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Abstract—Spitzoid melanocytic tumors (SMT) are a group
of neoplasms that represent a formidable diagnostic challenge
for dermatopathologists. DNA methylation (DNAm) is a well-
defined epigenetic factor that has an important role in the
development of these lesions. In this work, we propose dif-
ferent deep-learning-based approaches to address the Spitzoid
neoplasms detection from DNAm. We use an autoencoder and
a variational autoencoder for dimensionality reduction with a
subsequently supervised classification. Additionally, we present
a deep embedded refined clustering algorithm able to optimize
the latent space at the same time that the non-supervised
classification task is performed. This novel approach in DNAm
supposes a step forward in the SMT detection as suggest
the obtained results (acc = 0.9). Additionally, making use of
the resulting model, we present a subspace-prototypical-based
approach for the prognostic prediction of uncertain malignant
potential samples, which is nowadays the hottest open area in
SMT detection.

Index Terms—Dimensionality reduction, deep embedded re-
fined clustering, DNA methylation, Spitzoid neoplasms.

I. INTRODUCTION

Skin cancer represents the most common group of malignant
neoplasms among Caucasians [1], [2]. In fact, nowadays, one
in three diagnosed cancers is skin cancer [3]. Although two of
the most commonly diagnosed skin cancers are basal and squa-
mous cell carcinoma, non-melanocytic lesions developed from
non-pigmented skin cells, the most aggressive and dangerous
skin cancer is melanoma [4]. Melanoma is an aggressive
neoplasm with numerous mechanisms of resistance against
therapeutic agents [5]. In conventional melanocytic tumors, a
precise pathological distinction between benign (melanocytic
nevus) and malignant (melanoma) is possible. However, there
are melanocytic neoplasms which cannot be classified properly
with the current histopathological algorithms. This difficulty
leads to an underdiagnosis such as nevus, an overdiagnosis
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such as melanoma or a diagnosis of uncertain malignant
potential (UMP), which is the real diagnostic challenge for the
pathologists since their prognosis is unknown [6]. Most of this
heterogeneous group of melanocytic tumors belong to the Spit-
zoid tumor category [7]. Spitzoid melanocytic neoplasms are
rare skin lesions that constitute diagnostic problems for der-
matopathologists on a regular basis [6]. The discrepancy be-
tween the histopathologic appearance and its clinical evolution
is the reason why molecular studies are needed to understand
the biology and predict the clinical behavior of the Spitzoid tu-
mors. These molecular techniques include: fluorescence in situ
hybridization (FISH) [8], DNA methylation (DNAm) [9] and
miRNAs expression [10]. Specifically, DNAm is a frequent
event in melanocytic tumors related to their development and
metastatic progression. Therefore, it may serve as a diagnostic,
prognostic and therapeutic biomarker [11]–[13]. DNAm is
based on the addition of a methyl group to the cytosine
nucleotide under the DNA methyltransferases (DNMT) action
[14], see Fig. 1. Specifically, DNAm takes place in cytosines
that precede guanines, known as CpG dinucleotides [15]. The
CpG sites are often located in the gene promoting regions and
the methylation of these regions has been firmly established
as one of the most common mechanisms for gene regulation
in cancer.

Fig. 1. DNA methylation process. Methylation at position 5’ of the cytosine
catalyzed by DNMT (DNA methyltransferases) in the presence of S-adenosyl
methionine (SAM).



The DNA methylation analysis generates a large amount
of data compared to the generally small number of samples
available. Therefore, a dimensionality reduction is necessary
before implementing any automatic classification algorithm.
Several studies have proposed different dimensionality reduc-
tion and classification algorithms for the cancer identification
(e.g breast cancer [16]–[18] and lung cancer [18], [19]) using
the DNAm level. In this context, Jazayeri et al. used a non-
negative matrix factorization for dimensionality reduction and
the extreme learning machine and the support vector machine
algorithms for breast cancer classification [16]. Zhongwei et
al. presented a stack of Random Boltzmann Machine (RBM)
layers to reduce the dimensionality of a breast DNAm set.
Subsequently, a binary classification through several unsuper-
vised methods was proposed [17]. Khwaja et al. proposed a
deep autoencoder system for differentiation of several cancer
types (breast cancer and lung carcinoma) based on the DNA
methylation states. After a statistical analysis, in which the
features providing non-useful information for differentiation
between cancer classes are eliminated, the authors used a
Deep Belief Network for dimensionality reduction with a
posterior supervised classification [18]. Zhenxing et al. used
a variational autoencoder to reduce the dimensionality of
lung DNAm cancer samples. Afterward, a logistic regression
classifier on the encoded latent features was proposed [19]. To
the best of the author’s knowledge, no previous studies have
been focused on the Spitzoid neoplasm distinction through the
DNAm data.

For all the above, in this paper, we propose and compare
two different deep-learning-based approaches to address the
SMT distinction between nevus and melanoma using the level
of DNAm. Specifically, the first one considers two unsu-
pervised algorithms for dimensionality reduction of DNAm
(autoencoder and variational autoencoder) with a subsequently
supervised classification. The second one is based on an
agnostic learning algorithm that allows reducing the data
dimensionality whereas a refinement of the classification is
carried out. Furthermore, we propose, for the first time in this
kind of data, a subspace prototypical algorithm to determine
the prognostic of UMP samples in malignant or nevus Spitzoid
neoplasms.

II. MATERIAL AND METHODS

A. Material

The experiments detailed in this paper were performed on
a private database composed of patient samples collected in
the Pathological Anatomy Service of the University Clinical
Hospital of Valencia from 1990 to 2017. Specifically, the
dataset contains the methylation level, in the range 0-1, of
491 CpG sites from 39 patients with melanocytic Spitzoid
lesions. Eight of the thirty-nine patients under study were di-
agnosed as malignant melanocytic lesions (melanoma), twelve
as benign (nevus) and the rest as uncertain malignant potential
(UMP). To conduct the prescreening procedure and obtaining
the methylation sites with the most differential methylation
expression, a statistical analysis of the CpG methylation was

carried out before facing the dimensionality reduction stage.
First, a hypothesis contrast to analyze the level of indepen-
dence between pairs of variables was performed. For this
purpose, the correlation coefficient ρ and the p-value of the
correlation matrix were calculated to remove those variables
that meet both p-value ≤ α and |ρ| ≤ 0.90, being α the
level of significance with a value of 0.05 for this application.
After that, we performed different contrasting hypotheses to
analyze the discriminatory ability of each variable regarding
the class. Depending on if the variables fit a normal distribu-
tion or not, the hypothesis test performed was the t-student
or the Wilcoxon Rank-Sum, respectively. After the statistical
analysis, we reduced the 491 DNA methylation features of
each sample under study to 62. These features were the input
for the following stage.

B. CpG dimensionality reduction

In order to overcome the curse of dimensionality problem
due to the extremely high dimensions of the DNAm data,
a dimensionality reduction was carried. In this study, two
unsupervised deep learning frameworks, autoencoder (AE)
and variational autoencoder (VAE), were proposed.

• Autoencoder
Autoencoder (AE) is one of the most significant algorithms

in unsupervised data representation. The objective of this
method is to train a mapping function to ensure the minimum
reconstruction error between input and output using mainly
of two stages: the encoder and the decoder stage [20]. The
encoder function is in charge of transforming the input data
X into a latent representation Z through a non-linear mapping
function, Z = fφ(X), where φ are learnable parameters of
the encoder stage. The dimensionality of the latent space
Z is smaller than this input data to avoid the curse of
dimensionality [21]. The decoder stage produces the data
reconstruction based on the features embedded in the latent
space, R = gθ(Z). The reconstructed representation R is
required to be as similar to X as possible. Therefore, given a
set of data samples xi where i = 1, ..., n being n the number
of available samples, the autoencoder model is optimized as
follows:

min
θ,φ

Lrec = min
1

n

n∑
i=1

||xi − gθ(fφ(xi))||2 (1)

where θ and φ denote the parameters of encoder and decoder,
respectively.

In this case, the encoder and the decoder stage was
composed of three stacks. Specifically, three layers with
62, 20 and 7 neurons, respectively. These layers were
composed of a dense layer with ReLU as activation function
except for the last decoder layer that was constituted of
the sigmoid function in order to obtain an output value
between 0 and 1, range of the methylation data values. The
kernel weights were initialised to random numbers drawn
from a uniform distribution within [-limit,limit], where



limit =
√
3 · scale/ninput, being scale = 1

3 and ninput
the number of input units. Regarding the hyper-parameters
combination, Stochastic gradient descent (SGD) optimizer
with a learning rate (lr) of 0.001 reported the best learning
curves when the model was forward and backpropagated
during 900 epochs with a batch size (bs) of 8, minimizing
the means square error (MSE) loss function.

• Variational autoencoder
Variational autoencoders are based on an encoder and a

decoder stage as well as the AE method. The main difference
is that VAE models learn the distribution of explanatory
features over samples through two latent representations: a
mean and standard deviation vector encoding [22]. In this case,
the VAE model is optimized by minimizing both Equation
(1), to achieve the best input data reconstruction, and a
term corresponding to the regularization of the latent space
organization. This term is expressed as the Kulback-Leibler
(KL) divergence that measures the difference between the
predicted latent probability distribution of the data and the
standard normal distribution in terms of mean and variance
logarithm:

DKL[N(µ, σ||N(0, 1)] =
1

2

∑
(1 + log(σ2)− µ2 − σ2) (2)

The KL function is minimised to 0 if µ = 0 and log(σ2) = 0
for all dimensions. As these two terms begin to differ from 0,
the variational autoencoder loss increases. The compensation
between the reconstruction error and the KL divergence is a
hyper-parameter to be adjusted in this type of architecture.
Regarding the architecture and hyperparameters combination
used, this was the same as that used for the aforementioned au-
toencoder. Additionally, the reconstruction loss was weighted
by 0.7.

C. Classification of Spitzoid melanocytic neoplasms

1) Supervised methylation classification: After the dimen-
sionality reduction of the DNAm data from patients with
malignant and benign melanocytic neoplasms, the classifi-
cation of these tumors was carried out. In this case, we
used a multilayer perceptron (MLP) from the latent space
of the proposed reduction algorithms, Fig. 2. The multilayer
perceptron architecture consisted of three layers: an input layer
of 7 neurons, a hidden layer of 4 neurons in the case of
the autoencoder and 3 for the variational autoencoder and an
output layer of two neurons with the softmax as the activation
function. Table I shows the combination of hyperparameters
depending on whether the input of the MLP was the latent
space of the autoencoder or the variational autoencoder.

2) Deep Embedded Refined Clustering for methylation clas-
sification: In this section, we propose an agnostic learning
algorithm for Spitzoid classification. Specifically, we present a
deep embedded clustering (DERC) algorithm (see Fig. 3) [23].
It is composed of an autoencoder for dimensionality reduction
(with the same architecture as explained in Section II-B)

Fig. 2. Workflow for supervised classification of DNAm data, where S is the
number of folds, in this case 5.

TABLE I
HYPERPARAMETERS COMBINATION. WBCE: WEIGHTED BINARY

CROSS-ENTROPY.

Optimizer lr Epochs bs Loss function
AE SGD 0.01 300 8 WBCE
VAE SGD 0.1 900 8 WBCE

and a cluster assignment corresponding to the unsupervised
classification stage. The clustering process consists of two
main stages: (1) a soft assignment between the embedded
points (encoder output) and the cluster centroids (initialized
using K-means on the encoder output of Section II-B) as
follows:

qi,j =
(1 + ||zi − µj ||2)∑
j′(1 + ||zi − µj ||2)

(3)

where qi,j is the probability of assigning sample i to cluster j
of embedded refined points zi = fφ(xi) and (2) the refinement
of the cluster centroids using the following target distribution:

pi,j =
q2i,j/fj∑
j′ q

2
i,j′/fj′

(4)

with fj =
∑
i qi,j the soft cluster frequencies and qi,j 6= qi,j′ .

This approach was trained during 240 epochs with Adadelta
as an optimizer using a learning rate of 1 and a batch-size of
8. The target distribution of the clustering layer was updated
every 10 iterations. This method optimizes the dimensionality
reduction while performing the centroid refinement. Thereby,
it uses a loss function L with two terms (see Fig. 3): (1) Lr,
MSE for dimensionality reduction (weighted by 0.7) and (2)
Lc, Kulback-Leibler to improve the clustering performance.

D. Pronostic of Spitzoid melanocytic neoplasms

As discussed in Section II-A, the database used is also
composed of UMP samples. Predicting the prognosis of these
tumors is a diagnostic challenge for the pathologists. This is
the reason why, in this work, a subspace prototypical algorithm



Fig. 3. Deep embedded clustering approach to detect spitzoid melanoma
using DNA methylation data. The proposed algorithm is trained minimizing
both, reconstruction and clustering loss.

is proposed for predicting the unknown evolution of these
patients. These networks are based on the idea that exits a
latent space in which the features are grouped around a single
prototype representation for each class.

A nonlinear mapping between the DNAm data and a latent
space was achieved with the autoencoder specified in Section
II-B. After obtaining the embedded space (the encoder output)
of the melanoma and nevus samples, the prototype of each
class was calculated as follows:

pk =
1

|Sk|
∑

(xi,yi)∈Sk

fφ(xi) (5)

where Sk denotes the set of examples labeled with the class k
and fφ the function that transforms the input data xi to latent
space features.

The latent space of UMP patients was inferred through
the encoder stage of the models trained with malignant and
benign samples. Subsequently, the final confidence values for
prognosis estimation (i.e. melanoma or nevus) of UMP cases
were calculated. In this case, the Euclidean distance was used:

d(pk, fφ(q)) =
√
(pk,i − fφ(qi))2 (6)

where i = 1, ..., N . N is the latent space dimension and q the
initial DNAm feature vector of UMP patients. Subsequently,
the class probability (melanoma and nevus) was calculated for
each query point qi via the softmax function of distances to
prototypes in the embedding space:

prob(y = k|q) = exp(−d(pk, fφ(q)))∑
k′ exp(−d(pk′ , fφ(q))

(7)

III. RESULTS AND DISCUSSION

In this section, we present the results achieved in each
proposed approach. We expose in Table II a comparison
of the different dimensionality reduction and classification
algorithms. Several figures of merit are calculated to evidence
the differences between using supervised or non-supervised

classification algorithms. In particular, sensitivity (SN), speci-
ficity (SPC), positive predictive value (PPV), negative predic-
tive value (NPV), F1-score (F1S), accuracy (ACC) and area
under the ROC curve (AUC) are employed. Note that, to
obtain the prediction of all patients with benign and malignant
melanocytic neoplasms with supervised classification methods,
a weighted K-fold validation was used.

TABLE II
RESULTS OBTAINED FOR THE PROPOSED CLASSIFICATION ALGORITHMS.
FOR THE MLP ALGORITHM, THE RESULTS OBTAINED OVER VALIDATION
SUBSET ARE SHOWN. HOWEVER, FOR THE DERC APPROACH, WE SHOW

THE RESULTS OBTAINED AFTER THE MODEL TRAINING.

AE + MLP VAE + MLP DERC
SN 0.75 0.25 0.88

SPC 0.92 1 0.92
PPV 0.86 1 0.88
NPV 0.85 0.67 0.92
F1S 0.8 0.40 0.88
ACC 0.85 0.65 0.90
AUC 0.90 0.70 0.90

Classification results in the latent space of the autoencoder
demonstrate SMT diagnosis outperformance with respect to
using the embeeding features of the VAE as can be appreciated
in Table II. The latent space of the VAE is centered around 0
due to the regularization effect. This fact makes it impossible
to distinguish between the different classes. When comparing
AE+MLP results with those obtained by the DERC method,
it is verified that the latter achieves the best classification
results. Therefore, the unsupervised end-to-end training that
minimizes the reconstruction data while the refinement of
the classification is carried out allows for a better distinction
between benign and malignant SMT.

Table III shows the probability and the reliability ob-
tained for the UMP prognostic. As shown in Table III, for
most patients designated as uncertain malignant potential, the
method predicts a prognosis of benign (63.16%). Therefore,
the majority of UMP patients presents features closer to those
patients labelled as benign. Fig. 4 represents, in 2D graphics,
the distribution of the latent space components (C) of UMP
patients with respect to the centroid of each class (malignant
and benign).

Thus, with this approach, pathologists have a guideline on
the evolution of UMP patients. Since there is no prior work
for the Spitzoid classification based on DNAm, a comparison
with the state of the art has not been possible.

TABLE III
PROGNOSTIC OF THE UMP PATIENTS.

Prognostic Samples Probability (%) Reliability (µ± σ)
Melanoma 7 36.84 0.65± 0.0511
Benign 12 63.16 0.64± 0.0682

IV. CONCLUSION

In this paper, different deep-learning approaches (supervised
and non-supervised) have been presented to elucidate the



Fig. 4. Latent space representation of UMP patients. Legend: Blue and Orange
points represent the patients predicted as benign and malignant, respectively.
Green and red color circles are the centroids of each class (benign and
malignant).

added value enclosed in the DNAm for Spitzoid neoplasms
detection. The reported results suggest the unsupervised deep-
clustering-based algorithm as the most promising method. In
future research lines, an external validation of the proposed
strategy with large databases will be considered.
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