important modi�er is this involved with the
treatment applied to the clauses. Using the Example we are going to
explain the di�erences between the three possible treatments:

� Value notlast: The last rule probability of each di�erent pred-
icate is not code, since it can be inferred from the rest because
probabilities are assumed to be normalized. So, in this situation
(Figure , right), we will code 0.8888, 0.4 and 0.3, adding an extra
bit for each one of the predicates.

� Value all: All of them are considered (for this example, the six
probabilities).

� Value zerobitslast: Only the relevant clauses are considered for
evaluating the cost, so in this situation we will only code 0.8888,
0.4 and 0.3, but without the addition of an extra bit per predicate.
This is the default behavior.

• ��tabled: Instead of showing the results as we have seen, they are
returned as a tabular list. This option will generate this as output of
an execution:

;ej4+exampl+kb;Total;Program;CRule,CLexicon;NP;NF;CHeads;
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CBodies,CVars;CProb;CExamples;CKnowledgeBase;

Predicates;FunctionSymbols;

;prg_8+exampl_8+kb_8;116.34485;116.34485;5.33713;23.41505;1;2;

78.00000;7.59268;2.00000;0.00000;0.00000;0.00000;

[sum/3];[0/0,s/1];

;n8_2_3_pr;79.00773;79.00773;4.51854;23.41505;1;2;

42.00000;6.07414;3.00000;0.00000;0.00000;0.00000;

[diff/3];[s/1];

So all the relevant information of the execution is obtained in a line for
each combination of user program and example �le (in this case, two)
separated by semicolon. The detail of each column is shown in Table
D.1.

Column Name Description

1 Name of the modules used in this execution
2 Total Total cost (it sums all the other concepts)
3 Program Cost of the program
4 CRule Cost of the rules
5 CLexicon Cost of the lexicon
6 NP Number of predicates in the program (also in-

cluding the ones from the KB �les)
7 NF Number of function symbols in the program

(also including the ones from the example and
KB �les)

8 CHeads Cost of the heads of the clauses in the program
9 CBodies Cost of the bodies of the clauses in the program
10 CVars Cost of the variables
11 CProb Probabilistic cost (zero if there are no probabil-

ities)
12 CExamples Cost of the evidence (zero if there is no evidence)
13 CKnowledgeBase Cost of the Knowledge Base �le (if present)
14 Predicates List of the di�erent predicates that appeared in

the program and KB �les
15 FunctionSymbols List of the function symbols that appeared in all

the code (KB,examples and program)

Table D.1: Table of data returned with modi�er ��tabled

• ��maxrecursionMaximum number of SLD-resolution derivations that
the tool will generate during the refutation of an example in the evi-
dence. This depth is just use to approximate its probability (currently
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it is 20 by default if you do not indicate a di�erent value). To under-
stand this, please refer to chapter 2.5.2. In short, this option was intro-
duced to limit the in�nite recursion for predicates like p(X):-p(s(X))
or any other in which a branch could grow the SLD-tree in�nitely.
If it happens, that branch is discarded when it grows over this limit.
So, if the program code does not include many large terms (e.g. long
recursive lists), a limit of 20 is enough.

D.4 Code errors

The program shows a detailed message error when it exists abnormally, with
a message indicating the source �le that it has generated the error or the
modi�er that is not correctly used. Nonetheless, the program also gives us a
return code that could help us to identify the problem, listed in Table D.2.

D.5 Website organization

As we have mentioned, in section 4.1, there is a Web version of the tool,
working as a wrapper for the command-line version.

The website needs a Yap Prolog interpreter (obviously) to work, a web
server able to manage PHP �les and authorizations to execute the shell. The
tool is running currently on a Linux server that uses Debian1 and HTTPD
Server2 , but it could be also modi�ed to run on another platform with a
PHP interpreter and Yap Prolog installed.

The aspect of the Website is shown in Figure D.2. There are three �les:

• index.html: The default �le which will be accessed by Web users when
they will introduce the Web address of the folder where these �les are
installed.

• process.php: It contains the PHP code necessary to call the program
from the Website and to format the output for a Web browser.

• process.sh: This is the only �le we need to set up when we install
this tool, to adapt it to other platform (like Windows) or at least to
indicate the path to the Yap program or to the tool �les. The content
of this �le is shown in Listing D.1.

Listing D.1: Process to limit in a shell script

1Debian GNU/Linux, based in the Linux kernel, is a popular and in�uential Linux
distribution urlhttp://www.debian.org

2Apache HTTPD is an open-source HTTP server for many operating systems including
UNIX and Windows: http://httpd.apache.org

http://httpd.apache.org
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#!/bin/sh

ulimit -t 15

cd /local_dir_of_the_tool

/path_to_the_compiler/yap -L ./ mml_cost.yap

-- $*

Figure D.2: Aspect of the Website

The Web version has some limitations but also some extra facilities.

The �rst is a limitation to avoid the possibility of inserting a huge pro-
gram (or maybe many of them), trying to run out the resources of the Web
server. We then limit the Web server memory and CPU, and also to limit
the number of concurrent threads (so, the number of users) that can access
to the tool. The second thing is done directly in the con�guration of the
Web server, whatever we choose.

To obtain this in a Unix-compatible environment is really easy: we in-
troduce the limitation of 15 seconds of maximum execution time in the
process.sh �le (ulimit -t 15, as shown in Figure D.1).

The options available in the Website are rather similar to the ones that
we have for the tool using it in the command line version of the tool, although
we have removed the option to show the results in tabled format.

Another important consideration is that a non-expert user that wants
to use this tool needs to be guided with some examples. In this way, the
user can understand the cost is calculated, or how the introduction of more
evidence or the modi�cation of a probability a�ects the result.
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Another facility is that the Website incorporates a prede�ned set of ex-
amples di�erent from the ones attached to this document, most of them
borrowed from the article [23]:

• Case study 2.2, with a simple program and only one example
q(s(s(a)),s(s(a))):

0.5 :: q( s(s(X)),_ ):- p(X).

0.5 :: q( X,X ):- p(X).

0.25:: p(a).

0.25:: p(s(X)):-p(X).

0.25:: p(b).

0.25:: p(c).

• Case study 6, with free variables and also function symbols, but with-
out examples (a non-stochastic example):

even (0).

even(X):-pos(X),even(Y),sum(X,s(s(0)),Y).

pos(s(_)).

sum(X,0,X).

sum(X,s(Y),s(Z)):- sum(X,Y,Z).

• Case study 7.2, with repeated examples using also a simple program
with only head(coin) and tail(coin).

• Case study 8.1, where we compare the reachability of nodes with six
di�erent programs covering the evidence and comparing the results.

• Case study 8.2, which deals with the sum of natural numbers, using
the symbols 0 and s(_).

• Case study 9.2, a known stochastic logic program introduced by Mug-
gleton [37] with animals.

• Case study 9.2, but now using a grammar appeared in J. Cussens [6].

• A �nal case study to analyze the use of free vars:

1 :: p(X):- r(X,a).

0.5 :: r(a,a).

0.5 :: r(b,b).

0.5 :: r(c,a).

0.5 :: sum(0,Y,Y).

0.5 :: sum(X,s(Y),s(Z)):-sum(X,Y,Z).
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Code Error Description of error code

1 There have been errors loading user code �les: the �les are not in
the given path, the access to it is forbidden... This error happens
when we have not analyzed yet the content of the �le.

2 There is some invalid arguments in the command line.
3 The Yap compiler does not have the mathematical precision library

GMP so max_integer is not high enough to continue the execution.
This situation is detected during the loading of this module.

4 The evidence has an example that contains variables, and this can
only happen in the program or in the KB.

5 Example does not match a head of the program or the KB rules.
6 One example of the evidence has a body (this not possible).
7 The example has a non-integer value of repetitions before the #.
8 The Prolog code loaded contains errors or warnings: the program

loaded, the evidence or maybe the KB (any of them) contains some
errors that have been reported previously in lines starting with %%.

9 When we normalize the predicates, we have arrived to an unsolv-
able situation: there is at least a clause without probability, but
the probabilities of the others with same predicate name sum more
or equal to 1.

10 The compiler you are using is not Yap Prolog.
11 Due to the way we transform the code after loading it, the SICStus

dialect is incompatible with the use of examples.
12 You have used # outside of an example �le (and this is reserved

to indicate the number of repetitions of examples), or maybe you
have used :: in the example �le (and this is reserved for code or
KB �les to indicate the probability).

13 SICStus dialog used with probabilities (we cannot support this due
to the use of abolish/1 to refurbish the code of the program).
Similar to error number 11.

14 There is a predicate with same functor name declared both in the
KB and the program: it could only be declared in one of them,
not in both.

15 One head of the program is repeated in the body without any
reduction.

16 The sum of probabilities of the same predicate is > 1 and you
have used the modi�er ��dontnormalize (so you must adjust the
probabilities of the program to sum 1 manually).

17 You have used incompatible options: ��normalize=off and
��rulesprob=zerobitslast. It is possible that you have used
a program where the probabilities must sum up to 1, but then the
normalization has been disabled.

18 An objective is not valid in the example �le.

Table D.2: Table of program code errors



Appendix E

Source code of example

speaker recognition

E.1 Language analysis: source code

Listing E.1: A parser for English language

:-use_module(library(readutil)), % end_of_file /0,

read_line_to_codes /2

use_module(library(lineutils)), % split/3

use_module(library(system)), % file_exists /1

use_module(library(lists)), % append /3

use_module(library(terms)).

% [1] Speech load and transformation

% --------------------------------------------------------

main:- unix( argv(Args) ),

set_value( mode , syntax ),

set_value( onlynp , no ),

set_value( warnings , yes ),

( Args ==[],

helpMessage

;

manipulateArgs( Args )

).

showMessage( Format , Message ):-

format( Format , Message ).

showError( Format , Message ):-

yap_flag(user_error ,ErrorStream),

format( ErrorStream , Format , Message ).

manipulateArgs( ListOfArgs ) :-

processArgs( ListOfArgs , Files , [] ),

executeProgram( Files , [], _ ).

processArgs( [ Argument | RestArgs ], Files , Acc ):-

name( Argument ,"--" ),

processArgs( RestArgs , Files , [user|Acc] ).

117
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RECOGNITION

processArgs( [ Argument | RestArgs ], Files , Acc ):-

(

name( Argument ,"--syntax" ),set_value( mode , syntax )

;

name( Argument ,"--lexicon" ),set_value( mode , lexicon )

;

name( Argument ,"--word" ),set_value( mode , word )

;

name( Argument ,"--np" ),set_value( onlynp , yes )

;

name( Argument ,"--nowarnings" ),set_value( warnings , no )

),

processArgs( RestArgs , Files , Acc ).

processArgs( [ Argument | RestArgs ], Files , Acc ):-

verifyFile(Argument),

processArgs( RestArgs , Files , [Argument|Acc] ).

processArgs( [], Files , Files ).

% if the file doesn't exists , or is not readable , we exit with error

:

verifyFile( File ):-

file_exists( File , 4 ),!

;

exists( File ),!,

showError('Error: File not readable: ''~p''~n',[File]),

halt (1)

;

File == '-?',helpMessage

;

File == '-h',helpMessage

;

showError('Error: File not found: ''~p''~n',[File]),

halt (1).

helpMessage :- nl,write(' Basic analysis of speech '),nl,

write('   --syntax (by default) | --lexicon | --word'),nl,

write('   --np (also accept the noun_phrase without verbs'),nl,

write('   [file1..fileN] Files to analyze together '),nl ,

write(' '),nl,

write(' The content of the file must be English sentences 

divided '),nl,

write(' by dots. Non -English characters are forbidden.'),nl,

write(' Last line of each file must be an empty line or its 

content '),nl,

write(' will be ignored '),nl ,nl.

transform1 ([] ,[]). % list of sentences

transform1 ([Elem|List],[Elem1|List1 ]):-

transform2(Elem ,Elem1),

transform1(List ,List1).

transform2 ([] ,[]). % sentence = list of words

transform2 ([Elem|List],[Elem1|List1 ]):-

name(Elem1 ,Elem), % word

transform2(List ,List1).

executeProgram( [], Result1 , _ ):-transform1(Result1 ,Result2),

analyzeSentences(Result2) ,!.
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executeProgram( [File|FileList], Acum , Output ):-

open(File ,'read',Stream),

% A sentence not ended in a file is considered ended , so a final

'.' is

% supposed:

readLines( Stream , [], Acum , NewAcum ),

close(Stream),

executeProgram(FileList , NewAcum , Output ).

readLines( Stream , CurrentSentence , SentencesIn , Result ):-

% Acum = [current sentece]

% Input = [previous sentences]

% Output = <result >

(

% When this first predicate fails , we have ended:

read_line_to_codes(Stream ,ThisLine),!,

(

ThisLine == end_of_file ,!,

( CurrentSentence ==[],!,

Result=SentencesIn

;

append( SentencesIn ,CurrentSentence , Result )

)

;

processLine( ThisLine , [],

CurrentSentence , NewCurrentSentence ,

SentencesIn , SentencesOut ),

readLines( Stream , NewCurrentSentence , SentencesOut , Result )

)

;

( CurrentSentence ==[],!,

Result=SentencesIn

;

append( SentencesIn ,CurrentSentence , Result )

)

).

% We have ended the line , so we output the results to readLines /4:

processLine( [], Word , CurrentSentence , NewCurrentSentence ,

Sentences , Sentences ):-

Word \==[],!,

append( CurrentSentence ,[Word],NewCurrentSentence )

;

NewCurrentSentence=CurrentSentence.

% New sentence (.), we exclude empty words and empy sentences:

processLine( [46| List],Word ,

CurrentSentence , FinalPendentSentence ,

SentencesIn , SentencesOut ):-

( Word \==[],!,

append( CurrentSentence ,[Word],NewSentence)

;

NewSentence = CurrentSentence

),

( NewSentence \== [],!,

append( SentencesIn ,[ NewSentence],NewSentencesIn)

;

NewSentencesIn = SentencesIn

),

processLine( List , [], [], FinalPendentSentence ,

NewSentencesIn ,SentencesOut ).
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% Question mark , so a new sentence also:

processLine( [63| List],Word ,

CurrentSentence , FinalPendentSentence ,

SentencesIn , SentencesOut ):-

( Word \==[],!,

append( CurrentSentence ,[Word],NewSentence)

;

NewSentence = CurrentSentence

),

( NewSentence \== [],!,

append( NewSentence ,[[63]] , NewSentence1 ),

append( SentencesIn ,[ NewSentence1],NewSentencesIn)

;

NewSentencesIn = SentencesIn

),

processLine( List , [], [], FinalPendentSentence ,

NewSentencesIn ,SentencesOut ).

% hyphen also a new word:

processLine( [45| List],Word ,

CurrentSentence , FinalPendentSentence ,

SentencesIn , SentencesOut ):-

( Word \==[],!,

append( CurrentSentence ,[Word],NewSentence)

;

NewSentence = CurrentSentence

),

( NewSentence \== [],!,

append( SentencesIn ,[ NewSentence],NewSentencesIn)

;

NewSentencesIn = SentencesIn

),

processLine( List , [], [], FinalPendentSentence ,

NewSentencesIn ,SentencesOut ).

% same with ; or :

processLine( [58| List],Word ,

CurrentSentence , FinalPendentSentence ,

SentencesIn , SentencesOut ):-

( Word \==[],!,

append( CurrentSentence ,[Word],NewSentence)

;

NewSentence = CurrentSentence

),

( NewSentence \== [],!,

append( SentencesIn ,[ NewSentence],NewSentencesIn)

;

NewSentencesIn = SentencesIn

),

processLine( List , [], [], FinalPendentSentence ,

NewSentencesIn ,SentencesOut ).

processLine( [59| List],Word ,

CurrentSentence , FinalPendentSentence ,

SentencesIn , SentencesOut ):-

( Word \==[],!,

append( CurrentSentence ,[Word],NewSentence)

;

NewSentence = CurrentSentence

),

( NewSentence \== [],!,

append( SentencesIn ,[ NewSentence],NewSentencesIn)
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;

NewSentencesIn = SentencesIn

),

processLine( List , [], [], FinalPendentSentence ,

NewSentencesIn ,SentencesOut ).

% New word , but we exclude empty words ( ) or (,):

processLine( [32| List],[], CurrentSentence , FinalPendentSentence ,

SentencesIn , SentencesOut ):-

processLine( List , [], CurrentSentence , FinalPendentSentence ,

SentencesIn , SentencesOut ).

processLine( [32| List],Word , CurrentSentence , FinalPendentSentence ,

SentencesIn , SentencesOut ):-

append( CurrentSentence ,[Word],NewCurrentSentence),

processLine( List , [], NewCurrentSentence , FinalPendentSentence ,

SentencesIn , SentencesOut ).

processLine( [44| List],Word , CurrentSentence , FinalPendentSentence ,

SentencesIn , SentencesOut ):-

append( CurrentSentence ,[Word],NewCurrentSentence),

processLine( List , [], NewCurrentSentence , FinalPendentSentence ,

SentencesIn , SentencesOut ).

% Any other thing , we add it to the current word:

processLine( [Char|List],Word , CurrentSentence , FinalPendentSentence

,

SentencesIn , SentencesOut ):-

( between (65,90,Char), % we lowercase the char always:

NewChar is Char + 32

;

NewChar is Char

),

append( Word ,[ NewChar],NewWord),

processLine( List , NewWord , CurrentSentence ,

FinalPendentSentence ,

SentencesIn , SentencesOut ).

% [2] Speech analysis

% --------------------------------------------------------

analyzeSentences(Sentences):-

length(Sentences ,X),

set_value(counter ,0),

analyzeSentences1(Sentences),

(

get_value( mode , syntax ) ,!,

( get_value( warnings , yes ),!,write('% There are '),write(X),

write(' sentences in the speech '),get_value(counter ,Y),

write('('),write(Y),write(' recognized)'),nl

;

true

)

;

get_value( mode , lexicon ),!,

get_value(counter ,Y),

( get_value( warnings , yes ),!,

write('% There are '),write(Y),write(' tokens in the speech '),

nl

;

true

)

;

get_value(counter ,Y),

( get_value( warnings , yes ),!,
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write('% There are '),write(Y),write(' words in the speech '),

nl

;

true

)

).

analyzeSentences1 ([]).

analyzeSentences1 ([ Sentence|List]):-

analyzeSentences2(Sentence),

( get_value(mode ,syntax) ,!,

( s( Sentence , Result ),

write(Result),write('.'),increment_counter ,nl

;

write('% '),write(Sentence),nl

)

;

true

),

analyzeSentences1(List).

analyzeSentences2 ([]).

analyzeSentences2 ([Word|Sentence ]):-

testWord(Word),

analyzeSentences2(Sentence).

increment_counter :-

get_value(counter , Value),

Value1 is Value+1,

set_value(counter , Value1).

% :-[tokens ].

:-[grammar ].

% we identify if the token is recognized by our system:

testWord(Word):-

% we use term_hash /2 to obtain an unique name that represents the

word ,to avoid the

% problem with word('?'),word('8th ') and this kind of problems:

(get_value(mode ,word),write('word('),term_hash(Word ,X),write(X),

write('). % '),write(Word),nl,

increment_counter;true)

,

det([Word]) ,!, (get_value(mode ,lexicon),write('lex(det).'),

increment_counter ,nl;true)

;

prep([Word]) ,!, (get_value(mode ,lexicon),write('lex(prep).'),

increment_counter ,nl;true)

;

wh([Word]) ,!, (get_value(mode ,lexicon),write('lex(wh).'),

increment_counter ,nl;true)

;

qmark([Word]) ,!, (get_value(mode ,lexicon),write('lex(qmark).'),

increment_counter ,nl;true)

;

prorel ([Word]) ,!, (get_value(mode ,lexicon),write('lex(prorel).')

,increment_counter ,nl;true)

;
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aux([Word]) ,!, (get_value(mode ,lexicon),write('lex(aux).'),

increment_counter ,nl;true)

;

connector ([Word]) ,!,(get_value(mode ,lexicon),write('lex(connector)

.'),increment_counter ,nl;true)

;

verb([Word]) ,!, (get_value(mode ,lexicon),write('lex(verb).'),

increment_counter ,nl;true)

;

adv([Word]) ,!, (get_value(mode ,lexicon),write('lex(adv).'),

increment_counter ,nl;true)

;

noun([Word]) ,!, (get_value(mode ,lexicon),write('lex(noun).'),

increment_counter ,nl;true)

;

adj([Word]) ,!, (get_value(mode ,lexicon),write('lex(adj).'),

increment_counter ,nl;true)

;

( get_value( warnings , yes ),!,

write('% not recognized! '),write(Word),nl

;

true

).

% [3] Output the model

% --------------------------------------------------------

% --------------------------------------------------------

% --------------------------------------------------------

:-initialization(main).
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Listing E.2: DCG used in the parser

% -----------------------------------------------

s( X , Y ):-

sentence( sentence(Z), X, [] ),!,transform(Z,Y)

;

get_value( onlynp ,yes ),noun_phrase(Z,X,[]),transform(Z,Y).

% -----------------------------------------------

sentence( sentence( X ) ) --> affirmative_sentence( X ) ;

subject_interrogative_sentence( X ) ;

object_interrogative_sentence( X ) ;

imperative_sentence( X ).

imperative_sentence( imperative_sentence( S1 ,S2 ) ) -->

adv_phrase(S1),verb_phrase(S2) ,!.

imperative_sentence( imperative_sentence( S1 ) ) -->

verb_phrase(S1) ,!.

% they know what they are doing:

affirmative_sentence( affirmative_sentence( S1 ,S2,S3,S4 ) ) -->

noun_phrase(S1),verb1(S2),wh([S3]),

affirmative_sentence(S4) ,!.

affirmative_sentence( affirmative_sentence( S1 ,S2,S3 ) ) -->

adv_phrase(S1),noun_phrase(S2), verb_phrase(S3

) ,!.

affirmative_sentence( affirmative_sentence( S1 ,S2,S3 ) ) -->

noun_phrase(S1),verb_phrase(S2),adv_phrase(S3)

,!.

affirmative_sentence( affirmative_sentence( S1 ,S2 ) ) -->

noun_phrase(S1), verb_phrase(S2) ,!.

affirmative_sentence( affirmative_sentence( S1 ,S2 ) ) -->

connector ([S1]),affirmative_sentence(S2) ,!.

object_interrogative_sentence( object_interrogative_sentence( S1 ,S2,

S3,S4,S5,S6 ) ) -->

wh([S1]),aux([S2]),noun_phrase(S3),verb_phrase

(S4),prep([S5]),qmark ([S6]) ,!.

% what progress will we have made?

object_interrogative_sentence( object_interrogative_sentence( S1 ,S2,

S3,S4,S5,S6 ) ) -->

wh([S1]),noun([S2]),aux([S3]),noun_phrase(S4),

verb_phrase(S5),qmark(S6) ,!.

object_interrogative_sentence( object_interrogative_sentence( S1 ,S2,

S3,S4,S5 ) ) -->

wh([S1]),aux([S2]),noun_phrase(S3),verb_phrase

(S4),qmark(S5) ,!.

subject_interrogative_sentence( subject_interrogative_sentence( S1,

S2,S3 ) ) -->

wh([S1]),verb_phrase(S2),qmark ([S3]) ,!.

adv_phrase( adv_phrase( S1 ,S2 ) ) --> prep([S1]),noun_phrase(S2) ,!.

adv_phrase( adv_phrase( S1 ) ) --> adv([S1]) ,!.

% like we remove commas , the adjectives could appear as: "a tiny and

marvellous" or
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% also "a tiny , wonderful house":

adj_compl( adj_compl( S1,S2,S3 ) ) --> adj([S1]),connector ([S2]),adj

([S3]) ,!.

adj_compl( adj_compl( S1,S2 ) ) --> adj([S1]),adj([S2]) ,!.

adj_compl( adj_compl( S1,S2 ) ) --> adv([S1]),adj([S2]) ,!. % manner

complement

adj_compl( adj_compl( S1 ) ) --> adj([S1]) ,!.

noun_phrase( noun_phrase(S1,S2,S3,S4 ,S5) ) --> det([S1]), adj_compl(

S2),noun([S3]),

connector ([S4]),

noun_phrase(S5)

,!.

noun_phrase( noun_phrase(S1,S2,S3,S4) ) --> det([S1]), noun([S2]),

connector ([S3]),

noun_phrase(S4) ,!.

noun_phrase( noun_phrase(S1,S2,S3,S4) ) --> adj_compl(S1),noun([S2])

,

connector ([S3]),

noun_phrase(S4) ,!.

noun_phrase( noun_phrase(S1,S2,S3) ) --> det([S1]), noun([S2]),

prop_pred(S3) ,!.

noun_phrase( noun_phrase(S1,S2,S3) ) --> adj_compl(S1), noun([S2]),

prop_pred(S3) ,!.

noun_phrase( noun_phrase(S1,S2,S3) ) --> det([S1]), adj_compl(S2),

noun([S3]) ,!.

noun_phrase( noun_phrase(S1,S2,S3) ) --> det([S1]), noun([S2]),

rel_phrase(S3) ,!.

noun_phrase( noun_phrase(S1,S2,S3) ) --> det([S1]), noun([S2]),noun

([S3]) ,!.

noun_phrase( noun_phrase(S1,S2,S3) ) --> noun([S1]), connector ([S2])

,noun([S3]) ,!.

noun_phrase( noun_phrase(S1,S2) ) --> det([S1]), noun([S2]) ,!.

noun_phrase( noun_phrase(S1,S2) ) --> noun([S1]),prop_pred(S2) ,!.

noun_phrase( noun_phrase(S1,S2) ) --> adj_compl(S1),noun([S2]) ,!.

noun_phrase( noun_phrase(S1) ) --> noun([S1]) ,!.

noun_phrase( noun_phrase(S1) ) --> adj_compl(S1) ,!.

prop_pred( prop_pred(S1,S2) ) --> prep([S1]),noun_phrase(S2) ,!.

prop_pred( prop_pred(S1,S2) ) --> prep([S1]),verb([S2]),noun_phrase(

S3) ,!. % to reaffirm our situation

rel_phrase( rel_phrase(S1,S2) ) --> prorel ([S1]),

affirmative_sentence(S2).

rel_phrase( rel_phrase(S1,S2) ) --> prorel ([S1]),verb_phrase(S2).

% transitive:

verb_phrase( verb_phrase(S1,S2,S3) ) --> verb1(S1),noun_phrase(S2),

adv([S3]) ,!.

verb_phrase( verb_phrase(S1,S2,S3) ) --> verb1(S1),noun_phrase(S2),

prop_pred(S3) ,!.

verb_phrase( verb_phrase(S1,S2,S3) ) --> verb1(S1),prop_pred(S2),

noun_phrase(S3) ,!. % oi+od

verb_phrase( verb_phrase(S1,S2,S3) ) --> verb1(S1),noun_phrase(S2),

noun_phrase(S3) ,!. % oi+od, but oi without prep

verb_phrase( verb_phrase(S1,S2,S3) ) --> verb1(S1),adj_compl(S2),

prop_pred(S3) ,!. % attributive sentences

verb_phrase( verb_phrase(S1,S2) ) --> verb1(S1),noun_phrase(S2) ,!.

% intransitive:

verb_phrase( verb_phrase(S1,S2) ) --> verb1(S1),adj_compl(S2) ,!. %

attributive sentences
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verb_phrase( verb_phrase(S1,S2) ) --> verb1(S1),adv([S2]) ,!.

verb_phrase( verb_phrase(S1,S2) ) --> verb1(S1),prop_pred(S2) ,!.

verb_phrase( verb_phrase(S1) ) --> verb1(S1) ,!.

% negation:

verb1( verb( S1 ,S2,S3 ) ) --> aux([S1]),aux([S2]),verb([S3]) ,!.

verb1( verb( S1 ,S2,S3 ) ) --> aux([S1]),verb([S2]),verb([S3]) ,!.

verb1( verb( S1 ,S2,S3 ) ) --> aux([S1]),adv([S2]),verb([S3]) ,!. %

are now threated

verb1( verb( S1 ,S2 ) ) --> aux([S1]),verb([S2]) ,!.

verb1( verb( S1 ,S2 ) ) --> verb([S1]),prep([S2]) ,!.

verb1( S1 ) --> verb([S1]) ,!.

verb([verb(X)]) --> [X], {verb([X])}.

det([det(X)]) --> [X], {det([X])}.

noun([noun(X)]) --> [X], {noun([X])}.

adj([adj(X)]) --> [X], {adj([X])}.

adv([adv(X)]) --> [X], {adv([X])}.

prep([prep(X)]) --> [X], {prep([X])}.

wh([wh(X)]) --> [X], {wh([X])}.

qmark([qmark(X)]) --> [X], {qmark([X])}.

prorel ([ prorel(X)]) --> [X], {prorel ([X])}.

aux([aux(X)]) --> [X], {aux([X])}.

connector ([ connector(X)]) --> [X], {connector ([X])}.

% -----------------------------------------------

:-[tokens ].

% -----------------------------------------------

% inside we have only adj(),adj(), then:

transform( A, A ):- atomic(A) ,!.

transform( A , B ):-

A =.. [B,C],atomic(C) ,!.

% [a,b] --> [a',b ']

transform( [], [] ):-!.

transform( [Elem|List], [Elem1|List1] ):-!,

transform(Elem ,Elem1),

transform(List ,List1).

transform( A , B ):-

A =.. [C|List],!,

transform(List ,List1),

B =.. [C|List1 ].

% -----------------------------------------------
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Listing E.3: Lexicon used in the DCG

:-use_module(library(lists)).

det([the]).

det([that]).

det([those]).

det([a]).

det([an]).

det([this]).

...

prep([to]).

prep([at]).

prep([on]).

prep([in]).

prep([ since]).

...

wh([who]).

wh(['when']).

wh([where ]).

wh([how]).

wh([what]).

wh([which ]).

wh([whose ]).

wh([whom]).

qmark ([?]).

prorel ([who]).

prorel ([that]).

prorel ([which]).

aux([does]).

aux([do]).

...

aux([ should ]).

connector ([and]).

connector ([or]).

connector ([but]).

...

% -----------------------------------------------

% nouns: s(100004475 ,1 , ' organism ',n,1,9).

% plural: +s

noun([X]):- wordnet:s(_,_,X,n,_,_) ,!

;

X \== 'is',remove_es(X,Y),

wordnet:s(_,_,Y,n,_,_) ,!.

% verbs: s(200001740 ,1 , ' breathe ',v,1,22).

% 3rd person: +es|+s

% past: +ed

:-[ irregulars ].

verb([X]):- wordnet:s(_,_,X,v,_,_) ,!

;

remove_es(X,Y1),

wordnet:s(_,_,Y1,v,_,_)

;
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remove_ed(X,Y2),

wordnet:s(_,_,Y2,v,_,_)

;

remove_ing(X,Y3),

wordnet:s(_,_,Y3,v,_,_)

.

% adverbs: s(400048475 ,2 , ' now ',r,2 ,182).

adv([X]):- wordnet:s(_,_,X,r,_,_) ,!.

% adj: s(300001740 ,1 , ' able ',a,1 ,70).

% s(300003700 ,1 , ' dissilient ',s,1,0).

adj([X]):- wordnet:s(_,_,X,a,_,_) ,!

;

wordnet:s(_,_,X,s,_,_) ,!.

remove_es(X,Y):-

name(X,Z1),append(Z2 ,[101 ,115] ,Z1),name(Y,Z2)

;

name(X,Z1),append(Z2 ,[115] ,Z1) ,!,name(Y,Z2).

remove_ed(X,Y):-

name(X,Z1),append(Z2 ,[101 ,100] ,Z1),name(Y,Z2)

;

name(X,Z1),append(Z2 ,[100] ,Z1) ,!,name(Y,Z2).

remove_ing(X,Y):-

name(X,Z1),append(Z2 ,[105 ,110 ,103] ,Z1),name(Y,Z2).

% we load wordnet , with this structure:

% s(100002452 ,1 , ' thing ',n,12 ,0).

% s(100002684 ,1 , ' object ',n,1,51).

% s(100002684 ,2 , ' physical object ',n,1,0).

:-[wordnet:wordnet ].

% -----------------------------------------------

% Content of irregulars.pl is this:

verb([ arisen ]).

verb([ arose]).

verb([am]).

verb(['are']).

verb([ate]).

verb([beat]).

verb([ beaten ]).

verb([ became ]).

verb([ become ]).

verb([been]).

verb([ began]).

...
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We can only see a short distance ahead,

but we can see plenty there

that needs to be done.

Alan Turing
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