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Spiral sound‑diffusing 
metasurfaces based on holographic 
vortices
Noé Jiménez1*, Jean‑Philippe Groby2 & Vicent Romero‑García2

In this work, we show that scattered acoustic vortices generated by metasurfaces with chiral 
symmetry present broadband unusual properties in the far-field. These metasurfaces are designed to 
encode the holographic field of an acoustical vortex, resulting in structures with spiral geometry. In 
the near field, phase dislocations with tuned topological charge emerge when the scattered waves 
interference destructively along the axis of the spiral metasurface. In the far field, metasurfaces 
based on holographic vortices inhibit specular reflections because all scattered waves also interfere 
destructively in the normal direction. In addition, the scattering function in the far field is unusually 
uniform because the reflected waves diverge spherically from the holographic focal point. In this 
way, by triggering vorticity, energy can be evenly reflected in all directions except to the normal. 
As a consequence, the designed metasurface presents a mean correlation-scattering coefficient of 
0.99 (0.98 in experiments) and a mean normalized diffusion coefficient of 0.73 (0.76 in experiments) 
over a 4 octave frequency band. The singular features of the resulting metasurfaces with chiral 
geometry allow the simultaneous generation of broadband, diffuse and non-specular scattering. 
These three exceptional features make spiral metasurfaces extraordinary candidates for controlling 
acoustic scattering and generating diffuse sound reflections in several applications and branches of 
wave physics as underwater acoustics, biomedical ultrasound, particle manipulation devices or room 
acoustics.

The control of the acoustic scattering is at the origin of a wide range of practical applications, from architectural 
to underwater acoustics. In the last years, locally-reacting flat-surfaces composed of subwavelength resona-
tors, i.e., metasurfaces, have been actively developed and offer a wide range of possibilities for manipulating 
reflected wavefronts1–3. Metasurfaces allow the simultaneous control of the phase and amplitude of the reflected 
field4. Negative refracting metasurfaces5, scattering-free refractive devices6, non-specular reflecting surfaces7, 
subwavelength focusing8, beamforming devices9,10, cloaking11 or broadband and perfect sound absorbers using 
subwavelength panels12–15 have been reported.

Nowadays, research on acoustic metasurfaces is very active. However, the use of locally resonant structures to 
control sound diffusion in room acoustics dates back to the late 70’s, when arrangements of quarter-wavelength 
resonators, called phase-grating diffusers, were introduced by Schröeder to generate diffuse reflections16. These 
acoustic devices have found practical applications in room acoustics and are widely used in many broadcast 
studios, modern auditoria, music recording, control, and rehearsal rooms17. The scattering pattern of a panel 
is essentially driven in the far field by the Fourier transform of its spatially-dependent reflection coefficient. In 
this way, reflecting screens based on number theory sequences with flat spatial Fourier transform were pro-
posed to generate diffuse reflections. These sequences can be bipolar, binary18, ternary and quadriphase19 or 
quadratic-residue types17. Sequences also exist, whose first component of the spatial Fourier transform is equal 
to zero. These sequences are of interest because the specular reflection vanishes in this situation, as it does in 
primitive root or index sequence diffusers17. However, the performance of these traditional non-specular sound 
diffusers is limited because this effect only occurs at the design frequency and multiples of it, with exception to 
critical frequencies. Recently, metamaterials were proposed to reduce the thickness of Schröeder diffusers by 
using Helmholtz resonators instead of quarter-wavelength resonators20 or slow-sound metasurfaces with deep-
subwavelength resonators21,22.
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In this work, we study the scattering properties of spiral metasurfaces based on holographic acoustic vortices 
and make use of them to design broadband and non-specular sound diffusing surfaces. Acoustic vortices are wave 
fields containing phase singularities23, the rotation phase of which is exp(ilφ) , with φ the azimuthal angle and l the 
topological charge of the vortex. Vortex beams have found applications in the rotation of objects24–28, the trapping 
and manipulation of particles29–33 or in acoustic communication systems for transmitting coded information34. 
Several approaches have been proposed to generate acoustic vortex beams, including active sources35,36 or passive 
structures such as helicoidal surfaces35,37, locally-resonant metamaterials38–41, acoustic delay lines42, or acoustic 
holograms43–45. Vortices can also be generated using Archimedean spiral gratings46–48, or Fresnel spiral gratings 
to produce sharply focused vortex beams49. However, the acoustic scattering by spiral structures has not been 
explored previously.

Vortex beams present a null in the far field because the phase singularity of a vortex beam inhibits the propa-
gation of waves along the axial direction. In this way, reflecting surfaces based on vortices only present off-axis 
reflections. In addition, these spiral metasurfaces can spread uniformly the energy over the entire angular spec-
trum by focusing (or defocusing) a vortex in the near field, thus, allowing the design of ultra-broadband acoustic 
diffusers with simultaneous high diffusion performance and non-specular reflections.

Results
Holographic‑vortex metasurfaces.  The proposed metasurface is sketched in Fig.  1a,b. The structure 
consists of a circular flat panel of radius a and thickness L and has N wells of spiral shape. Each well is indexed 
by n = 1, 2, 3, . . . ,N and is of constant depth dn . We propose two different structures: one that focuses a vortex 
in the near field on top of it, as shown in Fig. 1c, and another that virtually focuses a vortex behind it, as shown 
in Fig. 1d.

The field pattern generated by a spherically focused vortex source located at a distance z = F on the metasur-
face plane z = 0 can be approximated in cylindrical coordinates r = r(φ, r, z) by a hyperbolic phase profile as50

where F is the focal distance, k = ω/c0 is the wavenumber, ω is the angular frequency, c0 is the sound speed, and 
p0 is a constant. The time convention in this work is exp(−iωt) . If a surface is set to radiate a time-reversed (or 
complex conjugate in the frequency domain) version of this field, a diffraction-limited vortex converging at the 
focal point z = F will be observed, because of the time-invariance of the acoustic equations. On the one hand, 
in the case of a real focal point when F > 0 a diffraction-limited focused vortex beam is generated, as sketched 
in Fig. 1c. On the other hand, when F < 0 the resulting field diverges spherically from the metasurface and 
defocusing is observed as shown in Fig. 1d with a virtual focal point. Note that no phase-conjugation is needed in 
Eq. (1) in the defocusing case, because the holographic field already captured the diverging wavefront. Therefore, 
defocusing should present inverse phase curvature and inverse topological charge.

In order to design a metasurface with such phase profile, we follow a two step procedure. The first step consists 
in spatially discretizing the metasurface with a geometry compatible with the phase profile of Eq. (1). This can 
be done by the expansion of the binary Fresnel-spiral zone plates49 for the case of the N phase zones and l0 arms. 
The boundary between the n− 1 and n-th phase zone is then given by the following expression

where n = 0, . . . ,N − 1 is the index of each wall, 0 < φ < 2π is the azimuthal coordinate, �0 = c0/f0 is the 
design wavelength with f0 the design frequency, l0 represents the topological charge at the design frequency, and 
m = 0, 1, . . . , l0 − 1 is the index of each arm.

On the one hand, the focusing metasurface synthesizes a wavefront converging towards the focal point. 
Figure 2a shows the phase given by Eq. (1), while Fig. 2b shows its corresponding phase zones for, e.g., N = 16 
zones. The white lines in Fig. 2b correspond to the polar curves given by Eq. (2). It can be observed that each 
polar curve fits to the boundary between adjacent phase zones. Indeed, Fresnel-spirals49 are the exact zone plates 
for focused vortices. In Fig. 2c the hyperbolic phase distribution given by Eq. (1) is compared with the exact 
phase-conjugated projection of a monopole source located at the focus. Note that both phase distributions agree, 
while a parabolic approximation fails to describe the exact focusing phase for highly focused metasurfaces. On 
the other hand, the phase distribution for a defocused metasurface is shown in Fig. 2d. Because this metasurface 
should synthesize a field diverging away from the virtual focus, phase conjugation is applied, resulting in the 
inversion of the phase and the topological charge, as shown also in Fig. 2e for the phase zones. Note that the 
curvature of the phase profile along the radial coordinate for the defocusing metasurface is inverted as compared 
with the focusing case, see Fig. 2f.

The second step consists in assigning to each phase zone the phase values given by Eq. (1). In fact, the focusing 
metasurface corresponds to the case with exp(ilφ ), while for the defocusing case to exp(−ilφ ). In this work, each 
phase zone is made of a quarter-wavelength resonator, the thickness of which is limited by the rigid walls located 
at rn (Eq. 2). Therefore, the metasurface is made of spiral-shaped wells acting as quarter-wavelength resonators. 
The control of the value of the phase in each well can be fixed by its depth, dn . In fact, the reflection coefficient 
at normal incidence of each well in the metasurface is given by Rn = (Z0 − iZ̄n cot kndn)/(Z0 + iZ̄n cot kndn) , 
where kn and Z̄n are respectively the complex and frequency dependent wavenumber and the acoustic impedance 
of the n-th well accounting for the viscothermal losses51, and Z0 is the impedance of the surrounding medium 
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(see more details in section “Methods”). The depths dn and d′n of the n-th well, for the focusing and defocusing 
panels respectively, are set accordingly to

to produce a reflection coefficient whose phase follows the distribution given by Eq. (1). In Eq. (3), the design 
wavelength �0 = 2L is associated to the lowest cut-off frequency of the structure and f0 = cn/2L , where cn is the 
sound speed inside the well.

The Rayleigh–Sommerfeld equation and the Fourier–Fraunhofer approximation (see more details in section 
“Methods”) are used to theoretically evaluate the scattered field in the near field and in the far field, respectively. 
The structure is thus designed by fixing the lowest working frequency, (f0) the focal distance (F), the number of 

(3)dn = n�0

2N
and d′n = (N− n+ 1)�0

2N
,

Figure 1.   (a) Scheme of the proposed spiral-shaped sound diffusing metasurface. (b) Geometry of the panel 
for the focusing configuration. (c) Spiral metasurface for the focusing configuration and its geometry. (d) Spiral 
metasurface designed for the defocusing configuration using a virtual image of a vortex and its geometry.
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slits (N), the panel radius (a) and the topological charge at the design frequency ( l0 ). In this work, spiral metas-
urfaces composed of N = 16 wells, with l0 = 1 , f0 = 2 kHz, |F| = �0/4 = 4.3 cm, and a = 22.5 cm are designed 
to be efficient in air. The total thickness of the structure is thus L = 8.5 cm.

Near‑field vortex focusing and defocusing.  We start by analyzing the scattered field in the near 
field. If a lossless medium is considered, Zn = Z0 , kn = k , the reflection coefficient of the n-th well is given 
by Rn = exp(ikdn) and a complete phase change is produced along the N wells at the design frequency. For a 
normal-incidence plane wave the reflection coefficient along the surface matches the holographic field given by 
Eq. (1). The resulting scattered field at the design frequency (2 kHz) is shown in Fig. 3a1 for the real focusing 
case ( F > 0 ). The spiral metasurface generates a scattered field that focuses at the focal spot. The field vanishes at 
the centre of the structure because of the destructive interference of the scattered waves by the spiral geometry. 
The phase of the field in the cross-sectional plane at a height of z = 2a is shown in Fig. 3a2. A phase dislocation 
along the axis, which corresponds to a vortex of topological charge l = 1 , is clearly visible. As the focusing spot 
is very close to the surface (4.3 cm), the wavefront quickly diverges and the magnitude of the field is thus highly 
uniform after a very short distance, z = 45 cm, as shown in Fig. 3a3, except at the location of the phase disloca-
tion, where the magnitude of the field vanishes due to destructive interferences.

Interestingly, complete phase loops are achieved at frequencies that are integer multiples of the design fre-
quency, f = mf0 along N/m wells, because the reflection coefficient of quarter-wavelength resonators presents 
a linear phase. The scattered field at three times the design frequency, i.e., f = 3f0 (6 kHz), is shown in Fig. 3b1. 
It presents a focal spot at z = F , and focuses sharply, because diffraction effects are weaker for f > f0 . The cor-
responding scattered field phase in the cross-sectional plane is shown in Fig. 3b2. A phase dislocation is also 
visible at the centre, but this time the phase performs 3 complete loops along an azimuthal turn, i.e., the topo-
logical charge of the scattered vortex is l = f /f0 . This relation is fulfilled at multiples of the design frequency for 
frequencies 0 < f /f0 ≤ N/2 , and l = f /f0 − N/2 for frequencies in the range N/2 > f /f0 > N . This phenom-
enon is relevant for spiral metasurfaces because vortices in the normal directio appear periodically in frequency 
up to f = Nf0 . Note that as the topological charge of the scattered vortex increases, so does the hollow area of 
the field, as shown e.g. in Fig. 3b3. In addition, as quarter-wavelength resonators are impedance matched to 
the air when the walls between the wells are thin, the structure also scatters vortices at non-integer multiples of 
the design frequency, see Supplementary material 1 for a deeper analysis. Therefore, these structures present a 
broadband response.

The scattered field of the virtual defocusing case ( F < 0 ) is shown in Figs. 3c1–c3. The field near the structure 
does not focus on a single spot but rather diverges away from the structure. Along the axis of the metasurface, 
the field also vanishes due to destructive interference and the phase dislocation shows a topological charge of 
l = −f /f0 . Note the topological charge phase has the opposite sign to the focusing case, because it occurs in the 
holographic field used for the design (Eq. 1).

Far‑field vortex scattering.  A focusing spiral metasurface was designed ( F = �0/4 ) and manufactured 
using a selective laser sintering 3D printer. The walls are assumed to be perfectly rigid (see more details in the 
section “Sample fabrication”). The scattered field by the structure was measured following the ISO-17497 proce-
dure. In the far field, the resulting polar curves are shown in Fig. 4. The scattered field by a circular reflector of 
the same dimensions is shown for comparison on the polar plots in Fig. 4a3,b3,c3,d3. At the design frequency, 

Figure 2.   (a) Scheme of the proposed spiral-shaped sound diffusing metasurface. (b) Geometry of the panel 
for the focusing configuration. (c) Spiral metasurface for the focusing configuration and its geometry. (d) Spiral 
metasurface designed for the defocusing configuration using a virtual image of a vortex and its geometry.
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Figure 3.   (a1) Scattered field for the focusing metasurface in the near field at the design frequency f = f0 . 
(a2) Phase and (a3) magnitude of the scattered field in the transversal plane z = 2a . (b1) Scattered field for the 
focusing metasurface in the near field at frequency f = 3f0 . (b2) Phase and (b3) magnitude of the scattered field 
in the transversal plane z = 2a . (c1) Scattered field for the defocusing metasurface in the near field at the design 
frequency f = f0 . (c2) Corresponding phase and (c3) magnitude in the transversal plane z = 2a . (d1) Scattered 
field for the defocusing metasurface in the near field at frequency f = 3f0 . (d2) Corresponding phase and (d3) 
magnitude in the transversal plane z = 2a.

Figure 4.   Scattering in the far field at 2 kHz obtained (a1) theoretically and (a2) experimentally. (a3) Polar 
scattering at 2 kHz obtained experimentally (markers), theoretically (continuous line) and theoretical scattering 
of a flat panel of same dimensions. (b1–b3) Corresponding scattering in the near field at 6 kHz, (c1–c3) at 10 
kHz and (d1–d3) at 16 kHz.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10217  | https://doi.org/10.1038/s41598-021-89487-8

www.nature.com/scientificreports/

Figs. 4(a1-a3), the polar distribution of the scattered waves is uniform when compared to that of the reference 
reflector, and a reasonable agreement between theoretical and experimental responses is observed. However, all 
scattered waves interfere destructively in the specular direction ( θ = 0 ) in the far field because a vortex is gener-
ated in the near field. Therefore, metasurfaces based on holographic vortices inhibit specular reflections because 
the field presents a phase dislocation in these directions. In addition, the scattering function for all other angles 
is uniform in the far field, since the waves diverge spherically from the focal point.

The scattered field at frequencies 6 kHz ( l = 3 ), 10 kHz ( l = 5 ) and 16 kHz ( l = 8 ) is depicted in 
Fig. 4b1–b3,c1–c3,d1–d3, respectively. The amplitude of the scattered field decreases over a wider range of 
near-normal angles as the frequency increases. This behavior is expected, because vortices of high topological 
charge present wider nulls, and the range of angles with reduced amplitude is wider in the far field. A time-
domain representation of the scattered field using a pulse-burst excitation of frequencies lf0 with l = 1, 2, . . . , 8 
is given in the supplementary videos. The experimental data in the time domain agrees with the theory after 
inverse Fourier transformation. In each video, it can be identified the scattered field pattern with a vortex of 
integer topological charge.

Broadband sound diffusion by holographic vortices.  To quantify the performance of the metasur-
face, the correlation-scattering coefficient, σ(f ) , is calculated as usual in room acoustics and sound diffusers 
design17. This coefficient measures the decorrelation between the scattered field by the structure and that by 
a flat panel of the same dimensions. Thus, a 0 value of σ(f ) indicates that the reflection is specular while a 1 
value indicates that the scattered energy spreads in all directions other than specular. The retrieved frequency-
dependent correlation-scattering coefficient is shown in Fig. 5a. A good agreement is found between theoretical 
predictions for the focusing and defocusing devices as in the far field both systems present similar scatter-
ing field. The experimental results for the focusing device validate this behavior. We observe that the absence 
of specular reflection makes the correlation-scattering coefficient being almost unitary at frequencies that are 
multiples of the design frequency because vortices of integer charge are then generated. However, the structure 
also efficiently scatters vortices at other frequencies (see Supplementary material 1), because it is composed of 
quarter-wavelength resonators. Therefore, the correlation-scattering coefficient remains close to unity over the 
entire design frequency band ( σ(f ) > 0.9 for f0 < f < Nf0 ). The correlation-scattering coefficient takes a mean 
value of 0.98 (0.99 in theory) over the frequency range from 2 to 16 kHz.

A second important parameter to quantify the performance of the acoustic structure is the diffusion coef-
ficient, δ(f ) , which is widely used in practical applications such as in room acoustics17. This coefficient measures 
the uniformity of the scattering. When all the energy is reflected in a single direction (not necessarily the specular 
one), δ(f ) = 0 , while δ(f ) = 1 when there is no preferred direction of reflection and the scattering function is uni-
form. Note that small panels also generate diffuse reflections due to diffraction by their bounds. The magnitude 
of the diffusion coefficient is thus normalized by that of a perfect reflector of the same dimensions, namely the 
normalized diffusion coefficient δn(f ) . Figure 5b shows the normalized diffusion coefficient calculated theoreti-
cally for the focusing and defocusing metasurfaces, and measured experimentally. This coefficient presents a peak 
at the design frequency of amplitude δ(f0) ≈ 0.95 theoretically and δ(f0) ≈ 0.85 experimentally. This high value 
arises from the fact that the holographic vortex generates spherically diverging waves. However, the value of the 
normalized diffusion coefficient cannot reach unity, because there is a lack of scattering in the normal incidence. 
As the topological charge of the scattered vortex increases with frequency a wider range of angles close to normal 
direction presents reduced scattering. Therefore, the response is less uniform and the value of the normalized 
diffusion coefficient decreases with frequency. Note that peaks do not appear at frequencies that are an integer 
multiple of the design frequency, because at these frequencies the structure scatters multiple vortices at different 
angles, leading to a uniform scattering pattern. The normalized diffusion coefficient takes a mean value of 0.76 
(0.73 in theory) over the frequency range from 2 to 16 kHz.

Figure 5.   (a) Correlation scattering coefficient ( σ ) as a function of the frequency. Arrows indicate the 
frequencies 2 kHz, 6 kHz, 10 kHz, and 16 kHz. (b) Normalized diffusion coefficient ( δn ) as a function of the 
frequency.
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Topological charge of the scattered vortices.  Finally, we show the relation between the phase of the 
scattered field along the azimuthal coordinate and the topological charge of the vortex. Figure 6 shows the phase 
measured experimentally (markers) and theoretically (lines) at different frequencies. Note phase was normal-
ized and unwrapped. It can be observed that the scattered field by the spiral metasurface presents a phase which 
roughly varies linearly along the azimuthal coordinate. The slope corresponds with the topological charge, i.e., 
arg(ps(φ)) = f /f0φ . A detailed picture is shown in the corresponding maps at the right of Fig. 6, measured exper-
imentally over a spherical surface of radius of 80 cm, and obtained theoretically. For low topological charges, 
e.g., f /f0 < 4 , the phase dislocation is clearly visible at the centre. As the width of the silent area increases with 
frequency (or topological charge), it becomes hard to detect the dislocation at the centre for higher frequencies. 
However, at grazing angles, where energy is scattered, it is visible in all maps that the phase of the scattered field 
rotates a number of times equal to the value of the theoretical topological charge. The process continues up to 
f = f0N/2 . At this frequency, the phase along the surface of the structure is a binary spiral of N arms (see Sup-
plementary material 1). Therefore, a vortex of topological charge l = N is scattered46,49. In our case, this was set 
to f = f0N/2 = 16 kHz, covering the whole audible spectrum. For higher frequencies, the topological charge 
of the scattered vortex is given by l = N − f /f0 , up to f = Nf0 . At this frequency, the phase along the structure 
is constant. Therefore, the metasurface acts as a flat reflecting surface. This case is the analogous behaviour of 
the well-known critical frequencies of quadratic-residue diffusers17. In the present design, this critical frequency 
appears at f = 32 kHz, far away from the audible regime.

Oblique incidence.  When the indent field is tilted with an oblique direction given by an angle θI with 
respect to the normal and an azimuthal angle of φI , the scattering is being affected by two main factors. First, 
the transverse wavenumber is given by k⊥ = k sin θI , so the axial wavenumber inside each well decreases due 
to the conservation of the transverse component of the wavevector at the boundary, k2z = k2s − k2⊥ , with ks the 
wavenumber inside the well. Therefore, the effective wavelength increases to �z ≈ �/ cos θI . As the impedance of 
each well is then Zn = −iZs cot(kzdn) , the quarter-wavelength resonance frequency is shifted up and the reflec-
tion coefficient along the surface becomes angle-dependent R(x0, y0,φI , θI ) . Second, the incident field along the 
surface presents a sinusoidal pattern given by pi(x0, y0) = p0 exp(−i[kx0x0 + ky0y0]) , where kx0 = k⊥ cosφI 
and ky0 = k⊥ sin φI . Then, the scattered pressure at the surface is given by pr = pi R . Therefore, as the far-field 
scattering is essentially a Fourier transform of the reflected field at the surface we obtain

(4)ps(φ, θ ,φI , θI ) = −i
k

2π

exp(ikr)

r

∫

S0

p0R(x0, y0,φI , θI ) exp(−i[(kx − kx0)x0 + (ky − ky0)y0])dx0dy0.

Figure 6.   Phase of the scattered field in the far field as a function of the azimuthal angle. Each curve 
corresponds with a frequency and its associated topological charge of the scattered vortex, l, is indicated. The 
corresponding maps show the phase of the scattered field measured experimentally (interpolation was used 
here) and obtained using theory.
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Note that the product pi R in the spatial domain becomes a convolution in the spatial-frequency domain. This 
results in a shift of scattering pattern in the k-space by a wavevector k� = k(cosφI sin θI k̂x + sin φI sin θI k̂y) , 
therefore, the scattered pattern in the far-field becomes tilted.

The two effects, the k-space shift and the resonance-frequency shifting, does not change the main behaviour 
of the metasurface. Figure 7 shows the results for oblique incidence. First, Fig. 7a1–d1 we show the scattering 
for θI = 30, 45, 60, 75◦ , at frequencies f = f0 , φI = 0 , and for F > 0 . The far-field distribution at f = f0 and low 
incidence angles shows a tilted and uniform pattern because wells can produce some phase shift of the reflected 
field. However, as the incidence angle is increased the resonance of the wells is shifted up. Therefore, at the design 
frequency and under very high oblique incidence, the reflection coefficient resembles the one of a rigid circular 
panel resulting in a poor diffusion performance.

Only when the f = f0/ cos(θI ) all the wells resonate according to the design and the reflection coefficient 
along the surface matches the holographic field of a (de)focused vortex. Therefore, as show by Fig. 7a2–d2, 
we recover in the far field a tilted version of the scattered vortex due to the k-space shift. Note in the specular 
direction (marked by blue arrows) the field vanish due to destructive interference. Under oblique incidence the 
structure also scatters vortices but at frequencies given by f = lf0/ cos(θI ) with topological charges given by 
l = 1, 2, . . . ,N/2 for l ≤ N/2 and l = N − 1,N − 2, . . . , 0 for l > N/2.

The correlation-scattering coefficient and the normalized diffusion coefficient are shown in Fig. 7e,f, respec-
tively. First, for frequencies f > f0/ cos θI one can see that the structure still show a correlation-scattering coef-
ficient close to the unity. This is a consequence of the previous results, in this frequency range, energy is not 
reflected in a specular way as the structure scatters vortices. The diffusion coefficient is more affected by the 
incidence angle because under oblique incidence and higher frequency vortices are scattered in a narrow angular 
range, compare Fig. 7a2 with d2. This results in a less omni-directional response and, consequently, the diffu-
sion coefficient decreases. To show the overall performance for oblique incidence we calculate a figure of merit, 
namely the random-incidence correlation-scattering and random-incidence diffusion-coefficients (see “Methods” 
section), where it is assumed that the probability of incidence is higher at θI = π/4 , as occurs in diffuse sound 
field. Both coefficients, shown in Fig. 7g,h, describe the performance of the structure under random incidence. 
Even under oblique incidence, we can see that the spiral metasurface presents a high value of both coefficients. 
Finally, note that the decrease in diffusing performance studied here should be a common feature of all locally-
resonant metasurfaces and diffusers based on quarter-wavelength resonators.

Figure 7.   (a1–d1) Far field scattering at incidence angles θi = 30◦, 45◦, 60◦ and 70◦ at f = f0 , and (a2–d2) at 
f = f0/ cos(θ) . (e) Correlation scattering coefficient and (f) normalized diffusion coefficient as a function of the 
incidence angle. (g) Random-incidence correlation scattering coefficient and (h) random-incidence normalized 
diffusion coefficient.
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Conclusions
In this work, we have shown that scattered acoustic vortices present remarkable radiation properties in the far 
field. We have designed broadband spiral metasurfaces to generate holographic vortices. The destructive inter-
ference of the scattered waves along the axis of the spiral metasurface generates a phase dislocation with tuned 
topological charge in the near field. In the far field, all scattered waves at the specular direction also interfere 
destructively. Therefore, metasurfaces based on holographic vortices inhibit specular reflections because the field 
presents a phase dislocation in this direction. In addition, the scattering function in the far field is particularly 
uniform because the waves diverge spherically from the focal point. Moreover, under oblique incidence the 
present metasurface preserves the ability to scatter vortices, but at frequencies higher than the design. Therefore, 
the scattering patterns of spiral metasurfaces are very uniform and non-specular.

In particular, the designed metasurface presents a mean correlation-scattering coefficient of 0.99 (0.98 in the 
experiment) and a mean normalized diffusion coefficient of a 0.73 (0.76 in the experiment), over a frequency 
band covering from 2 to 20 kHz. In this way, the singular features of the resulting metasurfaces with chiral 
geometry allow the simultaneous generation of broadband, diffuse and non-specular scattering. These three 
exceptional features, as demonstrated by the outstanding values of their correlation-scattering coefficient and 
normalized diffusion coefficient, make spiral metasurfaces excellent candidates to generate diffuse sound reflec-
tions in practical applications of wave physics as underwater acoustics, biomedical ultrasound or room acoustics.

Methods
Reflection coefficient of a locally‑reacting metasurface accounting for thermoviscous 
losses.  Thermoviscous processes activate losses in the wells when they are narrow due to non-slip boundary 
conditions at their rigid walls. The thermal and viscous boundary layers introduce dispersion and attenuation, 
that are modelled using complex and frequency dependent parameters, i.e., density, ρ(ω) , and bulk modulus, 
K(ω) . For narrow slits of width hn = rn − rn−1 − hw , where hw is the width of the walls between the wells, and 
assuming that only plane waves propagate inside them, the effective parameters are given by51:

with Gρ(ω) =
√
iωρ0/η and GK (ω) =

√
iωPrρ0/η , and where γ is the ratio of the specific heats, P0 is the atmos-

pheric pressure, Pr is the Prandtl number, η is the dynamic viscosity, and ρ0 and K0 = γP0 the density and bulk 
modulus of the surrounding and saturating fluid respectively. Considering that this fluid is the air medium, we 
used the parameters ρ0 = 1.213 kg m −3 , Pr = 0.71 , γ = 1.4 , P0 = 101325 Pa and η = 1.839 10−5 kg m −1s−1.

Using the complex density and bulk modulus, we can obtain the corresponding wavenumber and acoustic 
impedance in each well as

Finally, the spatially dependent reflection coefficient of the locally reacting metasurface is given by

where Z̄n = Znhn/(hn + hw) . The width, so the impedance and wavenumber, and depth of each well are calcu-
lated as a function of the position in the metasurface plane As Zn = Zn(ω, r0) and kn = kn(ω, r0) , the reflection 
coefficient is spatially dependent.

Near field calculation.  The acoustic field at a point r scattered by the metasurface located at r0 at the sur-
face S0 is approximated by the Rayleigh-Sommerfeld integral and it reads as

where p0(r0) is the incident pressure field, R(r0) is the spatially-dependent reflection coefficient of the locally-
reacting surface, and k = ω/c0 is the wavenumber in air at an angular frequency ω , and c0 =

√
γP0/ρ0 is the 

sound speed.
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Far field calculation.  In the far field, and in spherical coordinates, r = r(φ, θ , r) , using the convention 
0 < φ < 2π for the azimuth and 0 < θ < π for the elevation, the distance between any point and the plane of 
the metasurface is approximated by

A second-order Taylor expansion gives

Introducing the approximations given by Eqs. (11) and (12) in the denominator and in the phase term of the 
numerator of Eq. (10), respectively, we get the Fraunhofer–Fourier approximation of the scattered field

where the transversal components of the wavevector are given by

Note Eq. (13) is essentially a two-dimensional spatial Fourier transform of the reflected field and can be calcu-
lated efficiently using fast-Fourier transforms. In addition, the spherical-divergence factor exp(ikr)/r is usually 
dropped as it does not contribute to the directivity of the scattering in the azimuthal and elevation planes.

Measurement procedure.  Measurements were performed in an anechoic environment following the rec-
ommendation of the standardized procedures described in Ref.52. Acoustic signals were acquired by a calibrated 
1/4-inch pressure-field microphone (G.R.A.S. Holte, Denmark) with a preamplifier (Type 26TC, G.R.A.S. Holte, 
Denmark) and signal conditioning module (12AQ, G.R.A.S. Holte, Denmark). The sample was placed on a 
turntable (LT360, Linerx Systems). Automated measurements were performed along a uniform grid in spheri-
cal coordinates, as shown in Fig. 8, using 32 measurement points in the azimuthal direction from 0 < φ < 2π 
( �φ = 11.25 deg) and 16 measurement points in the elevational direction from 0 < θ < π/2 ( �θ = 6 deg), at a 
distance of r = 1 m from the center of the spiral metasurface. The turntable was surrounded by absorbing foam 
to avoid spurious reflections. The acoustic source was centered and located at a distance r = 2.5 m above of the 
metasurface. A pseudo-random binary signal (maximum-length sequence) was used for the excitation. The 
system exhibited a flat response over a bandwidth ranging from 20 Hz to 20 kHz ( ±3 dB).

(11)|r − r0| ≈ r.

(12)|r − r0| ≈ r − x

r
x0 −

y

r
y0 ≈ r − cosφ sin θx0 − sin φ sin θy0.

(13)ps(φ, θ) = −i
k

2π

exp(ikr)

r

∫

S0

p0(x0, y0)R(x0, y0) exp(−i(kxx0 + kyy0))dx0dy0,

(14)kx = k cosφ sin θ ,

(15)ky = k sinφ sin θ .

Figure 8.   Manufactured spiral metasurface and measurement setup.
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Sample fabrication.  The spiral metasurface was 3D printed by using the sPro 230 printer (3D Systems, SC, 
USA). The material used for the spiral metasurface was Polyamide 12 DuraForm HST Composite (PA12 HST). 
The density and sound velocity of this material are respectively 1200 kg/m3 and 2200 m/s. With these properties, 
the acoustic impedance of the material is more than 6000 times bigger than that of the air, thus it can be consid-
ered acoustically rigid. It is worth noting here that, as the far field of the focusing and defocusing metasurfaces 
are very similar, their diffusion is basically the same for the two cases. Thus, in this work we have 3D printed the 
metasurface for the focusing configuration (see Fig. 8) withoutany loss of generality (Fig. 7).

Diffusion coefficient.  The calculation of the diffusion coefficient follows the standardized procedures 
described in Ref.52. The acquired waveforms were deconvolved and impulse response were obtained. Temporal 
windowing was applied to eliminate the direct field and the spectrum at each location, P(ω) , was calculated 
using fast-Fourier transforms. The diffusion coefficient, δ(ω) , is given by

were M = 512 is the total number of measurements and m is the index of each measurement. In order to com-
pensate the non-uniformity of the grid in spherical coordinates, the following modification52 is used

where

The scattered field was measured for both the metasurface and a circular flat reflector, and the corresponding 
diffusion coefficients were calculated. Finally, the normalized diffusion coefficient, δn(ω) , was obtained as

where δs(ω) and δr are the diffusion coefficient of the spiral metasurface and the circular reflector, respectively. 
This coefficient measures the uniformity of the scattering.

Correlation‑scattering coefficient.  Finally, the correlation-scattering coefficient σ(ω) was calculated 
using the measured scattering as17.

where P(ω) and Pr(ω) are scattering of the spiral metasurface and the flat circular reflector for the m-th grid 
point, and (∗) is the complex conjugate. This coefficient measures the correlation between the scattering of the 
structure and that of a flat panel of same dimensions.

Random‑incidence coefficients.  To obtain a figure of merit under oblique incidence, we calculate the 
random-incidence coefficients as

in analogy to the random-incidence absorption coefficient17, where δn(ω, θI ) and σ(ω, θI ) are the normalized 
diffusion and correlation scattering coefficients, respectively. Note in this case the reference flat circular reflector 
should also be calculated under oblique incidence.
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