

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/179920

López-Huguet, S.; García-Castro, F.; Alberich-Bayarri, A.; Blanquer Espert, I. (2019). A
Cloud Architecture for the Execution of Medical Imaging Biomarkers. Springer. 130-144.
https://doi.org/10.1007/978-3-030-22744-9_10

https://doi.org/10.1007/978-3-030-22744-9_10

Springer

A cloud architecture for the execution of
medical imaging biomarkers?

Sergio López-Huguet1, Fabio Garćıa-Castro3, Angel Alberich-Bayarri2,3, and
Ignacio Blanquer1

1 Instituto de Instrumentación para Imagen Molecular (I3M) Centro mixto CSIC -
Universitat Politècnica de València Camino de Vera s/n, 46022, Valencia

{serlohu@upv.es, iblanque@dsic.upv.es}
2 GIBI 230 (Biomed. Imag. Res. Group), La Fe Health Research Institute, Valencia,

Spain
3 QUIBIM (Quantitative Imaging Biomarkers in Medicine) SL, Valencia, Spain

{fabiogarcia,angel}@quibim.com

Abstract. Digital Medical Imaging is increasingly being used in clin-
ical routine and research. As a consequence, the workload in medical
imaging departments in hospitals has multiplied by over 20 in the last
decade. Medical Image processing requires intensive computing resources
not available at hospitals, but which could be provided by public clouds.
The article analyses the requirements of processing digital medical im-
ages and introduces a cloud-based architecture centred on a DevOps
approach to deploying resources on demand, adjusting them based on
the request of resources and the expected execution time to deal with an
unplanned workload. Results presented show a low overhead and high
flexibility executing a lung disease biomarker on a public cloud.

Keywords: Cloud Computing · Medical Imaging · DevOps.

1 Introduction

Traditionally, medical images have been analysed qualitatively. This type of anal-
ysis relies on the experience and knowledge of specialised radiologists in charge of
carrying out the report. This entails a high temporal and economic cost. The rise
of computer image analysis techniques and the improvement of computer sys-
tems lead to the advent of quantitative analysis. Contrary to qualitative analysis,

? The work in this article has been co-funded by project SME Instrument Phase II
- 778064, QUIBIM Precision, funded by the European Commission under the IN-
DUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies -
Information and Communication Technologies (ICT), Horizon 2020, project AT-
MOSPHERE, funded jointly by the European Commission under the Cooperation
Programme, Horizon 2020 grant agreement No 777154 and the Brazilian Ministério
de Ciência, Tecnologia e Inovação (MCTI), number 51119. The authors would like
also to thank the Spanish ”Ministerio de Economı́a, Industria y Competitividad” for
the project “BigCLOE” with reference number TIN2016-79951-R.

2 S. López-Huguet et al.

the quantitative analysis aims to measure different characteristics of a medical
image (for example, the size, texture, or function of a tissue or organ and the
evolution of these features in time) to provide radiologists and physicians with
additional, objective information as a diagnostic aid. In turn, the quantitative
analysis requires image acquisitions with the highest possible quality to ensure
the accuracy of the measurements.

An imaging biomarker is a characteristic extracted from medical images, re-
gardless of the acquisition modality. These characteristics must be measured ob-
jectively and should depict changes caused by pathologies, biological processes
or surgical interventions [21] [27]. The availability of large population sets of
medical images, the increase of their quality and the access to affordable inten-
sive computing resources has enabled the rapid extraction of a huge amount of
imaging biomarkers from medical images. This process allows to transform med-
ical images into mineable data and to analyze the extracted data for decision
support. This practice, known as radiomics, provides information that cannot
be visually assessed by qualitative radiological reading and reflects underlying
pathophysiology. This methodology is designed to be applied at a population
level to extract relationships with the clinical endpoints of the disease that can
be directed to manage the disease of an individual patient.

The execution of medical image processing tasks, such as biomarkers, is a pro-
cess that sometimes requires high-performance computing infrastructures and, in
some cases, specific hardware (GPUs) that is not available in most medical insti-
tutions. Cloud service providers make it possible to access specific and powerful
hardware that fits the needs of the workload [29]. Another interesting advantage
of the Cloud platforms is the capability of fitting the infrastructure capacity
to the dynamic workload, thus improving cost contention. The seamless transi-
tion from local image processing and data analytic development environments
to cloud-based production-quality processing services implies a Continuous In-
tegration and Deployment DevOps problem that is not properly addressed in
current platforms.

1.1 Motivation and Objectives

The objective of this work is to design and implement a cloud-based platform
that could address the needs of developing and exploiting medical image process-
ing tools. In this sense, the work focuses on the development of an architecture
focusing on the following principles:

– Agnostic to the platform, so the same solution can be deployed on different
public and on-premise cloud offerings, adapting to the different needs and
requirements of the users and avoiding lock-in.

– Capable of integrating High-performance computing and storage back-ends
to deal with the processing of massive sets of medical images.

– Seamlessly integrating development, pre-processing, validation and produc-
tion from the same platform and automatically.

– Open, reusable, extendable, secure and traceable platform.

A cloud architecture for the execution of medical imaging biomarkers 3

1.2 Requirements

A requirement elicitation and analysis process was performed, leading to the
identification of 13 requirements, classified into 9 mandatory requirements, 3
recommendable requirements and 3 desirable requirements. The requirements
are described in Tables 1, 2 and 3.

RiD Name Description Level

RI1 Resource
provisioning

Resources should be automatically configured in the deployment. Provi-
sioning should be performed with minimal intervention by system admin-
istrators and should be able to work in multiple IaaS platforms.

R

RI2 Resource
isolation

Jobs should run on the system at the maximum level of isolation. Workload
may have different and even incompatible software dependencies, and the
failure of the execution of a job should not affect the rest of the executions.

M

RI3 Resource
scalability

Virtual infrastructures should be automatically reconfigured when adding
or removing nodes (limited by a minimum and maximum number of nodes
for each type of resource). Elasticity could be triggered externally.

R

RI4 Manag. of
Releases

Software should be easy to update and releases should be easy to deploy.
This implies automation, minimal customer intervention, progressive roll-
outs, roll backs, and version freezing.

M

RI5 User Au-
thentication

Users should be able to log-in the system using ad-hoc credentials or an
external Identity Provider (IDP) such as Google or Microsoft LiveID.

D

RI6 User Autho-
risation

Access to the services should be granted only to authorised users. This
implies access to data, services and resources. Only special users would be
able to access resources.

D

RI7 High avail-
ability (HA)

Services must be deployed in HA to guarantee Quality of Service. M

Table 1. Requirements of the Infrastructure (Mandatory, Recommended, Desirable)

RiD Name Description Level

RE1 Batch exe-
cution

The system should run batch jobs. A job will comprise a set of files, soft-
ware dependencies, hardware requirements, execution arguments, input
and output sandbox, job type, memory and CPU requirements.

M

RE2 Workflow
execution

A job may include several linked steps that need to be executed according
to a data flow. The workflow will imply the automatic execution of the
different stages as dependencies are solved.

M

RE3 Job cus-
tomization

Linked to requirements RI2 and RI4, this requirement poses the need of
jobs to run on a customizable environment requiring special hardware,
specific software configuration, operating system, and licenses.

M

RE4 Execution
triggers

Jobs could also be initiated by means of events. Uploading a file or mes-
sages in a queue can spawn the execution of jobs. These reactive jobs will
be defined through rules.

D

RE5 Efficient
Execution

Jobs should be efficiently executed in the platform. This performance is
defined at two levels: a) minimum overhead with respect to the execution
on an equivalent pre-installed physical node; b) capability of integrating
high-performance resources as GPUs and multicore CPUs.

M

Table 2. Requirements for Job Execution.

4 S. López-Huguet et al.

RiD Name Description Level

RD1 POSIX ac-
cess

Jobs expect to find the data to be processed in a POSIX file system
in a specific directory route.

M

RD2 ACLs access Storage access authorization based on a coarse granularity (access
granted/denied for both read & write).

M

RD3 Provenance
and trace-
ability

Traceability for the derived data is key to bound to the GDPR
regulations (e.g. a trained model should be invalidated if the per-
missions for any part of the data used in the training is revoked).

R

Table 3. Requirements with respect to the Data.

2 State of the art

Since the appearance of Cloud services, a large number of applications have been
adapted to facilitate the access of the application users to Cloud infrastructures.
In the field of biomedicine we find examples in [22, 32]. On the other hand, there
are works that offer pre-configured platforms with a large number of tools for
bioinformatic analysis. An example is the Galaxy Project[7], a web platform that
can be deployed on public and on-premises Cloud offerings (e.g. using CloudMan
[5] for Amazon EC2 [1] and OpenStack [15]).

Another example is Cloud BioLinux [4], a project that offers a series of pre-
configured virtual machine images for Amazon EC2, VirtualBox and Eucalyptus
[6]. Finally, the solution proposed in [30] is specially designed for medical image
analysis using ImageJ [8] in an on-premise infrastructure using Eucalyptus.

Before taking a decision on the architecture, an analysis has been done at
three levels: Container technologies, Resource Managers and Job Scheduling.

Containers are a set of methodologies and technologies that aim at isolating
execution environments at the level of processes, network namespaces, disk areas
and resource limitations. Containers are isolated with respect to: the host filesys-
tem (as they can only see a limited section of it, using techniques such as chroot
or FreeBSD Jails), the processes running on the host (only the processes derived
executed within the container are visible,for example, using namespaces), and
the resources the container can use (as the processes in a container can be bound
to a CPU, memory or I/O share, for example, using cgroups).

Containers are used in application delivery, isolation and light encapsula-
tion of resources in the same tenant, execution of processes with incompatible
dependencies and improved system administration. Three of the most promi-
nent technologies in the market supporting Containers are Docker [23], Linux
Containers [10] and Singularity [25]. Docker has reached the maximum popu-
larity for application delivery due to its convenient and rich ecosystem of tools.
However, Docker containers run under the root user space and do not provide
multi-tenancy. On the other side, Singularity run containers on the user-space,
but access to specific devices is complex. LxC/D is better in terms of isolation
but have limited support (e.g. LxD only works in ubuntu [11]). The solution for
container isolation selected will be Docker on top of isolated virtual machines.

Resources should be provisioned and allocated for deploying containers. Re-
source Management Systems (RMSs) deal with the principles of managing a
pool of resources and splitting them across different workloads. RMSs manage

A cloud architecture for the execution of medical imaging biomarkers 5

the resources of physical and virtual machines reserving a fraction of them for
a specific workload. RMSs deal with different functionalities, such as: Resource
discovery, Resource Monitoring, Resource allocation and release and Coordina-
tion with Job Schedulers. We identify 3 technologies to orchestrate resources are:
Kubernetes [9], Mesos [2] and EC3 [17][18].

Finally, Job schedulers manage the remote execution of a job on the resources
provided by the RMS. Job Schedulers retrieve job specifications from different
interfaces, run them on the remote nodes using a dedicated input and output
sandbox for the job, monitor its status and retrieve the results.

Job Schedulers may provide other features, such as fault tolerance, complex
jobs (bag of tasks, parallel or workflow jobs) and deeply interact with the RMS
to access and release the needed resources. We consider in this analysis Marathon
[12] Chronos [3], Kubernetes [9] and Nomad [13]. Marathon and Chronos require
a Mesos Resource Management System and can deploy containers as long-term
fault-tolerant services (Marathon) or periodic jobs (Chronos). Kubernetes has
the capacity of deploying containers (mainly Docker but not limited to it) as ser-
vices, or running batch jobs as containers. However, any of them deal seamlessly
with non-containerised and container-based jobs. In this sense, Nomad can deal
with multi-platform hybrid workloads with minimal installation requirements.

Repository 1

Repository 2

Repository N

...

Repository 1

Repository 2

Repository N

...

Task for repository 1

Task for repository 2

Task for repository N

...

Task for repository 1

Task for repository 2

Task for repository N

...

Container image 1

Container image 2

Container image M

...

Container image 1

Container image 2

Container image M

...

Developers push

the latest versions of

image biomarkers

There are CI tools plugins

that could automate the task

creation for each source

repository

The CI tool could start

the tasks on every

commit done by

developers CI tool could build,

test and push to the

Container Image Registry

Biomarkers are available for all deployments instantly

Multiple biomarkers releases could be served

Obtaining biomarkers versions through authentication

Fig. 1. Overview of Container Delivery architecture

3 Architecture

The service-oriented architecture is described and implemented in a modular
manner, so components could easily be replaced. In Section 3.1, the architecture

6 S. López-Huguet et al.

is described in a technology-agnostic way, so different solutions could fit into the
architecture. Section 3.2 describes all architecture components and how they
fulfill the use case requirements identified in Section 1.2. Finally, Section 3.3
shows the final version of the architecture including the technologies selected
and how each one addresses the requirements.

3.1 Overview of the Architecture

The system architecture addresses the requirements described in section 1.2.
The architecture can be divided into two parts: Container Delivery (CD), and
Container Execution (CE). It should be noted that although all the components
of the architecture can be installed in different nodes, in some cases they could
be installed in the same node to reduce costs. As it can been seen in Figure
1, the CD architecture is composed of three components: the Container Image
Registry, the Source Code Manager (SCM), and the Continuous Integration (CI)
tool.

Container technology

Job Scheduler - Worker

Container technology

Job Scheduler - Worker

Job Scheduler - Manager
Elasticity Manager

Resource Manager

Load balancer

The load balancer distributes

the users requests across

multiples job scheduler

 instances

File storage

managed by the

Cloud Provider

(AWS EFS,

Google

Filestore or

Azure Files)

Users deploy analysis

through REST API

Container image 1

Container image 2

Container image M

...

Container image 1

Container image 2

Container image M

...

Users could

upload or download

data from file stoage

WNs pull the desired version of biomarkers from

Fig. 2. Overview of Container Execution architecture

Figure 2 depicts the CE architecture. The system consists of four types of log-
ical nodes: Front-end, job schedulers nodes, working nodes and Container Image
Registry (this component also appear in CD architecture describe above). The
Front-end and job schedulers nodes are interconnected using a private network.
The Front-end logical node exposes a REST API, which allows load-balanced
communication with the REST API of the job scheduler nodes. Furthermore, it
contains the Resource Management Service, which is composed of the Cloud Or-
chestrator and the horizontal elasticity manager. Job schedulers nodes comprise

A cloud architecture for the execution of medical imaging biomarkers 7

the master services of the Job Scheduler (JS). Furthermore, as the Front-end is
the gateway between users and the job scheduler service, a service for provid-
ing authorization and load balancing (between job scheduler nodes) is required.
Different working nodes will run the Job scheduler executors. Working nodes
mount locally a volume available from a global external storage. Is should be
noted that the set of working nodes can be heterogeneous.

3.2 Components

Resource Management service (RMS): It is in charge of deploying the re-
sources, configuring them and to reconfigure them according to the changes
on the workload. The requirements stated in Section 1.2 focus on facilitating
deployment, higher isolation, scalability, application releases management
and generic authentication and authorisation mechanisms. RMS may require
to interact with the infrastructure provider to deploy new resources (or un-
deploy them), and to configure the infrastructure accordingly. Furthermore,
the deployment should be maintainable, reliable, extendable and platform
agnostic.

Job Scheduling service: It will perform the execution of containerised jobs
requested remotely by a client application through the REST API. It is
required that the job scheduler service includes a monitoring system to pro-
vide up-to-date information on the status of the jobs running in the system.
Clients will submit jobs through the load balancer service providing a job
description formed by any additional information required by the Biomark-
ers platform, the information related to the container image, the input and
output sandbox, and the software and hardware requirements (such GPUs,
memory, etc.).

Horizontal Elasticity service: It is necessary to fulfill the Resource scala-
bility requirement, which is strongly related to the Job scheduler and the
Resource Manager. Horizontal elasticity tool has to be able to monitor the
job scheduler queue and running jobs, and current working node resources in
order to scale in or scale out the infrastructure. It is desirable that the hor-
izontal elasticity manager could maintain a certain number of nodes always
idle or stopped to reduce the time that the jobs are queued.

Source Code Manager (SCM): It is required to manage the coding source
for developers. Due to the release management requirement and the devel-
opment complexity, it is mandatory to lean on this kind of tools.

Container Image Registry: In order to store and delivery the biomarker
applications, it is necessary to use a Container Image Registry. Biomarker
applications could be bound to Intellectual Property Rights (IPR) restric-
tions so Container Image Registry must be private. For this reason, authen-
tication mechanisms are required for obtaining images from the registry.
Working nodes will pull the application images when the container image
not exists or recent version exists.

Continuous Integration (CI) tool: CI eases the development cycle because
it automates building, testing and pushing to the Container Image Resgistry

8 S. López-Huguet et al.

the biomarker application (with a certain version or tag). Developers or (the
CI experts) define this workflow to do it. Furthermore, some of CI tools could
trigger these tasks for each SCM commits.

Storage: Biomarker applications make use of legacy code and standard li-
braries which expect data to be provided in a POSIX filesystem. For this
reason, the storage technology must mount the filesystem in the container.

3.3 Detailed Architecture

The previous sections describe the architecture and its components. After the
technology study done in Section 2 and the feature identification for each archi-
tecture component in 3.2, the technologies selected for addressing the require-
ments are the following:

– Jenkins as the CI tool due to the wide variety of available plugins (such us
SCM plugins). Furthermore, it allows you to easily define workflows for each
task using a file named Jenkinsfile. Jenkins provides means to satisfy the
requirements RI4, RI5 and RI6.

– GitHub as SCM because it supports both private (commercial license) and
public repositories, which are linked to the CI tool. Furthermore, there is
a Jenkins plugin that could scan a GitHub organization and create Jenkins
tasks for each repository (and also for each branch) that contains a Jenkinsfile,
addressing to requirement RI4. This component meets the requirements RI5,
RI6 and RI7.

– Hashicorp Nomad is the Job scheduler. We selected Nomad instead of Kuber-
netes due to Kubernetes can only run Docker containers. Furthermore, Nomad
incorporates job monitoring that can be consulted by users. Additionally, it
is designed to work in High Availability mode, addressing requirement RI7.
Hashicorp Consul is used to resources service discovery as Nomad could use it
natively. By using this job scheduler, the architecture meets the requirements
RI2, RI4 (job versioning), RE1, RE2, RE3 and satisfyies RI5 and RI6 using
its Access Control List (ACL) feature.

– Docker is the container platform selected because it is the most popular con-
tainer technology and it is supported by wide variety of Job schedulers. It
provides the resources isolation required by RI2 and support version manage-
ment (by tagging the different images) of RI4.

– As Docker is the container platform used in this work, Docker Hub and Docker
Registry are used as, respectively, public and private container image registry.
Requirements RI4 and RI6 are address by using Docker.

– Infrastructure Manager (IM) [17] is the orchestrator chosen because it is open
source, cloud agnostic and provides the required functionality to fulfill the use
case requirements RI1, RI3, RI5 and RI6. In [26], IM is used for deploy 50
simultaneous nodes.

– CLUES [19] has been chosen for addressing RI3 because it is open source and
can scale up or down infrastructures using IM by monitoring the Nomad jobs
queue. CLUES can auto-scale the infrastructure according to different types
of workloads [16][26].

A cloud architecture for the execution of medical imaging biomarkers 9

– The RMS selected is EC3, which is a tool for system administrators that
combines IM and CLUES to configure, create, suspend, restart and remove
infrastructures. By using EC3 the system could address the requirements RI,
RI3, RI5 and RI6.

– Due to the experimentation will be done in Azure and the current storage
solution of QUIBIM is Azure Files, it has been selected as storage. It allows
to mount (entirely o partially) the data as a POSIX filesystem, which is the
requirement RD1. Also, it provides the mechanisms required to fulfill RI5, RI6
and RD2. Additionally, it allows to mount the same filesystem concurrently.

– HAProxy is used for load balancing because it is reliable, open source and
support LDAP or OAuth for authentication.

Fig. 3. Proposed architecture with selected technologies.

It should be remarked that the proposed architecture (which is depicted in
Figure 3) is a simplification of Figure 2. For the experiment performed, the job
scheduling services are deployed in the Front-end node but users connect with
the job schedulers using the load balancer service. So, this simplification does
not affect to the users-services communication. Furthermore, in order to avoid
costs, the CI tool (Jenkins) and the Docker Private Registry are in the same
resource.

4 Results

The experiments have been performed on the public Cloud Provider Microsoft
Azure. The infrastructure is composed by three type of nodes. The front-end

10 S. López-Huguet et al.

node corresponds with the A2 v2 instance, which has two Intel(R) Xeon(R) CPU
E5-2660 2.20GHz, 3.5GB of RAM memory, 20 GB of Hard Drive disk and two
network interfaces. IM version 1.7.6 and CLUES version 2.2.0b has been installed
in this node. HAProxy 1.8.14-52e4d43 and Consul 1.3.0 are running on Docker
containers also in that node. The second type of node, smallwn, corresponds
with the NC6 instance with six Intel(R) Xeon(R) CPU E5-2690 v3 2.60GHz, 56
of memory RAM, 340 GB of Hard Drive disk, one NVIDIA Tesla K80 and one
network interface. Finally, the largewn node type corresponds with the D13 v2
instance, which has eight Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz, 56GB
of RAM memory, 400 GiB of Hard Drive disk and one network interface. The
operating system is CentOS Linux release 7.5.1804. Nomad version 0.8.6 and
Docker version 18.09.0 build 4d60db4 are installed in all nodes.

4.1 Deployment

The infrastructure configuration is coded into Ansible roles4 and RADL recipes,
and they include parameters to differentiate among the deployment. The roles
will reference a local repository of packages or specific versions to minimize the
impact of changes in public repositories, as well as certified containers. Deploy-
ment time is the time required to create and configure a resource. The deploy-
ment time of the front-end takes 29 minutes 28 seconds on average. The time
required to configure each worker node is 9 minutes 30 seconds.

4.2 Use case - Emphysema

The use case selected was the automatic quantification of lung emphysema
biomarkers from computed tomography images. This pipeline features a patented
air thresholding algorithm from QUIBIM [28] [24] for emphysema quantification
and an automatic lung segmentation algorithm. Two versions were implemented.
A fast one with rough lung segmentation can be used during the interactive in-
spection and validation of parameters. Another one with higher segmentation
accuracy is implemented for the batch, production case. This brings the need of
supporting short and long cases, which take respectively, 4 and 20 minutes.

The small cases are related with executions that take minutes to be com-
pleted. In order to provide QoS, CLUES is configured to provide always more
resources than required (one node always free). As these type of jobs are very
fast, the small-jobs nodes that are IDLE too much time are suspended for avoid-
ing the deployment time. The large cases of QUIBIM biomakers could take many
hours and use huge amount of resources, so the deployment time is negligible.
For this reason, although the large case of this work takes the same amount of
time that the deployment time and the application does not need the all re-
sources of the VM, large-jobs nodes are not suspended and restarted, and only
one large-job can run concurrently on the same VM. The “small” Emphysema

4 All Ansible Roles used in this work are available in a GitHub repository.
https://github.com/grycap/

A cloud architecture for the execution of medical imaging biomarkers 11

used in this work consumes 15 GB of memory RAM and 2 vCPUs, so three
Emphysema small-jobs could run simultaneously on the same node.

The main goal of the experiment is to demonstrate the capabilities of the
proposed architecture. The experiment consists of submitting 35 small-jobs and
5 large-jobs in order to ensure that there are workload peaks that require starting
up new VMs and idle periods long enough to remove (in case of large-jobs nodes)
or suspend VMs (in case of small-jobs nodes). Table 4 shown the time frames
were jobs are submitted.

Name Time Name Time Name Time Name Time

small-1 0:01:19 small-10 0:47:25 small-18 1:00:31 small-27 1:10:42

large-1 0:01:20 small-11 0:49:25 small-19 1:01:32 large-5 1:11:44

small-2 0:01:50 small-12 0:50:25 small-20 1:01:33 small-28 1:11:46

small-3 0:05:50 large-2 0:51:27 small-21 1:02:33 small-29 1:14:47

small-4 0:08:51 small-13 0:51:27 small-22 1:03:34 small-30 1:15:48

small-5 0:11:51 small-14 0:52:28 small-23 1:03:36 small-31 1:16:48

small-6 0:16:23 small-15 0:55:28 small-24 1:08:38 small-32 1:17:49

small-7 0:16:24 small-16 0:55:29 small-25 1:08:38 small-33 1:18:49

small-8 0:19:24 small-17 0:58:30 small-26 1:08:39 small-34 1:18:50

small-9 0:22:25 large-3 0:59:30 large-4 1:09:40 small-35 1:21:50

Table 4. Scheduling of the jobs to be executed.

Figure 4 shows the number of jobs (vertical axis) along time (horizontal axis)
in the different status: SUBMITTED, STARTED, FINISHED, QUEUED and
RUNNING. The first three metrics denote the cumulative number of jobs that
have been submitted, have actually started and have been completed over time,
respectively. The remaining metrics denote the number of jobs that are queued
or concurrently running at a given time.

As depicted in Figure 4, the length of the queue does not grow above ten
jobs. The delay between the submission and the start of a job (the difference in
the horizontal axis between submitted and started lines) is negligible during the
first twenty minutes of the experiment. After a period without new submissions
(between 00:24:00 and 00:47:00 minutes), the workload grows again due to the
submission of new jobs, triggering the deployment of four new nodes (as it can
be seen in Figure 5).

The largest number of queued jobs (10) is reached during this second de-
ployment of new resources at 01:15:09, although it decreases to four only three
minutes later (and to two at 1:23:00). Besides, the four last jobs queued were
large-jobs. It should be pointed out that large-jobs have greater delays than
short-jobs between submission and starting as they use dedicated nodes and
this type of nodes are eliminated after 1 minute without jobs allocated (a higher
value will be used in production).

Figure 5 depicts the status of the nodes along the experiment, which could
be USED (executing jobs), IDLE (powered-on and without jobs allocated),
POWON (being started, restarted or configured), POWOFF (being suspended

12 S. López-Huguet et al.

or removed), OFF (not deployed or suspended) or FAILED. CLUES is config-
ured to ensure that a small-node is always active (in status IDLE or USED).
It can be seen in Figure 5 that two nodes are deployed at the start of the ex-
periment. Then, during the period without new submissions, the running jobs
end their executions, so these new nodes are powered off after one minute in the
IDLE status. As the workload grows, the system deployed four new nodes be-
tween 00:50:00 and 01:13:00. Besides, CLUES tried to deploy one more node (a
large-node) but, as the quota limit of the cloud provider’s account has reached,
the deployment was failed. It should be noted that the system is resilient to
this type of problems and successfully ended the experiment. After two hours,
all jobs are completed, so CLUES suspends or removes all nodes (except one
small-node that has to be active always).

0

5

10

15

20

25

30

35

40

45

N
um

be
r o

f j
ob

s

Timeline (hh:mm:ss)

 SUBMITTED STARTED FINISHED QUEUED RUNNING

0

5

10

15

20

25

30

35

40

N
um

be
r o

f j
ob

s

Timeline (hh:mm:ss)

 SUBMITTED-small STARTED-small FINISHED-small QUEUED-small RUNNING-small

0

1

2

3

4

5

6

N
um

be
r o

f j
ob

s

Timeline (hh:mm:ss)

 SUBMITTED-large STARTED-large FINISHED-large QUEUED-large RUNNING-large

Fig. 4. Status of jobs during the experiment.

0

1

2

3

4

5

6

N
um

be
r o

f n
od

es

Timeline (hh:mm:ss)

 USED IDLE POWON POWOFF OFF FAILED

Fig. 5. Status of working nodes.

A cloud architecture for the execution of medical imaging biomarkers 13

5 Conclusions and future work

This paper has presented a agnostic and elastic architecture and a set of open-
source tools for the execution of medical imaging biomarkers. Regarding the
technical requirements defined in Section 1.2, the experiment of a real use case
and the results exposed, it can be concluded that all the requirements proposed
were fulfilled by the architecture presented. In Section 4.2, a combination of
40 batch jobs was scheduled to be executed in a specific time and the cluster
achieve to execute all of them by adjusting the resources available. Furthermore,
when there are wasted resources too much time, the nodes are suspended (or
eliminated). The architecture uses IM and CLUES which has proven a good
scalability [26] and the capability to work with unplanned workloads [16].

The proposed architecture are not only related to the execution of batch jobs,
it provides to developers a workflow to ease the building, testing, delivery and
version management of their application.

Future work includes implementing the proposed architecture on QUIBIM
ecosystem, testing other solutions for distributed storage as Ceph [33] or One-
Data [20], the study of Function As a Services (FaaS) frameworks for executing
batch jobs (SCAR [31] or OpenFaas [14]) or using Kubernetes for ensuring that
services (Nomad, Consul and HAProxy) are always up.

References

1. Amazon EC2 web site. https://aws.amazon.com/es/ec2/, accessed: 29-12-2018
2. Apache Mesos web site. http://mesos.apache.org/, accessed: 29-12-2018
3. Chronos web site. https://mesos.github.io/chronos/, accessed: 29-12-2018
4. Cloudbiolinux web site. http://cloudbiolinux.org/, accessed: 29-12-2018
5. Cloudman web site. https://galaxyproject.org/cloudman, accessed: 29-12-2018
6. Eucalyptus web site. https://www.eucalyptus.cloud/, accessed: 29-12-2018
7. Galaxy Platform web site. https://galaxyproject.org, accessed: 29-12-2018
8. Imagej web site. https://imagej.nih.gov/ij/, accessed: 29-12-2018
9. Kubernetes web site. https://kubernetes.io, accessed: 29-12-2018

10. Linux containers. https://linuxcontainers.org/, accessed: 29-12-2018
11. Lxd documentation. https://lxd.readthedocs.io/, accessed: 29-12-2018
12. Marathon. https://mesosphere.github.io/marathon/, accessed: 29-12-2018
13. Nomad web site. https://www.nomadproject.io/, accessed: 29-12-2018
14. OpenFaas web site. https://www.openfaas.com/, accessed: 29-12-2018
15. OpenStack web site. https://www.openstack.org/, accessed: 29-12-2018
16. de Alfonso, C., Caballer, M., Calatrava, A., Moltó, G., Blanquer, I.: Multi-elastic

Datacenters: Auto-scaled Virtual Clusters on Energy-Aware Physical Infrastruc-
tures. Journal of Grid Computing (jul 2018). https://doi.org/10.1007/s10723-018-
9449-z

17. Caballer, M., Blanquer, I., Moltó, G., de Alfonso, C.: Dynamic Management
of Virtual Infrastructures. Journal of Grid Computing 13(1), 53–70 (2015).
https://doi.org/10.1007/s10723-014-9296-5

18. Calatrava, A., Romero, E., Moltó, G., Caballer, M., Alonso, J.M.:
Self-managed cost-efficient virtual elastic clusters on hybrid Cloud in-
frastructures. Future Generation Computer Systems 61, 13–25 (2016).
https://doi.org/10.1016/j.future.2016.01.018

14 S. López-Huguet et al.

19. De Alfonso, C., Caballer, M., Alvarruiz, F., Hernández, V.: An energy manage-
ment system for cluster infrastructures. In: Computers and Electrical Engineering.
vol. 39, pp. 2579–2590 (2013). https://doi.org/10.1016/j.compeleceng.2013.05.004

20. Lukasz Dutka, Wrzeszcz, M., Lichoń, T., S lota, R., Zemek, K., Trzepla, K., Lukasz
Opio la, S lota, R., Kitowski, J.: Onedata – a step forward towards globalization of
data access for computing infrastructures. Procedia Computer Science 51, 2843 –
2847 (2015). https://doi.org/10.1016/j.procs.2015.05.445, international Conference
On Computational Science, ICCS 2015

21. European Society of Radiology (ESR): White paper on imaging biomarkers. In-
sights into Imaging 1(2), 42–45 (May 2010). https://doi.org/10.1007/s13244-010-
0025-8

22. Hyungro Lee: Using Bioinformatics Applications on the Cloud. http://dsc.soic.
indiana.edu/publications/bioinformatics.pdf (2013), online; accessed 29 De-
cember 2018

23. Inc., D.: Docker. https://www.docker.com/, accessed: 29-12-2018
24. Irene Mayorga-Ruiz, David Garćıa-Juan, A.A.B.F.G.C.L.M.B.: Fully au-

tomated method for lung emphysema quantification for Multidetec-
tor CT images. http://quibim.com/wp-content/uploads/2018/02/ECR_

Fully-automated-quantification-of-lung-emphysema-using-CT-images.pdf,
accessed: 22-03-2019

25. Kurtzer, G.M., Sochat, V., Bauer, M.W.: Singularity: Scientific con-
tainers for mobility of compute. PLOS ONE 12(5), 1–20 (05 2017).
https://doi.org/10.1371/journal.pone.0177459

26. López-Huguet, S., Pérez, A., Calatrava, A., de Alfonso, C., Caballer, M.,
Moltó, G., Blanquer, I.: A self-managed Mesos cluster for data analytics with
QoS guarantees. Future Generation Computer Systems 96, 449–461 (2019).
https://doi.org/10.1016/j.future.2019.02.047

27. Mart́ı-Bonmat́ı, L., Alberich-Bayarri, A.: Imaging biomarkers: Development and
clinical integration. Springer-Verlag GmbH (2016). https://doi.org/10.1007/978-3-
319-43504-6

28. Mart́ı-Bonmat́ı, L., Garćıa-Mart́ı, G., Alberich-Bayarri, A., Sanz-Requena, R..
QUIBIM SL.: Método de segmentación por umbral adaptativo variable para la
obtención de valores de referencia del aire corte a corte en estudios de imagen por
tomograf́ıa computarizada, ES 2530424B1, 02 September 2013

29. Marwan, M., Kartit, A., Ouahmane, H.: Using cloud solution for medical image
processing: Issues and implementation efforts. In: 2017 3rd International Confer-
ence of Cloud Computing Technologies and Applications (CloudTech). IEEE (Oct
2017). https://doi.org/10.1109/cloudtech.2017.8284703

30. Mirarab, A., Fard, N.G., Shamsi, M.: A cloud solution for medical image processing.
Int. Journal of Engineering Research and Applications 4(7), 74–82 (2014)

31. Pérez, A., Moltó, G., Caballer, M., Calatrava, A.: Serverless computing for
container-based architectures. Future Generation Computer Systems 83, 50 – 59
(2018). https://doi.org/10.1016/j.future.2018.01.022

32. Shakil, K.A., Alam, M.: Cloud Computing in Bioinformatics and Big Data Ana-
lytics: Current Status and Future Research, p. 629–640. Springer Singapore (Oct
2017). https://doi.org/10.1007/978-981-10-6620-7 60

33. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E., Maltzahn, C.: Ceph: A scal-
able, high-performance distributed file system. In: Proceedings of the 7th Sympo-
sium on Operating Systems Design and Implementation. pp. 307–320. OSDI ’06,
USENIX Association, Berkeley, CA, USA (2006), http://dl.acm.org/citation.
cfm?id=1298455.1298485

