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Abstract. Algebraic factorization methods applied to the discipline of
Computerized Tomography (CT) Medical Imaging Reconstruction in-
volve a high computational cost. Since these techniques are significantly
slower than the traditional analytical ones and time is critical in this
field, we need to employ parallel implementations in order to exploit the
machine resources and obtain efficient reconstructions.
In this paper, we analyze the performance of the sparse QR decompo-
sition implemented on SuiteSparseQR factorization package applied to
the CT reconstruction problem. We explore both the parallelism pro-
vided by BLAS threads and the use of the Householder reflections to
reconstruct multiple slices at once efficiently. Combining both strategies,
we can boost the performance of the reconstructions and implement a
reliable and competitive method that gets high-quality CT images.
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1 Introduction and Background

In recent years, medical tests such as Magnetic Resonance Imaging (MRI) [1]
have gained prominence in clinical practice. MRIs are not harmful to the patient,
since the image is produced from the application of magnetic fields on a body.
In contrast, Computerized Tomographies (CT) [2] project X-rays, which induce
a dose of radiation that can be harmful to the patient. However, despite being
harmful, CT scans are still necessary.

On the one hand, they obtain better images than the MRI for certain types
of objects of interest (bones and tumors) while the magnetic resonance is mostly
applied to soft tissues since it achieves greater contrast between different tissues.
On the other hand, not all people are suitable for both tests. MRI is not recom-
mended for patients who have a pacemaker or metal implants in their body, while
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they can undergo a CT scan. But CT is contraindicated for pregnant patients,
infants and children, due to the dose of radiation induced with the test.

For all the above, although the current perception is that the CTs are losing
ground to the MRI, it is not entirely true, so we believe that it is necessary to
continue improving CT scanners and also the techniques of image reconstruction
they use.

In our previous works [3–7], we have studied the option of working with
algebraic methods instead of the traditional analytical methods to reconstruct
CT images. In this way, we can solve the problem mathematically by either
iterative or direct algebraic algorithms. While other works focus on reducing
radiation by applying X-rays with lower voltage [8], we focus on taking fewer
shots. With this approach, we can work with a low number of projections and
still get high-quality images. This means that we could reduce the radiation dose
to which the patient is exposed, which is our main objective.

Using iterative methods, we can reduce the number of views or projections
that we use to a really small number if we make a good selection of the projection
angles [9, 10, 6]. However, with the direct methods [11, 7], we have reached the
conclusion that it is necessary that the matrix of the CT system has full rank,
which will determine the number of projections required according to the image
resolution that you want to achieve. Regardless, both approaches need a lower
number of X-ray projections than other methods.

However, the types of methods we use require more computational resources.
In addition, the time needed to reconstruct the images is much higher than with
the analytical methods (minutes or hours versus milliseconds). Therefore, if we
want the algebraic approach to be employed, we have to reduce the reconstruc-
tion time to the maximum. For this we can use High-Performance Computing
(HPC) techniques, exploiting the hardware resources of the machine through
parallel implementations of the algorithms.

In this paper, we focus on the analysis of the performance of the QR [12]
factorization employed to reconstruct CT images. To do this, we make use of
the SuiteSparseQR factorization package [13], analyzing the effect of using a
different number of BLAS threads in operations. In addition, we compare the
time efficiency when we reconstruct a single slice, or when we have a volume
formed by multiple slices, which fits best a real situation.

In Section 2.1, we will describe the CT image reconstruction problem. We also
make a brief description of the scanner we simulate and the dataset DeepLesion,
used to take as reference. In Sections 2.2 and 2.3 we explain how to perform the
CT reconstructions using the explicit QR factorization or the Householder form.
The results of the study are discussed in Section 3, analyzing on the one hand the
performance of the QR factorization using a different number of threads (Sect
3.1) as well as the performance of the reconstruction step (Sect 3.2). Additionally,
in Section 3.3 we show the obtained images measuring their quality. Finally, in
Section 4 we summarize the work done and discuss the future lines of work.
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2 Materials and Methods

2.1 Algebraic CT image reconstruction

When dealing with the reconstruction of CT images in an algebraic way, it
is necessary to model the associated problem. Initially, we only have the data
obtained through the scanner using X-rays. Therefore, it will be necessary to
transform this data into an image that represents the projected object or body
part.

We pose the problem as a system of linear equations as proposed in equation
(1). Here, g is the data acquired by the scanner. It is usually called projections
vector or sinogram for fanbeam CTs. As we see in (2), g is a vector of size M ,
which depends on the physical parameters of the scanner. We calculate M as
the product of the number of detectors of the CT and the number of projections
taken. It is worth mentioning than one projection (one X-ray shot) obtains as
many data as detectors we have.

The system matrix A is defined in equation (4). This is a sparse weight matrix
that represents the influence a of each ray beam traced (i) on each image pixel
(j ). As we can see, the number of rows of A is M , and the number of columns is
N , which is the resolution in pixels of the reconstructed image we want to get.

In our case, both the matrix and the projections vector is simulated. We
calculate both using the forward projection ray-tracing algorithm proposed by
Joseph [14], simulating a CT scanner with 1025 detectors and taking equiangular
projections around the 360 degrees of rotation. The images we projected are a
selection of the DeepLesion dataset [15], which contains thousands of CT images
of numerous patients for the study of different types of lesions.

Finally, u is the solution of our equations system. It is the reconstructed
image. If we store in vector form, as we see in (3), its size is the total number
of pixels on the image. For instance, for a final image of resolution 256 × 256
pixels, u is a vector of size 1 × 2562. It is very easy to go from vector form to
image form and vice versa.

A ∗ u = g (1)

g = [g1, g2, ..., gM ]T ∈ RM (2)

u = [u1, u2, ..., uN ]T ∈ RN (3)

A = ai,j ∈ RMxN (4)

2.2 QR Factorization applied to the CT problem

Ideally, the previously modeled problem could be solved very simply by obtaining
the inverse of the system matrix as shown in the equation (5), provided it had full
rank and the matrix was square. But in our application, this matrix dimensions
can be really large for the highest resolutions and rectangular (more rows than
columns). It is not feasible to explicitly compute the inverse since it requires a
high computational cost and really advanced hardware. Besides, it is a highly
unstable computation, so the errors could spoil the resulting image.
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For this reason, we need to solve the problem with an iterative method as
we did in [3, 6] or apply a factorization to the matrix so we can solve it directly.
The factorization we propose is the QR with pivoting [16], as described in (6).
Here, Q is an orthonormal matrix (its columns are orthogonal unit vectors so
QtQ = I). R is an upper triangular matrix and P is the permutation matrix
used to reduce the filling.

With this decomposition done, we can emulate the inverse of the matrix A
as shown in (7), or the pseudoinverse if the matrix is non-invertible [17, 18]. Now
we can solve the problem as (8). And since the factorization can be performed
only once and stored for future use, every time we need to reconstruct we will
only have to perform a matrix-matrix product, a permutation and solving one
upper triangular equations system. This means faster reconstructions.

In addition, here g can be a matrix RMxS with S columns (the number of
slices we want to reconstruct), so we can get multiple images within the same
operation, which also reduces the time per slice.

u = A−1 ∗ g (5)

A ∗ P = Q ∗R (6)

A−1 = PR−1QT (7)

u = P ∗ (R−1(QT ∗ g)) (8)

2.3 Q-less factorization using Householder reflections

As we mentioned, our matrices can get relatively big depending on the desired
image resolution, so it is possible the computational resources needed to com-
pute the decomposition are extensive. Even if the system matrix A is sparse, Q
can be dense. As a way to spare main memory resources, we could decide to not
calculate the Q matrix explicitly. Instead, we could perform the factorization us-
ing Householder reflections, and store only the set of Householder vectors, which
describe transforms to be applied as shown in (9). Here Hi are the successive
reflection matrices to apply to our right-hand side g. Apart from main memory,
this technique will also reduce the computation time.

Q = H1H2 · · ·HN−2HN−1 (9)

2.4 SuiteSparseQR factorization package

SuiteSparseQR [13] is an implementation of the multifrontal sparse QR factor-
ization method. It uses both BLAS and Intel’s Threading Building Blocks, a
shared-memory programming model for modern multicore architectures to ex-
ploit parallelism. The package is written in C++ with user interfaces for MAT-
LAB, C, and C++. It works for real and complex sparse matrices.

In our case, we are using the MATLAB interface, making use of BLAS par-
allelism and working with real sparse matrices.
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3 Results and Discussion

In order to test the performance of the method we run both the matrix factor-
ization and the reconstructions in a server with four Intel Xeon E5-4620 8c/16T
processors (8 cores/processor, 32 cores/node) and 256GB DDR3 RAM memory
(ratio 8GB/core).

We use a matrix corresponding to resolution 256x256 pixels and 90 projec-
tions. Thus, the size of the matrix is 90200x65536, with 40871478 non-zero ele-
ments and 0.0069 density. In the next subsections we show the experimental time
results when using a different number of BLAS threads for the two alternatives
of the factorization method, using one physical processor per thread.

3.1 Factorization step

In the fist step we need to compute the factorization shown in equation (6).
As explained in Section 2.2, the factorization of the matrix can be done once
before the reconstruction of the images. Therefore, the computational speed is
not going to be that important in this case. Even so, it is desirable to reduce
it to the maximum, both to save computing time and to avoid possible system
failures that can abort our process and spoil hours of work.

As we can see in Table 1, it is much faster to store the factorization in
Householder form than to form the Q matrix explicitly. Regardless of the number
of BLAS threads employed, it is around 3 times faster, which is a significant
difference.

In Figures 1 and 2 we can see the Speedup and Efficiency of both of the
methods. We compute the Speedup for p processors as Sp = T1/Tp, being T1

the time with 1 processor and Tp the time with p processors. The Efficiency is
Ep = Sp/p. In a perfect parallel algorithm, the Speedup is equal to the number
of processors and the Efficiency is 1, which means we are taking advantage of
the 100% of the resources.

However, we can observe that we get lower results. The Householder factor-
ization has slightly better performance except when using 32 processors, with
a Speedup of 8 versus the 10.2 of the explicit Q factorization. In Figure 2 we
can see that with more than 4 processors we are using less than a 50% of the
computational resources. Since we are working with sparse matrices with a low
density it is usual to get lower efficiency that with dense matrices.

Table 1: Factorization time
Factorization Method

BLAS Explicit Q Householder Improvement
threads Time (secs.) Factor

1 172784 57628 3.00
2 119407 31955 3.74
4 72186 21105 3.42
8 56325 18481 3.05
16 36451 10422 3.50
32 16805 7191 2.34
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Fig. 1: Factorization Speedup
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Fig. 2: Factorization Efficiency

3.2 Reconstruction step

We also need to verify which method is better in the reconstruction phase and if
we get good performance when using more resources. In Table 2 we observe the
results for reconstructing just 1 slice (1 right-hand side vector) or 128 slices, as
per equation (8). As we can see, when we want to reconstruct only 1 slice, the
Explicit Q factorization gets lower computational times. Besides, they improve
slightly when using more processors, up to 16. With the Householder form, we
only get better performance with up to 8 processors. However, the performance
here is worse than in the factorization step, as we can see in Figures 3 and 4. The
Speedup is very low regardless of the number of threads used, and the highest
efficiency we get is only 0.5 using 2 threads.

When we are dealing with multiple right-hand sides, in this case 128, the
performance is different. We can see in the table that in this case, it is faster
to perform the reconstruction using the Householder reflections. We get the
reconstructions around twice as fast (2.8 times faster for 16 threads). On the
other hand, the Speedup and Efficiency for each of the methods is not better
than in the previous case, as we can see in Figures 5 and 6. We get very low
Efficiency, wasting resources.

Table 2: Reconstruction time
1 Slice 128 Slices

BLAS Explicit Q Householder Explicit Q Householder
threads Time (secs.)

1 239 281 2432 1392
2 226 272 2370 1381
4 221 256 2351 1370
8 210 232 2638 1296
16 177 253 2539 910
32 222 269 2607 1111
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Fig. 6: 128 slices rec. Efficiency

3.3 Image Quality

In our preliminary work [7] we concluded that if we work with a full-rank sys-
tem matrix, the images reconstructed by the QR factorization have really high
quality. In order to verify this for the matrix we are studying here, we show
the quality results, measuring with Mean Absolute Error (MAE), PSNR (Peak
Signal-to-Noise Ratio) [19]. We also measure the SSIM (Structural Similarity
Index). Since we are reconstructing 128 slices, we show the minimum, maximum
and average results of both reconstruction techniques.

In Figures 7 and 8 we can see the PSNR and MAE results respectively.
We don’t show the SSIM results, since all the images get a SSIM equal to 1.
This means that all the reconstructions have the same structure as the reference
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image (we are not losing significant internal structures). As we observe in the
Figures, the reconstructions obtained through the Householder matrix have bet-
ter quality, which reflects the better numerical stability of the factorization. It
gets around 10 units of PSNR higher and lower error. But both of the methods
get really high quality. Notice that we are getting MAEs of order 10−12, which
is almost insignificant.

In Figure 9 we show the reference CT image of an abdomen and the recon-
structed images with both techniques. As we can see, the images are almost
identical to the human eye, since we can not discern significant differences or
information loss.
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Fig. 9: Abdomen CT Reconstructions
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4 Conclusion

In this work, we have conducted a study of the efficiency of applying a direct
algebraic technique to the CT image reconstruction problem. We have compared
two methods, the QR factorization forming the matrix Q explicitly, or using the
matrix Q in the form of Householder reflections. To verify the performance of the
methods we have used the SuiteSparseQR library, which includes a parallel im-
plementation of these algorithms. We have used a server to get the experimental
time performance, using up to 32 processors.

Regarding the quality obtained by both methods, we have determined that
the Householder factorization is more numerically stable, so the images have less
error. However, we speak of very small magnitudes that are not perceptible to
the human eye.

On the other hand, we have verified that the time used to perform the factor-
ization of the system matrix is much higher if we form the matrix Q in an explicit
manner. This can lead to errors as we expose ourselves to system failures, power
outages, etc. In addition, we have verified that the reconstructions are faster
when we reconstruct several images simultaneously. We get less time per slice in
general, and less time using the Householder form in particular. Since in reality
we are going to reconstruct more than one slice at a time (usually a CT study
has at least 100 slices), we determine that it is more efficient to use Householder
reflections for our application. In this way we can reconstruct volumes with high
quality in less than 30 minutes.

Finally, we have determined that the efficiency that is achieved using fine-
grained parallelism in many-core servers is not good. We observe that we do not
take advantage of all the allocated resources, obtaining very low Speedups. Still,
the time used to solve 128 slices with 32 threads is slightly lower than using the
32 threads to solve each slice independently using coarse-grain parallelism.

At this point, it is still necessary to employ HPC computers since this im-
plementation requires a high amount of main memory. That is the reason we
are not able to compute the problem for higher image resolutions. As future
work, we plan to work with out-of-core techniques that read the data stored in
blocks from the hard drive when the particular block is needed for the computa-
tion, instead of having it always loaded in main memory. In this way, we could
achieve to reconstruct bigger problems in workstations with lower amount of
RAM memory and thus lower cost.
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3. Flores, L., Vidal, V., Verdú, G.: Iterative reconstruction from few-view projections.
Procedia Computer Science 51, 703–712 (2015)

4. Parcero, E., Flores, L., Sánchez, M., Vidal, V., Verdú, G.: Impact of view reduction
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