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Abstract

Generalized planning aims at computing an algorithm-like
structure (generalized plan) that solves a set of multiple plan-
ning instances. In this paper we define negative examples for
generalized planning as planning instances that must not be
solved by a generalized plan. With this regard the paper ex-
tends the notion of validation of a generalized plan as the
problem of verifying that a given generalized plan solves the
set of input positives instances while it fails to solve a given
input set of negative examples. This notion of plan validation
allows us to define quantitative metrics to asses the general-
ization capacity of generalized plans. The paper also shows
how to incorporate this new notion of plan validation into a
compilation for plan synthesis that takes both positive and
negative instances as input. Experiments show that incorpo-
rating negative examples can accelerate plan synthesis in sev-
eral domains and leverage quantitative metrics to evaluate the
generalization capacity of the synthesized plans.

Introduction

Generalized planning studies the computation of plans that
can solve a family of planning instances that share a com-
mon structure (Hu and De Giacomo 2011; Srivastava, Im-
merman, and Zilberstein 2011; Jiménez, Segovia-Aguas,
and Jonsson 2019). Since generalized planning is compu-
tationally expensive, a common approach is to synthesize
a generalized plan starting from a set of small instances and
validate it on larger instances. This approach is related to the
principle of Machine Learning (ML), in which a model is
trained on a training set and validated on a test set (Mitchell
1997).

Traditionally, generalized planning has only focused on
solvable instances, both for plan synthesis and for val-
idation (Winner and Veloso 2003; Bonet, Palacios, and
Geffner 2010; Hu and Levesque 2011; Srivastava et al. 2011;
Hu and De Giacomo 2013; Segovia-Aguas, Jiménez, and
Jonsson 2018; Segovia-Aguas, Celorrio, and Jonsson 2019).
However, many computational problems in Al benefit from
negative examples, e.g. SAT approaches that exploit clause
learning (Angluin, Frazier, and Pitt 1992), grammar induc-
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tion (Parekh, Honavar, and others 2000), program synthe-
sis (Alur et al. 2018) and model learning (Camacho and
Mcllraith 2019). If used appropriately, negative examples
can help reduce the solution space and accelerate the search
for a solution.

In this paper we introduce negative examples for gener-
alized planning as input planning instances that should not
be solved by a generalized plan. An intuitive way to come
up with negative examples for solutions that generalize is
to first synthesize a solution with exclusively positive exam-
ples, and identify cases for which the solution did not gener-
alize as desired, somewhat akin to clause learning in satisfi-
ability problems (Biere et al. 2009). Imagine that we aim to
synthesize the generalized plan (paint(X),inc(X),inc(X))"
that makes a robot paint every odd cell black ina N x 1 cor-
ridor, starting from the leftmost cell (we use Kleene notation
to represent regular expressions, and Z71 indicates the repe-
tition of Z at least once). Action paint(X) paints the current
cell black while inc(X) increments the robot’s X coordinate.
The positive example of a 2 x 1 corridor (whose goal config-
uration is illustrated at Figure la) is solvable by all three
automata plans in Figure 1b) (acceptor states are marked
with overlines e.g., ). These automata plans, namely II,
II* and II", compactly represent the three sets of sequential



plans (paint(X), inc(X),inc(X)), (paint(X), inc(X), inc(X))*
and (paint(X),inc(X),inc(X))". Hence the single positive
example of a 2 x 1 corridor is not enough to discriminate
among these three generalized plans. Adding a second posi-
tive example, the 6 x 1 corridor in Figure 1a), discards plan
II. Adding a third 1 x 1 negative example, where the initial
and goal robot cell are the same and no cell is required to be
painted, discards II* preventing over-generalization because
II* solves this negative example.

The problem of deriving generalized plans has been a
longstanding open challenge. Compared to previous work
on generalized planning, the contributions of this paper are:

1. Negative examples to more precisely specify the seman-
tics of an aimed generalized plan.

2. A new approach for the synthesis of plans that can gen-
eralize from smaller input examples thanks to negative
examples.

3. The definition of quantitative evaluation metrics to as-
sess the generalization capacity of generalized plans.

The paper is organized as follows. We start with some
background notation of classical planning and generalized
planning (GP). Then we formalize the concept of a neg-
ative example for generalized planning. We continue with
a description of a generalized planning problem with posi-
tive and negative examples that can be compiled to classical
planning. We show proofs of soundness and completeness
for the two main tasks in GP that are synthesis and valida-
tion. We continue with the experiments where we compare
the impact of negative examples, and finally we conclude
with a discussion on the presented work.

Background

This section formalizes the planning models used in this
work as well as planning programs (Segovia-Aguas, Celor-
rio, and Jonsson 2019), an algorithm-like representation for
plans that can generalize.

Classical planning with conditional effects

We use F' to denote the set of fluents (propositional vari-
ables) describing a state. A literal [ is a valuation of a fluent
feF,ie.l = forl =-f. A setof literals L on F rep-
resents a partial assignment of values to fluents (WLOG we
assume that L does not assign conflicting values to any flu-
ent). Given L, =L = {=l : | € L} is the complement of L.
Finally, we use £(F') to denote the set of all literal sets on
F, i.e. all partial assignments of values to fluents. A state s
is a set of literals such that |s| = | F|, i.e. a total assignment
of values to fluents. The number of states is then 2/,

A classical planning frame is a tuple & = (F, A), where
F is a set of fluents and A is a set of actions with condi-
tional effects. Conditional effects can compactly define ac-
tions whose precise effects depend on the state where the
action is executed. Each action ¢ € A has a set of literals
pre(a), called the precondition, and a set of conditional ef-
fects, cond(a). Each conditional effect C' > E € cond(a)
is composed of a set of literals C' (the condition) and F

(the effect). Action a is applicable in state s if and only if
pre(a) C s, and the resulting set of triggered effects is

J =

Cp>E€cond(a),CCs

eff(s,a) =

i.e. effects whose conditions hold in s. The result of applying
a in s is the successor state 0(s,a) = (s \ —eff(s,a)) U
eff(s, a).

A classical planning problem with conditional effects is
atuple P = (F, A, I,G), where F is a set of fluents and
A is a set of actions with conditional effects as defined for a
planning frame, I is an initial state and G is a goal condition,
i.e. a set of literals to achieve.

A solution for a classical planning problem P can be
specified using different representation formalisms, e.g. a
sequence of actions, a partially ordered plan, a policy, etc.
Here we define a sequential plan for P as an action sequence
7w = (a1, ..., a,) whose execution induces a state sequence
(80,81, ---,8,) such that so = I and, for each ¢ such that
1 < < n,a; is applicable in s;,_; and generates the succes-
sor state s; = 0(s;—1,a;). The plan 7 solves P if and only
if G C sy, i.e. if the goal condition is satisfied following the
execution of 7 in I.

Planning programs

Given a planning frame ® = (F,A), a planning pro-
gram (Segovia-Aguas, Celorrio, and Jonsson 2019) is a se-
quence of instructions IT = (wy, . .., w, ). Each instruction
w;, 0 < i < n, is associated with a program line ¢ and is
drawn from the set of instructions Z = A U Z,, U {end},
where Z,, = {go(¢',!f) : 0 < i’ < n, f € F}is the set of
goto instructions. In other words, each instruction is either
a planning action a € A, a goto instruction go(¢’,!f) or a
termination instruction end.

The execution model for a planning program II is a pro-
gram state (s,1), i.e. a pair of a planning state s C L(F')
(with |s| = |F|), and a program counter 0 < ¢ < n. Given a
program state (s, i), the execution of instruction w; on line
is defined as follows:

e If w; € A, the new program state is (s’,7 + 1), where
s’ = 6(s,w) is the successor for planning state s and
action w.

o If w; = go(#',!f), the program state becomes (s,i + 1) if
f € s, and (s,4) otherwise. Conditions in Goto instruc-
tions can represent arbitrary formulae since f can be a
derived fluent (Lotinac et al. 2016).

e If w; = end, execution terminates.

To execute a planning program II on a planning problem
P = (F, A, I,G), the initial program state is set to (I,0),
i.e. the initial state of P and program line 0. A program II =
(wo, . .., wy) solves a planning problem P = (F, A, I,G)
iff the execution terminates in a program state (s, 7) that sat-
isfies the goal conditions, i.e. w; = end and G C s.

Segovia-Aguas, Celorrio, and Jonsson (2019) contains a
detailed analysis of the failure conditions on planning pro-
grams, which we summarize here as follows:



Corollary 1 (Planning Program Failure). If a planning pro-
gram 11 fails to solve a planning problem P, the only possi-
ble sources of failure are:

1. Incomplete Program. Execution terminates in program
state (s, 1) but the goal condition does not hold, i.e. (w; =
end) A (G € s).

2. Inapplicable Action. Executing an action w; € A in pro-
gram state (s,1) fails because its precondition does not
hold, i.e. pre(w) € s.

3. Infinite Loop. The program execution enters into an in-
finite loop that never reaches an end instruction.

Generalized planning

We define a generalized planning problem as a finite set of
classical planning problems P = {Pj,...,Pr} that are
defined on the same planning frame ®. Therefore, P, =
(F,A,1I,,G41),...,Pr = (F,A, Ir,Gr) share the same
fluents and actions but differ in the initial state and goals.

A planning program 11 solves a given generalized plan-
ning problem P iff II solves every planning problem P, €
P,1<t<T.

Segovia-Aguas, Celorrio, and Jonsson (2019) showed that
a program II that solves a generalized planning task P can
be synthesized by defining a new classical planning problem
P, = (F,,A,,I,,G,), where n is a bound on the num-
ber of program lines. A solution plan 7 for P, programs
instructions on the available empty lines (building the n-line
program II), and validates II on each input problem P; € P.

The fluent set is defined as F;,, = FUFpcU FjpsUFresr U
{done}, where:

o F,. ={pc; : 0 <i < n} models the program counter,

o Fiys = {ins;  : 0 < i < n,w € ZU{nil}} models the
program lines (nil indicates an empty line),
o Fiest = {testy : 1 < ¢ < T} indicates the classical

planning problem P; € P.

Each instruction w € Z is modeled as a planning action,
with one copy end; of the termination instruction per input
problem P,. Preconditions for the goto and end instructions
are defined as pre(go(¢’,!f)) = 0 and pre(end;) = G; U
{test; }. The authors define two actions for each instruction
w and line i: a programming action P(w;) for programming
w on line ¢, and an execution action E(w;) that uses the
previous execution model to execute w on line ::

pre(P(w;)) = pre(w) U {pc,, ins; nit},
cond(P(w;)) = {0 > {=ins; i1, ins; 1 } },
pre(E(w;)) = pre(w) U {pc;, ins; ., }.

The effect of E(w;) depends on the type of instruction:
cond(E(w;)) = cond(w) U {D > {-pc;,pc; 1}},w € A,
cond(E(w;)) = {0 > {=pc; }} U {{f} > {pci11}}

U{{=f}>{pcir}},  w= go(d,1f),
cond(E(w;)) = resetsy1, w= endy, t < T,
cond(E(w;)) = {0 > {done}},

w = endp.

The conditional effect reset;y; resets the program state to
(It+1,0), preparing execution on the next problem Py .
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Figure 2: Positive example (upper row) and negative exam-
ple (lower row) for the generalized planning task of revers-
ing a list.

The initial state is [, = I; U{pc, }U{ins; nii : 0 < i <n}
indicating that, initially, the program lines are empty and the
program counter is at the first line. The goal is G, = {done}
and can only be achieved after solving sequentially all the
instances in the generalized planning problem.

Negative examples in generalized planning

This section extends the previous generalized planning for-
malism to include negative examples for the validation and
synthesis of programs.

Negative examples as classical planning problems

Negative examples are additional solution constraints to
more precisely specify the semantics of an aimed general-
ized plan and prevent undesired generalizations.

Definition 1 (Negative examples in generalized planning).
Given a generalized planning problem P, a negative exam-
ple is a classical planning instance P~ = (F, A, 1~ ,G™)
that must not be solved by solutions to P.

Figure 2 shows an input/output pair
(1,2,3,4,5,6)/(6,5,4,3,2,1) that represents a posi-
tive example for computing a generalized plan that reverse
lists of any size. This example can be encoded as a classical
planing problem, where the set of fluents are the state
variables necessary for encoding a list of arbitrary size plus
two pointers over the list nodes. The initial state encodes,
using these fluents, the particular list (1,2, 3,4,5,6). The
goal condition encodes the target list (6,5,4,3,2,1).
Finally, actions encode the swapping of the content of
two pointers as well as actions for moving the pointers
along the list. In this regard, the input/output example
(1,2,3,4,5,6)/(6,5,4,3,2,1) is a positive example while
(1,2,3,4,5,6)/(6,5,2,3,4,1) or (4,3,2,1)/(2,3,4,1)
are negative examples for the generalized planning task of
reversing lists.

In this work both positive and negative examples are clas-
sical planning problems Py = (F, A, I,,G4),...,Pr =
(F, A, Ir,Gr) defined on the same fluent set /' and action
set A. Each problem P, € P, 1 < t < T encodes an in-
put specification in its initial state I, while G; encodes the
specification of its associated output. Although the exam-
ples share actions, each action in A can have different inter-
pretations in different states due to conditional effects. For
instance, back to the example of Figure 1, we can encode in-
dividual planning tasks with different corridor sizes (the set
of fluents F' can include fluents of type max (V) that encode
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Figure 3: Taxonomy of instances in generalized planning.

different corridor boundaries (Segovia-Aguas, Celorrio, and
Jonsson 2019)).

Negative examples should not be confused with wun-
solvable planning instances. The goals of negative exam-
ples are reachable from the given initial state (see Fig-
ure 3). For instance the goals of the negative example
(1,2,3,4,5,6)/(6,5,2,3,4,1) shown in Figure 2 can be
reached from the associated initial state by applying the
corresponding actions to swap the content of pointers and
moving appropriately those pointers. On the other hand
(4,3,2,1)/(1,1,1,1) would represent an UNSAT classical
planning instance, because (1, 1,1, 1) is not reachable start-
ing from (4, 3,2, 1) and provided the mentioned actions for
reversing lists.

Program validation with negative examples

In generalized planning the process of plan validation is im-
plicitly required as part of plan synthesis, since computing
a solution plan requires us to validate it on all the given in-
put instances. Next, we extend the notion of validation to
consider also negative examples.

Definition 2 (Program Validation with Positive and Negative
examples). Given a program 11 and a set of classical plan-
ning problems P = {Py,..., Pr} labeled either as posi-
tive or negative, validation is the task of verifying whether 11
solves each P € P labeled as positive, while it fails to solve
each P € P that is labeled as negative.

Validating a sequential plan on a classical planing prob-
lem is straightforward because either a validation proof,
or a failure proof, is obtained by executing the plan start-
ing from the initial state of the planning problems (Howey,
Long, and Fox 2004). Validating a program on a classical
planning problem is no longer straightforward because it re-
quires a mechanism for detecting infinite loops (checking
failure conditions 1. and 2. is however straightforward).

The execution of plans with control flow on a given plan-
ning problem is compilable into classical planning. Exam-
ples are compilations for GOLOG procedures (Baier, Fritz,
and Mcllraith 2007), Finite State Controllers (Bonet, Pala-
cios, and Geffner 2010; Segovia-Aguas, Jiménez, and Jons-
son 2018) or planning programs (Segovia-Aguas, Jiménez,
and Jonsson 2016; Segovia-Aguas, Celorrio, and Jonsson
2019). These compilations encode the cross product of the
given planning problem and the automata corresponding to
the plan to execute. The plan is valid iff the compiled prob-
lem is solvable. If a classical planner proves the compiled

problem is unsolvable, then the plan is invalid because its
execution necessarily failed.

Besides current planners do not excel at proving that a
given problem is unsolvable (Eriksson, Roger, and Helmert
2017), none of the cited compilations can identify the pre-
cise source of a failed plan execution. Next, we show that the
classical planning compilation for the synthesis of planning
programs (Segovia-Aguas, Celorrio, and Jonsson 2019) can
be updated with a mechanism for detecting infinite loops,
that is taken from an approach for the computation of in-
finite plans (Patrizi et al. 2011). This updated compilation
can identify the three possible sources of execution failure
(namely incomplete programs, inapplicable actions and
infinite loops) of a program in a given classical planning
problem. What is more, the compilation can be further up-
dated for solving generalized planning problems with posi-
tive and negative examples.

A compilation for program validation

Given a generalized planning task P = {P,..., Pr} and a
program II, program validation is compilable into a planning
instance P, = (F!, Al ,I!,G,), that extends P, from the

background Section . The extended fluent set is F{l =F,U
Freg U Feopy, Where

e F,., = {checked,holds,stored, acted, loop} contains
flags for identifying the source of execution failures,

® Feopy = {copy;,correcty : f € F'U F.} contains the
fluents used to store a copy of the program state with the
aim of identifying infinite loops.

Unlike A,,, the action set A/, does not contain program-
ming action (these actions are only necessary for program
synthesis but not for program validation). However, A, con-
tains a new type of action called check action that verifies
whether the precondition of an instruction holds. For an in-
struction w and line 7, the check action C'(w;) is defined as

pre(C(w;)) ={pc;, ins; .o, ~checked, —loop},

cond(C'(w;)) ={0 > {checked}} U {pre(w) > {holds}}.
After applying C'(w;), execution fails if holds is false, ei-
ther because the goal condition G is not satisfied when we
apply a termination instruction end;, or because the precon-
dition pre(w) of the action w € A does not hold (which
corresponds precisely to failure conditions 1. and 2. above).
A similar mechanism has been previously developed for
computing explanations/excuses of when a plan cannot be
found (Gobelbecker et al. 2010).

Each execution action E(w;) is defined as before, but we
add precondition {checked, holds} and the conditional effect
() > {—checked, —holds, acted}. As a result, C(w;) has to
be applied before F(w;), and E(w;) is only applicable if
execution does not fail (i.e. if holds is true).

To identify infinite loops A!, is extended with three new
actions:

e store, which stores a copy of the current program state.
pre(store) = {—checked, —stored, acted},
cond(store) = {() > {stored, ~acted}}
U{{/f} > {copys}: Vf € FUF}.



This action can be applied only once, after an action ex-
ecution F(w;) and before checking an action C(w;). It
simply uses conditional effects to store a copy of the pro-
gram state (s, 1) in the fluents of type copy .

e compare, which compares the current program state (s, i)
with the stored copy.

pre(compare) = {—checked, stored, acted, —loop},
cond(compare) = {{) > {—stored, —acted, loop}}

U{{f,copy} > {corrects} : f € FU Fy.}
U{{—f, ~copy;} > {correcty} : f € F'U Fy.}.

The result of the comparison is in the fluents of type
correcty. Note that acted is not true after applying store
s0, to satisfy the precondition of compare, we have to ap-
ply an execution action first (otherwise the current pro-
gram state would trivially equal the stored copy). For a
fluent f to be correct, either it is true in both the current
program state and the stored copy, or it is false in both.

e process, which processes the outcome of the comparison.

pre(process) = {loop} U {correcty : f € FU F.},
cond(process) = {() > {—loop, checked} }.

This action can only be applied if all fluents in ' U F),.
are correct, adds fluent checked, and resets other auxiliary
fluents to false. The purpose of adding checked is to match
the state of other failure conditions (checked is true and
holds is false).

Finally, A/ contain also actions skip,, 1 < ¢t < T, that
terminate program execution as a result of a failure condi-
tion. These actions are applicable once a failure condition is
detected, of either type (checked is true and holds is false).

pre(skip,) = {test;, checked, —holds},
cond(skip,) = cond(end;)
U {0 > {—checked, —stored} }
U {0 > {—copy, ~correcty : f € F'U Fp}}.

Note that the action applied immediately before skip,
identifies the source of the execution failure of the program
II on P,. This action is either:

1. C(end;;), identifying an incomplete program.

2. C(w;) such that w € A, which proves that w € A is an
inapplicable action.

3. process, identifying that the execution of the program en-
tered an infinite loop.

The precondition —stored is added to all check actions
C'(end;;), to avoid saving a stored copy of the program state
from one input instance to the next. The goal condition is the
same as before and in the initial state I}, the instructions of
the program II are already programmed in the initial state:

I, =1 U{pcy} U{ins;  : 0 <i<nAw; €Il}.

Program synthesis with positive and negative
examples

We define a generalized planning problem with positive and
negative examples as a finite set of classical planning in-
stances P = {Py,...,Pp+,..., Pr} that belong to the
same planning frame. In this set there are T positive and
T~ negative instances such that 7' = T + T~ (see Fig-
ure 3). We assume that at least one positive instance is nec-
essary (I'T > 0) because otherwise, the one-instruction pro-
gram 0.end, covers any negative instance whose goals are
not satisfied in the initial state.

To synthesize programs for generalized planning with
positive and negative examples we extend the compilation
P! with programming instructions. The output of the fi-
nal extension of the compilation is a new planning instance
PT{L/ — <F1/1/,A// I// G >:

n»n? n

e The fluent set F is identical to that of the compilation
P!, except that F// now includes a fluent negex, which is
used to constrain the application of actions E(end; ;) and
skip,, respectively. By adding a precondition —negex to
E(end;;) and a precondition negex to skip,, we require
program execution to succeed for positive examples, and
to fail for negative examples.

e The action set A/ is identical to A], except that we rein-
troduce programming actions P(w;) in the action set A”
and we add a precondition —negex to E'(end, ;) and a pre-
condition negex to skip, to require program execution to
succeed for positive examples, and to fail for negative ex-
amples. Moreover, precondition negex is added to all ac-
tions related to infinite loop detection (e.g. store, compare
and process).

e All program lines are now empty in I/ (so they can
be programmed) and the goal condition is still G,, =
{done}, like in the original compilation.

Theorem 1 (Soundness). Any plan m that solves the plan-
ning instance P! induces a planning program 11 that solves
the corresponding generalized planning task with positive
and negative examples P = {Py,...,Pp+,..., Pr}.

Proof. To solve the planning instance P, a solution 7 has to
use programming actions P(w;) to program the instructions
on empty program lines, effectively inducing a planning pro-
gram II. Once an instruction w is programmed on line 1, it
cannot be altered and can only be executed using the given
execution model (that is, using a check action C'(w;) to test
its precondition, followed by an execution action E(w;) to
apply its effects). To achieve the goal G,, = {done}, 7 has
to simulate the execution of II on each input instance F;,
1 <t < T, terminating with either E(end, ;) or skip,, which
are the only two actions that allow us to move on to the next
input instance (if ¢ < T') or add fluent done (if ¢ = T)).
Because of the preconditions of E(end, ;) and skip,, termi-
nation has to end with E(end, ;) if P, is a positive exam-
ple, and with skip, if P; is negative proving that II solves
each positive example and fails to solve each negative ex-
ample. O



Theorem 2 (Completeness). If there exists a pro-
gram 11 within n program lines that solves P =
{P1,...,Pr+,..., Pp} then there exists a classical plan
that solves P)/.

Proof. We can build a prefix of plan 7 using programming
actions that insert the instructions of II on each program line.
Now, we determine the remaining actions of 7 building a
postfix that simulates the execution of 1I on each input in-
stance P, € P. Since II solves each positive example and
fails to solve each negative example, it means that there ex-
ists an action sequence that simulates the execution of II on
P, and ends with action E(end; ;) (if P; is a positive exam-
ple) and with skip, (if F; is negative). O

Experiments

This section reports the empirical performance of our ap-
proach for the synthesis and evaluation of programs for gen-
eralized planning'. All experiments are run on an Intel Core
i5 2.90GHz x 4 with a memory limit of 4GB and 600 sec-
onds of planning timeout. In order to compare with pre-
vious approaches, we use Fast Downward (Helmert 2006)
in the LAMA-2011 setting (Richter, Westphal, and Helmert
2011) to synthesize and evaluate programs using the pre-
sented compilations.

Experiments are carried out over the following general-
ized planning tasks. The Green Block consist of a tower of
blocks where only one greenish block exists and must be col-
lected. In Fibonacci the aim is to output the correct number
in the Fibonacci sequence. In Gripper a robot has to move
a number of balls from room A to room B, and in List the
aim is to visit all elements of a linked list. Finally, in Trian-
gular Sum we must calculate the triangular sum represented

with the formula y = Zév 2. We also introduce in this paper
RoboPainter (RP), where a robot should paint, given differ-
ent constraints, odd cells in a corridor (see Figure 1).

Computing programs with positive and negative
examples

For the synthesis of programs that solve the previous gen-
eralized planning tasks, we compare two versions of our
compilation, PN-Lite and PN, with the results from some
problems whose solutions where solved and reported as
“One Procedure” in Segovia-Aguas, Jiménez, and Jons-
son (2016). We use PN to denote the version with positive
and negative examples that detect the three possible failures
of a planning program, whereas PN-Lite is a simpler sound
version that detects incomplete programs and inapplicable
actions but not infinite loops.

In this experiment we have run almost 100 random config-
urations with at most 5 instances that could be either positive
or negative (where at least one is forced to be positive, see
the previous section). The idea behind this experiment is to
evaluate the use of negative examples as counter-examples
to prevent undesired generalizations of programs that are

'The source code, benchmarks and scripts are in the Automated
Programming Framework (Segovia-Aguas 2017) such that any ex-
perimental data in the paper can be reproduced.

synthesized from small input instances. Some domains from
previous approaches are simple enough that they can gener-
alize from few positive instances, so our compilations will
only add complexity to the domain, requiring extra search-
ing time required for failure detection.

In Table 1, columns PN-Lite and PN report the obtained
results when we synthesize programs that are validated on
both positive and negative examples. Recall that the P/
compilation has additional fluents and actions compared to
P, which imposes an extra searching time. However, in-
cluding negative examples often makes it possible to syn-
thesize programs from fewer positive examples and with
fewer fluents (planning instances of smaller size) which,
in general, increases the percentage of programs found.
Also, the process of synthesis from few examples is a
benefit in generalized planning compilations akin to few-
shot learning (Lake, Salakhutdinov, and Tenenbaum 2015;
Camacho and Mcllraith 2019).

We briefly describe the best solutions that generalize for
each domain in Table 1. In Green Block, we repeat the drop
and unstack instructions while the green block is not hold,
then we collect the holding green block. In the Fibonacci
domain there are 4 variables called A, B, C and D that rep-
resent F,, n, F;,_1 and F,_, respectively. The program as-
signs C to D, then A to C, then adds D to A and decreases
B, repeating this sequence while B is different from 0. The
planning program found in Gripper picks up a ball with the
left hand, moves to room B, drops the ball, and goes back
until no more balls are in room A. The List program vis-
its the current node, moves to the next node and repeats the
process until it reaches the tail. Finally, the program for 7ri-
angular Sum has a variable A initialized to 0 and countdown
variable B that is added iteratively to A.

Evaluating generalized plans with test sets of
positive and negative examples

Negative examples are useful for defining quantitative met-
rics that evaluate the coverage of generalized plans with re-
spect to a fest set of unseen examples. Given a labeled clas-
sical planning instance P and a program II:

e If P is labeled as positive and II solves P this means P
is a true positive. Otherwise, if II fails to solve P this
means P is a false positive.

e If P is labeled as a negative example and II solves P this
means P is a false negative. Otherwise, if 11 fails to solve
P this means P is a true negative.

Our notion of positive and negative examples allows us to
adopt metrics from ML for the evaluation of planning solu-
tions that generalize with respect to a fest set. These metrics
are more informative than simply counting the number of
positive examples covered by a solution and also consider
the errors made over the fest set (Davis and Goadrich 2006):

iy and Recall, re(Il) =
where p is the number of positive examples

e Precision, pr(II)

P
(p+n-)’
solved by II, p~ the number of false positives (classical
planing problems labeled as negative that are solved by



Only Positive PN-Lite PN
n  max(T) | Avg. Search(s) Found(%) | Avg. Search(s) Found(%) | Avg. Search(s) Found(%)
RoboPainter | 5 5 64.58 50% 140.44 60 % 86.43 40%
Green Block | 4 5 45.40 81.25% 154.35 67.5% 99.12 90 %
Fibonacci 5 5 190.14 25% 93.96 27.5% - 0%
Gripper 4 5 48.19 43.75% 67.77 27.5% 107.14 27.5%
List 3 5 0.04 31.25% 0.07 27.5% 0.21 45%
T. Sum 3 5 143.36 100 % 192.13 100% 141.74 100%

Table 1: Program synthesis with positive and negative examples: number of program lines (n), max number of input instances
(T), average search time (secs) and, percentage of found solutions (with only positive and with positive and negative examples).

| re(llp)  pr(llp)  ac(Ilp) | re(Ipniie) pr(lpniie) ac(Ipniie) | 7e(Ilpn)  pr(Ilpy)  ac(llpy) |
RoboPainter | 71.74% 100.00%  95.19% 70.90% 100.00% 94.58% 75.63% 100.00% 95.57%
Green Block | 68.86%  80.93% 91.48% 60.48% 75.00% 88.76% 80.89 % 88.38% 94.43 %
Fibonacci 17.86%  71.43% 85.47% 22.22% 100.00 % 85.97 % -% -% -%
Gripper 41.54%  85.71% 87.68% 62.38% 88.73% 91.35% 35.44% 84.88% 86.30%
List 8.08 % 72.73%  81.89% 5.96% 65.00% 81.00% 4.75% 47.22% 80.27%
T. Sum 71.74% 100.00% 95.19% 75.63% 100.00% 95.57 % 70.90% 100.00%  94.58%

Table 2: Program evaluation wrt a set of positive and negative tests using the recall, precision and accuracy metrics. The -%
symbol refers either to value not found because of an invalid operation.

II) and n~ is the number of false negatives (instances la-
beled as positive examples that cannot be solved by II).

e Accuracy is a more informed metric frequently used in
— ptn

ML, ac(Il) = ;== In our case, n represents the

number of negative examples unsolved by the program II.

For this experiment we considered the planning program
as given, i.e. the computed programs in the previous syn-
thesis experiment. Then we compile a set of positive and
negative instances but include the planning program in the
initial state instead of having empty lines (as in the P,, and
P! compilations). The execution of the computed programs
on these instances must solve the positive instances while
failing to solve the negative instances, verifying plan failure
due to a failed condition or the detection of an infinite loop,
as explained in the previous section.

We have used a framework for validating planning pro-
grams that reports success or specifies the source of failure
when executing the program for each randomly generated
planning instance. The results are shown in Table 2 where
we report the precision, accuracy and recall of programs
synthesized using only positive examples, and programs syn-
thesized using the positive and negative examples. The list
domain is the only case where positive examples yield to a
better accuracy, while the rest of domains using positive and
negatives improves only positives in all metrics.

Conclusion

Generalized planning provides an interesting framework to
bridge the gap between ML and Al planning (Geftner 2018).
On the one hand generalized planning follows a model based
approach with declarative definitions of actions and goals, as
Al planning. On the other hand generalized planning, as in-
ductive ML, computes solutions that generalize over a set
of input examples. Generalized planning has however little
work dedicated to the assessment of the generality of plans

beyond the given input planning tasks (positive examples
only). ML however, has a long tradition on the empirical
assessment of the generality of solutions. The fact that our
compilation identifies the source of failures of program ex-
ecution on a particular planning instance allows us to intro-
duce negative examples and to bring the evaluation machin-
ery from ML to define evaluation metrics that empirically
assess the generality of plans beyond the given input plan-
ning tasks, e.g. using fest sets.

Model checking (Clarke, Grumberg, and Peled 1999) pro-
vides effective solvers for automatically verifying correct-
ness properties for diverse finite-state systems. More pre-
cisely when actions have non-deterministic effects, program
validation becomes complex since it requires proving that
all the possible program executions reach the goals. In such
a scenario, model checking (Clarke, Grumberg, and Peled
1999) and non-deterministic planning, like POMDP plan-
ning, are definitely more suitable approaches for plan val-
idation (Hoffmann 2015). An interesting research direction
is to study how to leverage model checking techniques for
the synthesis of generalized planning form both positive and
negative examples. Plan constraints are also a compact way
of expressing negative information for planning and reduce
the space of possible solution plans. Plan constraints have al-
ready been introduced to different planning models using the
LTL formalism (Baier, Bacchus, and Mcllraith 2009; Bauer
and Haslum 2010; Patrizi, Lipovetzky, and Geffner 2013;
Camacho et al. 2017).
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